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THE FORWARD-BACKWARD-FORWARD METHOD FROM
CONTINUOUS AND DISCRETE PERSPECTIVE FOR

PSEUDO-MONOTONE VARIATIONAL INEQUALITIES IN HILBERT
SPACES

R. I. BOŢ∗, E. R. CSETNEK† , AND P. T. VUONG‡

Abstract. Tseng’s forward-backward-forward algorithm is a valuable alternative for Korpele-
vich’s extragradient method when solving variational inequalities over a convex and closed set gov-
erned by monotone and Lipschitz continuous operators, as it requires in every step only one projec-
tion operation. However, it is well-known that Korpelevich’s method converges and can therefore
be used also for solving variational inequalities governed by pseudo-monotone and Lipschitz con-
tinuous operators. In this paper, we first associate to a pseudo-monotone variational inequality a
forward-backward-forward dynamical system and carry out an asymptotic analysis for the generated
trajectories. The explicit time discretization of this system results into Tseng’s forward-backward-
forward algorithm with relaxation parameters, which we prove to converge also when it is applied to
pseudo-monotone variational inequalities. In addition, we show that linear convergence is guaran-
teed under strong pseudo-monotonicity. Numerical experiments are carried out for pseudo-monotone
variational inequalities over polyhedral sets and fractional programming problems.

Key words. convex programming, variational inequalities, pseudo-monotonicity, dynamical
system, Tseng’s FBF algorithm

AMS subject classifications. 47J20, 90C25, 90C30, 90C52

1. Introduction and preliminaries. In this paper, the object of our investi-
gation is the following variational inequality of Stampacchia type:

Find x∗ ∈ C such that

(1) 〈F (x∗), x− x∗〉 ≥ 0 ∀x ∈ C,

where C is a nonempty, convex and closed subset of the real Hilbert space H, endowed
with inner product 〈·, ·〉 and corresponding norm ‖ · ‖, and F : H → H is a Lipschitz
continuous operator. We abbreviate the problem (1) as VI(F,C) and denote its
solution set by Ω.

Variational inequalities (VIs) are powerful mathematical models which unify im-
portant concepts in applied mathematics, like systems of nonlinear equations, op-
timality conditions for optimization problems, complementarity problems, obstacle
problems, and network equilibrium problems (see, for instance, [14, 19]). In the last
decades, various solution methods for solving problems of type VI(F,C) have been
proposed (see [14, 19]). These methods typically require certain monotonicity prop-
erties for the operator F (see [17]).

The most popular algorithm for solving variational inequalities is the so-called
projected-gradient method, which generates, for a starting point x0 ∈ H, a sequence
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that approaches the solution set Ω by

xn+1 = PC(xn − λF (xn)) ∀n ≥ 0,

where PC is the projection operator onto the convex and closed set C and λ is a
positive stepsize. It is known that the sequence (xn)n≥0 converges, if F is cococercive
(inverse strongly monotone) ([3, 34]) or F is strongly (pseudo-) monotone ([14, 20]).
The projected-gradient method with variable step sizes was proved to convergence
also for variational inequalities governed by (not necessarily single-valued) maximally
monotone and paramonotone operators ([4]). If F is “only” monotone, then (xn)n≥0
does not necessarily convergence (see [14] for an example). Very recently, Malitsky
[23] introduced a modification of the projected-gradient method, called projected-
reflected-gradient method, which, for a starting point x0 ∈ H, reads

xn+1 = PC(xn − λF (2xn − xn−1)) ∀n ≥ 0.

The sequence (xn)n≥0 is shown to converge to an element in Ω, if F is monotone.
Further extensions of this method can be found in [24, 25].

The mostly used algorithm in the literature to solve variational inequalities gov-
erned by Lipschitz continuous and pseudo-monotone operators is Korpelevich’s extra-
gradient method (see [21]) or variants of it. All these methods share the feature to
perform two projections per iteration. Korpelevich’s extragradient method generates,
for a starting point x0 ∈ H, a sequence (xn)n≥0 approaching the solution set Ω as
follows {

yn = PC(xn − λF (xn))

xn+1 = PC(xn − λF (yn))
∀n ≥ 0.

This algorithm was originally introduced for solving monotone VIs in finite dimen-
sional spaces, however, it was shown in [14, Theorem 12.2.11] that it converges even
when F is a pseudo-monotone operator. In the last years, the extragradient method
has attracted a lot of attention from the research community (see, for instance,
[8, 10, 14, 16, 29, 30, 33]). In infinite dimensional spaces, Ceng, Teboulle and Yao
proved in [8] that, if F is additionally sequentially weak-to-strong continuous (which is
however not satisfied by the identity operator), then the sequence (xn)n≥0 converges
weakly to an element in Ω. It was recently proved in [33] that this statement remains
true even if the operator F is sequentially weak-to-weak continuous.

A challenging task when designing efficient algorithms for solving variational in-
equalities is to keep the number of projection operations performed at each iteration as
low as possible. Projection operations may be very expensive, in particular when for
these no closed formulas are available. Censor, Gibali and Reich proposed in [9, 10],
for a starting point x0 ∈ H, the following numerical scheme, called subgradient-
extragradient method

{
yn = PC(xn − λF (xn))

xn+1 = PTn
(xn − λF (yn))

∀n ≥ 0,

where
Tn = {w ∈ H : 〈xn − λF (xn)− yn, w − yn〉 ≤ 0}.

The projection onto the half-space Tn can be explicitly given (see, for instance, [3]),
thus, the subgradient-extragradient method requires the computation of only one
projection per iteration and outperforms from this point of view the extragadient
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method. The subgradient-extragradient method converges for monotone VIs (see
[10]), but also for pseudo-monotone VIs (see [9, 31]).

In this paper, we first attach to VI(F,C) a dynamical system of forward-backward-
forward-type (see (4)) and carry out a convergence analysis for the generated trajec-
tories to an element in Ω, in the case when F is a pseudo-monotone operator. If F
is assumed to be strongly pseudo-monotone, we prove that the trajectory converges
exponentially to the unique solution of VI(F,C). Dynamical systems of forward-
backward-forward type were first studied in [2] in the context of approaching the
set of the zeros of the sum of a maximally monotone operator and a monotone and
Lipschitz continuous operator by continuous trajectories.

The explicit time discretization of (4) leads to Tseng’s forward-backward-forward
algorithm with relaxation parameters ([32]). When applied to the solving of monotone
operators, this algorithm, which requires the computation of only one projection per
iteration, is known to generate a sequence, which weakly converges to a solution of
VI(F,C). In this paper we show that this convergence result remains true even if F
is a pseudo-monotone and sequentially weak-to-weak-continuous operator, for both an
underrelaxed and an overrelaxed variant of Tseng’s algorithm, and provide examples
of operators that fulfill the assumptions of the convergence theorems. We also prove
that the convergence statement remains true in finite dimensional spaces under less
restrictive assumptions on F . In addition, we propose an adaptive stepsize strat-
egy, which does not require the knowledge of the Lipschitz constant of the governing
operator. This shows that Tseng’s algorithm is a method to be considered when solv-
ing constrained pseudo-convex differentiable optimization problems. We also show
that linear convergence is guaranteed when the pseudo-monotonicity for F is replaced
by strong pseudo-monotonicity. In the last section we carry out numerical exper-
iments which show that, when applied to pseudo-monotone variational inequalities
over polyhedral sets and to fractional programming problems, Tseng’s method out-
performs Korpelevich’s extragradient method and even the subgradient-extragradient
method.

We want to notice that a single projection method of Halpern-type for pseudo-
monotone variational inequalities in Hilbert spaces, which consequently generates a
strongly convergent sequence to a solution, has been recently provided in [28].

We close this section by recalling some notions and results which will be useful
within this paper.

Definition 1.1. Let C be a nonempty subset of the real Hilbert space H. The
mapping F : H → H is said to be
(a) pseudo-monotone on C, if for every x, y ∈ C it holds

〈F (x), y − x〉 ≥ 0 ⇒ 〈F (y), y − x〉 ≥ 0;

(b) monotone on C, if for every x, y ∈ C it holds

〈F (y)− F (x), y − x〉 ≥ 0;

(c) γ-strongly pseudo-monotone on C with γ > 0, if for every x, y ∈ C it holds

〈F (x), y − x〉 ≥ 0 ⇒ 〈F (y), y − x〉 ≥ γ‖x− y‖2;

(d) γ-strongly monotone on C with γ > 0, if for every x, y ∈ C it holds

〈F (y)− F (x), y − x〉 ≥ γ‖x− y‖2.
3
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For a survey on pseudo-monotone operators and their applications in consumer
theory of mathematical economics we refer to [15].

We recall that the operator F : H → H is called Lipschitz continuous with
Lipschitz constant L > 0, if for every x, y ∈ H it holds

‖F (x)− F (y)‖ ≤ L‖x− y‖.

The operator F is called sequential weak-to-weak continuous, if for every sequence
(xn)n≥0 that converges weakly to x the sequence (F (xn))n≥0 converges weakly to
F (x).

For a nonempty, convex and closed set C ⊆ H and an arbitrary element x ∈ H,
there exists a unique element in C, denoted by PC(x), such that

‖x− PC(x)‖ ≤ ‖x− y‖ ∀y ∈ C.

The operator PC : H → C is the projection operator onto C. For all x ∈ H and y ∈ C
it holds

(2) 〈x− PC(x), y − PC(x)〉 ≤ 0.

One can also easily see that, for λ > 0, x∗ is a solution of VI(F,C) if and only if
x∗ = PC(x∗ − λF (x∗)). We recall the following characterization of the solution set of
a pseudo-monotone variational inequality ([12, Lemma 2.1]).

Proposition 1.1. Let C be a nonempty, convex and closed subset of the real
Hilbert space H and F : H → H an operator which is pseudo-monotone on C and
continuous. Then for every x ∈ C we have

(3) 〈F (x), y − x〉 ≥ 0 ∀y ∈ C ⇔ 〈F (y), y − x〉 ≥ 0 ∀y ∈ C.

The variational inequality:
Find x∗ ∈ C such that

〈F (x), x− x∗〉 ≥ 0 ∀x ∈ C

is called of Minty type. Proposition 1.1 shows that the two variationaly inequalities
have the same set of solutions when they are formulated over a nonempty, convex and
closed set and governed by pseudo-monotone and continuous operators. Existence
results for solutions of variational inequalities have been obtained for instance in
[19, 22, 27].

2. A dynamical system of forward-backward-forward type. In this sec-
tion we will approach the solution set of VI(F,C) from a continuous perspective
by means of trajectories generated by the following dynamical system of forward-
backward-forward type





y(t) = PC(x(t)− λF (x(t)))

ẋ(t) + x(t) = y(t) + λ [F (x(t))− F (y(t))]

x(0) = x0,

(4)

where λ > 0 and x0 ∈ H. The formulation of (4) has its roots in [2], where the
continuous counterpart of Tseng’s algorithm has been considered in the more gen-
eral context of a monotone inclusion problem. The existence and uniqueness of the

4
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trajectory x ∈ C1([0,+∞), H) generated by (4) has been established in [2], as a con-
sequence of the global Cauchy-Lipschitz Theorem and by making use of the Lipschitz
continuity of F . Here we study the convergence of x(t) and y(t) to an element in Ω
as t→ +∞, in the case when F is pseudo-monotone.

Remark 2.1. The explicit time discretization of the dynamical system (4) with
step size ρn > 0 and initial point x0 ∈ H yields for every n ≥ 0 the following equation

xn+1 − xn
ρn

+ xn = PC(xn − λF (xn)) + λF (xn)− λF [PC(xn − λF (xn))].

Denoting yn := PC(xn − λF (xn)), we can rewrite this scheme as

(5)

{
yn = PC(xn − λF (xn))

xn+1 = ρn (yn + λ(F (xn)− F (yn))) + (1− ρn)xn
∀n ≥ 0,

which is precisely Tseng’s forward-backward-forward algorithm with relaxation pa-
rameters (ρn)n≥0. In the case ρn = 1 for every n ≥ 0, this iterative scheme reduces
to the classical forward-backward-forward algorithm as it was introduced in [32]. In
Section 3 we prove the convergence of the algorithm in (5).

In the following we will investigate the asymptotic behaviour of the trajectory
generated by the dynamical system (4). To this end we will use the following two
results. The first one (see [1, Lemma 5.2]) is the continuous counterpart of a result
which states the convergence of quasi-Fejér monotone sequences. The second one (see
[1, Lemma 5.3]) is the continuous version of the Opial Lemma.

Lemma 2.1. If 1 ≤ p < ∞, 1 ≤ r < ∞, A : [0,+∞) → [0,+∞) is locally ab-
solutely continuous, A ∈ Lp([0,+∞)), B : [0,+∞) → R, B ∈ Lr([0,+∞)) and for
almost every t ∈ [0,+∞)

d

dt
A(t) ≤ B(t),

then limt→+∞A(t) = 0.
Lemma 2.2. Let Ω ⊆ H be a nonempty set and x : [0,+∞) → H a given map.

Assume that
(i) for every x∗ ∈ Ω the limit limt→+∞ ‖x(t)− x∗‖ exists;

(ii) every weak sequential cluster point of the map x belongs to Ω.
Then there exists an element x∞ ∈ Ω such that x(t) converges weakly to x∞ as
t→ +∞.

We start our asymptotic analysis with two preliminary results.
Proposition 2.1. Assume that the solution set Ω is nonempty, F is pseudo-

monotone on C and Lipschitz continuous with constant L > 0. Then for every solution
x∗ ∈ Ω it holds

〈ẋ(t), x(t)− x∗〉 ≤ − (1− λL) ‖x(t)− y(t)‖2 ≤ 0 ∀t ∈ [0,+∞).

Proof. Since x∗ ∈ Ω and y(t) ∈ C it holds

〈F (x∗), y(t)− x∗〉 ≥ 0 ∀t ∈ [0,+∞).

By the pseudo-monotonicity of F it holds

(6) 〈F (y(t)), y(t)− x∗〉 ≥ 0 ∀t ∈ [0,+∞).

5
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On the other hand, since y(t) = PC(x(t)− λF (x(t))), we obtain from (2) that

(7) 〈x(t)− λF (x(t))− y(t), y(t)− x∗〉 ≥ 0 ∀t ∈ [0,+∞).

Combining (6) and (7) we obtain for every t ∈ [0,+∞)

〈x(t)− y(t)− λ [F (x(t))− F (y(t))] , y(t)− x∗〉 ≥ 0

or, equivalently, by taking into account the formulation of the dynamical system (4)

〈x(t)− y(t)− λ [F (x(t))− F (y(t))] , y(t)− x(t)〉 − 〈ẋ(t), x(t)− x∗〉 ≥ 0.

This implies that

〈ẋ(t), x(t)− x∗〉 ≤ 〈x(t)− y(t)− λ [F (x(t))− F (y(t))] , y(t)− x(t)〉
= −‖x(t)− y(t)‖2 + λ 〈F (x(t))− F (y(t)), x(t)− y(t)〉
≤ − (1− λL) ‖x(t)− y(t)‖2 ∀t ∈ [0,+∞).

Proposition 2.2. Assume that the solution set Ω is nonempty, F is pseudo-
monotone on C and Lipschitz continuous with constant L > 0, and 0 < λ < 1

L . Then,
for every solution x∗ ∈ Ω, the function t→ ‖x(t)−x∗‖2 is nonincreasing and it holds

∫ +∞

0

‖x(t)− y(t)‖2dt < +∞ and lim
t→+∞

‖x(t)− y(t)‖ = 0.

Proof. Using Proposition 2.1, for every t ∈ [0,+∞) it holds

1

2

d

dt
‖x(t)− x∗‖2 = 〈x(t)− x∗, ẋ(t)〉 ≤ − (1− λL) ‖x(t)− y(t)‖2 ≤ 0,

which shows that t → ‖x(t) − x∗‖2 is nonincreasing. Let be T > 0. Integrating the
previous inequality from 0 to T it yields

(1− λL)

∫ T

0

‖x(t)− y(t)‖2dt ≤ 1

2

(
‖x(0)− x∗‖2 − ‖x(T )− x∗‖2

)
≤ 1

2
‖x(0)− x∗‖2.

Letting T → +∞, it follows that
∫ +∞
0
‖x(t)− y(t)‖2dt < +∞.

Since PC is nonexpansive and F is Lipschitz continuous with constant L, we get
that PC ◦ (I − λF ) is Lipschitz continuous with constant 1 + λL. Using that

y(t) = PC ◦ (I − λF )(x(t)) ∀t ∈ [0,+∞),

if follows that the trajectory y is locally absolutely continuous and that for almost
every t ∈ [0,+∞) it holds

‖ẏ(t)‖ ≤ (1 + λL)‖ẋ(t)‖.

On the other hand,

‖ẋ(t)‖ = ‖x(t)− y(t)−λ [F (x(t))− F (y(t))] ‖ ≤ (1 +λL)‖x(t)− y(t)‖ ∀t ∈ [0,+∞).

Thus, for almost every t ∈ [0,+∞),

d

dt
‖x(t)− y(t)‖2 = 2 〈x(t)− y(t), ẋ(t)− ẏ(t)〉

≤ 2 (‖ẋ(t)‖+ ‖ẏ(t)‖) ‖x(t)− y(t)‖
≤ 2

(
1 + λL+ (1 + λL)2

)
‖x(t)− y(t)‖2.

6
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From here, according to Lemma 2.1, we obtain

lim
t→+∞

‖x(t)− y(t)‖ = 0.

We come now to the main theorem of this section.
Theorem 2.1. Assume that the solution set Ω is nonempty,F is pseudo-monotone

on H, Lipschitz continuous with constant L > 0 and sequentially weak-to-weak con-
tinuous, and 0 < λ < 1

L . Then the trajectories x(t) and y(t) generated by (4) converge
weakly to a solution of VI(F,C) as t→ +∞.

Proof. Let x̂ ∈ H be a weak sequential cluster point of x(t) as t → +∞ and
(tn)n≥0 be a sequence in [0,+∞) with tn → +∞ and x(tn) ⇀ x̂ as n → +∞. Since
limt→+∞ ‖x(t)− y(t)‖ = 0, we also have y(tn) ⇀ x̂ as n → +∞. Furthermore, since
F is Lipschitz continuous, ‖F (x(tn)) − F (y(tn))‖ → 0 as n → +∞. We will prove
that x̂ ∈ Ω. For convenience, we denote xn := x(tn) and yn := y(tn) for every n ≥ 0.
Since (yn)n≥0 ⊆ C and C is weakly closed, we have x̂ ∈ C. We assume that F (x̂) 6= 0,
otherwise the conclusion follows automatically.

Let y ∈ C be fixed. For every n ≥ 0 we have

yn = PC(xn − λF (xn)),

thus
〈xn − λF (xn)− yn, y − yn〉 ≤ 0

or, equivalently,

(8)
1

λ
〈xn − yn, y − yn〉 ≤ 〈F (xn)− F (yn), y − yn〉+ 〈F (yn), y − yn〉 .

Letting in the last inequality n→ +∞ and taking into account that limn→+∞ ‖xn −
yn‖ = 0, limn→+∞ ‖F (xn)− F (yn)‖ = 0 and (yn)n≥0 is bounded, it follows

lim inf
n→+∞

〈F (yn), y − yn〉 ≥ 0.

On the other hand, we have that (yn)n≥0 converges weakly to x̂ as n → +∞. Since
F is sequentially weak-to-weak continuous, (F (yn))n≥0 converges weakly to F (x̂) as
n → +∞. Since the norm mapping is sequentially weakly lower semicontinuous, we
have

0 < ‖F (x̂)‖ ≤ lim inf
n→+∞

‖F (yn)‖.

Then there exists n−1 ≥ 0 such that F (yn) 6= 0 for all n ≥ n−1.
Let (εk)k≥0 be a positive strictly decreasing sequence which converges to 0 as

k → +∞.
Since supN≥0 infn≥N 〈F (yn), y − yn〉 = lim infn→+∞ 〈F (yn), y − yn〉 > −ε0, there

exists N0 ≥ 0 such that infn≥N0 〈F (yn), y − yn〉 > −ε0. Taking n0 > max{N0, n−1},
we have

〈F (yn0
), y − yn0

〉+ ε0 ≥ 0 and F (yn0
) 6= 0.

We can continue this construction inductively and assume to this end that n0 < n1 <
... < nk are given. Then there exists Nk+1 ≥ 0 such that infn≥Nk+1

〈F (yn), y − yn〉 >
−εk+1. Taking nk+1 > max{Nk+1, nk}, we have

〈
F (ynk+1

), y − ynk+1

〉
+ εk+1 ≥ 0 and F (ynk+1

) 6= 0.

7

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

                  



In this way we obtain a strictly increasing sequence (nk)k≥0 with the property that

(9) 〈F (ynk
), y − ynk

〉+ εk ≥ 0 and F (ynk
) 6= 0 ∀k ≥ 0.

Setting for every k ≥ 0

zk :=
F (ynk

)

‖F (ynk
)‖2 ,

it holds 〈F (ynk
), zk〉 = 1. According to (9) we have that

〈F (ynk
), y + εkzk − ynk

〉 ≥ 0 ∀k ≥ 0.

Since F is pseudo-monotone on H, it yields

(10) 〈F (y + εkzk), y + εkzk − ynk
〉 ≥ 0 ∀k ≥ 0.

Using that (F (ynk
))k≥0 is bounded we have

lim
k→+∞

‖εkzk‖ = lim
k→+∞

εk
‖F (ynk

)‖ = 0.

Taking in (10) the limit as k → +∞ we obtain

〈F (y), y − x̂〉 ≥ 0.

As y was arbitrarily chosen in C, it follows from Proposition 1.1 that x̂ ∈ Ω.
On the other hand, by Proposition 2.2, for every x∗ ∈ Ω, ‖x(t) − x∗‖ converges

as t→ +∞. Thus, according to the Lemma 2.2, x(t) converges weakly to an element
of Ω as t→ +∞. Since, due to Proposition 2.2, we have that

lim
t→+∞

‖x(t)− y(t)‖ = 0,

it follows that y(t) converges weakly to the same element of Ω as t→ +∞.
The following example introduces a class of operators which are pseudo-monotone,

Lipschitz continuous and sequentially weak-to-weak continuous on H, but are not
necessarily monotone.

Example 2.1. Let F : H → H be defined as

F (x) := g(x)(Mx+ p),

where M : H → H is a linear bounded operator satisfying

〈Mx, x〉 ≥ 0 ∀x ∈ H,

p ∈ H, and g : H → (0,+∞) is a function taking positive values.
Such operators have been considered in [5] in the case when H is a finite dimen-

sional and M is a skew operator, i.e. 〈Mx, x〉 = 0 for every x ∈ H, under the name
pseudo-affine operators. In general F is not monotone, see [5]. This fact is reflected
by Figure 1 in the case when H = R.

We show that F is pseudo-monotone on H. Indeed, let x, y ∈ H be such that
〈F (x), y − x〉 ≥ 0. Since g(x) > 0, we have

〈Mx+ p, y − x〉 ≥ 0.
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Hence

〈F (y), y − x〉 = g(y)〈My + p, y − x〉 ≥ g(y)(〈My + p, y − x〉 − 〈Mx+ p, y − x〉)
= g(y)〈M(y − x), y − x〉 ≥ 0,

which leads to the desired conclusion.
Since every linear bounded operator M : H → H is sequentially weak-to-weak

continuous, the operator F is sequentially weak-to-weak continuous if g is weakly
continuous. This is for instance the case when g has the expression g(x) := η(〈a, x〉)
for a fixed vector a ∈ H and a continuous function η : R→ (0,+∞).

In addition, for some choices of H, a and η the operator F is Lipschitz continuous.
Indeed, for H = `2, a = e1 = (1, 0, 0, ...) ∈ `2, η(t) = e−t

2

,

M : `2 → `2,M(x1, x2, ...) = (x1, 0, 0, ...), and p = 0 ∈ `2,

the operator F : `2 → `2, F (x1, x2, ....) = (x1e
−x2

1 , 0, 0, ...), is Lipschitz continuous.
This follows by the Mean Value Theorem, since it is easy to see by direct computation
that there exists L > 0 such that ‖∇F (x)‖ ≤ L for every x ∈ `2. We illustrate in
Figure 1 this choice of F .

-4 -2 2 4
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0.4

0.6

0.8

1

Fig. 1. The graph of F : R → R, F (x) = xe−x2
, is in blue and the graph of ∇F : R →

R,∇F (x) = (1− 2x2)e−x2
, is in red.

For the important particular case of strongly pseudo-monotone operators we will
show exponential convergence of the trajectories to the unique solution of VI(F,C).
To this end we need the following lemma.
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Lemma 2.3. Assume that F is γ-strongly pseudo-monotone on C with γ > 0 and
Lipschitz continuous with constant L > 0. Then for every t ∈ [0,+∞) we have

‖x(t)− x∗‖ ≤ 1 + λL+ λγ

λγ
‖x(t)− y(t)‖.

Proof. Let x∗ ∈ C be the unique solution to VI(F,C) (see, for instance, [18]) and
t ∈ [0,+∞) fixed. Since y(t) ∈ C we have

〈F (x∗), y(t)− x∗〉 ≥ 0,

which implies, according to the strong pseudo-monotonicity of F on C, that

〈F (y(t)), y(t)− x∗〉 ≥ γ‖y(t)− x∗‖2.

Using the Lipschitz continuity of F we get

〈F (x(t)), x∗ − y(t)〉 = 〈F (x(t))− F (y(t)), x∗ − y(t)〉 − 〈F (y(t)), y(t)− x∗〉
≤ ‖F (x(t))− F (y(t))‖‖y(t)− x∗‖ − γ‖y(t)− x∗‖2

≤ L‖x(t)− y(t)‖‖y(t)− x∗‖ − γ‖y(t)− x∗‖2,

which, in combination with (7), gives

〈x∗ − y(t), x(t)− y(t)〉 ≤ λ 〈F (x(t)), x∗ − y(t)〉
≤ λL‖x(t)− y(t)‖‖y(t)− x∗‖ − λγ‖y(t)− x∗‖2

and, further,

λγ‖y(t)− x∗‖2 ≤ λL‖x(t)− y(t)‖‖y(t)− x∗‖ − 〈x∗ − y(t), x(t)− y(t)〉
≤ λL‖x(t)− y(t)‖‖y(t)− x∗‖+ ‖x∗ − y(t)‖‖x(t)− y(t)‖
= (1 + λL) ‖x(t)− y(t)‖‖y(t)− x∗‖.

This implies

‖y(t)− x∗‖ ≤ 1 + λL

λγ
‖x(t)− y(t)‖

and, further,

(11) ‖x(t)− x∗‖ ≤ ‖x(t)− y(t)‖+ ‖y(t)− x∗‖ ≤ 1 + λL+ λγ

λγ
‖x(t)− y(t)‖.

Theorem 2.2. Assume that F is γ-strongly pseudo-monotone on C with γ > 0
and Lipschitz continuous with constant L > 0, and 0 < λ < 1

L . Then for every
t ∈ [0,+∞) we have

(12) ‖x(t)− x∗‖2 ≤ ‖x(0)− x∗‖2 exp(−αt),

where α =: 2(1− λL)
(

λγ
1+λL+λγ

)2
and x∗ is the unique solution of VI(F,C).

Proof. From Lemma 2.3 we have that for every t ∈ [0,+∞)

‖x(t)− x∗‖ ≤ 1 + λL+ λγ

λγ
‖x(t)− y(t)‖,
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which, in combination with Proposition 2.1, leads to

1

2

d

dt
‖x(t)− x∗‖2 = 〈x(t)− x∗, ẋ(t)〉

≤ − (1− λL) ‖x(t)− y(t)‖2

≤ −(1− λL)

(
λγ

1 + λL+ λγ

)2

‖x(t)− x∗‖2.

Relation (12) is a direct consequence of Gronwall’s Lemma.
Example 2.2. If M : H → H is such that

〈Mx, x〉 ≥ γ‖x‖2 ∀x ∈ H,

for some γ > 0, then one can show that the operator F : H → H in Example 2.1 is αγ-
strongly pseudo-monotone on H. On the other hand, F is in general not monotone,
as one can see in Figure 2 for a particular operator.

-4 -2 2 4

-0.4
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1

Fig. 2. The graph of F : R → R, F (x) = xe−x2
+ 0.1x, is in blue and the graph of ∇F : R →

R,∇F (x) = (1− 2x2)e−x2
+ 0.1, is in red.

Example 2.3. Let C = {x ∈ [−5, 5]3 : x1 + x2 + x3 = 0} ⊆ R3 and F : R3 → R3

be defined as

F (x) =
(
e−‖x‖

2

+ q
)
Mx,
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where q = 0.2 and

M =




1 0 −1
0 1.5 0
−1 0 2


 .

As mentioned in Example 2.2, F is γ-strongly pseudo-monotone on R3 with constant
γ := q · λmin ≈ 0.0764, where λmin is the smallest eigenvalue of M , and Lipschitz
continuous with constant L ≈ 5.0679. Since for x = (−1, 0, 0)T , y = (−2, 0, 0)T ∈ R3

〈F (x)− F (y), x− y〉 = −0.1312 < 0,

F is not monotone.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-6

-4

-2

0

2

4

6

 x1

x2

 x3

Fig. 3. Trajectories generated by the dynamical system (4) for x0 = (−4, 3, 5)T and λ = 0.99/L
(continuous lines), λ = 0.8/L (dashed thick lines), and λ = 0.5/L (dashed thin lines).

Figure 3 displays the trajectories generated by the dynamical system (4) attached
to VI(F,C), with starting point x0 = (−4, 3, 5)T and different values of λ. These are
represented for λ = 0.99/L by continuous lines, for λ = 0.8/L by dashed thick lines,
and for λ = 0.5/L by dashed thin lines. They all converge exponentially to the
unique solution x∗ = (0, 0, 0)T of VI(F,C). One can clearly see that the choice of λ
influences the speed of convergence, namely, the smaller the values of λ, the worse
the convergence of the trajectories become.

3. The forward-backward-forward algorithm with relaxation parame-
ters. In this section we analyze the convergence of Tseng’s forward-backward-forward
algorithm with relaxation parameters derived in Remark 2.1 by the time discretization
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of the dynamical system (4) in the context of solving pseudo-monotone variational
inequalities.

Algorithm 3.1. Initialization: Choose the starting point x0 ∈ H, the step size
λ > 0, and the sequence of relaxation parameters (ρn)n≥0. Set n = 0.

Step 1: Compute

yn = PC(xn − λF (xn)).

If yn = xn or F (yn) = 0, then STOP: yn is a solution.

Step 2: Set

xn+1 = ρn (yn + λ(F (xn)− F (yn))) + (1− ρn)xn,

update n to n+ 1 and go to Step 1.
Remark 3.1. If ρn = 1 for every n ≥ 0, then Algorithm 3.1 reduces to the

classical forward-backward-forward method proposed by Tseng in [32].
For the convergence analysis we assume that Algorithm 3.1 does not terminate

after a finite number of iterations. In other words, we assume that for every n ≥ 0 it
holds xn 6= yn and F (yn) 6= 0.

Proposition 3.1. Assume that the solution set Ω is nonempty and F is pseudo-
monotone on C and Lipschitz continuous with constant L. Let tn := yn + λ(F (xn)−
F (yn)) for every n ≥ 0. Then for every solution x∗ ∈ Ω and every n ≥ 0 it holds

(13) ‖xn+1−x∗‖2 ≤ ‖xn−x∗‖2− ρn
(
1− λ2L2

)
‖yn−xn‖2− ρn(1− ρn)‖tn−xn‖2.

Proof. Let x∗ be an arbitrary element in Ω and n ≥ 0 be fixed. Then we have

〈F (x∗), y − x∗〉 ≥ 0 ∀y ∈ C.

Substituting y := yn ∈ C into this inequality it yields

〈F (x∗), yn − x∗〉 ≥ 0.

From the pseudo-monotonicity of F on C it follows

(14) 〈F (yn), yn − x∗〉 ≥ 0.

Since yn = PC(xn − λF (xn)), according to (2), we get

〈y − yn, yn − xn + λF (xn)〉 ≥ 0 ∀y ∈ C,

which yields

(15) 〈x∗ − yn, yn − xn + λF (xn)〉 ≥ 0.

Multiplying both sides of (14) by λ > 0 and adding the resulting inequality to (15),
it yields

〈x∗ − yn, yn − xn + λF (xn)− λF (yn)〉 ≥ 0

or, equivalently,

〈x∗ − yn, tn − xn〉 ≥ 0.
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This implies that

〈tn − x∗, tn − xn〉 ≤ 〈tn − yn, tn − xn〉
= ‖tn − xn‖2 + 〈xn − yn, tn − xn〉
= ‖tn − xn‖2 + 〈xn − yn, yn + λ(F (xn)− F (yn))− xn〉
= ‖tn − xn‖2 − ‖yn − xn‖2 + λ 〈xn − yn, F (xn)− F (yn)〉 .(16)

On the other hand, we have

(17) ‖tn − x∗‖2 − ‖xn − x∗‖2 + ‖tn − xn‖2 = 2 〈tn − x∗, tn − xn〉 .
Combining (16) and (17) we obtain

‖tn − x∗‖2 ≤ ‖xn − x∗‖2 + ‖tn − xn‖2 − 2‖yn − xn‖2
+ 2λ 〈xn − yn, F (xn)− F (yn)〉 .(18)

Using the Lipschitz continuity of F we obtain

‖tn − xn‖2 = ‖yn + λ(F (xn)− F (yn))− xn‖2

= ‖yn − xn‖2 + 2λ 〈yn − xn, F (xn)− F (yn)〉+ λ2‖F (xn)− F (yn)‖2

≤ ‖yn − xn‖2 + 2λ 〈yn − xn, F (xn)− F (yn)〉+ λ2L2‖xn − yn‖2.(19)

Finally, from (18) and (19) it yields

‖tn − x∗‖2 ≤ ‖xn − x∗‖2 −
(
1− λ2L2

)
‖yn − xn‖2.

Moreover,

‖xn+1 − x∗‖2 = ‖ρn(tn − x∗) + (1− ρn) (xn − x∗) ‖2

= ρn‖tn − x∗‖2 + (1− ρn)‖xn − x∗‖2 − ρn(1− ρn)‖tn − xn‖2.
By plugging this equality in the inequality above, we obtain the desired result.

Remark 3.2. One can notice that the pseudo-monotonicity of F was used in the
proof of Proposition 3.1 in order to obtain relation (14). This means that the pseudo-
monotonicity of F can be actually replaced by the following weaker assumption (see
[13, 29])

〈F (x), x− x∗〉 ≥ 0 ∀x ∈ C ∀x∗ ∈ Ω,

which basically requires that every solution of the variational inequality of Stampac-
chia type is a solution of the variational inequality of Minty type.

Remark 3.3. In contrast to the extragradient method, the sequence (xn)n≥0
generated by Algorithm 3.1 may not be feasible. This is why we need to ask in the
convergence analysis that F is Lipschitz continuous on the whole space H. However,
if the feasible set C is bounded, then we can weaken this assumption by asking that
F is Lipschitz continuous on the bounded set

D := {x+ y : x ∈ C, ‖y‖ ≤ d} ,
where d denotes the diameter of C. Notice that C ⊆ D. In this case, if we start
Algorithm 3.1 with an element x0 ∈ C and choose 0 < λ < 1

L , then from (13) and
ρ0 ∈ [0, 1] we have

‖x1 − x∗‖2 ≤ ‖x0 − x∗‖2 − ρ0
(
1− λ2L2

)
‖y0 − x0‖2,
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which implies that ‖x1 − x∗‖ ≤ ‖x0 − x∗‖ ≤ d. Since x1 = x∗ + x1 − x∗, we have
x1 ∈ D. By induction, we obtain ‖xn−x∗‖ ≤ d and therefore xn ∈ D for every n ≥ 0.

The following theorem states the convergence of the underrelaxed Tseng’s method
for pseudo-monotone variational inequalities.

Theorem 3.1. Assume that the solution set Ωis nonempty,F is pseudo-monotone
on H, Lipschitz continuous with constant L > 0 and sequentially weak-to-weak con-
tinuous, and 0 < λ < 1

L . Assume also that (ρn)n≥0 ⊆ [0, 1] and lim infn→+∞ ρn > 0.
Then the sequence (xn)n≥0 generated by Algorithm 3.1 converges weakly to a solution
of VI(F,C).

Proof. Let x∗ ∈ Ω be fixed. Since (ρn)n≥0 ⊆ [0, 1] and 0 < λ < 1
L , (13) yields that

the sequence
(
‖xn − x∗‖2

)
n≥0 is monotonically decreasing and therefore convergent.

To obtain the convergence of the sequence (xn)n≥0 to an element in Ω we only
need to prove that every weak sequential cluster point of the sequence belongs to Ω.
The conclusion will follow from the Opial Lemma (see [3, Theorem 5.5]).

Relation (13) also implies that

lim
n→+∞

ρn(1− λ2L2)‖yn − xn‖ = 0,

which, since lim infn→+∞ ρn > 0, further leads to

lim
n→+∞

‖yn − xn‖ = 0.

Since F is Lipschitz continuous on H, we have

‖F (xn)− F (yn)‖ ≤ L‖xn − yn‖ ∀n ≥ 0,

hence,
lim

n→+∞
‖F (xn)− F (yn)‖ = 0.

Further, we consider x̂, a weak sequential cluster point of (xn)n≥0, and a subsequence
(xnk

)k≥0 of (xn)n≥0 which converges weakly to x̂ as k → +∞. Since limk→+∞ ‖xnk
−

ynk
‖ = 0, (ynk

)k≥0 also converges weakly to x̂ as k → +∞.
We are now in the same situation as in the proof of Theorem 2.1, the role of the

sequences (xn)n≥0 and (yn)n≥0 being played by (xnk
)k≥0 and (ynk

)k≥0, respectively.
Thus, arguing as in the proof of this theorem, we obtain that x̂ ∈ Ω.

Remark 3.4. The conclusion of Theorem 3.1 remains valid even if we replace in
every iteration of Algorithm 3.1 the fixed stepsize λ > 0 by a variable stepsize λn,
where the sequence (λn)n≥0 fulfills

0 < inf
n≥0

λn ≤ sup
n≥0

λn <
1

L
.

On the other hand, when (an upper bound of) the Lipschitz constant of F is not
available, we can use in Algorithm 3.1 the following adaptive stepsize strategy

λn+1 :=





min

{
µ‖xn − yn‖

‖F (xn)− F (yn)‖ , λn
}
, if F (xn)− F (yn) 6= 0,

λn, otherwise,

where µ ∈ (0, 1) and λ0 > 0. The sequence (λn)n≥0 is nonincreasing. If, for n ≥ 0,
F (xn)− F (yn) 6= 0, then it holds

µ‖xn − yn‖
‖F (xn)− F (yn)‖ ≥

µ‖xn − yn‖
L‖xn − yn‖

=
µ

L
,
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which shows that (λn)n≥0 is bounded from below by min
{
λ0,

µ
L

}
> 0. Notice that, if

λ0 ≤ µ
L , then (λn)n≥0 is a constant sequence, which leads to a fixed stepsize strategy.

Consequently, the limit limn→+∞ λn exists and it is a positive real number.
This means that we can adapt the proof of Proposition 3.1 to the new adaptive

stepsize strategy and, by taking into consideration (19), we get instead of (13)

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 − ρn
(

1− λ2nµ
2

λ2n+1

)
‖yn − xn‖2 ∀n ≥ 0.

Due to lim infn→+∞ ρn > 0 and limn→+∞
(

1− λ2
nµ

2

λ2
n+1

)
= 1 − µ2 > 0, there exists

N > 0 such that
‖xn+1 − x∗‖ ≤ ‖xn − x∗‖ ∀n ≥ N,

which implies that limn→+∞ ‖xn−x∗‖ exists and limn→+∞ ‖xn−yn‖ = 0. From here,
one can carry out the same convergence analysis as for the fixed stepsize strategy.

Remark 3.5. If the operator F is monotone on C, then it is not necessary to
impose that F is sequentially weak-to-weak continuous. Indeed, for y ∈ C fixed, we
obtain for the subsequences (xnk

)k≥0 and (ynk
)k≥0 arising in the proof of Theorem

3.1 (see also (8) and the proof of Theorem 2.1)

1

λ
〈xnk

− ynk
, y − ynk

〉 ≤ 〈F (xnk
)− F (ynk

), y − ynk
〉+ 〈F (ynk

), y − ynk
〉

≤ 〈F (xnk
)− F (ynk

), y − ynk
〉+ 〈F (y), y − ynk

〉 ∀k ≥ 0.

Letting k → +∞ we get
〈F (y), y − x̂〉 ≥ 0

and this leads to the desired conclusion.
In the following we will show that the convergence result in Theorem 3.1 follows

in finite dimensional spaces under weaker assumptions.
Theorem 3.2. Let H be a finite dimensional real Hilbert space. Assume that the

solution set Ω is nonempty, F is pseudo-monotone on C and Lipschitz continuous
with constant L > 0, and 0 < λ < 1

L . Assume also that (ρn)n≥0 ⊆ [0, 1] and
lim infn→+∞ ρn > 0. Then the sequence (xn)n≥0 generated by Algorithm 3.1 converges
to a solution of VI(F,C).

Proof. Let x∗ ∈ Ω be fixed. Since 0 < λ < 1
L , from (13) it follows that the

sequence
(
‖xn − x∗‖2

)
n≥0 is monotonically decreasing and therefore convergent. In

addition we have
lim

n→+∞
‖yn − xn‖ = 0.

As (xn)n≥0 is bounded, there exists a subsequence (xnk
)k≥0 of it, which converges to

an element x̂ as k → +∞. Since limn→+∞ ‖xnk
− ynk

‖ = 0, (ynk
)k≥0 also converges

to x̂ as k → +∞.
Let now y ∈ C be fixed. Then we have that

〈y − ynk
, ynk

− xnk
+ λF (xnk

)〉 ≥ 0 ∀k ≥ 0.

Taking the limit as k → +∞ and using that F is continuous, we obtain

〈y − x̂, F (x̂)〉 ≥ 0.

Since y ∈ C has been arbitrarily chosen, it follows that x̂ is a solution of VI(F,C).
Replacing in (13) x∗ with x̂, it yields that the sequence (‖xn − x̂‖)n≥0 is conver-

gent. Since limk→+∞ ‖xnk
− x̂‖ = 0, it follows that limn→+∞ xn = x̂.
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In the next theorem we show that one can consider even an overrelaxation of the
forward-backward-forward algorithm without altering its convergence behaviour.

Theorem 3.3. Assume that the solution set Ωis nonempty,F is pseudo-monotone
on H, Lipschitz continuous with constant L > 0 and sequentially weak-to-weak con-
tinuous, and 0 < λ < 1

L . Assume also that (ρn)n≥0 ⊆ [1, 2) and lim supn→+∞ ρn <

2− 2λL
1+λL . Then the sequence (xn)n≥0 generated by Algorithm 3.1 converges weakly to

a solution of VI(F,C).
Proof. In view of Proposition 3.1 we have that

(20)
‖xn+1−x∗‖2 ≤ ‖xn−x∗‖2−ρn

(
1− λ2L2

)
‖yn−xn‖2 +ρn(ρn−1)‖tn−xn‖2 ∀n ≥ 0.

By the Lipschitz continuity of F we have for all n ≥ 0 that

‖tn − xn‖2 = ‖yn − xn + λ (F (xn)− F (yn)) ‖2 ≤ (1 + λL)
2 ‖yn − xn‖2.

Therefore, from (20) we obtain

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 − ρn
(
1− λ2L2

)
‖yn − xn‖2

+ρn(ρn − 1) (1 + λL)
2 ‖yn − xn‖2

= ‖xn − x∗‖2 − ρn
(

1− λ2L2 − (ρn − 1) (1 + λL)
2
)
‖yn − xn‖2.

Since (ρn)n≥0 ⊆ [1, 2) and lim supn→+∞ ρn < 2− 2λL
1+λL , it is easy to check that

lim inf
n→+∞

(
1− λ2L2 − (ρn − 1) (1 + λL)

2
)
> 0.

Hence, there exists N ≥ 0 such that the sequence
(
‖xn − x∗‖2

)
n≥N is monotonically

decreasing and therefore convergent. In addition, we have

lim
n→+∞

‖yn − xn‖ = 0.

The rest of the proof can be done in analogy to the proof of of Theorem 3.1, relying
on the Opial Lemma and on arguments from the proof of Theorem 2.1.

Example 3.1. A differentiable function f : E → R, where E ⊆ Rn is an open
set, is called pseudo-convex on E, if for every x, y ∈ E it holds

〈∇f(x), y − x〉 ≥ 0 ⇒ f(y) ≥ f(x).

It is well-known that f is pseudo-convex on E if and only if ∇f is pseudo-monotone
on E ([17]). Algorithm 3.1 can be used to solve optimization problems of the form

min
x∈C

f(x),

where f : Rn → R is a differentiable function with Lipschitz continuous gradient which
is also pseudo-convex on an open set E ⊆ Rn, and C ⊆ E is a nonempty, convex and
closed set. The class of pseudo-convex functions has been investigated in [26], while
characterizations of quadratic pseudo-convex functions have been provided in [11].

A important subclass of the one of pseudo-convex functions are ratios of convex
and concave functions. Indeed, if E ⊆ Rn is a convex set, g : E → [0,+∞) is a convex
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function, h : E → (0,+∞) is a concave function, and both g and h are differentiable
on E, then the function

f : E → [0,+∞), f(x) :=
g(x)

h(x)
,

is pseudo-convex on E ([6]).
In the following we show that when F is strongly pseudo-monotone on C, then

Algorithm 3.1 generates a sequence which converges linearly to the unique solution
of VI(F,C). We extend in this way a result proved by Tseng in [32] for strongly
monotone operators.

Theorem 3.4. Assume that F is γ-strongly pseudo-monotone on C with γ > 0
and Lipschitz continuous with constant L > 0, and 0 < λ < 1

L . Assume also that
(ρn)n≥0 ⊆ [0, 1]. Let x∗ be the unique solution of the problem VI(F,C). Then

‖xn+1 − x∗‖ ≤ δn‖xn − x∗‖ ∀n ≥ 0,

where δn :=

(
1− ρn

(
1− λ2L2

) (
λγ

1+λL+λγ

)2)1/2

∈ (0, 1).

In addition, if lim infn→+∞ ρn > 0, then the sequence (xn)n≥0 converges linearly to
x∗.

Proof. Let n ≥ 0 be fixed. As in the proof of Lemma 2.3 (see (11)), one can show
that

(21) ‖xn − x∗‖ ≤ ‖xn − yn‖+ ‖yn − x∗‖ ≤
1 + λL+ λγ

λγ
‖xn − yn‖.

From (21) and (13) we obtain

‖xn+1 − x∗‖2 ≤
(

1− ρn
(
1− λ2L2

)( λγ

1 + λL+ λγ

)2
)
‖xn − x∗‖2,

therefore,
‖xn+1 − x∗‖ ≤ δn‖xn − x∗‖,

where δn :=

(
1− ρn

(
1− λ2L2

) (
λγ

1+λL+λγ

)2)1/2

∈ (0, 1). Now, if lim infn→+∞ ρn >

0, then we have lim supn→+∞ δn < 1, which means that (xn)n≥0 converges linearly to
x∗.

One can prove in a similar way linear convergence for the sequence generated by
the overrelaxed variant of the forward-backward-forward algorithm.

Theorem 3.5. Assume that 0 < λ < 1
L and F is γ-strongly pseudo-monotone

on C with γ > 0 and Lipschitz continuous with constant L > 0. Assume also that
(ρn)n≥0 ⊆ [1, 2) and lim supn→+∞ ρn < 2 − 2λL

1+λL . Then the sequence (xn)n≥0 con-
verges linearly to the unique solution x∗ of VI(F,C).

4. Numerical experiments. In this section we present two numerical experi-
ments which we carried out in order to compare Algorithm 3.1 with other algorithms
in the literature designed for solving pseudo-monotone variational inequalities. We
implemented the numerical codes in Matlab and performed all computations on a
Linux desktop with an Intel(R) Core(TM) i5-4670S processor at 3.10GHz. In our ex-
periments we considered only variational inequalities governed by pseudo-monotone
operators which are not monotone.
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Let be VI(F,C) with

C =

{
x ∈ R5 :

m∑

i=1

xi ≤ 5, 0 ≤ xi ≤ 5

}

and

F : R5 → R5, F (x) =
(
e−‖x‖

2

+ α
)

(Mx+ p) ,

where ‖ · ‖ denotes the Euclidean norm on R5, α = 0.1, p = (−1, 2, 1, 0,−1)T and

(22) M :=




5 −1 2 0 2
−1 6 −1 3 0
2 −1 3 0 1
0 3 0 5 0
2 0 1 0 4




is a positive definite matrix. We computed the unique solution x∗ of the variational
inequality VI(F,C) by running 10000 iterations of Algorithm 3.1 with ρn = 1 for all
n ≥ 0 and stepsize λ = 0.5

L .
In a first experiment, we considered different variants of Algorithm 3.1 with con-

stant relaxation parameters ρn = ρ for all n ≥ 0, chosen such that ρ < 2− 2λL
1+λL = 4

3 .
The aim was to see to which extend the relaxation parameter does influence the con-
vergence behaviour of the method. We considered x0 = (1, 3, 2, 1, 4)T as starting
point and ‖xn − x∗‖ ≤ 10−6 as stopping criterion. The projection on the set C was
computed by using the quadprog function in Matlab.

In Table 1 we present the performances of the algorithm for different values of
the relaxation parameter. It can be seen that the larger the values of the relaxation
parameter ρ, the better the algorithm performs. This shows how important is it to
investigate overrelaxed algorithms from both theoretical and numerical perspective.

Table 1
Comparison of the performances of Algorithm 3.1 for different values of ρ.

ρ 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
Iterations 236 195 166 144 127 112 90 93 88
Time (sec) 2.06 1.10 0.89 0.74 0.60 0.55 0.47 0.56 0.44

In a second experiment we compared for the same problem the performances of
the forward-backward-forward method without relaxation, the extragradient method
and the subgradient-extragradient method, by considering for all three methods as
stepsize λ = 0.99/L. It can be seen in Figure 4 that the forward-backward-forward
method outperforms the extragradient method, being at least two times faster. This is
not surprising, since the extragradient method requires two projections on the set C at
each iteration, while the forward-backward-forward method requires only one. It can
be also notice that the latter also slightly outperforms the subgradient-extragradient
method.

In a third experiment we considered the quadratic fractional programming prob-
lem

(23) min
x∈C

f(x) :=
xTMx+ aTx+ c

bTx+ d
,
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Fig. 4. Comparison of the convergence behaviour of the forward-backward-forward method
without relaxation (FBF), the extragradient method (ExtraGrad), and the subgradient-extragradient
method (SubExtraGrad) with stepsize λ = 0.99/L.

with

C = {x ∈ R5 : 1 ≤ xi ≤ 3, i = 1, 2, 3, 4, 5},
M taken as in (22), a = (1, 2,−1,−2, 1)T , b = (1, 0,−1, 0, 1)T , c = −2 and d = 20.
According to the discussion in Example 3.1, f is pseudo-convex on the open set
E := {x ∈ R5 : bTx+ d = x1 − x3 + x5 + 20 > 0}, which implies that

F : R5 → R5, F (x) = ∇f(x) :=

(
bTx+ d

)
(2Mx+ a)− b

(
xTMx+ aTx+ c

)

(bTx+ d)
2 ,

is pseudo-monotone on E. One can also notice that C ⊆ E.
In order to show the Lipschitz continuity of F , since C is bounded, according to

Remark 3.3 it is enough to prove that this property holds on the set

D = {x+ y ∈ R5 : x ∈ C, ‖y‖ ≤ 2
√

5}
= {x ∈ R5 : 1− 2

√
5 ≤ xi ≤ 3 + 2

√
5, i = 1, 2, 3, 4, 5}.

Notice that C ⊆ D ⊆ E.
One can easily see that ‖∇F (x)‖ ≤ 148.68 =: L > 0 for all x ∈ D, which

means according to the Mean Value Theorem that F is Lipschitz continuous on D
with constant L. For this numerical experiment we assumed that the constant L is
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Fig. 5. Comparison of the convergence behaviour of the forward-backward-forward method
(FBF) with fixed stepsize, the one with adaptive stepsize (aFBF) and the proximal-gradient method
(ProxGrad) for the fractional programming problem (23).

not known in advance and used the adaptive stepsize strategy described in Remark
3.4 with µ = 0.9 and λ0 = 1. We compared the forward-backward-forward method
(FBF) with fixed stepsize λ = 0.9/L, with the one with adaptive stepsize (aFBF) and
the proximal-gradient (ProxGrad) method for fractional programming proposed in [7,
Algorithm 6]. We considered as starting point x0 = (3, 1.5, 2, 1.5, 2)T and as stopping
criterion ‖xn − x∗‖ ≤ 10−6. The optimal solution of (23) x∗ = (1, 1, 1, 1, 1)T was
obtained by running 10000 iterations of Algorithm 3.1 with ρn = 1 for all n ≥ 0. We
solved the quadratic subproblem in [7, Algorithm 6] by using the quadprog function in
Matlab. The numerical performances of the three methods are displayed in Figure 5.
One can notice that the adaptive method aFBF is faster than FBF. Moreover, both
FBF and aFBF outperform the proximal-gradient method from [7, Algorithm 6]. A
possible reason is that, while for the first two methods the projection on the set C is
computed explicitly, in every iteration of the proximal-gradient method a subproblem
is solved by an external solver.

5. Conclusions and further research. The object of our investigation was a
variational inequality of Stampacchia type over a nonempty, convex and closed set
governed by a pseudo-monotone and Lipschitz continuous operator. We associated
to it a forward-backward-forward dynamical system and carried out a Lyapunov-type
analysis in order to prove the asymptotic convergence of the generated trajectories
to a solution of the variational inequality. The explicit time discretization of the dy-
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namical system leads to Tseng’s forward-backward-forward algorithm with relaxation
parameters. We proved convergence of the generated sequence of iterates to a solution
of the variational inequality as well as linear convergence rate under strong pseudo-
monotonicity. Numerical experiments show that, when applied to pseudo-monotone
variational inequalities over polyhedral sets, the overrelaxed variant algorithm has a
better convergence behaviour when compared to other variants and also that Tseng’s
method outperforms Korpelevich’s extragradient method and also the subgradient-
extragradient method.

A topic of current interest is the formulation of numerical algorithms for min-
imax problems, due to its relevance for the training of generative adversarial net-
works (GANs). We want to investigate the convergence property of Tseng’s forward-
backward-forward method when solving the variational inequality to which the op-
timality conditions for the minimax problem give rise in both a deterministic and a
stochastic setting and possibly to derive ergodic convergence rates for the gap function
associated to the minimax problem.

Acknowledgements. The authors are grateful to three anonymous reviewers
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