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Abstract

This paper presents a theoretical framework and a procedure for revising the judgements and
improving the inconsistency of an Analytic Hierarchy Process (AHP) pairwise comparison matrix
when the Row Geometric Mean is used as the prioritisation procedure and the Geometric Consis-
tency Index (GCI) is the inconsistency measure. Inconsistency is improved by slightly modifying
the judgements that further improve the GCI. Both the judgements and the derived priority vec-
tor will be close to the initial values. A simulation study is utilised to analyse the performance
of the algorithm. The proposed framework allows the specification of the procedure to particular
interests. It can also be used with inconsistency indices based on triads and as an intermediate step
in the construction of consistency consensus matrices in AHP-group decision making. A numerical
example illustrates the proposed procedure.

Keywords: Multiple criteria analysis, Analytic Hierarchy Process, Row Geometric Mean,
Geometric Consistency Index, Inconsistency Improvement

1. Introduction

The Analytic Hierarchy Process (AHP) (Saaty, 1977, 1980) is one of the most widely employed
multicriteria decision making techniques in practical situations (Ho, 2008; Ishizaka and Labib,
2011; Grzybowski, 2016). It is also one of the techniques that best responds to the challenges and
needs of the Knowledge Society (Moreno-Jimenez and Vargas, 2018; Moreno-Jiménez et al., 2019).

AHP allows the decision maker some inconsistency when eliciting judgements and offers a
procedure to assess the degree of internal coherence when incorporating their preferences into the
model (judgements elicitation process). Given a pairwise comparison matrix, A(nxn) = (aij) with
aijaji = 1 and aij > 0, Saaty (1980) established that the matrix A is consistent if aijajk = aik,
∀i, j, k = 1, . . . , n (cardinal transitivity). As the measure of inconsistency, he proposed an index
associated with the prioritisation procedure employed (eigenvector, EV), known as the Consistency
Ratio (CR), and set the threshold of 10% (CR ≤ 0.1) as the maximum level permitted for accepting
the elicited judgements given by the decision maker.
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In recent years, the Row Geometric Mean (RGM) method (Saaty, 1980; Crawford and Williams,
1985), another of the oldest prioritisation methods in the AHP context, has become popular among
the scientific community and is seen as an alternative to Saaty’s initial proposal (EV). This is largely
due to the RGM’s psychological (Saaty, 1980; Brugha, 2000; Altuzarra et al., 2010), mathematical
(Aguarón and Moreno-Jiménez, 2000; Escobar and Moreno-Jiménez, 2000; Aguarón et al., 2003,
2019; Brunelli, 2018) and statistical (Crawford and Williams, 1985; Altuzarra et al., 2007, 2010)
properties. It is also one of the most widely employed, with numerous justifications in the scien-
tific literature. Crawford and Williams (1985) justified it from the perspective of mathematical
optimisation (minimisation of the log quadratic deviation between judgements and priority ratios)
and statistical estimation (maximum likelihood estimation in multiplicative model with log-normal
errors). Using a Bayesian approach, Altuzarra et al. (2007) proved that the RGM estimator is also
the posterior median and mean of the priorities in these models when adopting a non-informative
prior in the log-priorities and the consistency parameter of the model. Aguarón and Moreno-
Jiménez (2010) provided a graph dominance justification that was similar to Saaty’s for the EV
method, but with the application of the geometric mean, instead of the arithmetic mean when eval-
uating the dominance of each element along all the walks. Lundy et al. (2017) discuss a spanning
tree method and prove the mathematical equivalence of its preference vector to that of the RGM
method. Csató (2018) proved that the ordering induced by RGM method is uniquely determined
by three independent axioms: anonymity, responsiveness and aggregation invariance.

For the RGM method, Crawford and Williams (1985) proposed an unbiased estimator of the
variance of log-errors as a measure of the inconsistency. Aguarón and Moreno-Jiménez (2003)
referred to this measure as the Geometric Consistency Index (GCI) and established thresholds for
the GCI with an interpretation analogous to the 10% of Saaty’s CR. These values are: GCI = 0.31
for n = 3, GCI = 0.35 for n = 4 and GCI = 0.37 for n > 4.

When the inconsistency measures (CR or GCI) exceed the fixed thresholds (in some cases
where little information is available, higher thresholds can be accepted), the decision maker must
review their judgements until they reach the level of inconsistency required. If this is not achieved,
the validity of the priority vector is not guaranteed, and the decision maker must seek additional
knowledge to modify the judgements.

In general, and as suggested by Saaty, the review of judgements must be made personally by the
decision maker, not automatically (Saaty, 2003). Nevertheless, some strategies for identifying the
most inconsistent judgements and offering the decision maker procedures for improving inconsis-
tency can be found in the scientific literature. Based on differentiation of the principal eigenvalue
calculated by Harker (1987), Dadkhah and Zahedi (1993) suggested a method for improving in-
consistency with the EV method. A number of authors subsequently put forward suggestions
for improving inconsistency in AHP. An overview of these approaches can be found in Khatwani
and Kar (2017) and Brunelli (2018). However, none of them include a procedure for improving
inconsistency measured by the GCI.

Saaty (2003) suggested that the inconsistency should be improved by slightly modifying the
judgements that further improve the inconsistency measure. Using analogous ideas, and assuming
that input or typing errors made in the judgement elicitation process have been corrected, this
paper presents a new procedure for revising judgements and improving the inconsistency measured
by the GCI. In this way, and as Saaty recommended, both the judgements and the derived priority
vector will be close to the initial values.

The work is structured as follows: Section 2 details the theoretical results necessary for the
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proposal; Section 3 describes the procedure for revising judgements and improving inconsistency,
it goes on to offer an analysis of performance and presents some variants; Section 4 illustrates the
proposed procedure by means of a numerical example; Section 5 highlights the most important
conclusions of the study.

2. Theoretical Results

Let A = (aij) be a pairwise comparison matrix. The inconsistency measure proposed for the
RGM method is the Geometric Consistency Index (Aguarón and Moreno-Jiménez, 2003):

GCI =
2

(n− 1)(n− 2)

∑
i<j

log2 eij (1)

where w = (wi) is the priority vector obtained with the RGM method and eij = aijwj/wi is the
error obtained when the ratio of priorities ωi/ωj is approximated by aij .

Following a similar approach to that used by Dadkhah and Zahedi (1993) for the EV method,
the derivatives of the GCI with respect to the judgements are calculated to identify which entries
further improve inconsistency.

Theorem 1. Given a pairwise comparison matrix, A = (aij) with i, j = 1, . . . , n, the partial
derivative of the Geometric Consistency Index with respect to ars is:

∂GCI

∂ars
=

4

(n− 1)(n− 2)

log ers
ars

(2)

Proof. See Appendix A.

Theorem 2. Given a pairwise comparison matrix, A = (aij) with i, j = 1, . . . , n, the second order
partial derivative of the Geometric Consistency Index with respect to ars is:

∂2GCI

∂a2rs
=

4

(n− 1)(n− 2)

1

a2rs

(
1− 2

n
− log ers

)
(3)

Proof. Immediate from Theorem 1.

From Theorem 1, the judgements that further improve the GCI are those that maximise | log ersars
|.

If log ers > 0, the value ars should be decreased to reduce the GCI. Otherwise, the value of the
judgement must be increased.

If we consider a judgement and its reciprocal (ars and asr), as log ers = −logesr, the value
| log ersars

| will always be greater for the judgement that is smaller than the unit (ars or asr). In
practice, taking into account the AHP comparison technique (the highest compared to the lowest),
when variations are made in absolute terms, the evaluation of the previous expression (| log ersars

|) is
suggested only for judgements ars ≥ 1.

With the EV method (Dadkhah and Zahedi, 1993), the previous results consider absolute
variations in the judgements of the matrix. However, increasing a unit in a small judgement
(e.g. ars = 2) is not the same as in a large one (e.g. ars = 8). To deal with this problem, the
consideration of relative changes in judgements is proposed, multiplying them by a factor 1 ± ρ,
where ρ indicates the percentage of variation of the judgement; that is, absolute changes ±arsρ are
made.
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This idea is formalised by means of the result proved by Aguarón et al. (2003); if judgement
ars changes to a′rs, the new value of the GCI is given by:

GCI(trs) = GCI0 +
2

n(n− 1)
log2 trs +

4

(n− 1)(n− 2)
log trs log ers (4)

where trs = a′rs/ars and GCI0 is the initial GCI of the matrix.

Theorem 3. Given a pairwise comparison matrix, A = (aij) with i, j = 1, . . . , n, the partial
derivative of the Geometric Consistency Index with respect to the relative variation of a judgement
(trs = a′rs/ars) is:

∂GCI(trs)

∂trs
=

4

n− 1

1

trs

(
log trs
n

+
log ers
n− 2

)
(5)

Proof. Immediate from expression (4)

When considering small variations, the value of trs is moving around 1, so that the expression
of the previous partial derivative is:

∂GCI(trs)

∂trs

∣∣∣∣
trs=1

=
4

(n− 1)(n− 2)
log ers (6)

and, in contrast to absolute variations, the gradient associated with the variation of the judgement
ars is given exclusively in terms of the error (log ers). In the new proposal, this expression is used
to select the judgements that must be considered for reducing the GCI.

Since the expression (4) is a parabolic function in log trs with a positive coefficient for log2 trs,
the existence of a value that would provide the maximum reduction of the GCI is guaranteed
(minimum of the parabola). This optimal value is then determined.

Corollary 1. Given a pairwise comparison matrix, A = (aij) with i, j = 1, . . . , n, the relative
variation of judgement ars that produces the greatest decrease of the GCI is

t∗rs = a′rs/ars = e−n/(n−2)rs (7)

Proof. See Appendix A

By taking t∗rs = e
−n/(n−2)
rs the maximum decrease of the GCI is achieved. Substituting this

value in (4), this variation is: ∆GCI = −2n
(n−1)(n−2)2 log2 ers.

Remark 1. The judgement identified in (6) is the one that most rapidly decreases the value of
the GCI; it is also the one that allows the greatest reduction in absolute terms.

Remark 2. The proposal for improving inconsistency measured by the GCI uses the RGM
method as the prioritisation procedure. In addition to the relevance of the proposal for inconsis-
tency measures defined in terms of the derived priority vector (particularly the RGM), it can also
be used with inconsistency measures based on triads. Aguarón (2018, private document) proved
that the inconsistency index (Triad Geometric Consistency Index, TGCI), defined for triads as

TGCI(A) =

∑
i,j,k log2 aijajkaki

3n(n− 1)(n− 2)
(8)
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verifies that TGCI(A) = GCI(A). To improve the inconsistency measured by the TGCI, the
results described in this paper can be used. In addition, the similarities between the different
measures identified by Brunelli (2018) can be used to transfer the results from this paper to
other inconsistency indices, based on triads or the priority vectors. Moreover, in accordance with
Saaty’ suggestion for improving the inconsistency (slight modifications of the judgements), the
inconsistency index used for triads (TGCI) considers an average of triads deviations from unity
(not an extreme situation).

3. Procedure for improving the inconsistency

3.1. Algorithm

This section establishes a semi-automatic procedure for improving (reducing) the inconsistency
of an AHP pairwise comparison matrix when the RGM is the prioritisation procedure and inconsis-
tency is measured by the GCI. Based on the expressions derived from Theorem 3 and Corollary 1,
the procedure has been designed to perform variations in the judgements in relative terms. Ex-
pression (6) is used to select the judgement that will be considered at each iteration and expression
(7) provides the limit of the variation for this judgement. A modification beyond this value will
produce an increase in the GCI.

In order to apply this semi-automatic procedure, the decision maker must previously indicate
the maximum variation, in relative terms, that they would accept to modify the judgements. This
value has been denominated as the permissibility threshold ρ. The algorithm is:

Algorithm for improving the GCI in terms of relative changes
Input: An×n = (aij) a pairwise comparison matrix, ρ is the permissibility allowed in
relative terms for the modification of judgements, GCI is the desired threshold for the
GCI and J the set of indices corresponding to the judgements to be reviewed.
Output: The updated matrix (A′), where the new judgements a′rs have been incorpo-
rated, and the associated value GCI(A′).

Step 0. Let J = {(r, s),with r < s}.
Step 1. Evaluate log ers for all (r, s) ∈ J .

Step 2. Choose the pair (r′, s′) ∈ J for which log er′s′ has the largest absolute value.

Step 3. If ar′s′ > 1 then let (r, s) = (r′, s′). Otherwise, let (r, s) = (s′, r′)

Step 4. Modify ars considering the following value of the relative variation trs that will
depend on the sign of log ers

a. If log ers < 0, use trs = min
{

1 + ρ, e
−n/(n−2)
rs

}
b. If log ers > 0, use trs = max

{
1

1+ρ , e
−n/(n−2)
rs

}
Update matrix A with new values a′rs = arstrs and a′sr = 1/a′rs.
Update J = J \ (r′, s′).

Step 5. Calculate the new GCI. If the level of inconsistency has not reached the desired
threshold (GCI > GCI) and J is not empty, repeat steps 1 through 4. Otherwise,
provide A′ and GCI(A′).

5
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If log ers < 0 (Step 4a), it is necessary to increase ars (trs ≥ 1) in order to reduce the GCI.
In this case, the maximum relative increase delimited by the permissibility and the range of im-

provement is trs = min
{

1 + ρ, e
−n/(n−2)
rs

}
. If log ers > 0 (Step 4b), the value of ars should be

reduced (trs ≤ 1). In this situation, the permissibility is incorporated as 1
1+ρ to keep the property

of reciprocity.
When the judgements must belong to Saaty’s fundamental scale (Saaty, 1980), the new value

in Step 4 will be limited to the interval [1/9,9].

3.2. Performance of the algorithm

It can be verified that, by construction, the algorithm reduces the initial GCI, GCI(A), when-
ever there are judgements that meet the required conditions. However, the algorithm does not
guarantee the achievement of the desired threshold for the GCI (GCI). Obviously, small values
of permissibility will produce small modifications in the GCI.

A simulation study was undertaken, in which 100 000 matrices were generated for different
combinations of n and GCI(A), to determine the level of permissibility necessary to achieve the
desired GCI in 99.5% (Table 1a) and 95% (Table 1b) of the situations. The desired values con-
sidered in this study were: GCI = 0.31 for n = 3, GCI = 0.35 for n = 4 and GCI = 0.37 for
n > 4.

Table 1: ρ values (%) that guarantee the success of the algorithm in 99.5% (a) and 95% (b) of situations

(a) 99.5% success

GCI(A)
0.40 0.45 0.50 0.60 0.75

n

3 5.0 7.3 9.6 13.9 20.0
4 4.6 8.5 12.5 20.3 31.7
5 3.4 7.8 12.5 22.1 37.1
6 3.6 8.4 13.3 23.6 39.6
7 3.7 8.6 13.7 24.2 40.6
8 3.8 8.7 13.8 24.3 40.8
9 3.8 8.8 13.8 24.4 40.8

(b) 95% success

GCI(A)
0.40 0.45 0.50 0.60 0.75

n

3 4.9 7.3 9.5 13.8 20.0
4 4.1 7.7 11.4 18.8 30.0
5 3.1 7.1 11.3 19.7 32.6
6 3.3 7.6 12.1 21.3 35.3
7 3.4 7.9 12.5 22.0 36.4
8 3.4 8.0 12.7 22.3 37.0
9 3.5 8.1 12.8 22.5 37.3

It can be seen that for an initial GCI(A) = 0.40, a ρ = 5% is sufficient to reach the acceptable
GCI for n = 3, . . . , 9 in 99.5% of situations; for an initial GCI(A) = 0.40, the necessary ρ is 8.8%.
For 95% success, these values are ρ = 4.9% for GCI(A) = 0.40 and ρ = 8.1% for GCI(A) = 0.45.
For the rest of initial GCI(A), there are higher discrepancies in the necessary ρ for different values
of n (see Table 1 to select the appropriate ρ). Note that the algorithm is able to provide acceptable
levels of inconsistency if the permissibility of the decision maker is large enough.

To reach other desired thresholds of the GCI (GCI), the necessary permissibility values can
be calculated in a similar manner. This information may be used as an intermediate step in the
construction of consistency consensus matrices in AHP-group decision making (Moreno-Jiménez
et al., 2005, 2008; Escobar et al., 2015; Aguarón et al., 2016).

3.3. Variants of the algorithm

Expressions (6) and (7) establish (in relative terms) a framework for improving inconsistency
measured by the GCI. The algorithm provides a realistic procedure for applying the above ex-
pressions in practical situations. However, the algorithm can be tailored to particular interests:

6
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• To incorporate the personal intervention of the decision maker, the algorithm would not con-

sider the permissibility value. The decision maker must provide a value of trs ∈
[
1, e
−n/(n−2)
rs

]
if log ers < 0 (Step 4a) or a value of trs ∈

[
e
−n/(n−2)
rs , 1

]
if log ers > 0 (Step 4b).

• The algorithm is designed to achieve an inconsistency below the desired threshold (GCI),
taking advantage of the improvements that allow the modification of the corresponding judge-
ment. If the decision maker wants to exactly reach this desired threshold, it would be enough
to solve the second degree equation set out in (4) once, for the first time in the algorithm,
the modification of a judgement has been allowed to reach a GCI(A′) ≤ GCI.

• The algorithm can be relaxed by eliminating permissibility (ρ =∞) or allowing several modi-
fications for each judgement (not updating J in Step 4). These variations allow the reduction
of the number of iterations, smaller thresholds for the GCI or the minimisation of the num-
ber of modified judgements in order to achieve an acceptable inconsistency, as proposed by
Bozóki et al. (2015). However, these actions could lead to changes in the judgements of
remarkable intensity (Khatwani and Kar, 2017). In many situations, these changes provide
values for judgements outside the priority stability intervals (Aguarón and Moreno-Jiménez,
2000) and cause important rank reversals.

• If the variations of the judgements are considered in absolute terms, as in Dadkhah and
Zahedi (1993), the procedure can be adapted using expression (2) from Theorem 1 to select
the judgements and then adjusting the remaining steps. If the procedure is to be semi-
automatically applied, the decision-maker must provide, in advance, the maximum variation
they would accept to modify the judgements in absolute terms.

Irrespective of the importance of the previous variants, it is worth mentioning that the proposed
algorithm has been designed to achieve an acceptable inconsistency with slight variations of the
judgements, as recommended by Saaty (2003).

4. Numerical Example

The procedure is illustrated with the same example used by Dadkhah and Zahedi (1993). The
pairwise comparison matrix and the corresponding priority vector obtained with the RGM method
are:

A =


1 5 6 7

1/5 1 4 6
1/6 1/4 1 4
1/7 1/6 1/4 1

 w = (0.614, 0.239, 0.103, 0.045)

The associated value of the GCI is 0.504 which is greater than the threshold GCI = 0.35 (for
n = 4), so the matrix exceeds the tolerable values of inconsistency. The procedure is then applied
with the aim of improving inconsistency, reducing the GCI to a value below 0.35.

In this illustrative example, it is assumed that the decision maker has established a permissibility
threshold ρ = 15% (they would accept the modification of some judgements up to a 15% of their
initial values), and, although it is not necessary in this example, the judgements belong to the
interval [1/9, 9].

7
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Step 1. The matrices of the errors E = (eij) and of their corresponding logarithms logE =
(log eij) are:

E =


1 1.944 1.007 0.511

0.514 1 1.727 1.126
0.993 0.579 1 1.739
1.958 0.888 0.575 1

 logE =


0 0.665 0.007 −0.672

−0.665 0 0.546 0.119
−0.007 −0.546 0 0.553
0.672 −0.119 −0.553 0


Step 2. The maximum value of log eij in absolute terms is 0.672 which corresponds to the

judgements (1,4) and (4,1) (as reciprocals, they correspond to the same judgement). These are the
judgements that would most rapidly decrease the value of the GCI.

Step 3. The algorithm continues with element (1,4) as this is the judgement with a value greater
than 1 (a14 = 7 > 1).

Step 4. Expression 4a is used, since log e14 = −0.672 < 0. The value of a14 is modified by

t14 = min
{

1 + ρ, e
−n/(n−2)
14

}
= min

{
1.15, 0.511−2

}
= 1.15. The updated values of the judgements

are a′14 = a14t14 = 7× 1.15 = 8.05 and a′41 = 1/8.05 = 0.124.
Step 5. The GCI of the updated matrix is GCI = 0.445 which is still above the desired

inconsistency threshold. As there are judgements that have not yet been considered, steps 1 to 4
of the procedure are repeated.

It was necessary to perform two more iterations of the algorithm to achieve a tolerable level of
inconsistency (GCI below 0.35). Table 2 summarises the three iterations of the procedure. In the
third iteration, the judgement that maximises | log ers| and, therefore, would most decrease incon-
sistency, is again (1, 4), but the procedure does not select it since it has already been considered
and modified in a previous iteration. The procedure continues with the following judgement that
maximises | log ers| and has not been previously considered, (3, 4). In this example, the modifica-
tions of the judgements in all the iterations have been determined by the permissibility (15%) and
not by the value that provides the maximum possible reduction of inconsistency.

Table 2: Information on the 3 iterations of the procedure for ρ = 15%

Iter# GCI (r, s) ars log ars ↑↓ ars ρ limit t∗rs trs a′rs GCI ′ ∇GCI(%)
1 0.504 (1,4) 7 -0.672 ↑ 1.15 3.83 1.15 8.05 0.445 11.78
2 0.445 (1,2) 5 0.630 ↓ 0.87 0.28 0.87 4.35 0.389 22.77
3 0.389 (3,4) 4 0.518 ↓ 0.87 0.35 0.87 3.48 0.344 31.71

The final pairwise comparison matrix, A′, its GCI, and the corresponding priority vector, w′,
are:

A′ =


1 4.35 6 8.05

0.23 1 4 6
1/6 1/4 1 3.48
0.12 1/6 0.29 1

 GCI(A′) = 0.344 w′ = (0.611, 0.246, 0.099, 0.045)

The algorithm guarantees that the modifications made in some judgements to achieve an accept-
able inconsistency (GCI < 0.35) do not exceed 15%. With just these small changes a significant
improvement of inconsistency (a 31.71% reduction) is achieved in three iterations. In addition, the
changes in the derived priorities are very small (see Table 5).

According to the simulation analysis performed, for n = 4 and a GCI(A) = 0.50, a value of
ρ of 13% would be necessary (Table 1a) to guarantee the success of the algorithm with 99.5%
probability. For the same GCI (0.50) and n = 4, ρ = 12% is enough to guarantee the success of
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the algorithm at 95% (Table 1b). For n = 4, and an initial GCI less than double what is allowed
(GCI = 0.75), ρ = 30% is enough to achieve the success of the algorithm in 95% of cases.

Table 3 includes the results of the procedure (values of the judgements, the GCI, the reduction
of GCI, the priorities obtained with the procedure and the number of iterations necessary to
achieve an acceptable GCI) for three different values of the permissibility: ρ = 10%, 15% and 20%.
It can bee seen that the greater the permissibility, the greater the variation in the judgements, the
smaller the number of modified judgements and the value of the GCI. It can also be observed that
the priority vectors are close to the initial one (see Table 5 for details).

In the particular case of ρ = 10%, although all six judgements were modified (only allowed
once), it was not possible to achieve a matrix with acceptable inconsistency (GCI < 0.35). A
permissibility of 11% would have been necessary to reach an acceptable level of inconsistency
(GCI = 0.349) in 6 iterations. If repetition of judgements were allowed, a GCI = 0.320 would be
reached in 5 iterations; two of them modifying judgement a12 with a cumulative relative change
of 21%, and three modifying a14 with a cumulative relative change of 33.1%, both values are far
from the initial ones.

Table 3: Results of the procedure for ρ = 10%, 15%, 20%

a12 a13 a14 a23 a24 a34 GCI ∇GCI% w1 w2 w3 w4

Init. values 5.00 6.00 7.00 4.00 6.00 4.00 0.504 – 0.614 0.239 0.103 0.045 Iter.

ρ = 10% 4.55 5.92 7.70 3.64 5.45 3.64 0.355 29.51 0.615 0.235 0.104 0.046 6
ρ = 15% 4.35 6.00 8.05 4.00 6.00 3.48 0.344 31.71 0.611 0.246 0.099 0.045 3
ρ = 20% 4.17 6.00 8.40 4.00 6.00 3.33 0.302 40.08 0.610 0.248 0.098 0.045 3

In the case of ρ = 15% (see Table 4), the changes in absolute terms between judgements aij
and a′ij are less than 1.05. On average, the change is 0.342 for each judgement. In relative terms,
the maximum change in the judgements is 15% (ρ = 15%) and the average is 6.12%. For priorities
(see Table 5), the changes in absolute terms between wi and w′i are less than 0.007. On average,
this change is 0.004 for each priority. In relative terms, the maximum change in the priorities is
less than 4% (3.91%) and the average is less than 2% (1.98%).

In the case of continuing to apply the algorithm to the rest of the judgements (six iterations),
an inconsistency of 0.295 would have been achieved, reducing the initial GCI by 41.43%. After
the six iterations, the maximum and average relative differences for the judgements are 15% and
11.43%. For the priorities these values are 4.52% and 2.20%.

Tables 4 and 5 show the differences (maximum and average differences in absolute and relative
terms) of the judgements and priorities with respect to the initial position for different levels of
permissibility (ρ = 10%, 15% and 20%).

Table 4: Differences between initial and final judgements for ρ = 10%, 15%, 20%

Max. Abs. Dif. Avg. Abs. Dif. Max. Rel. Dif. (%) Avg. Rel. Dif. (%)

ρ = 0.10 0.700 0.419 10.00 7.96
ρ = 0.15 1.050 0.342 15.00 6.12
ρ = 0.20 1.400 0.483 20.00 8.89
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Table 5: Differences between initial and final priority vectors for ρ = 10%, 15%, 20%

Max. Abs. Dif. Avg. Abs. Dif. Max. Rel. Dif. (%) Avg. Rel. Dif. (%)

ρ = 0.10 0.004 0.002 3.06 1.52
ρ = 0.15 0.007 0.004 3.91 1.98
ρ = 0.20 0.010 0.005 5.08 2.59

where:

Max. Abs. Dif. = max
i

∣∣x′i − xi∣∣ Avg. Abs. Dif. =
1

n

∑
i

∣∣x′i − xi∣∣
Max. Rel. Dif. = max

i

∣∣∣∣x′i − xixi

∣∣∣∣ ∗ 100 Avg. Rel. Dif. =
1

n

∑
i

∣∣∣∣x′i − xixi

∣∣∣∣ ∗ 100

With this example, Dadkhah and Zahedi (1993) obtained almost null inconsistency after ten
modifications in judgements corresponding to five different entries. If the permissibility restriction
is eliminated and judgements in the interval [1/9, 9] are considered, our algorithm provides GCI = 0
in only three iterations by modifying the judgements a′14 = 9; a′12 = 1.5 and a′34 = 1.5.

The removal of the permissibility restriction in the algorithm would be in line with Bozóki et al.
(2015), who suggested reducing inconsistency by modifying the minimum number of judgements.
However, this does not follow Saaty’s proposal (Saaty, 2003) as the modified judgements and
priorities are clearly different from the initial values.

5. Conclusions

The two most common prioritisation methods in AHP are the EV and the RGM. Both have
inconsistency measures (CR and GCI, respectively) based on the priority vector, but only the CR
includes a procedure for improving the inconsistency. To solve this limitation in the RGM method,
this paper has proposed a procedure for the improvement of inconsistency measured with the GCI.
The proposal is similar to that put forward by Dadkhah and Zahedi (1993) for the CR.

Following Saaty’s recommendation: “to improve the validity of the priority vector, we must
transform a given reciprocal judgement matrix to a near consistent matrix”, and the procedure he
suggested for improving inconsistency (Saaty, 2003): “slightly modify judgements and the initial
priorities”, the proposal for the RGM method slightly modifies the judgements that improve the
GCI faster and with greater intensity. The modification of judgements is always within the permis-
sibility range set by the decision maker. It is understood, as Saaty argued, that the modification
of the initial judgements must be made with the acceptance of the decision maker, and it must not
be made automatically.

The proposal establishes a general framework for identifying the judgements that, in relative
terms, should be modified for improving the GCI and determining the direction and intensity of
the modification. A simulation study has been utilised to analyse the performance of the algorithm.
The analysis provides the level of permissibility necessary to achieve the desired GCI in 95% and
99.5% of the situations for different values of n and GCI. It can be seen that the algorithm is
able to provide acceptable levels of inconsistency if the permissibility of the decision maker is large
enough. For example, for a GCI = 0.60, a 28% permissibility would be necessary to reach the
acceptable inconsistency threshold with a probability of 99.5%.
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The general framework is valid for the measurement scales that most commonly feature in the
literature and can easily accommodate the interests and needs of decision makers. It is enough
to adapt the framework (only the desired or maximum inconsistency threshold allowed and the
permissibility associated with the relative changes of the judgements have been included as the
initial parameters of the model) to the requirements of the decision maker. For example, if the
decision maker wants to limit the modified values to an interval or select the judgements that
provide a fixed level of the GCI with the minimum modification, this should be indicated in the
Step 4 of the algorithm. If they want to improve inconsistency by modifying the lower number of
judgements, permissibility should be eliminated. If the decision maker wants to work in absolute
terms, then the procedure should refer to Theorems 1 and 2. These and other variants, including the
extension of the results to fuzzy multiplicative preferences (Xu et al., 2019) and the improvement
of inconsistency for its exploitation in group decision (Moreno-Jiménez et al., 2005, 2008; Escobar
et al., 2015; Aguarón et al., 2016, 2019) will be the subject of a forthcoming paper.

In addition to the relevance of offering a procedure for improving inconsistency measured with
the GCI (an issue that was absent from the scientific literature) and its adaptability to specific
situations, the proposal put forward in this paper makes two specific contributions to the field:
i) the judgement identified for improving the GCI is the one that most rapidly decreases the
value of this index and allows the greatest reduction in absolute terms; ii) the results derived
from Theorems 1 to 3 and Corollary 1 can be applied to inconsistency indices based on triads, in
particular to the TGCI.
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Aguarón, J., Moreno-Jiménez, J.M., 2003. The Geometric Consistency Index: Approximated Thresholds. European
Journal of Operational Research 147, 137 – 145. doi:10.1016/S0377-2217(02)00255-2.
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Moreno-Jiménez, J.M., Aguarón, J., Raluy, A., Turón, A., 2005. A spreadsheet module for consistent consensus
building in ahp-group decision making. Group Decision and Negotiation 14, 89–108. doi:10.1007/s10726-005-
2407-8.

Saaty, T.L., 1977. A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology
15, 234 – 281. doi:10.1016/0022-2496(77)90033-5.

Saaty, T.L., 1980. Multicriteria Decision Making: The Analytic Hierarchy Process. McGraw-Hill. New York.
Saaty, T.L., 2003. Decision-making with the AHP: Why is the principal eigenvector necessary. European Journal of

Operational Research 145, 85–91. doi:10.1016/S0377-2217(02)00227-8.
Xu, Y., Li, M., Cabrerizo, F.J., Chiclana, F., Herrera-Viedma, E., 2019. Algorithms to detect and rectify mul-

tiplicative and ordinal inconsistencies of fuzzy preference relations. IEEE Transactions on Systems, Man and
Cybernetics: Systems doi:10.1109/TSMC.2019.2931536.

12



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Appendix A. Proofs of theorems

As a previous step to the proof of Theorem 1, Lemma 1 is included.

Lemma 1. Given a pairwise comparison matrix, A = (aij) with i, j = 1, . . . , n, the derivatives of
the errors eij = aijωj/ωi, where ω is the priority vector obtained with the RGM method are given
by

∂ers
∂ars

=

(
1− 2

n

)
ers
ars

∂esr
∂ars

=−
(

1− 2

n

)
esr
ars

∂erj
∂ars

=− 1

n

erj
ars

j 6= s
∂esj
∂ars

=
1

n

esj
ars

j 6= r

∂eis
∂ars

=− 1

n

eis
ars

i 6= r
∂eir
∂ars

=
1

n

eir
ars

i 6= s

Proof. For error ers we have:

ers = ars
ωs
ωr

= ars

(
as1 · · · asr · · · ass · · · asn
ar1 · · · arr · · · ars · · · arn

)1/n

= a1−2/nrs

(
as1 · · · asr/ · · · ass · · · asn
ar1 · · · arr · · · ars/ · · · arn

)1/n

And taking the derivative
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)
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ar1 · · · arr · · · ars/ · · · arn

)1/n
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(
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n

)
ωs
ωr

=

(
1− 2

n

)
ers
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For error esr we use the relation esr = 1/ers:

∂esr
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=
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The term erj with j 6= s can be expressed as:

erj = arj
ωj
ωr

= arj
ωj

(ar1 · · · ars · · · arn)1/n
= arja

−1/n
rs
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k 6=s a

1/n
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And taking the derivative we have
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The rest of derivatives can be demonstrated analogously �

Proof of Theorem 1 The GCI can be expressed as:

GCI =
1

(n− 1)(n− 2)

∑
i 6=j

log2 eij (A.1)
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The only terms of GCI (A.1) that depend on ars are those that are in rows r, s or columns r, s.
Also, log2 eij = log2 eji so we only consider two-time errors ers, erj with j 6= s and esj with j 6= r:

∂GCI

∂ars
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2

(n− 1)(n− 2)

∂
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∑
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log2 esj
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2

(n− 1)(n− 2)
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1− 2

n

)
ers
ars

+ 2
∑
j 6=r,s

log erj
1

erj

−1

n

erj
ars

+ 2
∑
j 6=r,s

log esj
1

esj

1

n

esj
ars


=

4

(n− 1)(n− 2)

1

ars

(1− 2

n

)
log ers −

1

n

∑
j 6=r,s

log erj +
1

n

∑
j 6=r,s

log esj

 (A.2)

It’s known that
∑

j 6=i log eij = 0 so∑
j 6=r,s

log erj = − log ers and
∑
j 6=r,s

log esj = − log esr = log ers (A.3)

Substituting expressions (A.3) in (A.2):
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Proof of Corollary 1 From expression (5) we have:

∂∆GCI

∂trs
= 0⇒

(
log trs
n

+
log ers
n− 2

)
= 0⇒ t∗rs = e−n/(n−2)rs

This value (t∗rs) corresponds to a minimum because the second derivative is positive since

∂2GCI
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t2rs
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n
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log ers

]
and for t∗rs = e

−n/(n−2)
rs we have:

∂2GCI
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4
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e2n/(n−2)rs > 0 �

This corollary can also be proved with Theorems 1 and 2.
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