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Abstract

We develop a model for pricing, lead-time quotation and delay compensation in

a Markovian make-to-order production or service system with strategic customers

who exhibit risk aversion. Based on a concave utility function of their net benefit,

customers make individual decisions to join the system or balk without observing the

state of the queue. The decisions of arriving customers result in a symmetric join/balk

game. Regarding the firm’s strategy, the provider announces a fixed entrance fee, a

lead-time quotation and a compensation rate for the part of a customer delay which

exceeds the quoted lead-time.

We analyze the effect of customer risk aversion and the compensation policy on the

equilibrium join/balk strategies and the resulting input rates, and assess the flexibility

of the provider in inducing a range of possible input rates under various constraints on

the pricing/compensation policy. In numerical experiments we explore the behavior

of pricing curves that reflect the provider’s choices in inducing specific input rates.

A key insight obtained from the analysis is that a main benefit of the lead-time and

compensation option is to allow the entrance fee to remain high and the provider

prefers strategies that lead to this direction.

Keywords: Queueing; Customer Equilibrium strategies; Load control; Profit

Maximization; Risk Aversion.
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1 Introduction

In firms that produce products on a make-to-order basis or provide a service, customer delay

is a crucial factor that affects both the demand and the profitability, directly or indirectly.

Customers may react to delay, real or anticipated, in a variety of ways ranging from mild to

very extreme, depending on the effect it has on their own operation. Therefore, production

or service providers must be able to effectively address customers’ concerns about delays

in order for the demand not to be adversely affected.

In considering the effects of delay on the customers and the firm, several interacting

factors must be taken into account. First, in many cases customer behavior is strategic,

in the sense that customers also consider the reaction of other customers when they make

their decision to place the order for the product or service, i.e., whether to join the system

or balk. This creates externalities, since the decision of a customer affects and is affected

by the behavior of the other customers, and it may have unexpected consequences in the

formation of demand patterns. In addition, customers are often affected disproportionately

by long delays, since they may lead to defaults or extreme losses. In such cases customers

exhibit a risk-averse behavior, which must also be considered as its effect on the demand

may be quite adverse.

From the point of view of the firm, the producer or service provider, hereafter referred

to as the provider, is mainly concerned about his/her own profitability. The presence of

strategic customer behavior and in particular risk aversion generally induces constraints on

the pricing strategies and the profit. Especially under risk aversion, single pricing schemes

where customers pay a fixed fee to order the product or the service (entrance fee to the

system) are not appropriate because they may lead to significant loss of customers. To

alleviate these effects it is common to use delay-dependent pricing policies. A class of

such policies, considered in this paper, is to provide customers with a lead-time quotation

and compensate for delays exceeding the lead-time. The main role of a compensation

strategy in this framework is that, by providing a hedge against extreme losses only to

those customers who experience long delays, it allows the provider to keep the entrance

fee at a relatively high level, instead of giving a steep discount to all incoming customers

in order to entice them to join. The questions arising here have to do with the most

appropriate combination of pricing and compensation. For example is it preferable to

provide a modest compensation with a long lead-time and a lower entrance fee or keep

the price high and compensate from the first moment? Furthermore, depending on the

general market environment, the firm strategy and/or other factors, the provider may face
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limitations in setting the pricing/compensation policy, e.g. may be forced to keep the

entrance fee at a fixed level, or use an already advertised lead-time quotation, etc.

Finally, in terms of the firm’s objectives, the standard approach is to determine the

parameters of the pricing/compensation policy that maximize the provider’s profit, and

accept the demand resulting from this policy as optimal. However in many cases firms

are interested in controlling the customer flow from a more general viewpoint, not nec-

essarily tied to short-term profit maximization. The provider may want to determine a

pricing/compensation policy that will shape a particular demand pattern over time, which

may not be profit maximizing in the short-run but aim to increasing market share, product

reputation etc. Such concerns and objectives are especially relevant for startup companies

or new products introduced to the market. In such situations it is useful to know the

policy flexibility in inducing a desired input rate to the system, especially in the presence

of limitations as discussed above.

In this paper we develop a mathematical model for pricing, lead time quotation and de-

lay compensation in production and service systems with strategic customers who exhibit

risk aversion. Specifically, we consider a make-to-order or a service system where cus-

tomers arrive according to a Poisson process, and the production/service times are i.i.d.

exponential random variables. This gives rise to an M/M/1 queuing model. Customers

place a value on the service they receive and incur a cost per unit of time of delay. The risk

aversion is modeled by a concave utility function of the net customer benefit. Based on this

utility customers make individual decision to join the system or balk. Customers cannot

observe the actual state of the queue upon arrival. The individual decisions of arriving

customers result in a symmetric join/balk game, for which a Nash equilibrium can be iden-

tified using game theory methodology. Regarding the firm’s strategy, we assume that the

provider announces a fixed price of entrance, a lead time quotation and a compensation

rate for the part of a customer delay which exceeds the quoted lead time.

The main contribution of the paper is in analyzing the effect of customer risk aversion

and the compensation policy on the equilibrium join/balk strategies and the resulting

input rates, as well as exploring the flexibility available to the provider in inducing a

range of possible input rates under various constraints on the pricing/compensation policy.

Specifically, we first characterize the symmetric customer equilibria as a function of the

pricing policy. We also identify the ranges of achievable input rates when the provider must

keep one or more policy parameters at a fixed value. We show that when the provider has

full flexibility in the pricing/compensation policy, the effects of customer risk aversion are
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essentially canceled, in the sense that the optimal profit under risk-neutral customers can

be approached arbitrarily closely. However in this case there is no strictly optimal policy.

Finally, in numerical experiments we explore the behavior of pricing curves that reflect

the provider’s choices in inducing specific input rates. A key insight obtained from the

analysis is that the main benefit of the lead-time and compensation option is to allow the

entrance fee to remain high and the provider always prefers strategies that lead to that

direction. Furthermore, as risk aversion increases, the range of achievable input rates may

decrease substantially, depending on the policy constraints. In this case the provider has

the highest flexibility when he or she is free to set the compensation rate, even when he or

she is forced to keep the entrance fee and/or the lead-time at fixed values.

This paper is structured as follows. In Section 2 there is a literature review. In Section

3 we describe the model for customers and provider under risk aversion. In Section 4 we

perform equilibrium analysis. In Section 5 we present load control policies, i.e., we find the

range of input rates that may be achieved by varying the remaining free policy parameters

and we explore the profit maximization problem. In Section 6 we present some numerical

results, i.e., equilibrium curves, optimal profits and risk aversion sensitivity based on the

negative exponential function. Conclusions and future research directions are presented in

Section 7.

2 Literature Review

The implications of strategic customer behavior on the performance of a queueing sys-

tem have been studied extensively in the recent years. Early works on the M/M/1 queue

include Naor (1969) and Edelson and Hilderbrand (1975) for the observable and unobserv-

able models, respectively. Many variations of the original models have been studied since,

and a comprehensive review of the literature is provided in Hassin and Haviv (2003) and

Hassin (2016). The focus of this paper is on the interaction between customer risk prefer-

ences and delay compensation policies, as well as their effects on the service provider profit

and the load of the system.

One of the first works to explore the effect of risk aversion in a queue with strategic

customers is Chen and Frank (2004), which analyzes customer equilibrium strategies, the

profit maximization and the social welfare maximization problem in an unobservable set-

ting. Customers have generally non-linear delay costs and use a concave utility function

to value their net benefit from entering the system. It is shown that under non-linear

utility the profit maximizing price is not socially optimal. When there is flexibility to
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adjust the service rate, it allows the firm to increase the entrance fee and at the same time

capture the entire customer market. Guo et al. (2011) consider an M/G/1 model where

customers have a linear or quadratic delay cost function and partial information on the

service time distribution. Wang and Zhang (2017) model customer risk attitude through

a quadratic service utility function that involves the mean and the variance of the waiting

time and allows for risk averse or risk seeking behavior. Both the unobservable and the

observable settings are analyzed. It is shown that when customers are highly risk averse,

then providing the queue length information hurts the service provider profits.

Regarding the use of lead-time quotation and delay compensation as tools to mitigate

the effects of risk aversion, the work most closely related to this paper is Afèche et al.

(2013), who consider an unobservable M/M/1 queue with several customer types differ-

entiated with respect to service valuation, cost of waiting and utility function. General

pricing policies are allowed that may depend on the actual sojourn time in the system. It

is shown that when types are distinguishable, the service provider maximizes his/her profit

by charging each type an entrance fee equal to the marginal valuation of that type and

providing full compensation for the waiting cost. For indistinguishable types it is shown

that the optimal linear pricing schemes that fully compensate for delay are incentive com-

patible. Furthermore, a simple refund policy is considered, under which a customer is fully

compensated for the delay only when it exceeds a quoted lead-time.

In an observable setting, Feng and Zhang (2017) also consider multiple distinguishable

customer types. Customers are compensated for the delay in excess of the quoted lead

time. The risk preferences are modeled by an indifference curve between entrance fee and

lead-time. These boundary valuation curves are differentiated by customer type. Optimal

dynamic pricing and lead-time quotation policies are derived using a Markov Decision

Process model.

Lead-time quotation policies have been extensively studied in non-strategic customer

settings. Focusing on works that use lead-time quotations as part of a pricing strategy,

Plambeck (2004) proposes a diffusion approximation model for a Markovian queue with

patient and impatient customers where the provider sets the service capacity and prices

statically and then dynamically quotes lead-times to arriving customers and determines

the service order. Slotnick and Sobel (2005) also consider dynamic lead-time quotation

strategies in a make-to-order system with pricing linear in processing times. They focus

on the impact of inaccurate production backlog information which can result in penalty

fees and loss of reputation. Plambeck and Ward (2008) analyze a diffusion model for an
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assemble-to-order system and develop dynamic policies that include product prices, quoted

leadtimes, production capacities for individual components and sequencing and expediting

rules. Ata and Olsen (2009) assume deterministic processing times and homogeneous cus-

tomers with a nonlinear waiting cost function, and derive near optimal dynamic rules for

lead-time quotation and customer sequencing. Feng et al. (2011) develop a Semi-Markov

Decision Process model for dynamic pricing and lead-time quotation in a G/M/1 system

with heterogeneous service valuations and derive a threshold type structure of the optimal

policy. Zhao et al. (2012) consider a make-to-order system with customers classified as

lead-time sensitive or price sensitive and compare a uniform quotation strategy of a single

price and lead-time quotation with a differentiated strategy of offering a menu of prices

and lead-time quotes.

A related to lead-time quotation but less binding approach for addressing customer

reaction to anticipated long waiting is that of delay announcements, where the provider

informs incoming or waiting customers about expected completion times. The effect of

delay announcements in the formation of customer equilibrium strategies has been studied

in several works in the literature. We again restrict attention to the interaction of delay

announcement with pricing strategies. In an early work in this direction, Hassin (1986)

compares profit maximizing and socially optimal strategies in observable and unobservable

systems. Afèche and Pavlin (2016) develop incentive-compatible price and announced de-

lay menus in a queue with heterogeneous risk-neutral customers. Burnetas et al. (2017)

consider an unobservable queue where entering customers are informed at random times

about the queue state and have the option of reneging. Pricing strategies that include sep-

arate fees for entering the system and actually receiving service are developed to optimize

the social welfare.

Finally, the problem of adjusting the input rate, the traffic and generally the load of

a system has been studied extensively, although there are not many works that focus on

the variability of the input rate with respect to policy parameters. This question has been

explored in deterministic network flow problems under a Wardrop equilibrium framework,

where it is desired to arrange the flow patterns so that no user has an incentive to change

his/her route. Dafermos and Nagurney (1984) and Tobin and Friesz (1988) develop a sen-

sitivity analysis methodology based on variational inequalities, and derive expressions for

the derivatives of the equilibrium flows with respect to demand and cost parameters. Hai

(1995) incorporates queueing delays in the network links. The prevalent approach in input

rate control of a queueing system is from the point of view of optimizing a profit or cost
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function and is related to admission control problems. We also focus here on admission

control using pricing policies. In an early work, Low (1974) develops a dynamic pro-

gramming model for selecting among a finite set of admission prices. Ata and Shneorson

(2006) consider the joint admission and service control problem in an M/M/1 queue with

adjustable arrival and service rates, under long-run average welfare maximization. They

also formulate and solve an associated dynamic pricing problem. Paschalidis and Tsitsiklis

(2000) and Çil et al. (2011) consider the dynamic pricing problem in a queue with more

than one price sensitive customer classes.

3 Model Description

We consider a Make-to-Order (MTO) system modeled as a single server Markovian queue.

Potential customers arrive according to a Poisson process with rate Λ. All customers are

identical and place orders one at a time. Service times are exponentially distributed with

rate µ. The system operates under the first-come first-served (FCFS) discipline. When an

order is placed, it brings a revenue of R to the customer. There is also a waiting cost c for

the customer per unit of sojourn time in the system.

The provider announces an entrance fee p, quotes a lead-time d for the service comple-

tion to each incoming customer and a compensation l per unit time that the sojourn time

exceeds d. This quotation is identical for all customers, regardless of the system state.

Furthermore, incoming customers do not observe the system state upon arrival.

Customers are strategic and decide whether to join the system or balk. Their decision

is based on the expected net benefit that they obtain from joining. We further assume that

customers are risk averse. Specifically, the net benefit for a customer who joins the system

and spends a total time X before service completion, is equal to U(R−p−cX+ l(X−d)+),

and for a customer who balks equal to U(0), where U is a utility function that satisfies the

properties in the following assumption.

Assumption 1. i. U is strictly increasing and concave, i.e., U ′ > 0 and U ′′ ≤ 0.

ii. There exists z′ such that U ′′(z) < 0 for z ≤ z′.

The monotonicity and concavity are standard assumptions for risk aversion. The last

property ensures that U is strictly non-linear for sufficiently large delay values. Assumption

1 has the following two implications which will be used in the analysis. First, it is easy to

show that

limz→−∞U(z) = −∞. (1)
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Second, from Jensen’s inequality it follows that for any random variable Z such that

P (Z < z′) > 0,

E(U(Z)) < U(E(Z)). (2)

The strict inequality holds because U is strictly concave in the interval (−∞, z′) and the

probability of Z being in this interval is positive.

Following the standard approach in the unobservable framework, we restrict the analysis

to symmetric mixed strategies which are determined by a common join probability q for

all customers. Given the provider’s pricing/compensation policy determined by (d, p, l)

a symmetric Nash equilibrium joining strategy is defined as follows. Consider a tagged

customer who follows strategy h given that all other follow q. The expected utility of the

tagged customer is equal to

B(h; q, d, p, l) = hE(U(R − p− cX + l(X − d)+)|q) + (1− h)U(0). (3)

The expectation in the above expression is taken with respect to the steady-state distribu-

tion of the system, under a symmetric join strategy q . Specifically, given a mixed strategy

q, the number of customers in the system evolves according to a simple M/M/1 queue

process with input rate Λq and service rate µ. Assuming that Λq < µ, the steady-state

distribution is geometric with parameter ρ = Λq
µ

.

A strategy qe is Symmetric Nash equilibrium if it is a best response to itself, i.e.,

B(qe; qe) = max
h∈[0,1]

B(h; qe). (4)

We next consider the provider. He or she takes into account the strategic behavior of

the customers, by assuming that they follow a symmetric equilibrium joining strategy, as a

response to the announced pricing/compensation policy. We also assume that the provider

is risk neutral. This is a reasonable assumption, since he or she provides the service to a

large number of independent customers, thus his/her risk may be considered diversifiable

and the variance of the profit over a long horizon is diminished. The profit function is

G(d, p, l) = Λqe(d, p, l)(p − lL(qe(l, d, p), d))

which expresses the expected net profit per unit time, given that all customers follow the

equilibrium strategy qe(d, p, l) and L(q, d) = E((X − d)+|q) is the expected excess delay

of a customer beyond the announced lead-time d under symmetric mixed strategy q. By

conditioning on the number of customers in the system at the arrival instant of a random

entering customer, it follows that

L(q, d) =

∞
∑

n=0

(1− ρ)ρn
∫

∞

d

(t− d)
µn+1

n!
tne−µt dt =

e−(µ−Λq)d

µ− Λq
.
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We assume that the provider’s policy space is determined by p ≤ R, l ≤ c and d ≥ 0.

These assumptions are consistent with pricing in a risk averse customer framework. If the

provider considered entrance fees p > R, then he or she should have to also use l > c in

order to entice the customers to join. Under such a policy customers would pay a high

price to join the system, betting on long delays and subsequent high compensations. This

framework is beyond the scope of our analysis.

Regarding the criteria for selecting a policy (d, p, l), we broaden the scope of profit

maximization and consider the provider’s flexibility when the policy space is restricted

by fixing one or more parameters. For each case we examine the range of achievable

input rates, how this range is expanded compared to the policy that does not provide

compensation, the set of policies that result in any given achievable input rate, and finally

the profit maximization problem under the given restrictions in the policy space.

In all the following analysis we will assume that under any customer equilibrium strat-

egy the system is stable, i.e., Λq < µ. Even under policy p = R, l = c, d = 0, when it is

easy to see that all customers are indifferent between joining and balking, it is not plausible

that a q ≥ Λ/µ will ever be realized in equilibrium, since no customer is expected to join

the system under instability.

4 Equilibrium Analysis

In this section we identify the equilibrium strategies under individual customer behavior.

To do this we first analyze a tagged customer’s best response to a strategy followed by

all other customers. Assume that all customers join with probability q and the tagged

customer with probability h.

From (3) the tagged customer’s expected utility can be written as:

B(h; q, d, p, l) = U(0) + hK(q, d, p, l),

where

K(q, d, p, l) = E(U(R − p− cX + l(X − d)+)|q)− U(0).

Under the assumption of symmetric customer strategies, there is a one-to-one cor-

respondence between a strategy q and the resulting input rate λ = Λq. In the fol-

lowing we consider K and B as functions of λ instead of q, and will use the notation

λe(d, p, l) = Λqe(d, p, l) as the equilibrium input rate under (d, p, l).

Before we proceed to equilibrium analysis, we explore some properties of K(λ, d, p, l).

It is first easy to see that K is strictly decreasing in p and d and strictly increasing in l.
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Regarding monotonicity in λ, K can be written as follows:

K(λ, d, p, l) = E(U(R − p− (c− l)X + l((X − d)+ −X))|λ) − U(0)

= E(U(R − p− (c− l)X − lmin(X, d))|λ) − U(0).

In steady state the sojourn time of a customer is exponentially distributed with rate µ−λ.

Therefore, X is stochastically increasing in λ, and since U is decreasing in X, it follows

that K is decreasing in λ. In particular, when c = l and d = 0, K is constant and equal to

U(R− p)− U(0), whereas if l < c or d > 0, K is strictly decreasing in λ.

We next show some useful limiting properties. First, when l = 0 or d → ∞, there

is effectively no delay compensation; therefore, the problem reduces to Chen and Frank

(2004) under a linear waiting cost function, i.e.,

KCF (λ, p, c) = E(U(R − p− cX)|λ) − U(0). (5)

Let λe
CF (p; c) be the corresponding equilibrium input rate. Similarly, when d = 0, cus-

tomers are compensated from the first minute of delay, which reduces the problem to

one with no delay compensation and waiting cost equal to c− l; therefore, K(λ, 0, p, l) =

KCF (λ, p, c − l).

The behavior of K as the input rate approaches µ is more involved. When l < c, the

quantity R − p − (c − l)X − lmin(X, d) can take arbitrarily small values with positive

probability, thus, from (2),

K(λ, d, p, l) < U(E(R − p− (c− l)X − lmin(X, d)|λ)) − U(0).

However, E(R− p− (c− l)X − lmin(X, d)|λ) < R− p− c−l
µ−λ

, thus, from (1),

lim
λ→µ−

K(λ, d, p, l) = −∞. (6)

This limiting behavior of K is expected, since a customer who joins a very congested system

is faced with unbounded delay and if he/she is partially compensated, the net benefit may

take arbitrarily low values. On the other hand, for l = c,

K(λ, d, p, l) = U(E(R − p− cmin(X, d)|λ)) − U(0),

and since limλ→µ− P (X > d) = 1 for all d > 0, it follows that

lim
λ→µ−

K(λ, d, p, l) = U(R − p− cd) − U(0). (7)

In this case, although the delay of a joining customer is unbounded, he/she assumes the

cost only for the first d units of the delay and is fully compensated for the remaining
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part, therefore the expected benefit is finite and may even be positive, depending on the

values of d, p and l. Note that as d → ∞, the compensation is effectively canceled, thus

the right-hand side of (7) also tends to −∞, which is consistent with the limit of (5) as

λ → µ−.

The tagged customer maximizes his/her expected utility B(h;λ, d, p, l) in h given λ.

Therefore, if K(λ, d, p, l) < 0 his/her unique best response to input rate λ is equal to 0, if

K(λ, d, p, l) > 0 the unique best response is equal to 1, and if K(λ, d, p, l) = 0 any strategy

in [0, 1] is a best response. Since K(λ, d, p, l) is decreasing in λ, the best response h∗(λ)

is also decreasing, which implies an Avoid the Crowd (ATC) behavior for customers (c.f.

Hassin and Haviv (2003), p. 6-7). This means that as traffic increases, customers are more

reluctant to join, although they are partially compensated for their delay.

In the next theorem we characterize the existence and uniqueness of symmetric equi-

librium rates under various cases for the values of p, l, d.

Theorem 1. The symmetric equilibrium input rates are characterized as follows.

i. For p = R there are the following cases.

(a) If l = c and d = 0, then any λe ∈ [0, µ) ∩ [0,Λ] is a symmetric equilibrium.

(b) In all other cases, λe = 0 is the unique symmetric equilibrium.

ii. For p < R there are the following cases.

(a) If K(0, d, p, l) ≤ 0, then λe = 0 is the unique symmetric equilibrium.

(b) If K(0, d, p, l) > 0 and limλ→µ−K(λ, d, p, l) < 0, then the unique symmetric

equilibrium is equal to min(λ0,Λ), where λ0 is the solution of K(λ, d, p, l) = 0.

(c) If limλ→µ− K(λ, d, p, l) ≥ 0, for Λ ≥ µ a symmetric equilibrium does not exist,

while for Λ < µ, λe = Λ is the unique symmetric equilibrium.

Proof. i) In case (a), K(λ, 0, R, c) = 0 for all λ < µ, therefore any λe ∈ [0, µ) ∩ [0,Λ] is a

symmetric equilibrium.

In case (b), if l = c and d > 0 then K(λ, d,R, c) = E(U(−cmin(X, d)|λ) − U(0) < 0

for all d > 0 and λ < µ. Therefore λe = 0 is a unique symmetric equilibrium. On the

other hand, if l < c and d ≥ 0, then K(λ, d,R, l) = E(U(−cX + l(X − d)+|λ))−U(0) < 0

for all λ < µ, because (X − d)+ ≤ X and l < c. Therefore λe = 0 is a unique symmetric

equilibrium.

ii) The proof follows immediately from the form of the best response function and the

monotonicity of K(λ, d, p, l) in λ. In particular, in case (b) K is not constant, thus it is

strictly decreasing in λ and the equation K(λ, d, p, l) = 0 has a unique solution λ0.
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From Theorem 1 it follows that when the entrance fee is equal to the service reward,

then no customer will join if the delay compensation is not in full and from the first minute,

i.e., l = c and d = 0. If this is true, then all customers are indifferent and any input rate

that does not lead to instability is equilibrium. When p < R, the equilibrium is unique and

varies from 0 to Λ, depending on the policy parameters, except for case ii (c), where for

Λ ≥ µ a symmetric equilibrium does not exist. In this case all customers have a positive

benefit from joining as long as λ < µ, however for λ ≥ µ the system becomes unstable and

any joining customer has zero probability of receiving the service reward in a finite time.

The next proposition establishes monotonicity properties of λe with respect to the

policy parameters.

Proposition 1. When a unique symmetric equilibrium input rate λe(d, p, l) exists, it has

the following properties:

∂λe

∂p
≤ 0,

∂λe

∂d
≤ 0,

∂λe

∂l
≥ 0.

Proof. We only prove the monotonicity in p and the other two are similar. When a unique

λe exists and K(λe) < 0 (in which case λe = 0) or K(λe) > 0 (in which case λe = Λ), then

∂λe

∂p
= 0, since the inequality is preserved for a small change in p. When K(λe) = 0, then

∂K

∂p
+

∂K

∂λ

∂λe

∂p
= 0.

However in this case, from Theorem 1 ii(b) ∂K
∂λ

< 0. In addition, ∂K
∂p

< 0, thus, ∂λe

∂p
< 0.

5 Load Control, Policy Flexibility and Profit Maximization

In this section we consider the problem from the point of view of the provider. In particular,

we are interested in the degree of flexibility that pricing/delay compensation policies offer

to the provider to control the input rate of customers as well as maximize his/her profits

under various constraints in the policy parameters.

There are several occasions where a provider may be forced to fix some policy parame-

ters for exogenous reasons. For example, the entrance fee p may be fixed due to legislation

or company policy. In this case the compensation is useful as an extension of the pricing

strategy. In other situations, the firm may offer compensation for customers who wait

more than an advertised time period. In such cases, the provider may have flexibility in

adjusting the entrance fee and the compensation rate, but must keep the lead-time quo-

tation at a fixed level. There are also cases where two policy parameters must be set, for

example compensation rate and lead-time quotation, etc.
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In situations such as the above, several questions arise. Assume that the pricing and

compensation policy is restricted in some parameters. A common approach is to identify

the policy that maximizes the provider’s profit under the given constraints, with no regard

to the resulting input rate. Herein we adopt a more general viewpoint. We find the range

of input rates that may be achieved by varying the remaining free policy parameters, assess

the degree of flexibility in achieving any particular input rate and identify the values of the

free parameters that maximize the profit for the given input rate. This approach effectively

views the input rate as an additional parameter controllable by the provider. It may be very

useful in situations where in addition to profits the provider must also consider additional

factors. For example, startup companies that introduce new products or services may need

a pricing strategy that generates a given demand pattern, not necessarily optimal during

the introduction phase. This is usually done for achieving the most appropriate market

penetration rate in the long term, depending on recognition of the company or the brand

name, the intensity of competition, the available resources to ensure the desirable service

levels, etc.

In the rest of the paper we refer to the case where the input rate λ is explicitly considered

part of the provider’s strategy as the load control problem.

Before we proceed, we formalize the notion of achievability of an input rate, either

unconstrained or with some of the policy parameters fixed.

Definition 1. 1. An input rate λ is achievable if there exists a pricing/compensation

policy (d, p, l) under which λ is the unique equilibrium, i.e., λe(d, p, l) = λ.

2. For an entrance fee p, an input rate λ is p-achievable if there exists a pair (d, l), such

that λe(d, p, l) = λ.

3. For a pair (p, l) of entrance fee and cost compensation, λ is (p, l)-achievable if there

exists a lead-time d such that λe(d, p, l) = λ.

The definition of l, d, (d, p) and (d, l)-achievable input rates is similar.

In these definitions it is required that the corresponding policies in each case result

in λ as the unique equilibrium input rate. This is so, because if multiple equilibria exist

under a policy (d, p, l), then there is no way to ensure that a particular of those will occur,

without using additional controls.

In the following subsections we analyze the load control problem and identify the ranges

of achievable input rates, with the provider’s policy flexibility varying from low level, where

two of the policy parameters are fixed, to full flexibility where the provider is free to set

13



all policy parameters as desired. Note that Theorem 1 about equilibrium analysis can be

considered as the other extreme case of no flexibility since, if all parameters are fixed, there

is either a single or no achievable rate.

5.1 Low Policy Flexibility

From the equilibrium analysis in Theorem 1 and the monotonicity properties of function

K(λ, d, p, l) it follows that if two policy parameters, e.g., (p, l), are fixed and λ is (p, l)-

achievable with 0 < λ < Λ, then the third policy parameter d is uniquely determined and it

is such that K(λ, d, p, l) = 0. On the other hand, if Λ is (p, l)-achievable, then it is achieved

by any lead-time d such that K(Λ, d, p, l) ≥ 0. From the monotonicity and continuity of

K in d, this inequality holds for d at or below a maximum value. In both cases we define

the required lead-time de(λ, p, l) = max{d : λe(d, p, l) = λ}, as the value that maximizes

the provider’s profit among all that achieve λ under fixed (p, l).

Similarly we define the required entrance fee pe(λ, d, l) = max{p : λe(d, p, l) = λ} and

the required compensation cost le(λ, d, p) = min{l : λe(d, p, l) = λ}.

In the next theorem we establish the intervals of achievable input rates under pric-

ing/compensation policies with two parameters fixed. Recall that the case d → ∞ is

equivalent to setting l = 0, because in this case the customer will never receive the com-

pensation.

Theorem 2. i. For a pair (p, l) of entrance fee and delay compensation the achievable

range of λ is as follows.

If p = R, then the only achievable input rate is λ = 0.

If p < R and l < c, then an input rate λ is (p, l)-achievable if and only if λe
CF (p; c) ≤

λ ≤ λe
CF (p; c− l).

If p < R and l = c, then an input rate λ is (p, l)-achievable if and only if λ ∈

[λe
CF (p; c), µ) ∩ [λe

CF (p; c),Λ].

ii. For a pair (d, l) of lead-time and delay compensation with d < ∞, the achievable

range of λ is as follows.

If l = c, d = 0, then the only achievable input rate is λ = Λ if Λ < µ, otherwise there

is no achievable input rate.

If l < c or d > 0, then an input rate λ is (d, l)-achievable if and only if 0 ≤ λ ≤
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λmax(d, l), where

λmax(d, l) =



























0, if K(0, d, 0, l) ≤ 0

λ0(d, l) if K(Λ, d, 0, l) < 0 < K(0, d, 0, l)

Λ, if K(Λ, d, 0, l) ≥ 0

and λ0(d, l) is the unique solution of K(λ, d, 0, l) = 0 in λ.

iii. For a pair (d, p) of lead-time and entrance fee with d < ∞, the achievable range of λ

is as follows.

If p = R, then the only achievable input rate is λ = 0.

If p < R, then an input rate λ is (d, p)-achievable if and only if λe
CF (p; c) ≤ λ ≤

λmax(d, p), where

λmax(d, p) =



























0, if K(0, d, p, c) ≤ 0

λ0(d, l) if K(Λ, d, p, c) < 0 < K(0, d, p, c)

Λ, if K(Λ, d, p, c) ≥ 0

and λ0(d, p) is the unique solution of K(λ, d, p, c) = 0 in λ.

Proof. i) If p = R, then from case(i) of Theorem 1, it follows that the only arrival rate

that can be unique equilibrium is λ = 0.

Next consider the case p < R, l < c. Then λ = 0 is achievable if there exists d (including

the limit d → ∞ which corresponds to no compensation), such that K(0, d, p, l) ≤ 0. Since

K(0, d, p, l) is decreasing in d, this is true if and only if limd→∞K(0, d, p, l) ≤ 0, i.e.,

KCF (λ, p, c) ≤ 0 thus, λe
CF (p; c) = 0. Similarly, λ = Λ is achievable if there exists d such

that K(Λ, d, p, l) ≥ 0. This is true if and only if K(Λ, 0, p, l) ≥ 0, i.e., KCF (Λ, p, c− l) ≥ 0

and λe
CF (p; c− l) = Λ.

Finally, a rate λ such that 0 < λ < Λ is achievable if and only if there exists d

such that K(λ, d, p, l) = 0. From the monotonicity of K in d, this is true if and only if

KCF (λ, p, c) ≤ 0 ≤ KCF (λ, p, c− l), i.e., λe
CF (p; c) ≤ λ ≤ λe

CF (p; c− l).

The proof for the case p < R, l = c is entirely similar, with the only difference that for

l = c the equilibrium rate λe
CF (p; c − l) = λe

CF (p; c) does not exist. However in this case

by letting d → 0, all rates below µ and Λ can be achieved.

ii) First assume l = c, d = 0. From Theorem 1 only Λ is achievable, if Λ < µ, by setting

any p < R.

Next consider l < c or d > 0. From Theorem 1(ib), rate λ = 0 is always (d, l)-achievable,

by setting p = R. From Theorem 1(ii), rate λ = Λ is (d, l)-achievable if there exists p < R
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such that K(Λ, d, p, l) ≥ 0. Since K(Λ, d, p, l) is decreasing in p, this is true if and only if

K(Λ, d, 0, l) ≥ 0. Finally, a rate λ in the interval 0 < λ < Λ is a unique equilibrium if and

only if there exists p such that K(λ, d, p, l) = 0. Since K(λ, d, p, l) is decreasing in p and

K(λ, d,R, l) < 0, λ is (d, l)-achievable if and only if K(λ, d, 0, l) ≥ 0.

We have thus found that any λ > 0 is (d, l)-achievable if and only if K(λ, d, 0, l) ≥ 0.

Since K(λ, d, 0, l) is strictly decreasing in λ, it follows that the inequality is true for λ ≤

λmax(d, l) as defined above.

iii) If p = R, then rom Theorem 1(ia) the only achievable input rate is λ = 0.

Next consider p < R. Then, λ = 0 is achievable if there exists l such that K(0, d, p, l) ≤

0, and since K(0, d, p, l) is increasing in l, this is true if and only if K(0, d, p, 0) ≤ 0.

Similarly, λ = Λ is achievable if there exists l such that K(Λ, d, p, l) ≥ 0, i.e., if and only if

K(Λ, d, p, c) ≥ 0. Finally, a rate λ such that 0 < λ < Λ is achievable if there exists l such

that K(λ, d, p, l) = 0, which holds if K(λ, d, p, 0) ≤ 0 ≤ K(λ, d, p, c).

We have thus found that any λ ∈ [0,Λ] is (d, l)-achievable if and only if K(λ, d, p, 0) ≤

0 ≤ K(λ, d, p, c). Since K(λ, d, p, 0) = KCF (λ, p, c), the first inequality is true if and only

if λ ≥ λCF (p; c). The second inequality, since K(λ, d, p, c) is decreasing in λ, holds for

λ ≤ λmax(d, p), where λmax(d, p) is as defined above.

Summarizing the above, we obtain the achievable range λCF (p; c) ≤ λ ≤ λmax(d, p).

5.2 High Policy Flexibility

In this subsection we explore to what extend the provider can control the input rate when

only one policy parameter is fixed and he or she has flexibility on the remaining two

parameters. For any value of the fixed policy parameter, there are generally infinite pairs

of values of the other two parameters which result in a desired achievable input rate. They

can be computed from the equilibrium conditions and have the form of pricing curve. For

example, when the entrance fee p is fixed, the set of (d, l) pairs that result in a given input

rate λ form the corresponding (d, l)-pricing curve. The provider may want to maximize

his/her profit along any such pricing curve.

In the next theorem we establish the intervals of achievable input rates. In the sec-

tion on numerical experiments we derive the form of the pricing curves and consider the

corresponding profit maximization problem, for the case of a negative exponential utility

function.

Theorem 3. i. For a fixed entrance fee p an input rate λ is p-achievable if and only

if: λ ∈ [λCF (p; c), µ) ∩ [λCF (p
′c),Λ].
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ii. For a fixed delay compensation l < c an input rate λ is l-achievable if and only if:

λ ∈ [0,min(λe(0, 0, l),Λ)] ∩ [0, µ). For l = c the achievable input rate interval is

[0,Λ] ∩ [0, µ).

iii. For a fixed lead-time quotation d > 0 an input rate λ is d-achievable if and only if:

λ ∈ [0,min(λe(d, 0, c),Λ)] ∩ [0, µ). For d = 0 the achievable input rate interval is

[0,Λ] ∩ [0, µ).

Proof. The proof is based on identifying the worst and best parameter combination for

customers in each case. Specifically, for a fixed entrance fee p, the worst case for customers

is to receive no compensation, which corresponds to setting l = 0 or letting d → ∞, and

the best case is to be fully compensated from the entire time they spend in the system. For

a fixed compensation rate l, the worst case for customers is to pay an entrance fee equal to

their value of service for a lead-time that tends to infinity. On the other hand the best case

is to receive the service with free entrance and be compensated for the entire time they

spend in the system. Finally, for a fixed lead-time d, the worst scenario for customers is to

pay an entrance fee equal to the service reward and receive a compensation rate arbitrarily

close to zero, and the best scenario is to receive the service with free entrance and be

compensated at full rate l = c.

From Theorem 3 we can also assess the flexibility available to the service provider by

the lead time quotation and compensation policy, compared to single entrance fee pricing.

Specifically, from part (i) of the Theorem it follows that if the entrance fee p is fixed and

no delay compensation is allowed, then the only achievable input rate is λCF (p; c). On

the other hand, when the provider has the additional flexibility of offering a lead time

quotation and delay compensation, then by setting parameters d and l appropriately, he

or she can achieve all higher values of λ, either up to the market size Λ or the stability

limit µ−. Therefore, the enhanced policy allows to increase the input rate to any desirable

level above the base value achievable with a single entrance fee. In addition, any rate

in this interval can be achieved by an infinite collection of parameter values lying on the

corresponding (d, l)-pricing curve.

In Section 6 we explore the behavior of the pricing curves and the corresponding profit

maximization problem under the high flexibility setup.
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5.3 Full Policy Flexibility and Profit Maximization

In this section we focus on the case when the provider has flexibility in all three policy

parameters d, p, l. Combining the results of the previous two cases it follows that the

provider can induce any value of λ, i.e., the region of achievable input rates is [0, µ)∩ [0,Λ].

In this subsection we also analyze the provider’s profit maximization problem under full

flexibility. The main result is that the possibility of delay compensation allows the provider

to regain essentially the entire loss in profits due to customer risk aversion. However due

to the properties of the customer equilibrium strategies there is no strictly optimal policy;

instead, there are policies that achieve profit arbitrarily close to the optimal level under

risk-neutral customers.

The provider’s profit function can be expressed in several equivalent forms. To do this

we start with a general expression. Let:

G1(λ, d, p, l) = λ

(

p− l
e−(µ−λ)d

µ− λ

)

, (8)

denote the provider’s profit under policy (d, p, l) and input rate λ, not necessarily in equi-

librium. Assuming that the customers respond strategically to policy (d, p, l) the provider’s

actual profit function is equal to:

G(d, p, l) = G1(λ
e(d, p, l), d, p, l) = λe(d, p, l) (p− lLe(d, p, l)) , (9)

Le(d, p, l) = E ((X − d)+|λe(d, p, l)) is the expected lateness in steady state under the

equilibrium input rate λe(d, p, l).

As discussed in the beginning of this section, if the equilibrium input rate is not unique

under a policy (d, p, l), then the provider cannot enforce any particular value. Therefore,

in order for the profit maximization problem to be well defined, we restrict the pricing

policies to those that result in achievable input rates.

Using the notion of achievable input rates, we can also express profit maximization as

a two stage optimization problem where in the second stage the provider determines the

pricing/compensation policy that achieves any achievable input rate with the maximum

possible profit and in the first stage determines the optimal achievable input rate, i.e.,

G∗ = sup
d,p,l

G(d, p, l) = sup
λ

H(λ) (10)

where,

H(λ) = sup
d,p,l

{G(d, p, l) : λe(d, p, l) = λ}.
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An input rate λ is achievable if and only if it is (p, l)-achievable for at least one pair

(p, l). Therefore, H(λ) can be expressed as

H(λ) = sup
p,l

G1(λ, d
e(λ, p, l), p, l), (11)

since de(λ, p, l) is the lead-time that maximizes profits among those that achieve λ under

(p, l).

Note that we could equivalently take the supremum with respect to (d, p) or (d, l) and

use the required compensation le or entrance fee pe, respectively.

We will show below that in general the supremum in the above expressions cannot be

attained. The reason is that for any achievable λ, by using a pricing/compensation policy

(d, p, l) that approaches (0, R, c) the profit inreases. However, the policy (0, R, c) itself does

not correspond to any achievable λ, since under it all λ are equilibrium and the provider

cannot enforce any of them without further actions. We formalize these arguments in

Propositions 2 and 3 and Theorem 4.

Proposition 2. For any utility function U that satisfies Assumption 1, the provider’s

profit is bounded above by

G1(λ, d
e(λ, p, l), p, l) < λ

(

R−
c

µ− λ

)

,

for all λ > 0 and (p, l) such that λ is (p, l)-achievable.

Proof. If λ < Λ, then the equilibrium condition is K(λ, d, p, l) = 0, while for λ = Λ,

K(Λ, d, p, l) ≥ 0. In both cases

U(0) ≤ E(U(R − p− cX + l(X − de(λ, p, l))+)).

However, since λ > 0 and (p, l)-achievable, it follows from Theorem 1 that l < c or

de(λ, p, l)) > 0. In addition, X is exponentially distributed, thus it can take arbitrarily

large values with positive probability. Therefore, from Assumption 1 :

P (R− p− cX + l(X − de(λ, p, l))+ < z′) > 0,

and from (2) it follows that

E(U(R − p− cX + l(X − de(λ, p, l))+)) < U(E(R − p− cX + l(X − de(λ, p, l))+)).

Combining the last two inequalities we obtain

U(0) < U(R− p−
c

µ− λ
+ lL(λ, de(λ, p, l)))
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and, since U is increasing:

0 < R− p−
c

µ− λ
+ lL(λ, de(λ, p, l)).

from which part (i) follows.

We next show that H(λ) = λ
(

R− c
µ−λ

)

but the supremum in (11) is not attained.

Proposition 3. For any λ ∈ (0, µ) ∩ (0,Λ],

i. H(λ) = λ
(

R− c
µ−λ

)

.

ii. There is no (p, l) such that λ is (p, l)-achievable and G1(λ, d
e(λ, p, l), p, l) = H(λ).

Proof. i) Fix a λ ∈ (0, µ) ∩ (0,Λ]. From Proposition 2 it follows that

H(λ) = sup
p,l

G1(λ, d
e(λ, p, l), p, l) ≤ λ

(

R−
c

µ− λ

)

.

For the above to hold as equality, it must also be true that for any ǫ > 0 there exist

p, l such that λ is (p, l)-achievable and

G1(λ, d
e(λ, p, l), p, l) > λ

(

R−
c

µ− λ

)

− ǫ. (12)

To prove this, we will show that a pair (p, l) of the form p = R − δ, l = c, for δ > 0

sufficiently small can achieve both requirements.

We first show that there exists δ̃ > 0, such that λ is (R−δ, c)-achievable for δ < δ̃1. From

Theorem 2 we know that for p < R and l = c, λ is achievable if and only if λe
CF (p; c) ≤ λ.

Furthermore, λe
CF (R; c) = 0, since no customer will join if the entrance fee is equal to R

and there is no waiting cost compensation. Thus, there exists a δ̃ > 0 such that for any

δ < δ̃ : λe
CF (R− δ; c) ≤ λ.

We next prove (12). For any δ < δ̃, the required lead-time de(λ,R − δ, c) is uniquely

defined. In addition, the provider’s profit can be expressed as

G1(λ, d
e(λ,R − δ, c), R − δ, c) = λ

(

R− δ − c
e−(µ−λ)de(λ,R−δ,c)

µ− λ

)

= λ

(

R−
c

µ− λ

)

− h(λ, δ),

where

h(λ, δ) = λ

(

δ − c
1− e−(µ−λ)de(λ,R−δ,c)

µ− λ

)

.

Therefore, to prove (12), it suffices to show that limδ→0 h(λ, δ) = 0, or equivalently that

limδ→0 d
e(λ,R − δ, c) = 0. To show the last property, note that since de(λ,R − δ, c) is
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increasing in δ, this limit exists, and is generally equal to some d′ ≥ 0. Assume that

d′ > 0. Then, de(λ,R − δ, c) ≥ d′ for all δ > 0. On the other hand, by definition of de it

is true that λe(de(λ,R − δ, c), R − δ, c) = λ for all δ < δ̃. Since λe is decreasing in d, it

follows that λe(d′, R − δ, c) ≥ λ for all δ < δ̃, therefore, limδ→0 λ
e(d′, R − δ, c) ≥ λ, which

is a contradiction, because from Theorem 1 it follows that limδ→0 λ
e(d′, R− δ, c) = 0.

ii) From Proposition 2 it follows that G1(λ, d
e(λ, p, l), p, l) < λ

(

R− c
µ−λ

)

for any

p < R, l < c. Therefore, the supremum cannot be attained for any p, l such that λ is

(p, l)-achievable.

The quantity λ
(

R− c
µ−λ

)

is equal to the social benefit per unit time under risk neutral

customers. It is well known (Edelson and Hilderbrand, 1975) that under risk neutrality the

provider’s profit maximization problem coincides with that of social benefit maximization,

i.e., the service provider sets a price that induces the socially optimal input rate and, by

doing that, reaps the entire social benefit. A significant consequence of Propositions 2 and

3 is that even when customers are risk averse the provider can induce any input rate he

prefers with a profit arbitrarily close to the social benefit under that rate. Therefore, by

exploiting the lead-time/delay compensation option, he or she can regain essentially all

the lost profit and thus revert the effects of customer risk aversion.

Propositions 2 and 3 solved the second stage optimization problem in (11). Returning

to the first stage problem in (10), we observe that H(λ) is maximized for λ = λ∗ =

min(µ −
√

cµ
R
,Λ), as is also well known from the standard unobservable problem. Thus,

the supremum in (10) is attained by λ∗, and G∗ = H(λ∗).

Although λ∗ is the optimal input rate that the provider must induce to maximize H(λ),

as we have seen it is not possible to attain the profit H(λ∗) by any (d, p, l) policy. However

it is possible to construct ǫ-optimal policies, which approach H(λ∗) arbitrarily close, and

from the proof of Proposition 3 it follows that one way to do that is to offer full delay

compensation and set an entrance fee lowe but sufficiently close to the service reward R.

For any p set, the required lead-time that will induce λ∗ is equal to de(λ∗, p, c).

All the above is summarized in Theorem (4) below.

Theorem 4. i G∗ = sup
d,p,l

G(d, p, l) = max
λ∈(0,µ)

H(λ) = H(λ∗), where λ∗ = min(µ −

√

cµ
R
,Λ).

ii There is no optimal solution for the provider, i.e., the sup is not attained under any

policy (d, p, l). However there exist ǫ-optimal policies, i.e., for any ǫ > 0 there exists
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δ > 0 such that:

G (de(λ∗, R − δ, c), R − δ, c)) > G∗ − ǫ.

6 Numerical Results

In this section we perform computational experiments to obtain further insights on the

behavior of the pricing curves and the provider’s optimal profit under one fixed policy

parameter, as well as on the effect of customer risk aversion. For the computations we use

U(X) =
1− e−rX

r
,

with r > 0, which is a utility function in the class of Constant Absolute Risk Aversion

(CARA), with absolute risk aversion equal to r. Note that U is decreasing in r for all

x, and as r diminishes to zero the utility function converges to the risk neutral form

U(X) = X.

For this utility function the range of achievable input rates without any compensation

is 0 ≤ λ ≤ λCF,max = min(λe
CF (0; c),Λ), and λe

CF (0; c) = µ − rc
1−e−rR . In general when

a compensation policy is used, the corresponding range increases, and one of the goals in

the numerical analysis is to compare achievable ranges with and without compensation.

In the following we refer to input rates that are below λCF,max and thus can be achieved

without compensation as low, and to rates above λCF,max, which can be achieved only

when appropriate compensation is offered, as high.

In the following computational experiments we use a base case of parameter values

R = 15, c = 8, µ = 12, r = 0.5, p = 10, l = 4.5, p = 10, d = 0.5 and in each case let one

or more of the parameters to vary. Since the market size Λ only affects the results by

restricting the achievable ranges, we assume Λ > µ. Under these values the maximum

achievable rate without compensation is equal to λCF,max = 7.99 and the optimal rate

under risk neutrality is equal to λ∗ = 9.47.

In the first set of computational experiments we consider the load-control problem when

one policy parameter is kept fixed at a time. For each case we derive the corresponding

pricing curves and allowed intervals for the remaining two free parameters under various

values of λ.

Figure 1 refers to the case when the entrance fee is fixed at p = 10. The left graph

shows the (d, l)-pricing curves under various achievable input rates. On each curve the

profit maximizing pair is indicated by the cross symbol. The right graph shows the range

of compensation rates l within which an input rate λ is achievable. The profit maximizing
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Figure 1: p fixed

value is at the highest value of the range.

We first observe that under no compensation the only achievable input rate is λe
CF (p; c) =

7.64, whereas when a compensation policy is used the achievable range is expanded to the

interval [7.64, 12). Values lower than λe
CF (p; c) are not achievable, since the compensation

policy can only increase the input rate.

Moreover, the pricing curves are increasing as expected, since when the lead-time is

increased the provider must also increase the compensation in order to keep the input rate

constant. Similarly, when l is fixed, the required lead-time is decreasing as the desired

input rate increases.

Finally, on each pricing curve the profit maximizing pair corresponds to the highest

value of the compensation rate, i.e., l = c. Recall from Theorem 4 that when the provider

is completely flexible in setting the policy parameters, he or she prefers to set the entrance

fee very close to R and fully compensate all customer delay for any desired value of λ. Here

we see that when the entrance fee is kept fixed at a value below R, then the provider prefers

a policy that fully compensates all excess delay above an appropriate positive lead-time,

rather than partially compensating the delay from the first minute.

Figure 2 refers to the case when the compensation rate is fixed at l = 4.5. The left

graph shows the (p, d)-pricing curves for various values of λ. The right graph shows the

range of entrance fees within which each input rate is achievable. For λ < λCF,max, the

lowest value of the range corresponds to the price pCF (λ; c) that results in input rate λ

under no compensation. The highest value corresponds to the profit maximizing price.

For the given value of l the achievable range of input rates from Theorem 3 is the interval
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Figure 2: l fixed

[0, 10.24], compared to the interval [0, 7.99] under no compensation.

In this case the pricing curves are decreasing for each value of λ, i.e., the provider must

set a lower entrance fee as the lead-time for compensation is increased. Furthermore, for

low values of the input rate λ < λCF,max the provider may choose effectively not to offer

compensation by setting d to an arbitrarily high value and still set a positive value of p.

On the other hand, if the desired input rate is high, not offering compensation is not an

option, since the entrance fee becomes zero for a finite value of d.

On each pricing curve the profit maximizing pair corresponds to d = 0 and the highest

possible value of the entrance fee. This implies that for any desired input rate, the provider

prefers to compensate at the given rate l from the first minute of delay and be able to set

a high entrance fee rather than lower the fee and increase the lead-time.

Figure 3 refers to the case when the lead-time is fixed at d = 0.5. The left graph shows

the (p, l)-pricing curves under various achievable input rates. The right graph shows the

range of entrance fees within which each input rate is achievable. As in the previous case,

for λ < λCF,max, the lowest value of the range corresponds to the price pCF (λ; c) that

results in input rate λ under no compensation. Again, the highest value corresponds to

the profit maximizing price. For the given value of d the achievable range of input rates

from Theorem 3 is the interval [0, 12), which is extended compared to the interval [0, 7.99]

under no compensation.

Additionally, the pricing curves are increasing for each value of λ, i.e., the provider can

set a higher entrance fee as the compensation rate is increased. Also, for low values of the

input rate λ < λCF,max the provider has the option to offer no compensation by setting a
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Figure 3: d fixed

minimum positive value of p. However, if the desired input rate is high, he or she always

has to offer a positive compensation even if he or she offers a zero entrance fee.

Finally, on each pricing curve the profit maximizing pair corresponds to l = c and the

highest possible value of the entrance fee. This implies that for any desired input rate, the

provider prefers to fully compensate all excess delay above a given lead-time and be able

to set a high entrance fee rather than lower the fee and decrease the compensation rate.

Furthermore, the optimal entrance fee p is decreasing in λ, in contrast to the case where

all parameters are flexible and the optimal entrance fee is essentially equal to the service

reward R.

A question that has not been addressed so far is related to the actual profit that the

provider may achieve and in particular to what extent the compensation policy may help

recover the profit reduction due to customer risk aversion. Figure 4 presents the optimal

profit as a function of the input rate under no compensation, under full policy flexibility,

and under each of the above three cases with one parameter fixed. Several interesting

insights can be derived from these graphs. The lowest curve (CF) corresponds to the

optimal profit under no delay compensation, and the highest curve (H) to the optimal

profit H(λ) that that can be achieved under customer risk neutrality and, as we saw in the

previous section, can be approached arbitrarily close when the provider has full flexibility

on policy parameters. The peak values of these two curves differ by approximately 30%,

which shows that under this value of the risk parameter r the effect of risk aversion on the

profitability is significant.

The three intermediate profit curves show that by using a compensation policy the
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Figure 4: Optimal profit function

provider can recover a substantial part of this profit loss in general. For the given set of

parameter values, we observe that keeping the lead-time d fixed and having flexibility on

p, l is the most beneficial case, both in terms of the range of λ that can be achieved and in

terms of the profit function. Note that the value of d = 0.5 that has been used is relatively

very high, since it corresponds to six times the mean service time. This shows that even by

offering a low-impact compensation policy, under which customers are rarely compensated,

the provider can significantly improve his/her profit and approach the risk-neutral curve

closely.

This discussion confirms the observations reached in the three separate cases of fixed

parameters above, namely, that the most instrumental feature of the compensation policy

is that it allows the provider to offer the risk-averse customers a hedge against high delays

and at the same time increase the entrance fee close to the levels that are optimal under

risk-neutrality. This was shown analytically in Section 5.3 under full policy flexibility, and

it still holds when the policy is constrained in some way. Although the discussion here

refers to a fixed value of r, the insights seem to be robust under several other parameter

combinations.

Returning to Section 5.3, it was shown that under full policy flexibility, the optimal

profit function can be approached by providing full compensation from the first minute

and setting the entrance fee arbitrarily close to the service reward R. From the discussion

above it follows that this is not the only possibility. In fact, an alternative approach for

the provider may be to offer full compensation with a relatively high lead-time, and set

the entrance fee at the more modest level of the maximizing price under no compensation.

In the second set of computational experiments we focus on the effect of the degree of

risk aversion on the range of achievable input rates and the corresponding policy curves.
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Figure 5: Risk aversion variation

For clarity of the exposition we consider the cases of two fixed policy parameters. For each

case, Figure 5 shows how the third policy parameter varies as a function of r for various

values of λ.

A first observation from these graphs is that when the free policy parameter is d or p,

it is decreasing in r for any value of λ, while when l is the free parameter it is increasing in

r. These are all intuitive, since increasing r corresponds to higher risk aversion and thus

the provider must move to a more customer beneficial direction in order to keep the same

input rate. Furthermore, in the first two cases, as r increases, higher values of the input

rate gradually stop being achievable. On the other hand, when l is flexible, high values of

λ are always achievable by setting the compensation rate closer to c. The resulting policy

guideline is that if high input rates are desirable under high risk aversion and the policy

parameters are constrained, then the relaxation must be towards a higher compensation

rate for excess delay rather than a lower entrance fee or a lower lead-time.
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7 Conclusions and Extensions

In this paper we develop customer equilibrium strategies and profit maximizing policies

for an unobservable make-to-order/service production system with risk averse customers,

where the service provider, in addition to the entrance fee, sets a common lead-time and

linear compensation for the excess delay above the lead-time quote. The risk aversion

is modeled by a concave utility function of the customer net benefit. We analyze the

effect of customer risk aversion and the compensation policy on the equilibrium strategies

and explore the provider’s flexibility regarding the achievable input rates under various

constraints on the pricing/compensation policy. We prove that when the provider has full

flexibility in the pricing/compensation policy, he or she can mitigate the adverse effects of

risk aversion almost entirely, by employing a policy that compensates fully for the excess

delay and sets the entrance fee close to the customer service benefit. However in this

case there is no strictly optimal policy. In numerical experiments we construct pricing

curves which show the provider’s flexibility in inducing specific input rates, as well as the

sensitivity of the provider’s policies in the degree of risk aversion.

This work could be extended in several ways. A natural extension is to consider the

observable system, where customers are informed about the system congestion before mak-

ing their decision and the provider may employ state-dependent quotation policies. This

work is currently under progress. In other directions, one may consider the case of a

make-to-order system where a physical component is required to complete the service of a

customer, and examine the interaction between pricing/compensation and stocking poli-

cies. Finally, it would be interesting to develop a competitive model with more than one

providers offering the same service and explore how the equilibrium pricing/compensation

policies differ from those formed under a single entrance free case, as well as to what extent

the compensation mechanism now helps alleviate the risk aversion effects.
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