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Minimal Radius Enclosing Polyellipsoids
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Abstract. In this paper we analyze the extension of the classical smallest enclosing disk
problem to the case of the location of a polyellipsoid to fully cover a set of demand points
in Rd. We prove that the problem is polynomially solvable in fixed dimension and analyze

mathematical programming formulations for it. We also consider some geometric approaches
for the problem in case the foci of the polyellipsoids are known. Extensions of the classical
algorithm by Elzinga-Hearn are also derived for this new problem. Moreover, we address
several extensions of the problem, as the case where the foci of the enclosing polyellipsoid are
not given and have to be determined among a potential set of points or the induced covering
problems when instead of polyellipsoids, one uses ordered median polyellipsoids. For these
problems we also present Mixed Integer (Non) Linear Programming strategies that lead to
efficient ways to solve it.

This article is dedicated to Prof. Marco A. López on the occasion of his 70th birthday.

1. Introduction

Given a sets of demand points in a given finite dimensional normed space Rd, Continuous
Facility Location Problems (CFLP) deal with the determination of the optimal placement of
some new points in order to minimize certain measure of the distances from the given to the
new points. The most popular CFLP is the Weber Problem [35] in which a single facility is to
be located minimizing the overall (weighted) sum of the Euclidean distances from the demand
points to the facility. A common approach to solve the Weber Problem is via the Weiszfeld
algorithm [36]. The extension to multiple facilities may either consider that the overall sum
from the demand points to all facilities (multiple-allocation case) or to its closest facility (single-
allocation case) has to be minimized. Different aggregation measures, apart from the overall
sum, have been also proposed to find optimal facilities for CFLP (see e.g., [3]).

The level curves of the sum of Euclidean distances to given points on the plane (the Eu-
clidean planar Weber level curve), in case the (n) demand points (also known as foci within
this framework) are not collinear, are called in the literature polyellipses, n-ellipses or multifocal
ellipses. The regions bounded by those curves are known to be convex bodies and can be also
defined in higher dimensional spaces and with different norm measures, inducing the notion of
polyellipsoids. Several authors have been interested in the analysis of these convex bodies, from
Maxwell [22] to Erd̈os and Vincze [17], mainly from an algebraic or geometric point of view
(see [27]). In particular, the problem whether all the convex plane curves can be arbitrarily
approximated by polyellipses under a sufficiently large number of points (also known as foci)
was posed by Weiszfeld. In this sense, the Erdös-Vincze’s theorem states that regular triangles
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cannot be presented as the Hausdorff limit of polyellipses even if the number of the foci can be
arbitrary large. Recently, in [32], the authors extend the analysis for regular polygons in the
plane. However, these sets (polyellipsoids) have only been partially analyzed under optimization
lens beyond their connections with the Weber problem (see, e.g. [24]).

On the other hand, Covering Location Problems consist of locating facilities to satisfy the
demand of a set of customers whenever they are only allowed to be served within certain coverage
areas. In the continuous case there are two main families of problems in this field: Full Covering
Location problems (FCP) and Maximal Covering Location problems (MCP). In the former all
the demands points have to be covered and the goal is to minimize the set up costs, which
may consists of the cost of opening a facility and/or the cost of enlarging the coverage area
of the facilities to reach the demand points (see [2, 28]). In the latter (MCP), the goal is to
locate the facilities such that the (weighted) number of points minus the facilities set-up costs
is maximized. Both problems have been analyzed in the literature, mainly on the plane. If the
number of facilities to open p is given and the regions are defined as distance-based balls, the FCP
is also called the continuous p-center problem or the minimum volume enclosing sphere, since the
problem can be interpreted as the one of locating p facilities in the space, such that the maximum
distance from the demand points to its closest facility (center) is minimized. The particular case
in which a single facility is to be located and the distance measure is the Euclidean, Elzinga and
Hearn provided one of the most popular algorithms in continuous location for this problem [16].
More recently, linear time algorithms have been proposed for the weighted minimum sphere
enclosing problems ([13] and [23]). Also, the problem of finding the minimum volume enclosing
ellipsoid in fixed dimension is known to be solved in linear time [14]. On the other hand, for the
FCP in case of locating a single circle-shaped facility on the plane there is always an optimal
solution of the problem whose position lies either in the intersection of certain circles centered at
the demand points, or at the demand points, the so-called circle intersection points (CIP) [8, 11].
This property allows one to transform the original continuous problem into a discrete covering
location problem. The multifacility case is addressed in [10], proving the same CIP property, for
both the Euclidean and the ℓ1-norm distance measures. In [1] and [6] the case of locating elliptical
regions in the plane is studied, by means of Mixed Integer Non Linear Programming formulations
and heuristic approaches. Apart from that, as far as we know, there are no further advances on
the topic. In particular, the definition and use of weighted d-dimensional polyellipsoids to fully
cover a set of demand points have not been previously considered.

In this paper, we extend the classical smallest enclosing disk problem (also known as minimax
facility location problem) to the case in which instead of spheres or ellipsoids, polyellipsoids
(higher dimensional polyellipses) are to be located. Since polyellipses with a single focus coincide
with disks, our approach naturally extends the classical problems.

Turning to the applications of these models, it is natural to think about locating several alarm
sirens or facilities (which play the role of the foci) from where some emergency services should
be dispatched. In these situations the service quality decreases with distance, so the closer the
better. Therefore, the problem can be seen as to adequately locate a set of facilities whose
relative positions are given and determine the minimum coverage distance for which the demand
of all customers is satisfied. Note that the coverage area in this problem is defined as the region
for which the sum of the distances from a customer to all the foci is less than or equal to the
given threshold. In Figure 1-right we draw a situation in which the demand of a set of customers
(◦) has to be covered by nine facilities (N). The minimum radius coverage region is limited by
the drawn polyellipse. As opposed to the case where the coverage has to be done with respect
to a single focus (circle) which is shown in Figure 1-left. Another field of applications, different
from Location Analysis, comes from Data Analysis and outliers detection. Minimum enclosing
balls allow one to determine possible outliers in a dataset, looking at the points that do not
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Figure 1. Minimum radius circle (left) and 9-ellipse (right) enclosing a set of
demand points.

fall inside the ball. However, many clouds of points do not fit well to a sphere but to a more
complex shape. Thus, polyellipsoids with an adequate set of foci allow one a more appropriate
fitting and a better outlier detection tool. A more sophisticated tool to detect outliers (and
also for one-class classification) that is becoming popular in Data Science is Support Vector
Data Description (SVDD) [31]. In SVDD, outlier observations are detected by enclosing part of
the points inside a Euclidean ball, after introducing misclassifying errors and transforming the
points into a higher dimensional space using kernels. Our methodology could be adapted to this
framework determining outliers observations for non-spherical data, avoiding the use of kernel
transformations.

The paper is organized in seven sections. In Section 2 we introduce the framework of the
paper, recall the definitions and some preliminary results of polyellipsoids and formulate the
problem of determining the optimal position of a given set of foci such that a set of demands
points is fully covered by the polyellipse with minimum radius. We also derive a polynomial-time
complexity result for the problem. In Section 3 we describe several solution approaches for the
problems, based either on dualization of the problem or in decomposition approaches inspired
on the Elzinga-Hearn algorithm for the Euclidean 1-center problem. Section 4 is devoted to
report the results of an extensive computational experience which shows the efficiency of our
decomposition approach. We analyze in Section 5 the very particular case in which the demand
points are one-dimensional and derive a linear time algorithm (in the number of foci) for the
minimal enclosing one-dimensional polyellipsoid. In Section 6 we show two possible extensions for
the problem. First we study the problem of selecting the foci from a potential set of candidates
when they are not “a priori” given. Second, we present some results generalizing the notion of
polyellipsoid, and the problem under analysis, to the ordered median framework. Finally, we
draw some conclusions and point out some further research topics in Section 7.

2. Minimal enclosing polyellipsoids with given foci

In this section we introduce the notation and concepts to be used for the rest of the paper.
We recall the definition of polyellipsoid and derive some of its useful properties. We also analyze
the problem of locating a polyellipsoid with given relative positions of the foci (but unknown
radius and position) to minimally cover a given set of demand points.

We are given a finite set of points U = {u1, . . . , uk} in Rd and weights ω ∈ Rk
+, and a distance

measure induced by a norm ‖ · ‖. Without loss of generality, we assume that
∑

u∈U ωu = 1. The

minisum or Weber location problem consists of finding the placement of a facility x ∈ Rd that
minimizes the ω-weighted distances from x to the points in U , i.e., the function:

ΦU ,ω(x) =
∑

u∈U

ωu‖u− x‖, x ∈ Rd.
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If the points in U are not collinear and the norm is strictly convex, ΦU ,ω is strictly convex, and
therefore has a unique minimum. The levels curves of ΦU ,ω, for r ≥ 0, are given by the following
regions:

EU ,ω(r) =
{

x ∈ Rd :
∑

u∈U

ωu‖u− x‖ = r
}

.

The set EU ,ω(r) is called a (weighted) polyellipsoid with foci U , weights ω, and radius r. Equal-
weights Euclidean polyellipsoids on the plane are called polyellipses. Polyellipses were introduced
for the first time by Tschirnhaus in 1686. In case the number of foci is exactly one, polyellipses
coincide with circles, and for two foci, one obtains standard ellipses. In Figure 2 we draw some
planar polyellipses with five foci (N) and different radii.

Figure 2. Polyellipses with five foci and different radii.

Let us denote by PU ,ω(r) the region bounded by the polyellipsoid EU ,ω(r), i.e.,

PU ,ω(r) =
{

x ∈ Rd :
∑

u∈U

ωu‖x− u‖ ≤ r
}

.

Abusing of notation, we will also call the sets PU ,ω(r) polyellipsoids.
In the following we recall some known properties of the regions PU ,ω(r):

Proposition 1. Let U = {u1, . . . , uk} ⊆ Rd, ω ∈ Rk
+ with

∑

u∈U ωu = 1 and r ≥ 0. Then:

(1) PU ,ω(r) is a closed, bounded and convex set.

(2) If x∗ ∈ arg min
x∈Rd

∑

u∈U

ωu‖u− x‖ and r∗ =
∑

u∈U ωu‖u− x∗‖:

(a) x∗ ∈ PU ,ω(r
∗). If ‖·‖ is strictly convex and U are not collinear then PU ,ω(r

∗) = {x∗}.
(b) PU ,ω(r) = ∅ for all r < r∗.
(c) If PU ,ω(r) = {x̄} for some r > 0 and x̄ ∈ Rd, then r = r∗ and x̄ = x∗.
(d) x∗ ∈ PU ,ω(r) for all r ≥ r∗.

(3) If d = 2 and ‖ · ‖ is the Euclidean norm. Then, PU ,ω(r) can be represented as the

set of solutions of a polynomial equation with degree 2k (if k is odd) or 2k -
(

k
k
2

)

(if

k is even) which can be expressed as the determinant of a symmetric matrix of linear
polynomials [27].

(4) PU ,ω(r) is contained in the ring with center at x∗ and radii
r − r∗

∑

u∈U ωu

and
r + r∗

∑

u∈U ωu

The point x∗ of the above result is known as the center of the polyellipsoid PU ,ω(r
∗) and it can

be efficiently computed with classical location analysis algorithms as the hyperbolic modification
of Weiszfeld algorithm [36].

Although the above result gives us information about the complexity of determining the points
which belong to a given polyellipsoid in terms of the number of foci, if the considered norm is
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a ℓp-norm with p ∈ Q, p ≥ 1, these convex bodies are not only convex sets, but Second Order
Cone (SOC) representable sets (see e.g.[4]). The main implications of such a representation is
that optimization problems with linear constraints and SOC-representable feasible sets can be
efficiently solved via interior point methods [25] available in most common optimization solvers.

2.1. The Minimum Radius Enclosing Pollyellipsoid Problem with Given Foci. Given
a finite set of demand points, A = {a1, . . . , an} ⊆ Rd, the goal of the Minimum Radius Enclosing
Pollyellipsoid Problem with Given Foci (MEP, for short) is to determine the placement and
the minimum radius of the polyellipsoid with foci U = {u1, . . . , uk} and weights ω ∈ Rk

+ with
∑k

j=1 ωj = 1, such that the points in A are fully covered. In other word, the optimal location of
the polyellipsoid such that the largest sum of the weighted distances from a the demand point to
all the translated foci is minimized. This problem naturally extends the widely studied 1-center
problem in case a single focus is considered.

Observe that the demand point a ∈ A belongs to the x-translation, for some x ∈ Rd, of
a polyellipsoid PU ,ω(r) if a ∈ Px+U ,ω(r), where x + U = {x + u : u ∈ U}, i.e., if ϕUa(x) :=
∑

u∈U ωu‖a− u− x‖ ≤ r.
Thus, the problem can be formulated as:

min
x∈Rd

max
a∈A

ϕUa(x). (MEP)

Note that if x∗ is an optimal solution of the above problem, it induces a polyellipsoid with foci
U∗ = {u + x∗ : u ∈ U}, weights ω, and radius r∗ = maxa∈A ϕUa(x). Thus, x∗ represents the
optimal translation of the foci in U to minimally cover the points in A, with respect to the
weighted ω-sum of the functions ϕUa(x), ∀a ∈ A. Observe also, that, as usual in minimax
problems, one can reformulate the problem by introducing the auxiliary variable r (representing
the minimum radius) as follows:

min
x∈Rd,r∈R+

r

s.t.
∑

u∈U

ωu‖a− u− x‖ ≤ r, ∀a ∈ A.

It easily follows that the problem above can be formulated as the minimization of a linear
objective function subject only to linear or norm-type constraints:

min r

s.t.
∑

u∈U

ωudua ≤ r, ∀a ∈ A,

‖a− u− x‖ ≤ dua, ∀u ∈ U , a ∈ A, (MEP1)

x ∈ Rd, r ∈ R,

dua ∈ R|U|×|A|, ∀u ∈ U , a ∈ A.

By the comments above, for ℓp-norms, the nonlinear constraints in (MEP1) can be rewritten as
a set of SOC constraints. The case in which the norm is a block norm is even simpler since the
constraints can be written as linear constraints. Thus, in the two cases the problem is solvable
by interior point algorithms using any of the available optimization solvers.

Note also that finding a feasible solution, (x, r), to (MEP1) is equivalent to find a point x in
the intersection of the n polyellipsoids Pa1+U ,ω(r), . . . ,Pan+U ,ω(r), since such a solution, (x, r)
must verify all the polyellipsoid constraints in (MEP1). In Figure 3 (left) we show a toy example
with three demand points (stars) to be covered by a (Euclidean) polyellipse with three foci. If
we fix a radius and center the polyellipse at each of the demand points we obtain the three
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gray polyellipses in the picture. The point x∗ belongs to the intersection of those polyellipses
and centering the polyellipse at that point, the polyellipse (dashed line) covers all the demand
points (in this case being clearly a non optimal solution). In the right picture we draw the same
situation but with the optimal radius of the polyellipse.

a1

a2a3

x∗

x∗ + u1

x∗ + u2

x∗ + u3

a1

a2a3

x∗

x∗ + u1

x∗ + u2

x∗ + u3

Figure 3. Equivalence on the intersection of the polyellipses centered at the
demand points and a feasible covering polyellipse.

The following result allows us to decompose (MEP) into smaller problems:

Theorem 1. Let r∗ be the solution of (MEP). Then, r∗ = min
S⊂A:

|S|=d+1

r∗S, where r∗S is the optimal

solution of the following problem:

r∗S := min r (MEPS)

s.t.
∑

u∈U

ωudua ≤ r, ∀a ∈ S,

‖a− u− x‖ ≤ dua, ∀u ∈ U , a ∈ S,

x ∈ Rd, r ∈ R,

dua ∈ R|U|×|A|, ∀u ∈ U , a ∈ S.

for all S ⊆ A with |S| = d+ 1.

Proof. The proof follows by a standard application of Helly’s theorem on the intersection of
convex bodies [21]. The optimal solution of (MEP) reduces to finding the smallest r among the
solutions of the above collection of subproblems for all the subsets S ⊂ A with |S| = d+ 1 �

This reformulation of the problem will be used both to derive a polynomial-time complexity
for the problem and also to develop an Elzinga-Hearn based solution approach.

2.2. On the complexity of (MEP). In what follows we prove a polynomiality result for the
minimum enclosing polyellisoid with a fixed number k of given foci problem in fixed dimension d.
As usual in computational geometry, the model of computation is that of algebraic computations
and comparisons over the reals. The reader is referred to the papers by Renegar [30] and Dyer[14]
for further details on the underlying results and the algorithms on which we base our construction.

The main tool to be applied is the linear time algorithm of Dyer for a special class of convex
program with few nonlinear constraints. We will prove that an iterative use of that algorithm
implies the polynomial-time complexity of the (MEP). Observe that the reformulation of (MEP)
as (MEP1) has a number of nonlinear constraints that are essentially equivalent to polynomials.
However, even assuming fixed dimension d and constant number k of foci, the number of nonlinear
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constraints is high as compared with the number of linear ones, and therefore one cannot apply
the result of Dyer[14]. In spite of that, we will prove that a convenient decomposition of that
problem would allow one to polynomially solve (MEP) in fixed dimension.

Theorem 2. Let the number of foci, k, and the dimension, d, be fixed. Then, (MEP) with
Euclidean norm is solvable in polynomial time in |A|.

Proof. Recall that by Theorem 1, solving (MEP1) (and then (MEP)) is equivalent to solve all
problems (MEPS) for S ⊆ A with |S| = d+1. Observe that in (MEPS) the number of nonlinear
constraints is constant ((d + 1) × k). Let us denote by K(S) = {(x, d) ∈ Rd × Rk×(d+1) :
‖a− u− x‖ ≤ dua, ∀u ∈ U , a ∈ S}, the feasible domain induced by the nonlinear constraints in
(MEPS). Then, we have:

1. : For any δ > 0, a ∈ S and u ∈ U :

gua(x, d) := ‖a− u− x‖ − dua ≤ ε, ∀ε ∈ [0, δ], and ∀(x, d) ∈ K(S). (1)

Moreover, since ‖ ·‖ is assumed to be the Euclidean norm, the inequality gua(x, d) ≤ ε

can be easily transformed into the following polynomial inequality:
∑d

j=1(aj−uj−xj)
2 ≤

(ε− dua)
2.

2. : The gradient∇gua(x, dua) = (− −a−u+x
‖a−u−x‖ ,−1)t. Therefore, the inequality∇gtau(x, dau)y ≤

0 for any y ∈ Rd+1 is equivalent to the following polynomial inequality [
∑d

j=1(aj − uj −

xj)yj ]
2 ≤

∑d
j=1(aj − uj − xj)

2yd+1.

3. : The largest degree of all the polynomials involved in (MEPS) and the transformations
made explicitly in items [1.] and [2.] above is 4 (constant) and much smaller than |A|.

Now, we are in position to apply the algorithm of Dyer to problem (MEPS) because the number
of nonlinear constraints is constant. Thus, that problem is solvable in linear time of the number
of linear constrains, O(d), which in this applications turns out to be constant. Hence, because for
solving (MEP), one needs to solve O(|A|d+1) problems in the collection and taking the maximum
r value, the original problem can be solved in O(|A|d+1)-time. ✷. �

For the sake of readability, the above result has been presented for the Euclidean norm.
However, it extends with minimal changes to any ℓp-norm with p ∈ Z and 1 < p < +∞. Observe
that instead of squaring the norms expressions in gua, one can reformulate them as the following
set of inequalities:

vaj ≥ aj − uj − xj , ∀j = 1, . . . , d, a ∈ S,

vaj ≥ −aj + uj + xj , ∀j = 1, . . . , d, a ∈ S,

d
∑

j=1

v
p
aj ≤ dpua, ∀a ∈ A.

where the v-variables represent the absolute values of each of the coordinates involved in the
norm expressions. Thus, similar arguments to those in the proof of Theorem 2 can be derived in
case p is small (compared to |A|).

Note also that if ‖ · ‖ is polyhedral the constraints in (MEP1) can be written as the following
set of linear inequalities:

et(a− u− x) ≤ dua, ∀u ∈ U , a ∈ A, e ∈ Ext‖·‖o

where Ext‖·‖o = {eo1, . . . , e
o
g} are the extreme points of the polar ball of the unit ball of ‖ · ‖ (see

e.g., [26, 34]). Thus, (MEP) can be solved using linear programming tools.
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3. Solution approaches for solving (MEP)

In this section we describe different solution approaches for solving (MEP) beyond the solution
of the SOCP model provided in Section 2. We describe here two types of approaches. First, we
describe those which exploit the strong duality of the problem under two different formulations :
conic and Lagrangean dual. Then, we provide a geometric construction based on the classical
Elzinga-Hearn algorithm for solving the problem.

While the dual approaches allow us to provide alternative mathematical programming formu-
lation for the problem and relate it with other classical problems (as the Weber problem), the
Elzinga-Hearn based approach allows, in practice, to efficiently solve geometrically the problem.

3.1. Conic Dual. Again, for the sake of simplicity we consider the (MEP) with Euclidean norm.
In such a case, the problem can be reformulated as the SOCP (MEP1). Therefore, one can derive
its conic dual, which results in:

max
∑

u∈U

∑

a∈A

(a− u)
(

λ1
ua + λ2

ua

)

s.t.
∑

a∈A

µa ≤ 1,

∑

u∈U

∑

a∈A

λ1
ua ≥ 0,

∑

u∈U

∑

a∈A

λ2
ua ≤ 0, (MEPConicDual)

√

(λ1
ua)

2 + (λ2
ua)

2 ≤ ωuµa, ∀u ∈ U , a ∈ A,

µa ∈ R+, λ
1
ua, λ

2
ua ∈ R, ∀a ∈ A, u ∈ U .

Slater condition ensures strong duality between both problems (see e.g. [5]) giving rise to simple
approaches to solve the (MEP). Again, the case in which the norm is not Euclidean but ℓp or
polyhedral permits a similar representation which results in a SOCP problem (as the above) or
a linear problem, respectively.

The main advantage, again, of the primal and the dual SOCP formulations of the problem is
that off-the-shelf software packages are capable to solve this type of problems efficiently using
interior-point based algorithms. These algorithms applied to SOCP problems are known to have
a polynomial time complexity for a given tolerance factor ε, assuring convergence in at most a
given number of iterations.

Based on our computational experience, as we will see in Section 4, the SOCP formulations
are not only interesting because its theoretical complexity, but also because current solvers are
able to handle medium size instances in a reasonable CPU time with reduced implementation
effort.

3.2. Lagrangean Dual. Now, we analyze a primal-dual approach based on the Lagrangean
dual to solve (MEP). For the sake of simplicity, we assume that the norm is strictly convex,
although as we will point out at the end of the section, the results extend to non strictly convex
norms. Let us denote by fa(x) =

∑

u∈U ωuΦua(x) =
∑

u∈U ωu‖a−u−x‖, for all a ∈ A. Clearly,
each Φua is a convex function, and then fa is convex.



Minimal Radius Enclosing Polyellipsoids 9

Thus, the Lagrangean dual is:

max
α∈R|A|

min
x∈Rd

∑

a∈A

αafa(x)

s.t.
∑

a∈A

αa = 1,

αa ≥ 0, ∀a ∈ A.

where αa for a ∈ A are the dual multipliers.
Note that each of the functions fa attains its minimum in a solution of the Weber problem

with demand points Aa = {a − u : u ∈ U} and weights ω, which is unique provided that the
norm is strictly convex and the foci in U are not collinear. Furthermore, if we denote by

F (α) = min
x∈Rd

∑

a∈A

αafa(x) = min
x∈Rd

∑

a∈A

αa

∑

u∈U

ωu‖a− u− x‖,

i.e., the optimal value of the Weber Problem with the nk demand points
⋃

a∈A Aa and weights
{αaωu : a ∈ A, u ∈ U}, the dual problem becomes:

max
α∈R|A|

F (α)

s.t.
∑

a∈A

αa = 1, (MEPLagDual)

αa ≥ 0, ∀a ∈ A.

Note that the feasible region is nothing but the |A|-dimensional probabilistic simplex, ∆A =

{α ∈ R
|A|
+ :

∑

a∈A

αa = 1}.

By strong duality:

min
x∈Rd

max
a∈A

∑

u∈U

ωu‖a− u− x‖ = max
α∈∆A

F (α)

It is straighforward that F is concave on ∆A. Observe also that if ‖ · ‖ is a strictly convex
norm and the points in A (and in U) are not collinear, for a fixed α ∈ ∆A, the function
hα(x) =

∑

a∈A αafa(x), for all x ∈ Rd, is strictly convex. Denoting by x∗
α = argminx∈Rd hα(x)

(which is well-defined by the strict convexity of hα) we have that F (α) =
∑

a∈A αafa(x
∗
α) for all

α ∈ ∆A. Furthermore, the gradient of F can be easily derived:

∂F

∂αa

(α) = fa(x
∗
α) =

∑

u∈U

ωu‖a− u− x∗
α‖, ∀a ∈ A.

With such an information, since (MEPLagDual) is an optimization problem with a concave ob-
jective function and a linear feasible set, a projected gradient descent method can be applied to
solve it. Let start with an initial solution α0 ∈ ∆ and the iterations are in the form:

αk+1 = Π∆(α
k − ηk∇αF (αk)).

where Π∆(β) = argminγ∈∆ ‖β−γ‖ is the orthogonal projection onto the unit simplex which can
be efficiently computed in O(n log n) computation time (see [9, 12, 33]).

Observe that at each step of this approach one has to compute the gradient ∇αF (α) which
in turns implies solving the following Weber problem:

min
x∈Rd

∑

a∈A

αa

∑

u∈U

ωu‖a− u− x‖.

These problems can be arbitrarily approximated using Weiszfeld algorithm and its relatives.
Thus, the optimal translation of the covering polyellipsoid, x, coincides with an optimal solution
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of a weighted Weber problem with demand points {a − u : a ∈ A, u ∈ U} and weights {αaωu :
a ∈ A, u ∈ U}, and then, as stated in [19], x belongs to the convex hull of those demand points.

In case the norm ‖·‖ is not strictly convex, uniqueness of optimal solutions cannot be ensured,
but still a similar approach can be followed replacing gradients by subgradients. Actually,

∂F (α) = conv





⋃

x̄∈argminhα(x)

(fa(x̄))a∈A



 .

3.3. A decomposition approach for (MEP). One of the most popular approaches for solving
the planar 1-center problem is due to Elzinga and Hearn [16]. The Elzinga-Hearn approach
(EH, for short) is based on constructing the minimum enclosing disks of three demand points
until the whole sets of points is assured to be fully covered. At each iteration, full coverage
is checked, and the triplet of points is changed by incorporating the demand point which is
furthest from the actual covering disk replacing one of the three points. The overall worst case
complexity of the algorithm is O(n3), but its performance in practice outperforms other existing
strategies. Although the EH algorithm was initially designed to solve the planar unweighted
1-center problem (taking advantage of the geometry of disks), the approach can be adequately
extended to the higher-dimensional weighted case [20]. In what follows we describe how the EH
decomposition paradigm can be applied to solve (MEP).

First, let us assume that r∗ ≥ 0 is the optimal radius for our covering problem (MEP) Since
the problem is convex the set of optimal solutions, X∗, is convex. Let us denote by:

Pa
U ,ω(r

∗) = {z ∈ Rd :
∑

u∈U

ωu‖a− u− z‖ ≤ r∗}, ∀a ∈ A,

the polyellipse with foci {a − u : u ∈ U} and radius r∗. Then, any optimal solution x∗ ∈
⋂

a∈A Pa
U ,ω(r

∗). Actually, since r∗ is minimum:
⋂

a∈A

Pa
U ,ω(r

∗) = X∗

since otherwise, it would contradict the optimality of r∗.
The following result is the main component to apply the decomposition approach to (MEP).

Theorem 3. There exists S ⊆ A with |S| = d+ 1 such that
⋂

a∈S

Pa
U ,ω(r

∗) = X∗.

Proof. Let Ad+1 = {S ⊆ A : |S| = d+ 1}. We define Qr∗(S) =
⋂

a∈S Pa
U ,ω(r

∗) for all S ∈ Ad+1.

Since
⋂

a∈A Pa
U ,ω(r

∗) = X∗, in particular we have that X∗ ⊆ Qr∗(S) 6= ∅ for all S ∈ Ad+1.

On the other hand, since
⋂

a∈A Pa
U ,ω(r

∗) 6= ∅, then, for all sets S ⊆ A with |S| = d + 1,
⋂

a∈S Pa
U ,ω(r

∗) 6= ∅. Suppose that for all S ∈ Ad+1, int(Qr∗(S)) includes X
∗. Since int(Qr∗(S))

is convex, there exists ε > 0 such that int(Qr∗−ε(S)) 6= ∅. Thus,
⋂

a∈S Pa
U ,ω(r

∗ − ε) 6= ∅, and

by Helly’s theorem also
⋂

a∈A Pa
U ,ω(r

∗ − ε) 6= ∅, contradicting the optimality of r∗.

Alternatively, if there exists S ∈ Ad+1 such that X∗ ⊂ Qr∗(S) and int(Qr∗(S)) = ∅, it implies
that X∗ is included in one face of dimension at most d − 1 of Pa

U ,ω(r
∗), for all a ∈ S. Then for

any ε > 0,
⋂

a∈S Pa
U ,ω(r

∗ − ε) = ∅, and this implies that r∗ is the minimum value for a full
coverage of A and also that X∗ is a set of optimal solutions. ✷ �

Based on the above result, a decomposition approach can be derived to solve the problem, as
described in Algorithm 1.

Theorem 4. Algorithm 1 computes the minimum-radius polyellipsoid in O(|A|d+2) time for
strictly convex norms.
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Algorithm 1 A decomposition algorithm for solving (MEP).

Compute the minimum radius polyellipsoid covering S0: r0, x0.

Input: A and S0 ⊆ A with |S0| = d+ 1. k = 0.

1. Let ρk = max
a∈A

∑

u∈U

ωu‖a− u− xk‖ and ak ∈ A reaching such a maximum.

2.

if ρk = rk then

STOP.
else

Sk+1 = Sk ∪ {ak}\{bk} with bk reaching rk+1 = max
bk∈Sk

max
a∈Sk∪{ak}\{bk}

∑

u∈U

ωu‖a− u− xk‖

end if

Output: rk and xk. Go to 1.

Proof. By Theorem 3, an optimal polyellipsoid is defined by d + 1 demand points. Such a
polyellipsoid will be determined by the minimum-radius polyellipsoid covering these points. At
any iteration k of the algorithm, one computes in 1. the minimum-radius polyellipsoid for d+ 1
given points (which takes constant time provided that d is fixed, see Theorem 2). If the optimal
polyellipsoid cover all the points, then, the furthest points (at distance ρk) are those at sum of the
distances exactly rk. Then, we have constructed a polyellipsoid, that covers all the points in A
and which is the one which minimally covers a subset of A. Otherwise, a new d+1-points subset
of A is constructed by replacing one (the most convenient) of its elements by the furthest point
to the previous polyellipsoid. Observe that at each iteration the solution of the subproblem is
unique because of the strict convexity of the norm. Then, since the number of subsets with d+1
elements is O(|A|d+1) and the polyellipsoids generated at each iteration are monotone increasing
in radius (the assumption rk+1 > rk is considered because otherwise, the algorithm stops) the
algorithm stops in at most O(|A|d+1) iterations and each iteration requires O(|A|) (the number
of comprobations for susbtitution in Step 3). ✷ �

Observe that the main advantage of this approach is that one only solves minimum enclosing
polyellipsoid problems for d+ 1 points, which in practice is very convenient, in particular when
the number of demand points in A is large. Moreover, in the planar case, no matter the number
of demands points in the problem this approach only needs to solve MEP problems covering
three of the demand points. Also, we will see that the number of iterations of the approach, as
for the 1-center problem, is small, reducing significatively the computation times as compared
with a plain SOCP formulation.

Note also, that in Algorithm 1, one has to solve (MEP) for subsets of A with d+1 points. In
the planar Euclidean case with a single focus, one can explicilty derive the the minimum enclosing
disk of three points [16], being this oracle doable in constant time. In the general case, one has
to solve a SOC-programming problem, increasing the theoretical complexity of the procedure.

In case the norm is not strictly convex, the above procedure is not assured to reach the optimal
solution of the problem since the solution of the subproblems with d+1 demand points may not
be unique. In the example of Figure 4, one has four demand points that want to be covered by
a square with minimum edge length (i.e., the minimum enclosing polyellipse for ℓ1 norm and a
single foci). If at the first iteration of Algorithm 1 one chooses S0 = {a1, a2, a3}, the optimal
centers for the minimal enclosing squares for those three points are drawn in the left picture
(solid line). If the solver chooses x∗ ∈ X∗ as the optimal center center, clearly, it does not cover
a4, so in the next iteration, one element in S0 is replaced by a4. In this case, the three possible
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a1 a2

a3

a4

X∗
x∗

a1 a2

a3

a4

x∗

a1 a2

a3

a4

Figure 4. Example of non-monotonicity in the radius for non strictly convex
norms on Algorithm 1.

replacements result in the same square length. For instance, if a1 is replaced by a4, one gets that
one of the minimum enclosing squares for S1 = {a2, a3, a4} is the one drawn in the right picture,
which has smaller radius than the one obtained in the previous iteration.

To overcome the above undesired fact, we adapt Algorithm 1. In this modification, at the kth

iteration, if rk+1 = maxb∈Sk max
a∈Sk∪{ak}\{bk}

∑

u∈U

ωu‖a− u − xk‖ < rk, then, instead of removing

bk from Sk, we keep both ak and bk in Sk+1, increasing by one the cardinality of the set Sk.
Observe that this modification assures that the sequence of radii {rk} is monotone and the
algorithm converges in a finite number of steps. Nevertheless, the complexity of the algorithm
is higher now since one may need to perform O(|A|d+1) iterations but in each iteration a linear
problem with up to O(|A|) constraints could have to be solved.

4. Computational Experiments

We have run a battery of experiments in order to show the performance of the Second Or-
der Cone programming formulation and the decomposition approach (Algorithm 1) for solving
(MEP). We used the classical planar dataset in [15] and also the datasets for location prob-
lems recently proposed in [7]. The first instance, consists of the classical 50-points (EWC) of
Eilon, Watson-Gandy and Christofides, while the rest of the instances consist of geographical
coordinates of different population areas in Slovakia. The sizes of these instances are 4873
(Partizánske), 9562 (Košice), 79612 (Žilina) and 663203 (Slovakia). We compute the mini-
mal radius enclosing polyellipse with number of foci ranging in {1, 5, 10, 25} and several norms.
In particular we use four strictly convex norms: ℓ 3

2
, ℓ2, ℓ3 and ℓ4, and three block norms:

ℓ1, ℓ∞ and hex, where hex is a block norm whose unit ball is a hexagon with extreme points
{±(2, 0),±(1, 2),±(−1, 2)} (see [26]). The foci were randomly chosen from the set of demand
points. We analyze both the unweighted and weighted problems. For the latter, we use either
random weights (for the EWC instance) or the weights provided in [7] for the rest of the instances.

We implemented both the SOCP model and the decomposition approach in Python 3, using
Gurobi 8 as the optimization solver. The experiments were run in a Mac OSX Mojave with an
Intel Core i7 processor at 3.3 GHz and 16GB of RAM.

In Tables 1-3 we report the results of our computational experience. Table 1 and Table 2
show the CPU times required for solving the problems for ℓp-norm and block norms polyellipses,
respectively. We provide, for each instance its size (|A|), the norm used (‖ · ‖) and the number
of foci (|U|), the CPU running times (in seconds) for solving (MEP) both with the Second Or-
der Cone programming formulation (TimeSOC) and with the decomposition approach (TimeDEC).
As one can observe, except for the smallest instance (|A| = 50), the decomposition approach
outperforms the results obtained with the SOC formulation. Observe that both approaches opti-
mally find minimum enclosing polyellipsoids but, while the SOC formulation solves the problems
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handling simultaneously all the points in A (adding all the constraints enforcing covering all its
elements), Algorithm 1 solves (iteratively) the problems considering only d+ 1 points at a time
(in the strictly convex norm case). This fact is hard to be observed while the number of demand
points is small to medium but it clearly pops up as the number of points increases. The reader
can also observe in Table 3 that the number of iterations needed to solve the problems with the
decomposition approach is rather small. This table shows the average number of iterations of
the decomposition approach for solving the instances and also the average cardinality of the sets
Sk required for solving the block-norm cases. The number of iterations of the decomposition
approach for all the instances range in [2, 6]. For the ℓp-norm polyellipses, it means that at most
6 (MEP) problems with 3 demand points had to be solved, to obtain the solution of the original
problem. In the case block-norm case, it may happen that one has to increase the number of
points for which the (MEP) problem has to be solved (the sets Sk). However, the maximum
number of points that we obtained in our experiments was 6, that combined with the maximum
number of iterations, 6, gives rise to the highly competitive CPU times needed for solving the
problems.

We have marked with OoM those instances for which the SOC approach is not able to load/solving
the problem because of an Out of Memory flag.

We also show the number of iterations performed by our decomposition procedure (itdec),
and for the block norms, the maximum cardinality of the sets Sk used in the modification of
Algorithm 1 for non strictly convex norms.

5. Case study: One dimensional covering polyellipsoids

In this section we analyze problem (MEP) in case d = 1, and describe closed formulas for the
minimal covering one-dimensional polyellipsoid covering a finite set of demand points. Observe
that while the solution of the 1-center problem on the line can be trivially obtained (x∗ =
1
2 (maxa∈A a +mina∈A a) and r = 1

2 (maxa∈A a −mina∈A a)), a further analysis is needed when
the number of foci is greater than 1.

Let us first analyze the shape of a polyellipsoid on the real line. Let U ⊂ R, ω ∈ R
|U|
+ and

r ≥ 0. The one-dimensional polyellipse with foci U , weights ω and radius r is:

PU ,ω(r) = {z ∈ R :
∑

u∈U

ωu|z − u| ≤ r}.

By Proposition 1, since polyellipsoids are closed and bounded sets, PU ,ω(r) is, either empty, a sin-
gle point or an interval. On the other hand, the Weber problem on the line, i.e., minx∈R

∑

u∈U ωu|x−
u|, is solved at the median interval, X∗ = [x∗

0, x
∗
f ]. Let us also denote by r∗ =

∑

u∈U ωu|x
∗ − u|

for x∗ ∈ X∗ and ū =
∑

u∈U ωuu.
The following result whose proof is straightforward provides the explicit shape of PU ,ω(r).

Lemma 1. There exist u0, uf ∈ U such that

PU ,ω(r) =



















∅ r < r∗,
[

u0, uf
]

if r = r∗,
[

r − ū+ 2
∑

u∈U0
ωuu

2
∑

u∈U0
ωu − 1

,
r − ū+ 2

∑

u∈Uf
ωuu

2
∑

u∈Uf
ωu − 1

]

if r > r∗.

where U0 = {u ∈ U : u ≤ u0} and Uf = {u ∈ U : u ≤ uf}.

Proof. The first statement is straightforward. Let us analyze the case r ≥ r∗.
Assume, w.l.o.g., that the elements in U are sorted in increasing order, i.e. U = {u1 < · · · < uk},
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Unweighted Weighted
ℓ 3

2
ℓ2 ℓ3 ℓ4 ℓ 3

2
ℓ2 ℓ3 ℓ4

|A| |U| tSOC tDEC tSOC tDEC tSOC tDEC tSOC tDEC tSOC tDEC tSOC tDEC tSOC tDEC tSOC tDEC

50

1 0.01 0.14 0.00 0.02 0.01 0.01 0.01 0.02 0.01 0.02 0.00 0.02 0.01 0.01 0.01 0.02
5 0.07 0.10 0.04 0.05 0.08 0.10 0.05 0.10 0.07 0.10 0.03 0.08 0.06 0.13 0.05 0.07
10 0.14 0.14 0.04 0.14 0.14 0.24 0.20 0.20 0.18 0.14 0.03 0.09 0.16 0.15 0.19 0.09
25 0.56 0.36 0.12 0.20 0.57 0.49 0.48 0.47 0.53 0.55 0.14 0.43 0.44 0.35 0.57 0.64

4873

1 1.88 0.12 0.62 0.15 2.80 0.16 3.09 0.13 1.74 0.14 0.58 0.17 2.46 0.13 2.51 0.17
5 11.99 0.59 5.29 1.08 13.59 0.90 11.80 0.77 11.78 0.55 3.79 0.51 11.57 0.76 12.72 0.77
10 31.61 1.79 7.28 1.05 31.53 1.60 37.75 1.64 31.87 1.50 15.20 1.07 45.39 1.49 46.34 2.03
25 117.96 2.77 23.30 3.34 112.68 3.88 129.25 3.53 148.39 2.60 39.00 2.45 167.49 3.48 147.35 3.83

9562

1 4.38 0.30 1.56 0.29 4.36 0.30 4.25 0.35 4.12 0.33 1.38 0.30 4.19 0.32 4.16 0.37
5 30.58 1.27 7.11 1.38 27.46 1.70 35.00 1.36 33.42 1.28 9.90 1.30 50.72 1.33 42.58 1.38
10 97.25 2.82 16.65 1.80 71.98 2.04 84.53 2.67 205.41 3.19 33.87 2.47 245.38 2.67 160.70 3.33
25 213.34 6.12 47.93 5.88 317.86 6.27 365.62 6.81 503.54 6.35 368.24 6.12 531.46 6.41 463.49 6.55

79612

1 52.86 1.72 16.51 1.67 56.13 1.80 67.14 1.91 52.48 1.73 16.56 1.72 55.40 1.80 66.80 1.80
5 379.13 10.04 84.89 9.75 432.17 10.71 413.29 10.58 7200 12.77 377.48 7.72 1490.33 7.69 1376.67 7.85
10 1427.21 29.41 186.11 19.63 1262.71 15.21 1637.17 16.29 4448.48 29.64 1040.49 15.45 2496.65 17.05 3479.00 17.47
25 7200 71.20 389.17 58.66 7200 38.77 7200 40.07 7200 38.43 2734.22 37.40 7200 37.55 7200 37.64

663203

1 1125.80 14.39 271.17 18.82 788.36 14.70 951.78 15.22 1149.75 13.57 281.24 17.97 806.99 14.09 949.27 14.41
5 7200.01 84.43 1785.31 64.11 OoM 75.52 OoM 76.07 OoM 80.27 OoM 58.62 OoM 60.80 OoM 62.82
10 OoM 189.41 OoM 231.85 OoM 193.97 OoM 148.38 OoM 157.83 OoM 154.26 OoM 119.90 OoM 123.95
25 OoM 320.64 OoM 434.61 OoM 350.80 OoM 368.30 OoM 292.14 OoM 288.67 OoM 296.56 OoM 305.61
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Unweighted Weighted
ℓ1 ℓ∞ hex ℓ1 ℓ∞ hex

|A| |U| tSOC tDEC tSOC tDEC tSOC tDEC tSOC tDEC tSOC tDEC tSOC tDEC

50

1 0.00 0.02 0.00 0.02 0.00 0.05 0.00 0.08 0.00 0.02 0.00 0.05
5 0.01 0.03 0.01 0.05 0.02 0.17 0.01 0.03 0.01 0.03 0.03 0.09
10 0.02 0.09 0.01 0.09 0.04 0.18 0.02 0.08 0.01 0.06 0.05 0.18
25 0.10 0.09 0.06 0.16 0.06 0.46 0.10 0.14 0.07 0.26 0.06 0.45

4873

1 0.17 0.16 0.08 0.19 0.21 0.52 0.18 0.14 0.10 0.18 0.22 0.51
5 0.92 0.61 0.86 0.44 1.44 3.13 0.93 0.73 0.95 0.71 1.33 2.44
10 2.05 1.17 2.08 1.13 2.87 5.04 2.15 1.46 1.81 1.10 2.43 4.83
25 7.06 3.61 5.64 2.79 8.63 9.10 6.50 2.11 5.59 3.08 8.78 9.06

9562

1 0.34 0.44 0.19 0.41 0.44 0.98 0.35 0.41 0.20 0.41 0.44 1.03
5 2.31 1.14 1.86 1.09 2.85 5.88 2.58 0.83 2.40 1.11 2.97 4.69
10 5.62 3.34 4.17 2.10 6.45 7.11 3.01 2.78 2.83 2.76 4.21 11.69
25 15.08 6.63 11.54 5.08 20.35 35.70 13.16 6.63 10.68 6.64 17.86 29.19

79612

1 5.25 2.65 1.55 2.64 5.66 6.06 6.75 2.59 1.74 3.21 5.56 6.00
5 26.92 11.13 22.10 8.65 34.63 47.97 29.45 8.97 18.69 6.43 32.93 28.75
10 68.77 13.15 43.87 12.78 94.67 57.86 71.63 17.19 40.54 12.35 88.22 56.71
25 189.67 31.70 143.21 30.64 308.12 243.43 144.43 32.56 110.38 32.37 224.39 175.40

663203

1 55.84 26.05 16.00 17.37 56.48 47.34 53.39 26.07 23.01 20.67 57.84 44.19
5 390.16 53.92 364.48 54.29 798.43 219.50 1232.96 69.97 533.16 52.13 1234.53 213.33
10 3674.59 141.34 OoM 103.50 OoM 578.83 OoM 135.59 OoM 102.05 OoM 421.48
25 OoM 444.92 OoM 254.45 OoM 1087.21 OoM 332.15 OoM 252.44 OoM 1046.51
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ℓp norms block norms

|A| |U| itDEC itDEC |Sk|

50

1 2.8 4.7 4.7
5 3.8 3.5 3.0
10 3.4 3.5 3.2
25 3.9 3.2 3.0

4873

1 3.5 4.3 4.7
5 3.8 4.3 3.7
10 4 4.2 3.3
25 3.6 3.7 3

9562

1 4.0 5.3 4.7
5 4.1 4.0 3.0
10 4.0 4.7 3.7
25 4.0 5.0 3.0

79612

1 3 4.3 4.3
5 3.8 4 3.7
10 3.9 3.2 3
25 3.6 3.5 3.2

663203

1 3.3 4.5 4.5
5 3.3 3.2 3.2
10 4.0 3.5 3.0
25 3.3 3.5 3.0

Table 3. Average number of iterations in the decomposition approach for all
the instances.

s = s(z) ∈ {0, 1, . . . , k} such that us < z ≤ us+1, then:

∑

u∈U

ωu|z − u| =

s
∑

j=1

ωj(z − uj)−

k
∑

j=s+1

ωj(z − uj)

= (

s
∑

j=1

ωj −

k
∑

j=s+1

ωj)z −

s
∑

j=1

ωjuj +

k
∑

j=s+1

ωjuj

= (2

s
∑

j=1

ωj − 1)z + ū− 2

s
∑

j=1

ωjuj .

The extremes of the nonempty closed interval PU ,ω(r) are those z ∈ R verifying that
∑

u∈U

ωu|z −

u| = r. Thus, z is an extreme of PU ,ω(r) if (2) is equal to r.

(1) If

s
∑

j=1

ωj =
1

2
(=

k
∑

j=s+1

ωj), then r =
∑

u∈U

ωu|z − u| = ū − 2

s
∑

j=1

ωjuj . In case |U| is

even, all the points in [us, us+1] have the same sum of weighted distances to the foci.
Otherwise, PU ,ω(r) = {us}. Thus, u0 = us and uf = us+1 or uf = us in the statement
of the Lemma. Note that in this case r coincides with r∗ and PU ,ω(r) is the polyellipsoid
induced by the ω-weighted median of the points.
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(2) If

s
∑

j=1

ωj 6=
1

2
, then z =

r − ū+ 2

s
∑

j=1

ωjuj

(2

s
∑

j=1

ωj − 1)

. In this case, PU ,ω(r) is a proper closed

interval with nonempty interior, and then there exist two points defining the extremes of
the interval, thus, there exist s0 and sf in with s0 < sf such that, u0 = us0 and uf = usf

and for which the equation in the Lemma holds. ✷

�

Le us consider that a set of demand points A ⊆ R is given. Finding the minimum enclosing
one-dimensional polyellipsoid with foci U ⊆ R, consists of finding the minimum value of r such
that all the elements in A belong to a x-translation of PU ,ω(r), for some x ∈ R. Since r determines
the length of the interval, it is clear that Px+U ,ω(r) = [mina∈A a,maxa∈A a], since otherwise it
would not cover the points or it would not be minimal.

Applying Lemma 1 to the x-translated polyellipse, we get that, after some algebra, the x-
translated polyellipsoid Px+U ,ω(r) is in the form:













x+

r − ū+ 2
∑

u∈U:

x+u≤a0

ωuu

2
∑

u∈U:

x+u≤a0

ωu − 1
, x+

r − ū+ 2
∑

u∈U:

x+u≤af

ωu

2
∑

u∈U:

x+u≤af

ωu − 1













Equaling the extremes of that interval to [mina∈A a,maxa∈A a] =: [a0, af ] we get that:

r∗ = (1−2
∑

u∈U:

x+u≤a0

ωu)(a
f−a0−

∑

u∈U:

a0<x∗+u≤af

ωuu

∑

u∈U:

a0<x∗+u≤af

ωu

)+ūω−2
∑

u∈U:

x∗+u≤a0

ωuu−(af−a0)

(2
∑

u∈U:

x∗+u≤a0

ωu − 1)2

2
∑

u∈U:

a0<x∗+u≤af

ωu

and

x∗ = a0 −

r∗ − ū+ 2
∑

u∈U:

x∗+u≤a0

ωuu

2
∑

u∈U:

x∗+u≤a0

ωu − 1
= af −

r∗ − ū+ 2
∑

u∈U:

x∗+u≤af

ωuu

2
∑

u∈U:

x∗+u≤af

ωu − 1
.

Observe also that, although explicit solutions are detailed above for the one-dimensional mini-
mum enclosing polyellipse problem, they depend of the number of foci x∗ + u in (−∞, a0] and
(−∞, af ]. Thus the procedure to obtain the optimal polyellipse would consist of iterating on
the possible values of s0 = |{u ∈ U : x∗ + u ≤ a0}| and sf = |{u ∈ U : x∗ + u ≤ a0}|, with
s0, sf ∈ {0, . . . , |U|} with s0 < sf .

However, since U is a given set of foci, which range, maxu∈U u −minu∈U u, is constant, and
also af − a0, the search can be reduced. In particular, if U = {u1 < · · · < uk}, the optimal
solution, x∗, is valid for the problem, only if:

x∗ + us0 ≤ a0 < x∗ + us0+1,

x∗ + usf ≤ af < x∗ + usf+1.

Equivalently, if x∗ ∈ (a0−us0+1, a0−us0 ]∩(af−usf+1, a0−usf ]. Thus, one can restrict the search
to those pairs (s0, sf ) ∈ {0, . . . , k} × {0, . . . , k} such that the intersection of the two intervals is
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nonempty, i.e.,

usf − us0+1 < af − a0 < usf+1 − us0 .

By the above relations, given a valid pair (s0, sf), one has that us0 < usf −(af −a0) ≤ uk−(af −

a0). Thus, one can restrict s0 to {0, . . . , q0} with q0 = max{j ∈ {1, . . . , k} : uj ≤ uk− (af −a0)}.

Lemma 2. There exists an unique pair (s0, sf ) ∈ {0, . . . , q0}× {s0 +1, . . . , k} such that (x∗, r∗)
is the optimal center and radius of the minimal enclosing polyellipsoid.

Proof. The proof follows by noting that the problem is equivalent to find x∗ ∈ Pa0−U ,ω(r) ∩
Paf−U ,ω(r). Thus, if two different solutions exist, it contradicts the minimallity of r. Thus, x∗ is
unique, so there exists an unique combination of indices (s0, sf ) fullfiling the conditions. ✷ �

The above result allows us to terminate the search as soon as a solution x∗ in the form above
is found verifying that max{j ∈ {1, . . . , k} : uj ≤ a0 − x} = s0.

Corollary 1. Provided that the sets A and U are sorted, the one-dimensional minimum enclosing
polyellipse can be found in O(|U|) time for any number of points.

Also, if all the demand points fall inside the interval determined by some translation of the
foci, the optimal polyellipsoid can be explicitly stated.

Corollary 2. If maxu∈U u−minu∈U u ≤ maxa∈A a−mina∈A a. The minimum enclosing polyel-
lipse is determined by:

r∗ =
maxa∈A a−mina∈A a

2
and x∗ =

maxa∈A a+mina∈A a

2
−

∑

u∈U

ωuu

6. Extensions

This section addresses two extensions of (MEP) where we can still exploit the methods and
tools previously developed. In particular, we analyze the problem that, apart from finding the
position and the radius of the covering polyellipsoid, incorporates the foci selection among a
given set of potential candidates. Also, we extend the notion of polyellipsoid to ordered median
polyellipsoid, following the analogy between the Weber and Ordered Median Location problems.

6.1. Foci Selection. In many situations, the foci, which are assumed to be fixed in (MEP),
may be unknown. In the following we address the question of how to optimally select a given
number of foci from a finite set of candidate points.

Let A ⊆ Rd be the set of demand points and B ⊆ Rd a set of potential foci. The goal is to
select from B a subset of k foci U ⊆ B with |U| = k to adequately cover the set of demand points
by the translated polyellipsoid with foci in U and minimal radius. The problem can be stated,
in a mathematical programming manner, as follows:

min
x∈Rd,

U⊆B:|U|=k

max
a∈A

ϕUa(x) (MEP-FS)

Recall that ϕUa =
∑

u∈U

ωu‖x− a− u‖ for all U ⊆ B and a ∈ A.

Observe that once the foci, U , are selected, the problem reduces to (MEP). However, the

enumeration of the
(

|B|
k

)

combinations of possible foci becomes intractable in practice. Thus, we
propose, first, a mixed integer non linear programming formulation for the problem, and then,
we develop a decomposition approach for solving the problem geometrically.
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In the mathematical programming formulation, apart from the variables used to reformulate
(MEP), we use the following set of binary decision variables:

yu =

{

1 if u is selected as a focus
0 otherwise.

, ∀u ∈ B.

The following model, (MEPFS), allows us to determine the optimal foci and the polyellipsoid.

min r (2)

s.t.
∑

u∈B

yu = k, (3)

dau ≥ ‖a− u− x‖yu, ∀a ∈ A, u ∈ B, (4)

r ≥
∑

u∈B

ωuadua, ∀a ∈ A, (5)

r, dua ≥ 0, x ∈ Rd,

yu ∈ {0, 1}.

The objective function (2), as in (MEP), minimizes the radius, r, by choosing an adequate subset
of k foci from B (3). The way the distances are accounted in the problem depends on the selected
foci: in constraint (4), the distance between a demand point a ∈ A and a translated foci u + x

with u ∈ B is either ‖a − u − x‖ if u is chosen from B (i.e., if yu = 1) or 0 otherwise. Finally,
as in (MEP), constraint (5) ensures that r is defined as the maximum among all the sum of the
distances from each demand point to the translated selected foci.

The formulation above corresponds to a mixed integer non-linear program. The discrete
character comes from the y-variables, whereas the non-linearity appears by the constraints (4),
which can be rewritten using big-M constants as follows:

dau +Mau(1 − yu) ≥ ‖a− u− x‖, ∀a ∈ A, u ∈ B,

where Mau is an upper bound on the value of the norm ‖a− u − x‖. As already mentioned in
Section 3.2, the optimal x-value coincides with the solution of a weighted Weber problem for the
set of the demand points {a − u : u ∈ U} for some a ∈ A, thus, these big M -constants can be
derived explicitly.

The above formulation reduces to a Mixed Integer Second Order Cone Optimization (MIS-
OCO) problem provided that the considered norm is polyhedral or in the ℓp (p ≥ 1) family.
Then, medium size instances can be solved with nowadays available off-the-shell software.

In what follows, we describe an adaptation of the Elzinga-Hearn based approach described in
Algorithm 1 to this new case where the foci have to be selected from B. Recall that the success
of the EH-based approach comes from decomposing the original problem into smaller ones, by
solving the minimal covering polyellipsoid problem on a reduced subset of demand points, in
particular on subsets of demand points S ⊆ A with cardinality d + 1. Following a similar
scheme, for each subset S ⊂ A with |S| = d+ 1, one has to compute not only the polyellipsoid
but also the optimal k foci from B. Let us denote by UR(S) the optimal set of foci from B that
minimally cover the points in S, with the condition that the points in R ⊆ B are not in UR(S),
i.e., the solution of the following problem:

rS,R := min
U⊆B\{R}:|U|=k

max
a∈S

ϕUa(x) (6)

Observe that the problem above is a reduced version of (MEP-FS) in which the set of potential
foci is B\{R} and the set of demand points is S. Our decomposition approach for solving
(MEP-FS) consists of solving problems in the form of (6) , sequentially for different sets S, until
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a termination covering criterion is met. The pseudocode of this method is described in Algorithm
2.

First, we initialize the set S to a set of d + 1 demands points from A and R = ∅. At each
iteration, it, we compute the set of optimal foci (solving (6)) with demand points in the actual
set, Sit, excluding those in the set R. Apart from the set of optimal foci for those points, the
problem gives us a lower bound of the optimal radius for the covering polyellipsoid, rSit,R, which
is updated. Since the original problem is always feasible, the restricted problem (6) is feasible if
and only if one can choose k elements from B\R, i.e., if |B\R| ≥ k. If this were not possible, the
process is finished. Once a set of optimal foci, Uit+1, is computed, one has to solve (MEP) for
those foci using Algorithm 1 which also gives the d+1 points defining the covering polyellipsoid
(the set Sit+1 in the pseudocode). The solution of that problem provides an upper bound on
the optimal value of (MEP-FS) (UBit) which is updated at each iteration. The procedure is
repeated until the upper and lower bounds coincide or the number of reduced potential foci is
less than k. Observe that Algorithm 2 terminates in a finite number of iterations since B and

Algorithm 2 Decomposition approach for solving (MEP-FS).

Input:

A, S0 ⊆ A with |S0| = d+ 1, it = 0
R = ∅, UB = ∞, LB = 0.
while UB > LB and |B\R| ≥ k do

Uit+1 = URit(Sit), LB = max{LB, rSit,R}.

Solve (MEP) for U = Uit+1 and set Sit+1 and UB = min{UB,UBit}).
R = R ∪ Uit+1.
it → it+ 1.

end while

Output: U = Uit and r = UB.

A are finite sets. Note also that two situations may lead to the termination of the algorithm.
On the one hand, if at some iteration UB ≤ LB, then, it would imply that a feasible solution of
(MEP) has been found (with radius UB) and that for a subset Sit+1 ⊆ A, any choice among the
non explored potential foci, gets a covering polyellipsoid with a larger radius than one already
computed. Thus, the best solution found at that iteration must be optimal. On the other
hand, if at some iteration |B\R| < k, then all the possible foci have already been explored, and
the solution must be among those already computed. Thus, the algorithm outputs the optimal
solution of (MEP-FS), as desired.

To conclude, we would like to add some comments on the complexity of Algorithm 2. At each
iteration, for solving (MEP-FS), one has to solve a MISOCO which in general could be NP-hard.
Thus, although (MEP) can be solved in O(|A|d+1)-time, the overall complexity of Algorithm 2
is in general non polynomial.

We have run some experiments in order to analyze the performance of Algorithm 2 compared
to the MISOCO formulation. We have used two of the datasets used in Section 4, the one with
50 points from [15] and the one with 4873 points from [7]. We use unweighted instances and
norms in {ℓ1, ℓ 3

2
, ℓ2, ℓ3}. For each dataset we have randomly chosen the set of potential foci, B,

from the demand points with sizes 10, 15 and 20. We consider the foci to choose, k, ranging in
{5, 10}, and we set a time limit of 30 minutes in Gurobi for solving the MISOCO problems.

We report in Table 4 the results of our experiments. We show, for each instance the CPU times
devoted to the MISOCO formulation (tMISOCO) and for Algorithm 2 (tDEC). For the latter, we
also provide the number of iterations needed to solve the problems, i.e. the number of MISOCO
problems with three demand points (It) as well as the average number of iterations of Algorithm
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1 each time it is called in the procedure ( itDEC). W also report the MINLP gap obtained with
the MISOCO formulation at the time limit (%GapMISOCO).

As one can observe from the results, Algorithm 2 outperforms the MISOCO formulation in all
the instances. Moreover, in most of the instances for the 4873-dataset, the solver was not able
to find the optimal solution within the time limit with the MISOCO formulation. We observe
that loading the MISOCO problem in Gurobi is highly time consuming, particularly when non-
Euclidean or polyhedral norms are used because the large number of auxiliary variables, and
SOC and linear constraints that have to be introduced to represent the norms. This can be
seen in columns #LinCtrs, #SOCCtrs and # BinVars, that indicate the number of linear,
SOC constraints, and binary variables of the entire MISOCO problem, respectively. We have
highlighted, with TL∗, the instances for which the MISOCO problem was not able to be loaded
in Gurobi within 4 hours (in those instances the gap is not available).

6.2. Ordered Median Polyellipsoids. As mentioned in the introduction, polyellipsoids are
identified with the levels curves of the classical Weber (median) problem. Several extensions
of this problem has been analyzed in the Location Analysis literature. One of them is the so-
called ordered median continuous location problem [4, 18, 26]. In this problem, apart from the
demand points, U = {u1, . . . , uk} ∈ Rd, a distance measure induced by a norm ‖ · ‖ and weights
ω1, . . . , ωk ∈ R+, one is also given a set of modelling weights λ1, . . . , λk ∈ R and the goal is to
find the optimal placement x minimizing the following aggregating function of the distances:

Fλ
U ,ω(x) =

k
∑

i=1

λiωσ(i)‖x− uσ(i)‖,

where σ is a permutation of the indices {1, . . . , k} such that ωσ(i)‖x−uσ(i)‖ ≥ ωσ(i+1)‖x−uσ(i+1)‖
for all i = 1, . . . , k − 1. The ordered median function generalizes most of the objective functions
considered in facility location. For instance, choosing λ = (1, . . . , 1), one gets the classical sum
of the distances aggregation criterion (Weber problem), while if λ = (1, 0, . . . , 0) one gets the
max criterion which is used in the center problem. It is known that Fλ

U ,ω is convex if and only
if the λ-weights verify λ1 ≥ · · · ≥ λk. Thus, we will assume such a condition on the weights.

In what follows we draw some comments on the extension of the notion of polyellipsoid to the
case in which they are defined as the level curves of functions in the form of Fλ

U ,ω.

Let U = {u1, . . . , uk} ⊆ Rd be a set of foci and ω1, . . . , ωk ∈ R+ a set of weights for the foci.
Let us also consider a set of weights λ1, . . . , λk ∈ R+ such that λ1 ≥ · · · ≥ λk, the λ-ordered
median polyellipsoid with radius r is defined as:

Eλ
U ,ω(r) = {z ∈ Rd :

k
∑

i=1

λiωσ(i)‖z − uσ(i)‖ = r}

We denote by Pλ
U ,ω(r) the region bounded by Eλ

U ,ω(r). Since Fλ
U ,ω is convex, then Pλ

U ,ω(r) is a

nonempty bounded and convex set for r ≥ minx∈Rd Fλ
U ,ω(x). In Figure 5 we show four different

choices for the lambda weights and the resulting ordered median polyellipses for the same set of
three foci on the plane.

Analogously to (MEP), the ordered median minimal enclosing polyellipsoid problem consists of
finding the minimum radius, r, and the translation of the ordered median polyellipsoid Pλ

U ,ω(r)
such that all the demand points are covered by the obtained polyellipsoid. A mathematical
programming formulation for the problem is the following:

min
x∈Rd,r∈R+

max
a∈A

k
∑

i=1

λiωσa(i)‖a− uσa(i) − x‖ (MEPλ
OM)
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|A| |B| k Norm tMISOCO tDEC it itDEC %Gap #LinCtrs #SOCCtrs # BinVars

50

10

5

ℓ1 1.21 0.22 1 3 0.00% 2500 0

510
ℓ 3

2
22.46 2.11 3 4 0.00% 2500 2000

ℓ2 5.97 3.38 12 3 0.00% 2000 500
ℓ3 25.11 9.88 18 4 0.00% 2500 2000

15

ℓ1 5.16 1.35 1 5 0.00% 3750 0

765

ℓ 3
2

404.10 12.95 2 3 0.00% 3750 3000

ℓ2 109.46 3.61 3 3 0.00% 3000 750
ℓ3 319.86 32.12 13 3 0.00% 3750 3000

10

ℓ1 3.81 0.70 1 4 0.00% 3750 0
ℓ 3

2
939.28 6.43 2 4 0.00% 3750 3000

ℓ2 208.36 2.65 2 4 0.00% 3000 750
ℓ3 516.76 121.49 26 3 0.00% 3750 3000

20

5

ℓ1 13.57 3.08 1 4 0.00% 5000 0

1020

ℓ 3
2

TL 14.88 2 4 0.00% 5000 4000

ℓ2 517.75 4.43 2 2 0.00% 4000 1000
ℓ3 TL 24.40 3 4 0.00% 5000 4000

10

ℓ1 211.46 3.48 1 3 0.00% 5000 0
ℓ 3

2
TL 377.09 3 3 0.00% 5000 4000

ℓ2 TL 58.46 2 4 0.00% 4000 1000
ℓ3 TL 175.92 2 3 0.53% 5000 4000

4873

10

5

ℓ1 479.20 1.77 1 5 0.00% 243650 0

48740
ℓ 3

2
TL 8.95 8 3 0.04% 243650 194920

ℓ2 1465.14 1.82 2 4 0.00% 194920 48730
ℓ3 TL 2.27 2 4 0.01% 243650 194920

15

ℓ1 TL 2.54 1 6 0.00% 365475 0

73110

ℓ 3
2

TL 15.20 5 3 0.56% 365475 292380

ℓ2 TL 2.58 2 4 0.25% 292380 73095
ℓ3 TL 6.13 2 4 0.16% 365475 292380

10

ℓ1 TL 2.29 1 3 0.00% 365475 0
ℓ 3

2
TL∗ 14.10 3 3 - 365475 292380

ℓ2 TL∗ 4.67 2 4 - 292380 73095
ℓ3 TL∗ 12.51 3 4 - 365475 292380

20

5

ℓ1 TL 3.36 1 4 9.19% 487300 0

97480

ℓ 3
2

TL∗ 33.81 3 3 - 487300 389840

ℓ2 TL 9.58 3 3 0.02% 389840 97460
ℓ3 TL∗ 18.21 2 4 - 487300 389840

10

ℓ1 TL 6.21 1 6 0.00% 487300 0
ℓ 3

2
TL∗ 115.45 3 3 - 487300 389840

ℓ2 TL 87.89 3 4 2.92% 389840 97460
ℓ3 TL∗ 201.74 4 4 - 487300 389840

Table 4. Results of the Experiments for the Foci Selection Problem.
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λ = (1, 1, 1) λ = (1, 0, 0)

λ = (1, 1, 0) λ = (1, 0.5, 0.5)

Figure 5. Shapes of ordered median polyellipses for the same foci U =
{(−1, 5), (2, 3), (−5, 0)} and different λ-weights.

where for all a ∈ A, σa is a permutation of the indices {1, . . . , k} such that ωσ(i)‖a−ua
σ(i)−x‖ ≥

ωσ(i+1)‖a − ua
σ(i+1) − x‖ for all i = 1, . . . , k − 1. The problem can be reformulated, using the

results proved in [4] as:

min r

s.t. r ≥
k
∑

i=1

(vai + tai), ∀a ∈ A,

vai + taj ≥ λjωi‖a− ui − x‖, ∀a ∈ A, i, j = 1, . . . , k,

r ≥ 0,

vai, tai ∈ R, ∀a ∈ A, i = 1, . . . , k.

where the auxiliary variables v and t allow one to represent the sorting factor in the problem
without using binary variables. As in (MEP), in case the norm is polyhedral or in the ℓp family
with p ≥ 1, the problem above can be reformulated as a second order cone programming problem.

A further geometrical analysis for this problem is in order. For the sake of presentation,
let us assume that the considered norm is strictly convex. The optimal solution of the problem
(MEPλ

OM) is given by the smallest r such that ∩a∈AP
λ
U−a,ω(r) 6= ∅. Nevertheless, the geometrical

structure of the sets Pλ
U−a,ω(r) is intricate since the evaluation depends on the relative sorting

of the points with respect to the translated foci. In order to apply an “a la” Elzinga-Hearn
algorithm to solve this problem we have to introduce the concept of ordered region (see [29]).
An ordered region Oσ is a closed, connected region of Rd such that for all z ∈ Oσ a permutation
that sorts the vector (ω1‖a− u1 − z‖, . . . , ωk‖a− uk − z‖) in non-increasing sequence is σ. That
is, the chain of inequalities ωσ1

‖a − uσ1
− z‖ ≥ ωσ2

‖a − uσ2
− z‖ ≥ . . . ≥ ωσk

‖a − uσk
− z‖ is

valid for all z ∈ Oσ. It is straightforward to observe that a subdivision, Sa, of R
d into ordered

regions with respect to the point a ∈ A can be obtained with the following arrangement of
functions: ωi‖a− ui − z‖ = ωj‖a− uj − z‖, ∀i < j ∈ {1, . . . , k}. Denote by S the intersection
of all the subdivisions Sa, a ∈ A. In each cell of the subdivision S the order of the vectors
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(ω1‖a − u1 − z‖, . . . , ωk‖a − uk − z‖), ∀a ∈ A is constant and thus, Pλ
U−a,ω(r) for all a ∈ A

are standard polyellipsoids. In order to have a valid application of a decomposotion algorithm
for problem (MEPλ

OM), similar to Algorithm 1, one would have to replicate it on each cell of
the subdivision S. This would imply to solve constrained (to the cell) (MEP) until an optimal
restricted solution on that cell is found. Then, choosing the minimum value among all for the
different cells will result in the optimal solution for (MEPλ

OM).
To have an idea of the complexity of these subdivisions we present the analysis for the intuitive,

important case of the unweighted Euclidean norm. In this case, for each a ∈ A the elements that
induce the arrangement Sa are ‖a − ui − z‖2 = ‖a − uj − z‖2, ∀i < j ∈ {1, . . . , k}. It is well-
known that for each i 6= j these equations define Euclidean bisectors (hyperplanes) and therefore
the number of ordered regions is the number of cells in an arrangement of O(|A|2) hyperplanes
in dimension d. This number is known to be O(|A|2d). Intersecting these subdivision for all
a ∈ A gives rise to the following upper bound, O((|A|3)d), on the number of elements in the
subdivision S. The discussion above allows us to state the following results, whose proof follows
from the application of Theorem 4, with complexity O(|A|d+2), on each one of the O(|A|3d) full
dimensional cells of the subdivision S.

Theorem 5. Let us assume that the dimension d is fixed. The unweighted version of Problem
(MEPλ

OM) with Euclidean norm can be solved in polynomial time O(|A|4d+2).

7. Conclusions

In this paper we analyze minimum radius covering problems with shapes based on polyellip-
soids. We study the problem of covering a finite set of d-dimensional demand points by optimally
finding the dilation and translation of a polyellipsoid with given foci. We provide several for-
mulations for the problem in general dimension d: a primal SOC formulation, a conic dual SOC
model and a Lagrangean dual program whose resolution needs to solve different Weber problems.
We analyze the worst case complexity of these problems and develop an Elzinga-Hearn decom-
position approach to solve them geometrically. We report the results of an extensive battery
of experiments to show the performance of the proposed approaches. We further analyze the
one-dimensional problem and derive a linear time algorithm (in the number of foci) for solving
the problem as well as some closed formulas for the covering polyellipse in terms of the foci and
the demand points. Finally we draw some comments on two extensions of the problem: 1) the
problem of simultaneously finding the minimum radius and selecting the foci from a potential
finite set of candidates; and 2) the use of more general shapes, which we call ordered median
polyellipsoids, to cover the demand points. As far as we know, both extensions, have been first
introduced and analyzed here.

Further research on the topic includes, among others, the analysis of the multiple facility case,
in which several polyellipsoids have to be located by minimizing the maximum sum of the closest
distances from the demand points to the foci, extending the multifacility center problems; or
maximal covering location problems using polyellipsoidal shapes.
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