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Recently, there has been a growing interest in developing inventory control policies which are robust

to model misspecification. One approach is to posit that nature selects a worst-case distribution for any

relevant stochastic primitives from some pre-specified family. Several communities have observed that a subtle

phenomena known as time inconsistency can arise in this framework. In particular, it becomes possible that

a policy which is optimal at time zero (i.e. solution to the multistage-static formulation) may not be optimal

for the associated optimization problem in which the decision-maker recomputes her policy at each point in

time (i.e. solution to the distributionally robust dynamic programming formulation), which has implications

for implementability. If there exists a policy which is optimal for both formulations (w.p.1 under every joint

distribution for demand belonging to the uncertainty set), we say that the policy is time consistent, and

the problem is weakly time consistent. If every optimal policy for the multistage-static formulation is time

consistent, we say that the problem is strongly time consistent.

We study these phenomena in the context of managing an inventory over time, when only the mean,

variance, and support are known for the demand at each stage. We provide several illustrative examples

showing that here the question of time consistency can be quite subtle. We complement these observations

by providing simple sufficient conditions for weak and strong time consistency. We also relate our results to

the well-studied notion of rectangularity of a family of measures. Interestingly, our results show that time

consistency may hold even when rectangularity does not. Although a similar phenomena was previously

identified by Shapiro for the setting in which only the mean and support of the demand are known, there the

problem was always weakly time consistent, with both formulations having the same optimal value. Here our

model is rich enough to exhibit a variety of interesting behaviors, including lack of weak time consistency,

strong time consistency even when both formulations have different optimal values, and non-existence of

even a single optimal base-stock policy under the static formulation.

Key words : inventory, news vendor, multistage distributionally robust optimization, rectangularity,

moment constraints, time consistency, dynamic programming, base-stock policy

1. Introduction

The news vendor problem, used to analyze the trade-offs associated with stocking an inventory,

has its origin in a seminal paper by Edgeworth (1888). In its classical formulation, the prob-
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lem is stated as a minimization of the expected value of the relevant ordering, backorder, and

holding costs. Such a formulation requires a complete specification of the probability distribu-

tion of the underlying demand process. However, in applications knowledge of the exact dis-

tribution of the demand process is rarely available. This motivates the study of minimax type

(i.e. distributionally robust) formulations, where minimization is performed with respect to a

worst-case distribution from some family of potential distributions. In a pioneering paper Scarf

(1958) gave an elegant solution for the minimax news vendor problem when only the first and

second order moments of the demand distribution are known. His work has led to consider-

able follow-up work (cf. Gallego and Moon (1993, 1994), Gallego (1998, 2001), Popescu (2005),

Yue, Chen and Wang (2006), Gallego, Katircioglu and Ramachandran (2007), Perakis and Roels

(2008), Chen and Sim (2009), See and Sim (2010), Hanasusanto et al. (2015), Zhu, Zhang and Ye

(2013)). For a more general overview of risk analysis for news vendor and inventory mod-

els we can refer, e.g., to Ahmed, Cakmak and Shapiro (2007) and Choi, Ruszczyński and Zhao

(2011). We also note that a distributionally robust minimax approach is not the only way to

model such uncertainty, and that there is a considerable literature on alternative approaches

such as the robust optimization paradigm (cf. Kasugai and Kasegai (1961), Ben-Tal et al. (2005),

Bertsimas and Thiele (2006), Ben-Tal, Boaz and Shimrit (2009), Bertsimas, Iancu and Parrilo

(2010), Carrizosaa, Olivares-Nadal and Ramirez-Cobob (2016), Gabrel, Murat and Thiele (2014))

and Bayesian approach (cf. Scarf (1959, 1960), Lovejoy (1992), Levi, Perakis and Uichanco (2015),

Klabjan, Simchi-Levi and Song (2013)).

In practice an inventory must often be managed over some time horizon, and the classical

news vendor problem was naturally extended to the multistage setting, for which there is also

a considerable literature (see, e.g., Zipkin (2000) and the references therein). Recently, distri-

butionally robust variants of such multistage problems have begun to receive attention in the

literature (cf. Gallego (2001), Ahmed, Cakmak and Shapiro (2007), Choi and Ruszczynski (2008),

See and Sim (2010), Shapiro (2012), Klabjan, Simchi-Levi and Song (2013)). It has been observed

that such multistage distributionally robust optimization problems can exhibit a subtle phe-

nomenon known as time inconsistency. Over the years various concepts of time consistency have

been discussed in the economics literature, in the context of rational decision making. This can

be traced back at least to the work of Strotz (1955) - for a more recent overview we refer the

reader to the recent survey by Etner, Jeleva and Tallon (2012), and the references therein. Ques-

tions of time consistency have also attracted attention in the mathematical finance literature,

in the context of assessing the risk and value of investments over time, and have played an

important role in the associated theory of coherent risk measures (cf. Wang (1999), Artzner et al.

(2007), Roorda and Schumacher (2007), Cheridito and Kupper (2009), Ruszczyński (2010)). These
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concepts have also been studied from the perspective of robust control across various aca-

demic communities (cf. Hansen and Sargent (2001), Iyengar (2005), Nilim and El Ghaoui (2005),

Grunwald and Halpern (2011), Carpentier et al. (2012), Wiesemann, Kuhn and Rustem (2013)).

Recently, these concepts have also begun to receive attention in the setting of inventory control (cf.

Chen et al. (2007), Chen and Sun (2012), Yang (2013), Homem-de-Mello and Pagnoncelli (2016),

Shapiro and Xin (2017)).

In this work, we will consider questions of time (in)consistency in the context of managing an

inventory over time. We will give a formal definition of time consistency, which is naturally suited

to our framework, in Section 4. At this point let us provide the following high-level intuition.

A multistage distributionally robust optimization problem can be viewed in two ways. In one

formulation, the policy maker is allowed to recompute her policy choice after each stage (we will

refer to this as the distributionally robust dynamic programming (DP) formulation), thus taking

prior realizations of demand into consideration when performing the relevant minimax calculations

at later stages. In that case it follows from known results that there exists a base-stock policy

which is optimal. In the second formulation, the policy maker is not allowed to recompute her

policy after each stage (we will refer to this as the multistage-static formulation), in which case far

less is known. If these two formulations have a common optimal policy, i.e. the policy maker would

be content with the given policy whether or not she has the power to recompute after each stage

(w.p.1 under every joint distribution for demand belonging to the uncertainty set), we say that

the policy is time consistent, and the problem is weakly time consistent. If every optimal policy for

the multistage-static formulation is time consistent, i.e. it is impossible to devise a policy which

is optimal at time zero yet suboptimal at a later time, we say that the problem is strongly time

consistent. Such a property is desirable from a policy perspective, as it ensures that previously

agreed upon policy decisions remain rational when the policy is actually implemented, possibly at

a later time.

Within the optimization and inventory control communities, much of the work on time consis-

tency restricts its discussion of optimal policies to the setting in which the family of distributions

from which nature can select satisfies a certain factorization property called rectangularity, which

endows the associated minimax problem with a DP structure. Outside of this setting, most of the

literature focuses on discussing and demonstrating hardness of the underlying optimization prob-

lems (cf. Iyengar (2005), Nilim and El Ghaoui (2005), Wiesemann, Kuhn and Rustem (2013)). We

note that this is in spite of the fact that previous literature has discussed the importance and

relevance of such non-decomposable formulations from a modeling perspective (cf. Iyengar (2005)).
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1.1. Our contributions

In this paper, we depart from much of the past literature by seeking both negative and positive

results regarding time consistency when no such decomposition holds, i.e. the underlying fam-

ily of distributions from which nature can select is non-rectangular. Our work is in the spirit

of Grunwald and Halpern (2011), in which a definition of (weak) time consistency similar to

ours was analyzed in the context of rectangularity and dynamic consistency (a concept defined

in Epstein and Schneider (2003)), albeit in a substantially different context motivated by ques-

tions in decision theory and artificial intelligence. Our work can also be viewed as providing

a more in-depth and inventory-focused study of several notions of time-consistency studied in

Homem-de-Mello and Pagnoncelli (2016). In contrast to Homem-de-Mello and Pagnoncelli (2016)

and several other works in which all concepts are explained through the language of risk measures,

here we explain all relevant concepts purely in the language of (robust) newsvendor models with

moment constrainst, a model popular in the operations management community, and hope that in

doing so our work brings the concept of time-consistency to a broader audience.

We extend the work of Scarf (1958) (and followup work of Gallego (2001)) by considering the

question of time consistency in multistage news vendor problems when the support and first two

moments are known for the demand at each stage, and demand is stage-wise independent. In

addition to refining multiple definitions related to time-consistency, we provide several illustrative

examples showing that here the question of time consistency can be quite subtle. In particular: (i)

the problem can fail to be weakly time consistent, (ii) the problem can be weakly but not strongly

time consistent, and (iii) the problem can be strongly time consistent even if every associated

optimal policy takes different values under the multistage-static and distributionally robust DP

formulations. We also prove that, although the distributionally robust DP formulation always has

an optimal policy of base-stock form, there may be no such optimal policy for the multistage-static

formulation. We complement these observations by providing simple sufficient conditions for weak

and strong time consistency.

Interestingly, in contrast to much of the related literature, our results show that time consistency

may hold even when rectangularity does not. This stands in contrast to the analysis of Shapiro

(2012) for the setting in which only the mean and support of the demand distribution are known,

where the problem is always (weakly) time consistent, amenable to a simple DP solution, with both

formulations having the same optimal value. Likewise, in the setting in which only the support

is known, both formulations reduce to the so-called adjustable robust formulation described in

Ben-Tal et al. (2004), where again (weakly) time consistency always holds.
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1.2. Outline of paper

The structure of the rest of the paper is organized as follows. In Section 2, we review the single-stage

classical and distributionally robust formulations and their properties, as well as Scarf’s solution

to the single-stage distributionally robust formulation and various generalizations. In Section 3, we

discuss the extension to the multi-stage setting, formally defining the multistage-static formulation,

the relevant notions of time-consistency, and the distributionally robust DP formulation, and review

the notion of rectangularity and its relation to our own formulations. In Section 4, we prove our

sufficient conditions for weak and strong time consistency, and present several illustrative examples

showing that here the question of time consistency can be quite subtle. In Section 5, we provide

closing remarks and directions for future research. We include a technical appendix in Section 6.

2. Single-stage formulation

In this section we review both the classical and distributionally robust single-stage formulation,

including some relevant results of Scarf (1958) and Natarajan and Zhou (2007).

2.1. Classical formulation

Consider the following classical formulation of the news vendor problem:

inf
x≥0

E[Ψ(x,D)], (1)

where

Ψ(x,d) := cx+ b[d−x]+ +h[x− d]+, (2)

and c, b, h are the ordering, backorder penalty, and holding costs, per unit, respectively. Unless

stated otherwise we assume that b > c > 0 and h ≥ 0. The expectation is taken with respect to

the probability distribution of the demand D, which is modeled as a random variable having

nonnegative support. It is well known that this problem has the closed form solution x̄= F−1
(

b−c

b+h

)
,

where F (·) is the cumulative distribution function (cdf) of the demand D, and F−1 is its inverse. Of

course, it is assumed here that the probability distribution, i.e. the cdf F , is completely specified.

2.2. Distributionally robust formulation

Suppose now that the probability distribution of the demand D is not fully specified, but instead

assumed to be a member of a family of distributions M. Then we consider the following distribu-

tionally robust formulation:

inf
x≥0

ψ(x), (3)

where

ψ(x) := sup
Q∈M

EQ[Ψ(x,D)], (4)
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and the notation EQ emphasizes that the expectation is taken with respect to the distribution Q

of the demand D.

We now introduce some additional notations to describe certain families of distributions. For

a probability measure (distribution) Q, we let supp(Q) denote the support of the measure, i.e.

the smallest closed set A⊆R such that Q(A) = 1. With a slight abuse of notation, for a random

variable Z, we also let supp(Z) denote the support of the associated probability measure. For a

given closed (and possibly unbounded) subset I ⊆ R, we let P(I) denote the set of probability

distributions Q such that supp(Q) ⊆ I. Although we will be primarily interested in the setting

that I ⊆R+ (i.e. demand is nonnegative), it will sometimes be convenient for us to consider more

general families of demand distributions. By δa we denote the probability measure of mass one at

a∈R.

In this paper, we will study families of distributions satisfying moment constraints of the form

M :=
{
Q∈P(I) :EQ[D] = µ,EQ[D

2] = µ2 +σ2
}
. (5)

Unless stated otherwise, it will be assumed that M is indeed of the form (5), and is nonempty. We

let α denote the left-endpoint of I (or −∞ if I is unbounded from below), and let β denote the

right-endpoint of I (or +∞ if I is unbounded from above); i.e., I = [α,β]. Here we note that if α or

β equals ±∞, the interval should be interpreted as being unbounded in the associated direction(s).

It may be easily verified that the set M is nonempty iff the following conditions hold:

µ∈ [α,β] and σ2 ≤ (β−µ)(µ−α), (6)

which will be assumed throughout. (We assume here that 0×∞= 0, so that if, e.g., µ = α and

β =+∞, then the right hand side of (6) is 0.)

Furthermore, one can also identify conditions under which M is a singleton.

Observation 1 If −∞ < α < β < +∞, µ ∈ [α,β], and σ2 = (β − µ)(µ− α), then M consists of

the single probability measure which assigns to the point α probability p= β−µ

β−α
, and to the point β

probability 1− p= µ−α

β−α
.

We now rephrase ψ(x) as the optimal value of a certain optimization problem. For use in later

proofs, we define the following more general maximization problem, in terms of a general integrable

objective function ζ:
sup

Q∈P(I)

∫
ζ(τ)dQ(τ)

s.t.
∫
τdQ(τ) = µ,

∫
τ 2dQ(τ) = µ2 +σ2.

(7)

Our definitions imply that for all x∈R, ψ(x) equals the optimal value of Problem (7) for the special

case that ζ(τ) = Ψ(x, τ). Problem (7) is a classical problem of moments (see, e.g., Landau 1987).

From the Richter-Rogosinski Theorem (e.g., Shapiro, Dentcheva and Ruszczyński 2009, Proposi-

tion 6.40) or results in Bertsimas and Popescu (2005), we have the following.
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Observation 2 If Problem (7) possesses an optimal solution, then it has an optimal solution with

support of at most three points.

2.2.1. Review of relevant duality theory. As several of our later proofs will be based on

duality theory, we now briefly review duality for Problem (7). The dual of Problem (7) can be

constructed as follows (cf. Isii 1962). Consider the Lagrangian

L(Q,λ) :=

∫ [
ζ(τ)−

2∑

i=0

λiτ
i
]
dQ(τ)+λ0 +λ1µ+λ2(µ

2 +σ2).

By maximizing L(Q,λ) with respect to Q∈P(I), and then minimizing with respect to λ, we obtain

the following Lagrangian dual for Problem (7):

inf
λ∈R3

λ0 +λ1µ+λ2(µ
2 +σ2)

s.t. λ0 +λ1τ +λ2τ
2 ≥ ζ(τ), τ ∈ I.

(8)

We denote by val(P ) and val(D) the respective optimal values of the primal Problem (7) and its

dual Problem (8). By convention, if Problem (7) is infeasible, we set val(P ) =−∞, and if Problem

(8) is infeasible, we set val(D) = +∞. We denote by SolP (x) the set of optimal solutions of the

primal problem, and by SolD(x) the set of optimal solutions of the dual problem, and note that

these sets may be empty, even when both programs are feasible, e.g. if the respective optimal values

are approached but not attained.

Note that val(D) ≥ val(P ). We now give sufficient conditions for there to be no duality gap,

i.e. val(P ) = val(D), as well as conditions for Problems (7) and (8) to have optimal solutions. By

specifying known general results for duality of such programs, e.g., (Bonnans and Shapiro 2000,

Theorem 5.97), to the considered setting, we have the following.

Proposition 2.1 If Q̄ is a probability measure which is feasible for the primal Problem (7), λ̄=

(λ̄0, λ̄1, λ̄2) is a vector which is feasible for the dual Problem (8), and

supp(Q̄)⊆
{
τ ∈ I : ζ(τ) = λ̄0 + λ̄1τ + λ̄2τ

2
}
, (9)

then Q̄ is an optimal primal solution, λ̄ is an optimal dual solution, and val(P ) = val(D). Con-

versely, if val(P ) = val(D), and Q̄ and λ̄ are optimal solutions of the respective primal and dual

problems, then condition (9) holds.

2.2.2. Scarf’s solution. We note that the distributionally robust single-stage news vendor

problem considered by Scarf (1958) is exactly Problem (3), when I =R+. As it will be useful for

later proofs, we briefly review Scarf’s explicit solution. We actually state a slight generalization of

the results of Scarf, and for completeness we include a proof in the technical appendix (Section 6).

Define f(z) :=
(
(z−µ)2 +σ2

) 1
2 for all z ∈R.



Xin and Goldberg: Time (in)consistency of multistage robust inventory models
8 Article submitted to ; manuscript no.

Theorem 1 Suppose that b > c, c+ h > 0, µ > 0, σ > 0, and I = R+. Let κ := b−h−2c
b+h

. Then for

each x∈R,

ψ(x) =





cµ+ b+h

2

(
(x−µ)2+σ2

) 1
2 − b−h−2c

2
(x−µ), if x≥ µ2+σ2

2µ
,

(h+c)σ2−(b−c)µ2

µ2+σ2 x+ bµ, if x∈ [0, µ
2+σ2

2µ
),

bµ− (b− c)x, otherwise.

(10)

As a consequence, a complete solution to the problem infx∈Rψ(x) is as follows.

(i) If σ2

µ2 >
b−c

h+c
, then the unique optimal solution is x=0, and the optimal value is µb.

(ii) If σ2

µ2 <
b−c

h+c
, then the unique optimal solution is x= µ+ κσ(1− κ2)−

1
2 , and the optimal value

is cµ+
(
(h+ c)(b− c)

)1
2σ.

(iii) If σ2

µ2 =
b−c

h+c
, then all x∈ [0, µ+κσ(1−κ2)−

1
2 ] are optimal, and the optimal value is µb.

Furthermore, in all cases argmaxQ∈MEQ[Ψ(x,D)] is nonempty for every x∈R. Also, the optimal

solution set and value of the problem infx∈Rψ(x) is identical to that of Problem (3), i.e. optimizing

over x∈R, as opposed to x∈R+, makes no difference.

For use in later proofs (e.g., sufficient conditions for strong time consistency in Theorem 4), it

will also be useful to demonstrate a particular variant of Theorem 1. Suppose that in Problem (3),

we are not forced to select a deterministic constant x, but can instead select any distribution D1

for x. Specifically, let us consider the following minimax problem:

inf
Q1∈P(I)

φ(Q1), (11)

where

φ(Q1) := sup
Q2∈M

EQ1×Q2

[
Ψ(D1,D2)

]
,

and the notation EQ1×Q2
indicates that for any choices for the marginal distributions Q1,Q2 of D1

and D2, the expectation is taken with respect to the associated product measure, under which D1

and D2 are independent. In this case, we have the following result, whose proof we defer to the

technical appendix (Section 6).

Proposition 2.2 Suppose that b > c, c+h> 0, µ> 0, σ > 0, σ2

µ2 >
b−c

h+c
, and I =R. Then Problem

(11) has the unique optimal solution Q̄1 = δ0.

We also note that ψ inherits the property of convexity from Ψ.

Observation 3 Ψ(·, d) is a convex function for every fixed d ∈ I, ψ is a convex function on R,

and Problem (3) is a convex program.
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2.2.3. Generalization of Natarajan and Zhou (2007) to a class of convex, continu-

ous, piecewise affine functions. Scarf (1958) gave an explicit solution for Problems (7) and (8)

when I = R+, and ζ is a convex, continuous piecewise affine function with exactly two pieces, by

explicitly constructing a feasible primal - dual solution pair satisfying the conditions of Proposition

2.1 (details of this construction can be found in Section 6). Natarajan and Zhou (2007) general-

ized Scarf’s results to a class of convex, continuous, piecewise affine (CCPA) functions with three

pieces. We now state the solution to a special case of the problems studied in Natarajan and Zhou

(2007), as we will need the solution to such problems for our later studies of time consistency. For

completeness, we provide a proof in the technical appendix (Section 6).

Theorem 2 [Natarajan and Zhou (2007)] Suppose that there exist c1, c2 > 0 such that c1 < c2, and

ζ(d) = max{−d+ c1,0, d− c2} for all d ∈R. Let η := 1
2
(c1 + c2), and recall that f(z) :=

(
(z−µ)2 +

σ2
) 1

2 . Further suppose that σ > 0, I =R+,

1

4
(2µ− 3c1+ c2)(3c2− c1 − 2µ)≤ σ2,

and η − f(η) ≥ 0. Then the unique optimal solution to the primal Problem (7) is the probability

measure Q having support at two points h1 = η− f(η) and h2 = η+ f(η), with

Q(h1) = σ2
(
σ2 +

(
η− f(η)−µ

)2)−1

, Q(h2) = 1−Q(h1). (12)

Also, the unique optimal solution to the dual Problem (8) is

λ0 =
1
2

(
η2 +(η−µ)2 +σ2

)
f−1(η)+

c1 − c2
2

, λ1 =−ηf−1(η), λ2 =
1
2
f−1(η), (13)

where f−1(η) represents the reciprocal of f(η).

3. Multistage formulation

In this section, we study a multistage extension of the distributionally robust news vendor problem

discussed in Section 2.2.

3.1. Classical formulation

We begin by giving a quick review of the classical (i.e. non-robust) multistage news vendor problem

(also called inventory problem), and start by introducing some additional notations. For a vector

z = (z1, ..., zn) ∈ R
n and 1≤ i≤ j ≤ n, denote z[i,j] := (zi, ..., zj). In particular for i = 1 we simply

write z[j] for the vector consisting of the first j components of z, and set z[0] := ∅.
We suppose that there is a finite time horizon T , and a (random) vector of demands D =

(D1, . . . ,DT ). By d= (d1, . . . , dT ) we usually denote a particular realization of the random vector

D. We assume that the components of random vector D are mutually independent, and refer to
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this as the stagewise independence condition. We now define the family of admissible policies Π by

introducing two families of functions, {yt, t= 1, . . . , T} and {xt, t=1, . . . , T}. Conceptually, yt will
correspond to the inventory level at the start of stage t, and xt will correspond to the inventory

level after having ordered in stage t, but before the demand in that stage is realized.

We will consider policies which are nonanticipative, i.e. decisions do not depend on realizations of

future demand. We assume that y1, the initial inventory level, is a given constant. We also require

that one can only order a nonnegative amount of inventory at each stage. Thus the set of admissible

policies Π should consist of those vectors of (measurable) functions π = {xt(d[t−1]), t = 1, . . . , T},
such that xt :R

t−1
+ →R satisfies xt(d[t−1])≥ yt, for all d[t−1] ∈R

t−1
+ and t=1, ..., T , where

yt+1 = xt(d[t−1])− dt, t= 1, ..., T − 1. (14)

It follows that any given choice of π ∈ Π, along with the given y1, completely determines the

associated functions y1, . . . , yT . Sometimes we will explicitly express xt and yt as a function of the

associated policy π and demands d[t] with the notations xπ
t (d[t−1]) and yπt (d[t−1]); other times we

will suppress this notation. Combining the above, we can write the classical multistage news vendor

problem (inventory problem) as follows:

inf
π∈Π

E

{
T∑

t=1

ρt−1
[
ct
(
xπ
t (D[t−1])− yπt (D[t−1])

)
+Ψt

(
xπ
t (D[t−1]),Dt

)]
}
. (15)

Here ρ ∈ (0,1] is a discount factor, ct, bt, ht are the ordering, backorder penalty and holding costs

per unit in stage t, respectively, and

Ψt(xt, dt) := bt[dt −xt]+ +ht[xt − dt]+. (16)

Unless stated otherwise, we assume that bt > ct> 0 and ht ≥ 0 for all t= 1, ..., T .

Problem (15) can be viewed as an optimal control problem in discrete time with state variables

yt, control variables xt and random parameters Dt. It is well known that Problem (15) can be

solved using DP equations, which can be written as

Vt(yt) = inf
xt≥yt

{
ct(xt − yt)+E

[
Ψt(xt,Dt)+ ρVt+1(xt −Dt)

]}
, (17)

t= 1, ..., T , with VT+1(·)≡ 0 (e.g., Zipkin (2000)). Note that the value functions Vt(·) are convex,

and do not depend on the demand data because of the stagewise independence assumption. These

equations naturally define a set of policies through the relation xt(yt) ∈Xt(yt), where Xt(yt), t=

1, ..., T, is the set of optimal solutions of the problem

inf
xt≥yt

{
ct(xt − yt)+E[Ψt(xt,Dt)+ ρVt+1(xt −Dt)]

}
, (18)
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and the optimal value of Problem (15) is given by V1(y1). Note that xt(yt), t= 1, . . . , T , are functions

of yt, i.e., it suffices to consider policies (measurable functions) of the form xt = πt(yt); this fact

is well known from optimal control theory (see, e.g., Bertsekas and Shreve (1978) for technical

details). Of course, the assumption of stagewise independence is essential for this conclusion.

Under the specified conditions, the objective function of Problem (18) tends to +∞ as xt →
±∞. It thus follows from convexity that this objective function possesses a (possibly non-unique)

unconstrained minimizer x∗
t over x ∈ R, and x̄t := max{yt, x∗

t} is an optimal solution of Problem

(18). In particular, the so-called base-stock policy is optimal for the inventory Problem (15), where

we note that such a result is classical in the inventory literature.

Definition 3.1 A policy π ∈ Π is said to be a base-stock policy if there exist constants x∗
t , t =

1, . . . , T, such that

xπ
t =max

{
yπt , x

∗
t

}
, t= 1, . . . , T, (19)

That is, Problem (15) can be solved using the DP formulation (17) and associated policy (18)

in the following sense.

Lemma 3.1 The optimal value of Problem (15) equals V1(y1). Any policy π such that xπ
t (d[t−1])∈

Xt

(
yπt (d[t−1])

)
are for all t = 1, ..., T and d[t−1] ∈ R

t−1
+ , is an optimal solution to Problem (15).

Conversely, for any optimal policy π for Problem (15), and any t ∈ {1, ..., T}, there exists a set

A⊆ R such that Pr
(
yπt (D[t−1]) ∈A

)
= 1, and xπ

t (D[t−1]) ∈ Xt

(
yπt (D[t−1])

)
conditional on the event

{yπt (D[t−1]) ∈ A}. Furthermore, it follows from the convexity of the relevant cost-to-go functions

Vt(yt) that any set of base-stock constants {x∗
t , t= 1, . . . , T} such that x∗

t ∈ Xt(0) for all t ∈ [1, T ]

will yield an optimal policy for Problem (15).

As we shall see, such an equivalence does not necessarily hold for distributionally robust multi-

stage inventory problems with moment constraints.

3.2. Distributionally robust formulations

Suppose now that the distribution of the demand process is not known, and we only have at our

disposal information about the support and first and second order moments. In this case, it is

natural to use the framework previously developed for the single-stage problem (see Section 2) to

handle the distributional uncertainty at each stage. However, in the multistage setting, there is a

nontrivial question of how to model the associated uncertainty in the joint distribution of demand.

We will consider two formulations, one intuitively corresponding to the modeling choices of a

policy maker who does not recompute her policy choices after each stage and one corresponding

to a policy-maker who does. These two formulations are analogous to the two optimization models
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discussed in Iyengar (2005) and Nilim and El Ghaoui (2005) in the framework of robust MDP, and

can also be interpreted through the lens of (non)rectangularity of the associated families of priors

(cf. Epstein and Schneider (2003), Iyengar (2005), Nilim and El Ghaoui (2005)), as we will explore

later in this section. We refer to these formulations as multistage-static and distributionally robust

DP, respectively. Questions regarding the interplay between the sets of optimal policies of these two

formulations are important from an implementability perspective, as a policy deemed optimal at

time 0, but which does not remain optimal if the relevant decisions are re-examined at a later time,

may not be implemented by the relevant stake-holders. We note that such considerations were one

of the original motivations for the study of time consistency in economics (cf. Strotz (1955)). We

further note that the particular definitions and formulations we introduce here are by no means the

only way to define the relevant notions of time consistency, and again refer the reader to the survey

by Etner, Jeleva and Tallon (2012), and other recent papers in the optimization community (cf.

Iyengar (2005), Boda and Filar (2006), Carpentier et al. (2012), Iancu, Petrik and Subramanian

(2015), Homem-de-Mello and Pagnoncelli (2016), Shapiro and Xin (2017)) for alternative perspec-

tives.

We suppose that we have been given a sequence of closed (possibly unbounded) intervals It =

[αt, βt]⊂R, t= 1, . . . , T , and sequences of the corresponding means {µt, t= 1, . . . , T}, and variances

{σ2
t , t= 1, . . . , T}.

3.2.1. Multistage-static formulation. We first consider the following formulation, referred

to as multistage-static, in which the policy maker does not recompute her policy choices after each

stage. Let us define

Mt :=
{
Qt ∈P(It) :EQt

[Dt] = µt, EQt
[D2

t ] = µ2
t +σ2

t

}
, t= 1, ..., T ; (20)

M := {Q=Q1 × · · ·×QT :Qt ∈Mt, t= 1, ..., T}. (21)

That is, the set M consists of probability measures given by direct products of probability measures

Qt ∈Mt. This can be viewed as an extension of the stage-wise independence condition, employed in

Section 3.1, to the considered distributionally robust case. In order for the sets Mt to be nonempty

we assume that (compare with (6))

µt ∈ [αt, βt] and σ
2
t ≤ (βt−µt)(µt−αt), t= 1, ..., T. (22)

According to (21), the associated minimax problem supposes that although the set of associated

marginal distributions may be “worst-case”, the joint distribution will always be a product measure

(i.e. the demand will be independent across stages). The multistage-static formulation for the

distributionally robust inventory problem can then be formulated as follows.

inf
π∈Π

sup
Q∈M

EQ

[
Zπ

]
, (23)
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where Zπ =Zπ(D[T ]) is a function of D[T ] = (D1, ...,DT ) given by

Zπ(D[T ]) :=
T∑

t=1

ρt−1
[
ct
(
xπ
t (D[t−1])− yπt (D[t−1])

)
+Ψt

(
xπ
t (D[t−1]),Dt

)]
, (24)

and Π is the set of admissible policies defined previously in Section 3.1. Of course, if the set

M= {Q} is a singleton, then formulation (23) coincides with formulation (15) taken with respect

to the distribution Q=Q1 × · · ·×QT of the demand vector D[T ].

We note that the multistage-static formulation (23) is closely related to optimization

with risk measures. Indeed, the functional supQ∈MEQ

[
Z
]

is a coherent risk measure (cf.

Shapiro, Dentcheva and Ruszczyński (2009)).

Very little is known about the set of optimal policies for Problem (23), as this problem does not

enjoy a DP formulation along the lines of (17).

3.2.2. Time consistency and distributionally robust DP equations. As informally

referenced earlier, time inconsistency refers to the possibility that policy choices which seemed

optimal from the perspective of time 0 no longer seem optimal if one re-performs one’s min-

imax calculations at a later time. Although first addressed within the economics community,

the issue of time (in)consistency has recently started to receive attention in the stochastic

and robust optimization communities (cf. Riedel (2004), Boda and Filar (2006), Artzner et al.

(2007), Shapiro (2009), Ruszczyński (2010), Grunwald and Halpern (2011), Carpentier et al.

(2012), Shapiro (2012), Chen, Li and Guo (2013), Iancu, Petrik and Subramanian (2015),

Homem-de-Mello and Pagnoncelli (2016)), in which closely related concepts such as Pareto robust

optimality (Iancu and Trichakis (2014)) have also been studied. We note that related issues were

addressed even in the seminal work of Bellman (1957) on DP, where it is asserted that: “An optimal

policy has the property that whatever the initial state and initial decision are, the remaining deci-

sions must constitute an optimal policy with regard to the state resulting from the first decision.”

The same principle has been subsequently reformulated by several authors in a somewhat more

precise form, e.g., in the recent work of Carpentier et al. (2012), where it is asserted that “The

decision maker formulates an optimization problem at time t0 that yields a sequence of optimal

decision rules for t0 and for the following time steps t1, ..., tN = T . Then, at the next time step t1,

he formulates a new problem starting at t1 that yields a new sequence of optimal decision rules from

time steps t1 to T . Suppose the process continues until time T is reached. The sequence of optimiza-

tion problems is said to be dynamically consistent if the optimal strategies obtained when solving

the original problem at time t0 remain optimal for all subsequent problems.” A nearly identical

concept, which the authors refer to as the inherited-optimality-property (IOP), is also formalized

in Homem-de-Mello and Pagnoncelli (2016).
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To motivate the particular definition of time-consistency we will use here, which is very similar

to that used in e.g. Homem-de-Mello and Pagnoncelli (2016), let us reason as follows. Suppose we

wished to know whether a policy π which was optimal for the multi-stage static formulation had

the property that, should one re-perform one’s minimax calculation in the final period, one would

make the same ordering decision. As she cannot change past decisions, the only policy decision

she still has to make is the determination of the function xT . However, she now has knowledge of

D[T−1] and yT , which she can incorporate into her minimax computations. We note that here we

are faced with the modeling question of how to reconcile the use of D[T−1] and yT ’s realized values

in performing one’s minimax computations with the previously assumed stagewise independence

of demand. A natural approach, consistent with the economics literature on time consistency, is to

reason as follows. As D[T−1] has already been realized, it is unreasonable to enforce independence of

DT on this realization, as it is no longer undetermined. Instead, the relevant minimax computation

is carried out with this knowledge of the realization of D[T−1]. At that time, such a policy-maker

is thus led to the optimization (at time T)

inf
xT≥yT

{
cT (xT − yT )+ sup

QT∈MT

EQT
[ΨT (xT ,DT )]

}
,

with

YT (yT ) := argmin
xT≥yT

{
cT (xT − yT )+ sup

QT∈MT

EQT
[ΨT (xT ,DT )]

}

the corresponding set of optimal policy choices. Here we note that (for example) the inner maxi-

mization supQT∈MT
EQT

[ΨT (xT ,DT )] is implicitly a function of D[T−1], through the dependence on

xT . Thus time-consistency of an optimal policy π for the multi-stage static formulation should (at

least as regards policy decisions in this final period) be equivalent to requiring that xπ
T (D[T−1]) ∈

YT

(
yπT (D[T−1])

)
. We note that there is a second subtlety here. Indeed, as the exact distribution

of D[T ] is no longer known with certainty, the question of under which measures (for D[T ]) the

requirement xπ
t (D[t−1]) ∈YT

(
yπT (D[T−1])

)
should hold w.p.1 must be resolved. We note that when

all distributions in M have the same support, such issues do not arise, while for the moment-based

uncertainty sets we consider this distinction is important. We also note that many past works do

not take this subtlety into account in their definitions. Here, we propose the natural and intuitive

interpretation that one should require the inclusion hold w.p.1 for every measure in M, as these

are exactly those measures one believes possible.

Distributionally robust DP formulation. Before proceeding with our formal definition of

time consistency, let us expand on the distributionally robust DP formulation, which we have

defined only in the final period. Carrying out the same logic inductively, we conclude that if a policy

is to be deemed time-consistent when the policy-maker is (possibly) given the choice to recompute
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her minimax calculations in an arbitrary set of time periods, her choices should be consistent with

the following distributionally robust DP equations.

Vt(yt) = inf
xt≥yt

{
ct(xt − yt)+ sup

Qt∈Mt

EQt
[Ψt(xt,Dt)+ ρVt+1(xt −Dt)]

}
, (25)

t=1, ..., T , with VT+1(·)≡ 0. The optimal value of DP formulation (25) is given by V1(y1). Dynamic

equations (25) naturally define a set of policies of the form xt = πt(yt), t=1, . . . , T , with xt = πt(yt)

being measurable selections xt ∈Yt(yt) from sets

Yt(yt) := argmin
xt≥yt

{
ct(xt − yt)+ sup

Qt∈Mt

EQt
[Ψt(xt,Dt)+ ρVt+1(xt −Dt)]

}
, t= 1, ..., T. (26)

We refer to (25) as the distributionally robust DP formulation and V1(y1) as its optimal value.

We now observe that due to certain convexity properties, DP formulation (25) always possesses

an optimal base-stock policy. We note that such results are generally well-known to hold in this

setting (cf. Ahmed, Cakmak and Shapiro (2007)). Recall Definition 3.1 of a base-stock policy.

Observation 4 It follows from the convexity of the relevant cost-to-go functions Vt(yt) that Prob-

lem (25) possesses an optimal base-stock policy. Furthermore, any set of base-stock constants

{x∗
t , t= 1, . . . , T} such that x∗

t ∈Yt(0) for all t ∈ [1, T ] yields an optimal policy. Namely, for any

such {x∗
t , t= 1, . . . , T}, max{y,x∗

t } ∈Yt(y) for all y ∈R and t= 1, . . . , T .

We note that the same conclusion could also have been drawn by rephrasing our formulation

in the language of coherent risk measures, and applying known results for so-called nested risk

measures (cf. Ruszczyński and Shapiro (2006), (Shapiro, Dentcheva and Ruszczyński 2009, section

6.7.3)), although we do not pursue such an analysis here.

We note that the question of whether or not there exists such an optimal base-stock policy

for the multistage-static formulation is considerably more challenging, and will be central to our

discussion of time consistency.

We close our discussion of the distributionally robust DP formulation with a final definition,

formalizing our earlier discussion of for which measures one should require optimality (of decisions)

under the distributionally robust DP formulation.

Definition 3.2 (Robust-w.p.1-optimal) Let us say that a policy π ∈Π is robust-w.p.1-optimal

for the distributionally robust DP formulation if for all Q ∈M, w.p.1 xπ
t (D[t−1]) ∈Yt

(
yπt (D[t−1])

)

for all t∈ [1, T ].

Formal definition of time consistency. We now formally define time consistency, in light

of our earlier discussion. We note that given the motivation behind time consistency, i.e. imple-

mentation of policies, a further subtlety must be considered. Clearly, it is desirable for there
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to exist at least one policy which is optimal both initially, and if reconsidered at later times.

However, it is similarly undesirable for there to exist even one policy which could potentially be

selected (i.e. optimal) initially, but deemed sub-optimal (i.e. non-implementable) at a later time.

Although such a notion is of course a stringent requirement (as noted informally in passing in

Homem-de-Mello and Pagnoncelli (2016)), we believe that its conceptual importance none-the-less

makes it worthy of further study. This motivates the following definition(s) of time consistency,

where we note that similar definitions were presented in Grunwald and Halpern (2011) in a dif-

ferent context motivated by considerations in decision theory and artificial intelligence. Then our

definition of time consistency is as follows.

Definition 3.3 (Time consistency) If a policy π ∈Π is optimal for the multistage-static formu-

lation (23), and robust-w.p.1-optimal for the distributionally robust DP formulation, we say that

π is time consistent. If there exists at least one optimal policy π ∈Π which is time consistent, we

say that Problem (23) is weakly time consistent. If every optimal policy of Problem (23) is time

consistent, we say that Problem (23) is strongly time consistent.

Of course the notion of strong time consistency makes sense only if Problem (23) possesses

at least one optimal solution. Otherwise it is strongly time consistent simply because the set of

optimal policies is empty.

Our definition of time consistency can, in a certain sense, be viewed as an extension of the

definition typically used in the theory of risk measures to an optimization context. In Section 4.3.3,

we show that it is possible for the multistage-static problem to have an optimal solution and to

be strongly time consistent, but with a different optimal value than the distributionally robust DP

formulation. That is, it is possible for the multistage-static problem to possess an optimal solution

and to be strongly time consistent even when the rectangularity property does not hold. This

stands in contrast to the definition of consistency typically used in the theory of risk measures,

i.e. the notion of dynamic consistency coming from Epstein and Schneider (2003) and based on a

certain stability of preferences over time, which may result in a problem being deemed inconsistent

based on the values that a given optimal policy takes under the different formulations, and even

the values taken by suboptimal policies (cf. Ruszczyński (2010), Grunwald and Halpern (2011)). In

an optimization setting one may be primarily concerned only with the implementability of optimal

policies, irregardless of their values and the values of suboptimal policies, and this is the approach

we take here. We note that such optimization-oriented formulations have been considered in several

recent works, e.g. Carpentier et al. (2012) and Homem-de-Mello and Pagnoncelli (2016), and our

definitions are largely consistent with those works.
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Before exploring some of the subtle and interesting features of time (in)consistency for our model,

we briefly review some previously known results for related models. Note that if the set M is a

singleton, then both the multistage-static and distributionally robust DP formulations collapse

to the classical formulation. Hence both formulations have the same optimal value and strong

time consistency follows. If one only has information about the support It, and hence takes Mt

to be the set of all probability measures supported on the interval It, t= 1, ..., T , then both the

multistage-static and distributionally robust DP formulations collapse to the so-called adjustable

robust formulation (cf. Ben-Tal et al. (2004), Shapiro (2011)), which is purely deterministic. As a

consequence, both formulations have the same optimal value and weak time consistency follows.

However, the recent work of Shapiro and Xin (2017) (itself inspired in part by an earlier version of

this paper, Xin, Goldberg and Shapiro (2013)), shows that even in that setting strong time con-

sistency need not hold, and studies related phenomena in several particular problems with general

moment constraints. However, we note that all inventory problems considered in Shapiro and Xin

(2017) are weakly time consistent with both formulations having the same optimal value due to the

rectangularity of the underlying set of measures. Shapiro and Xin (2017) also shows that there are

interesting connections between the notions of weak and strong time-consistency and the concept

of “strict monotonicity” for risk measures (e.g., Shapiro (2017)), and we leave further investigations

of this connection as an interesting direction for future research. We also note that the existence

of optimal time inconsistent policies was investigated earlier in several purely robust (i.e. deter-

ministic) settings. In particular, Bertsimas, Iancu and Parrilo (2010) demonstrated the optimality

of so-called affine policies in certain settings, and Delage and Iancu (2015) explicitly constructed

optimal time inconsistent policies in an inventory control setting.

Connection to rectangularity. To contextualize our definitions within the broader literature,

we here briefly review the relevant notion of rectangularity. Our definitions will closely follow those

given in Shapiro (2016), although we note that many closely related definitions have appeared

previously throughout the literature (see e.g. Iyengar (2005)). Consider the cost Zπ =Zπ(D[T ]) of

a policy π, defined in (24). Let M̂ be a set of probability distributions for the demand vector D[T ],

and let Q∈ M̂. At the moment we do not assume that Q is of the product form Q=Q1×· · ·×QT ,

we will discuss this later. We can write

EQ[Z
π] =EQ

[
EQ|D1

[
· · · EQ|D[T−2]

[
EQ|D[T−1]

[Zπ]
]]]

, (27)

where EQ|D[t]
[Zπ] is the conditional expectation, given D[t], with respect to the distribution Q of

D[T ]. Of course, this conditional expectation is a function of D[t]. Consequently,

sup
Q∈M̂

EQ[Z
π]≤ sup

Q∈M̂

EQ

[
sup
Q∈M̂

EQ|D1

[
· · · sup

Q∈M̂

EQ|D[T−1]
[Zπ]

]]
. (28)
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The right hand side of (28) leads to the nested formulation

inf
π∈Π

{
sup
Q∈M̂

EQ

[
sup
Q∈M̂

EQ|D1

[
· · · sup

Q∈M̂

EQ|D[T−1]
[Zπ]

]]}
. (29)

In particular, if the set M̂ is defined in the form (21), i.e., consists of products of probability

measures (with the t-th measure drawn from Mt), then formulation (29) simplifies to

inf
π∈Π

{
sup

Q1∈M1

EQ1

[
sup

Q2∈M2

EQ2|D1

[
· · · sup

QT∈MT

EQT |D[T−1]
[Zπ]

]]}
. (30)

It follows from (28) that the optimal value of (29) is greater than or equal to the optimal value

of the multistage-static Problem (23). Moreover, the optimal value of (29) can be strictly greater

than the optimal value of (23). Let us demonstrate this through the following simple example.

Example 1 Let T =2 and the set M̂ be of the product form (21). Suppose further that I1 = [0,1],

µ1 = 1/2 and σ2
1 = 1/4. Then M1 = {Q1} is a singleton with Q1 = p1δ0 + p2δ1, p1 = p2 = 1/2,

i.e., with probability 1/2 the demand D1 can be either zero or one. Let us fix some policy π ∈ Π

and let Zπ = Zπ(D1,D2) be the corresponding objective function. Then the associated cost under

formulation (23) equals

sup
Q2∈M2

EQ1×Q2
[Zπ(D1,D2)] = sup

Q2∈M2

(
p1EQ2

[Zπ(0,D2)]+ p2EQ2
[Zπ(1,D2)]

)
, (31)

while the associated cost under formulation (29) equals

EQ1

[
sup

Q2∈M2

EQ2|D1
[Zπ(D1,D2)]

]
= p1 sup

Q2∈M2

EQ2
[Zπ(0,D2)]+ p2 sup

Q2∈M2

EQ2
[Zπ(1,D2)]. (32)

Note that the worst case distribution Q2 ∈M2 in (31) has to be the same for all possible realizations

of the demand D1. In contrast, the worst case distribution Q2 ∈M2 in (32) is allowed to depend

on realized D1. Hence the right hand side of (32) can be strictly greater than the right hand side of

(31).

In line with the definition given in Shapiro (2016), we say that the set M̂ of probability measures

is rectangular if such strict inequality does not occur for any r.v. Zπ, i.e. the two formulations are

equivalent in their optimal values. More formally, we make the following definition.

Definition 3.4 Consistent with the definition given in Shapiro (2016), we say that the set M̂ of

probability measures is rectangular if for every measurable and non-negative function f ,

sup
Q∈M̂

EQ[f(D[T ])] = sup
Q∈M̂

EQ

[
sup
Q∈M̂

EQ|D1

[
· · · sup

Q∈M̂

EQ|D[T−1]
[f(D[T ])]

]]
. (33)
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We note that under additional compactness assumptions on the support of D[T ], Shapiro (2016)

formally explores several related concepts and subtleties of this definition, e.g. proves that one can

associate a rectangular set of probability measures to any given (possibly non-rectangular) set of

probability measures, but as such a compactness condition does not hold in our setting we do not

explore that further here.

For a rectangular set M̂ the static formulation

inf
π∈Π

sup
Q∈M̂

EQ

[
Zπ

]
, (34)

is equivalent (in an appropriate sense, see e.g. Shapiro (2016, 2017)) to the formulation (29).

Furthermore, the natural generalization of the distributionally robust DP equations (25) can be

applied to (34), with both formulations having a common optimal policy and the same optimal

value.

We note that the concept of rectangularity has been central to the past litera-

ture on time consistency (cf. Epstein and Schneider (2003), Grunwald and Halpern (2011),

Iancu, Petrik and Subramanian (2015)), especially as it relates to optimization (cf. Iyengar (2005),

Nilim and El Ghaoui (2005), Wiesemann, Kuhn and Rustem (2013)). In several of these works,

connections were made between tractability of the associated robust MDP and various notions

of rectangularity (e.g. (s,a)-rectangularity, s-rectangularity). We refer the interested reader to

Wiesemann, Kuhn and Rustem (2013) and the references therein for details. Our definition of rect-

angularity is aimed directly at the decomposability property of the static formulation ensuring its

equivalence to the corresponding dynamic formulation (see Shapiro (2016) for details).

In general the set of product measures M we consider in this work is not rectangular, as certified

by the possible lack of weak time-consistency which we will soon demonstrate. We note that a

rectangular analogue of the set of measures M defined in (20)-(21) would be the set of all joint

distributions Q for D[T ] such that

Dt ∈P(It) , EQ[Dt|D[t−1]] = µt , EQ[D
2
t |D[t−1]] = µ2

t +σ2
t , t= 1, . . . , T. (35)

Non-rectangular (and intractable) formulations for robust MDP are described in both Iyengar

(2005) and Nilim and El Ghaoui (2005). In Iyengar (2005), it is referred to as the static formula-

tion, while in Nilim and El Ghaoui (2005), it is referred to as the stationary formulation. In both

of these settings, these non-rectangular formulations essentially equate to requiring nature to select

the same transition kernel every time a given state (and action, depending on the formulation)

is encountered, as opposed to being able to select a different kernel every time a given state is

visited in the robust MDP, and we refer the reader to Iyengar (2005), Nilim and El Ghaoui (2005),
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and Wiesemann, Kuhn and Rustem (2013) for details. Although our multistage-static formulation

could similarly be phrased in terms of a particular kind of dependency between the choices of

nature in a robust MDP framework, and would be significantly different from either of the afore-

mentioned non-rectangular formulations, we do not pursue such an investigation here, and leave

the formalization of such connections as a direction for future research.

4. Time consistency : sufficient conditions and (counter) examples
4.1. Sufficient conditions for weak time consistency

In this section, we provide simple sufficient conditions for the weak time consistency of Problem

(23). Our condition is essentially equivalent to monotonicity of the associated base-stock constants.

Intuitively, in this case the inventory manager can always order up to the optimal inventory level

with which to enter the next time period, irregardless of previously realized demand. Thus any

potential for the adversary to take advantage of previously realized demand information in the

distributionally robust DP formulation is “masked” by the fact that the actual attained inventory

level will always be this idealized level, under both formulations. We note that several previous

works have identified monotonicity of base-stock levels as a condition which causes various inven-

tory problems to become tractable, in a variety of settings (cf. Veinott (1965), Ignall and Veinott

(1969), Jagannathan (1978), Zipkin (2000)). In particular, Jagannathan (1978) studied a similar

distributionally robust inventory model with moment constraints and identified monotonicity of

base-stock levels as a sufficient condition for a myopic base-stock policy to be optimal. For com-

pleteness of the paper (as well as use in the later proofs), we state a variant of the results of

Jagannathan (1978) in this section and include a proof in the appendix.

We begin by providing a different (but equivalent) formulation for Problem (23), in which all

relevant instances of yt are rewritten in terms of the appropriate xt functions, as this will clarify

the precise structure of the relevant cost-to-go functions. As a notational convenience, let cT+1 = 0,

in which case we define

Ψ̂t(xt, dt) := (ct − ρct+1)xt + bt[dt −xt]+ +ht[xt − dt]+, t= 1, ..., T. (36)

Let us define the problem

inf
π∈Π

sup
Q∈M

EQ

[
T∑

t=1

ρt−1Ψ̂t

(
xt(yt),Dt

)
]
− c1y1 +

T−1∑

t=1

ρtct+1µt. (37)

Then, using straightforward substitution we can make the following observation.

Observation 5 Problem (23) and Problem (37) are equivalent, i.e. each policy π ∈Π has the same

value under both formulations.
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We now derive a lower bound for any policy by allowing the policy maker to reselect her inventory

at the start of each stage, at no cost. As it turns out, this bound is “attainable” when the set of

base-stock levels is monotone increasing. For x∈R, let us define

ηt(x) := sup
Qt∈Mt

EQt
[Ψ̂t(x,Dt)], Γx

t := argmax
Qt∈Mt

EQt
[Ψ̂t(x,Dt)], (38)

and let
η̂t := inf

x∈R

ηt(x) = inf
x∈R

sup
Qt∈Mt

EQt
[Ψ̂t(x,Dt)],

Γ̂t := argmin
x∈R

ηt(x) = argmin
x∈R

sup
Qt∈Mt

EQt
[Ψ̂t(x,Dt)].

(39)

For j ≥ 1, and probability measures Q1, . . . ,Qj , let us define ⊗j
t=1Qt := Q1 × . . .×Qj, i.e. the

associated product measure with the corresponding marginals. Then we have the following.

Lemma 4.1 Suppose that the sets Γx
t , Γ̂t are non-empty for all x ∈ R, t= 1, ..., T . Let us fix any

π = (x1, . . . , xT ) ∈ Π, and i ≥ 0. Then for any given Q1 ∈ M1, . . . ,Qi ∈ Mi, there exist Qi+1 ∈
Mi+1, . . . ,QT ∈MT such that

E⊗T
j=1Qj

[
Ψ̂t

(
xt(yt),Dt

)]
≥ η̂t for all t≥ i+1. (40)

Furthermore, the optimal value of Problem (23) is at least
∑T

t=1 ρ
t−1η̂t − c1y1 +

∑T−1

t=1 ρ
tct+1µt.

We defer the proof to the technical appendix (Section 6). We now show that the bound of Lemma

4.1 is “realizable” when the set of base-stock levels is monotone increasing, and that in this case the

associated base-stock policy is optimal for both the multistage-static and distributionally robust

DP formulations. In particular, in this setting, the associated base-stock policy is time consistent,

and thus the multistage-static problem is weakly time consistent. Again we defer the proof to the

appendix Section 6.

Theorem 3 Suppose there exists a nondecreasing sequence x∗
t , t= 1, ..., T , such that y1 ≤ x∗

1, and

x∗
t ∈ Γ̂t, t = 1, ..., T , where Γ̂t is defined in (39). Also suppose It ⊂ R+ for all t = 1, ..., T . Then

the base-stock policy π for which xt(y) = max{y,x∗
t} for all y ∈ R, is an optimal policy for the

multistage-static formulation, and a robust-w.p.1-optimal policy for the distributionally robust DP

formulations, and attains value
∑T

t=1 ρ
t−1η̂t − c1y1 +

∑T−1

t=1 ρ
tct+1µt under both formulations. Con-

sequently, this base-stock policy is time consistent, and the multistage-static problem is weakly time

consistent.

We note that Theorem 3 implies that if the parameters µt, σt, ct, bt, ht and It are the same for all

t= 1, ..., T , and hence the sets Mt are also the same for all t, then the multistage-static problem

is weakly time consistent, and the multistage-static and distributionally robust DP formulations

have the same optimal value.
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4.2. Sufficient conditions for strong time consistency

In this section, we show that under additional assumptions, which ensure that the variance in each

stage is sufficiently large, the multistage-static problem is strongly time consistent. As we will see,

in this case there is a unique optimal base-stock policy, and in this policy all base-stock constants

equal zero, the intuition being that when the variance is sufficiently large, it becomes undesirable

to give nature any additional “wiggle room”. We further note that such a base-stock policy has

been widely adopted in practice and the resulting inventory system is a so-called Make-To-Order

(MTO) or “Pull” system. In such a system, no inventory is carried and the replenishment is based

on actual demands instead of forecasts (cf. Williams (1984), Arreola-Risa and DeCroix (1998),

Federgruen and Katalan (1999), Rajagopalan (2002), Kaminsky and Kaya (2009)). We will later

see in Section 4.3.2 that deviating slightly from this setting may lead to a lack of strong time

consistency. In particular, our results demonstrate that strong time consistency is a very fragile

property. Our sufficient conditions are as follows.

Theorem 4 Suppose that b′t := bt − ct + ρct+1 > 0, h′
t := ht + ct − ρct+1 > 0, σt, µt > 0, It =R+, t=

1, . . . , T , y1 = 0, and

σ2
t

µ2
t

>
b′t
h′
t

, t= 1, ..., T. (41)

Then the set of optimal policies for the multistage-static problem is exactly the set of policies

Π0 :=
{
π= (x1, . . . , xT )∈Π : x1(y1) = 0, xt(z) = 0 for all z ≤ 0 and t∈ [1, T ]

}
,

and the multistage-static problem is strongly time consistent.

We defer the proof to the technical appendix (Section 6).

We note that under certain rectangularity-related assumptions, necessary and sufficient condi-

tions for the existence of time-inconsistent optimal policies in an inventory setting with moment

constraints was very recently provided in Shapiro and Xin (2017). However, those results are not

applicable to the setting we consider, as the uncertainty sets we consider here are inherently

non-rectangular, and thus (for example) our formulation allows for the non-existence of weak time-

consistency, as well as the two formulations having different optimal values, and even the possibility

that no policy of base-stock form is optimal for the multistage-static formulation (while the assump-

tions of Shapiro and Xin (2017) do not allow for such behavior). Furthermore, Shapiro and Xin

(2017) considers only 2-period problems, while the sufficient conditions provided in this work hold

in the general multi-period setting.
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4.3. Further investigation of time (in)consistency

We now demonstrate that the question of time (in)consistency becomes quite delicate for inventory

models with moment constraints, by considering a series of examples in which our model exhibits

interesting (and sometimes counterintuitive) behavior. In particular: (i) the problem can fail to be

weakly time consistent, (ii) the problem can be weakly but not strongly time consistent, and (iii)

the problem can be strongly time consistent even if every associated optimal policy takes different

values under the multistage-static and distributionally robust DP formulations. We also prove that,

although the distributionally robust DP formulation always has an optimal policy of the base-stock

form, there may be no such optimal policy for the multistage-static formulation. We note that (i)

and (ii) are subtle phenomena which the simpler models discussed in several previous works (e.g.

Shapiro (2012)) cannot exhibit. We also note that (iii) emphasizes an interesting and surprising

feature of our model and definitions: (strong) time consistency can hold even when the underlying

family of measures from which nature can select is non-rectangular. This stands in contrast to

much of the related work on time consistency, where rectangularity is essentially taken as a pre-

requisite for time consistency. We also note that (iii) stands in contrast to some alternative, less

policy-focused definitions of time consistency, e.g. those definitions appearing in the literature on

risk measures (cf. Epstein and Schneider (2003)), under which time consistency could not hold if

an optimal policy took different values under the two formulations. We view our results as a step

towards understanding the subtleties which can arise when taking a policy-centric view of time

consistency in an operations management setting. Throughout this section, we will let Πopt
s denote

the set of all optimal policies for the corresponding multistage-static problem, and Πopt

d denote the

set of all robust-w.p.1-optimal policies for the corresponding distributionally robust DP problem.

4.3.1. Example: a multistage-static problem that is not weakly time consistent. In

this section, we explicitly provide an example for which the multistage-static problem is not weakly

time consistent. Furthermore, for this example, the multistage-static and distributionally robust

DP formulations have different optimal values.

Let us define y1 =10, ρ= 1,

I1 = [1,3], µ1 = 2, σ1 = 1, c1 =0, b1 = 2, h1 =2,

I2 =R+, µ2 = 8, σ2 =2, c2 = 0, b2 =1, h2 = 1.

Let Π̃s denote the set of policies π̃ = (x̃1, x̃2) such that x̃1(10) = 10, x̃2(9) = 9, x̃2(7) = 7, and Π̃d

denote the set of policies π̃ = (x̃1, x̃2) such that x̃1(10) = 10, x̃2(9) = 9, x̃2(7) = 8. Note that here

(and in later statements) we have defined a set of policies by specifying a required behavior at

only a few values, and allow the behavior at all other values to be arbitrary (subject to the overall

policy belonging to Π).
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Theorem 5 Πopt
s = Π̃s, and the optimal value of the multistage-static problem is 18. On the other

hand, Πopt
d ⊆ Π̃d, and the optimal value of the distributionally robust DP problem is 17+

√
5
2
> 18.

Consequently, the multistage-static problem is not weakly time consistent, and the multistage-static

and distributionally robust DP problems have different optimal values.

We defer the proof to the technical appendix (Section 6).

4.3.2. Example: a multistage-static problem that is weakly time consistent, but

not strongly time consistent. In this section, we explicitly provide an example showing that

it is possible for the multistage-static problem to be weakly time consistent, but not strongly time

consistent. In particular, there is a base-stock policy π∗, with associated base-stock constants x∗
1, x

∗
2

satisfying the conditions of Theorem 3, which is optimal for the multi-stage static formulation

and robust-w.p.1-optimal for the distributionally robust DP formulation, yet the multistage-static

problem has other non-trivial optimal policies which are not robust-w.p.1-optimal for the distri-

butionally robust DP formulation. The intuitive explanation is as follows. In the multistage-static

formulation, one can leverage the randomness in the realization of D1 to construct a policy π′ such

that with positive probability xπ′

2 (y2) is slightly below x∗
2, and with the remaining probability is

slightly above x∗
2. Since in the multistage-static formulation nature cannot observe the realized

inventory in stage 2 before selecting a worst-case distribution, it turns out that such a policy incurs

the same cost as π′ under the multistage-static formulation. However, under the distributionally

robust DP formulation, such a perturbation leads to sub-optimality. We note that such a lack of

strong time consistency can also be interpreted as resulting from the fact that optimality of a policy

for the static formulation does not require optimality for every possible measure which nature can

select, analogous to the ideas explored (in the robust optimization setting) in Iancu and Trichakis

(2014). We note that in this example, even though the multistage-static problem is not strongly

time consistent, both formulations have the same optimal value, as dictated by Theorem 3.

Let us define y1 =0, ρ=1,

I1 = [1,3], µ1 = 2, σ1 = 1, c1 =0, b1 = 1, h1 =1,

I2 =R+, µ2 = 10, σ2 =1, c2 =0, b2 = 1, h2 =1.

Then we prove the following, whose proof we defer to the technical appendix (Section 6).

Theorem 6 The multistage-static problem is weakly time consistent, but not strongly time consis-

tent.
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4.3.3. Example: a multistage-static problem that is strongly time consistent, but

the two formulations have a different optimal value. In this section, we explicitly provide an

example showing that it is possible for the multistage-static problem to be strongly time consistent,

yet for the two formulations to have different optimal values. We note that, although it is expected

that there will be settings where the two formulations have different optimal values, it is somewhat

surprising that this is possible even when the two formulations have the same set of optimal policies.

As discussed previously, we note that this possibility stands in contrast to several related works

which consider alternative, less policy-focused definitions of time consistency, e.g. those definitions

appearing in the literature on risk measures.

Let us define y1 =0, ρ=1,

I1 = [1,3], µ1 = 2, σ1 = 1, c1 =0, b1 = 0, h1 =0,

I2 =R+, µ2 = 100, σ2 = 5, c2 = 2, b2 = 1, h2 =1.

Let Π̃ denote the set of policies π̃ = (x̃1, x̃2) such that x̃1(0) = 102, x̃2(101) = 101, x̃2(99) = 99.

Then we prove the following, whose proof we defer to the technical appendix (Section 6).

Theorem 7 Πopt
s = Π̃, and the multistage-static problem is strongly time consistent. However, the

optimal value of the multistage-static problem equals 5, while the optimal value of the distribution-

ally robust DP problem equals
√
26> 5.

4.3.4. Example: a multistage-static problem that has no optimal policy of base-

stock form. In this section, we explicitly provide an example showing that it is possible for the

multistage-static problem to have no optimal base-stock policy, where we note that in all our

previous examples the associated multistage-static problem did indeed have an optimal base-stock

policy (possibly different from that of the associated distributionally robust DP problem). Note that

this stands in contrast to the distributionally robust DP formulation, which always has an optimal

base-stock policy by Observation 4. It remains an interesting open question to develop a deeper

understanding of the set of optimal policies for the multistage-static problem, where we again note

that some preliminary investigations of such distributionally robust problems with independence

constraints can be found in Lam and Ghosh (2013). Both the results of Lam and Ghosh (2013),

and our own result, indicate that the structure of optimal policies for the multistage-static problem

may be very complicated.

To prove the desired result, it will be useful to consider a family of problems parameterized by a

parameter ǫ. In particular, let ǫ∈
(
0, 1

2
(
√
6− 2)

)
be any sufficiently small strictly positive number.

It may be easily verified that for any such ǫ, one has ǫ∈ (0, 1
4
), and

1

2
− 2ǫ− ǫ2> 0. (42)
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Let us define y1 = 10− ǫ, ρ= 1,

I1 = [1− ǫ, 3+ ǫ], µ1 =2, σ1 = 1, c1 = 0, b1 =2, h1 = 2,

I2 =R+, µ2 = 8, σ2 =3, c2 = 0, b2 =1, h2 = 1.

Then we prove the following, whose proof we defer to the technical appendix (Section 6).

Theorem 8 Suppose ǫ satisfies (42). Then any admissible policy π̃ = (x̃1, x̃2) ∈ Π satisfying

x̃1(y1) = y1, x̃2(D1) = y1−D1+ǫ belongs to Πopt
s , and the corresponding optimal value equals 19−2ǫ.

Moreover, no base-stock policy belongs to Πopt
s .

5. Conclusion

In this paper, we analyzed the notion of time consistency in the context of managing an inventory

under distributional uncertainty. In particular, we studied the associated multistage distribution-

ally robust optimization problem, when only the mean, variance and distribution support are

known for the demand at each stage. Our contributions were three-fold. First, we gave a refined

policy-centric definition for time consistency in this setting, and put our definition in the broad

context of prior work on time consistency and rectangularity. More precisely, we defined two nat-

ural formulations for the relevant optimization problem. In the multistage-static formulation, the

policy-maker cannot recompute her policy after observing realized demand. In the distributionally

robust DP formulation, she is allowed to reperform her minimax computations at each stage. If

there exists a policy which is optimal for both formulations (w.p.1 under every joint distribution

for demand belonging to the uncertainty set), we say that the policy is time consistent, and the

problem is weakly time consistent. If every optimal policy for the multistage-static formulation is

time consistent, we say that the problem is strongly time consistent.

Second, we gave sufficient conditions for weak and strong time consistency. Intuitively, our suf-

ficient condition for weak time consistency coincides with the existence of an optimal base-stock

policy in which the base-stock constants are monotone increasing. Our sufficient condition for

strong time consistency can be interpreted in two ways. On the one hand, strong time consistency

holds if the unique optimal base-stock policy for the distributionally robust DP formulation is to

order-up to 0 at each stage, i.e., the well-known Make-To-Order policy. Alternatively, we saw that

this condition also has an interpretation in terms of requiring that the demand variances are suf-

ficiently large relative to their respective means. Third, we gave a series of examples of two-stage

problems exhibiting interesting and counterintuitive time (in)consistency properties, showing that

the question of time consistency can be quite subtle in this setting. In particular: (i) the problem
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can fail to be weakly time consistent, (ii) the problem can be weakly but not strongly time consis-

tent, and (iii) the problem can be strongly time consistent even if every associated optimal policy

takes different values under the multistage-static and distributionally robust DP formulations. We

also proved that, although the distributionally robust DP formulation always has an optimal policy

of base-stock form, there may be no such optimal policy for the multistage-static formulation. This

stands in contrast to the analogous setting, analyzed in Shapiro (2012), in which only the mean

and support of the demand distribution is known at each stage, for which it is known that such

phenomena cannot occur (as the problem is always weakly time consistent).

We departed from much of the past literature by demonstrating both negative and positive

results regarding time consistency when the underlying family of distributions from which nature

can select is non-rectangular, a setting in which most of the literature focuses on demonstrating

hardness of the underlying optimization problems and other negative results. Furthermore, our

example demonstrating that it is possible for the multistage-static problem to be strongly time

consistent, but with a different optimal value than the distributionally robust DP formulation,

stands in contrast to the definition of time consistency typically used in the theory of risk mea-

sures, i.e. the notion of dynamic consistency coming from Epstein and Schneider (2003), under

which a problem may be deemed time inconsistent based on the values that a given optimal policy

takes under the different formulations, and even the values taken by suboptimal policies. Indeed,

our definitions are motivated by the fact that in an optimization setting, one may be primarily

concerned only with the implementability of optimal policies, irregardless of their values and the

values of suboptimal policies, building on the more optimization-oriented definitions provided in

Carpentier et al. (2012) and the recent work Homem-de-Mello and Pagnoncelli (2016).

Our work leaves many interesting directions for future research. The general question of time

consistency remains poorly understood. Furthermore, our work has shown that this question can

be quite subtle. For the particular model we consider here, it would be interesting to develop a

better understanding of precisely when time consistency holds. It is also an intriguing question to

understand how much our two formulations can differ in optimal value and policy, even when time

inconsistency occurs, along the lines of Huang et al. (2011), Asamov and Ruszczyński (2015), and

Iancu, Petrik and Subramanian (2015). On a related note, it is largely open to develop a broader

understanding of the optimal solution to the multistage-static problem, or even approximately

optimal solutions, as well as related algorithms, where we note that preliminary investigations

along these lines were recently carried out in Lam and Ghosh (2013). Of course, it is also an open

challenge to understand the question of time consistency more broadly, how precisely the various

definitions of time consistency presented throughout the literature relate to one-another, and more

generally to understand the relationship between different ways to model multistage optimization

under uncertainty.
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6. Appendix
6.1. Proof of Theorem 1

Proof of Theorem 1 : We first compute the value of ψ(x) for all x∈R, and proceed by a case

analysis. First, suppose x< 0. In this case, EQ[Ψ(x,D)] = cx+ b(µ−x) for all Q∈M, and thus

ψ(x) = cx+ b(µ−x). (43)

Now, suppose x≥ 0. Then it is easily verified that

ψ(x) = cx+
(h− b)(x−µ)

2
+
b+h

2
sup
Q∈M

EQ [|x−D|] . (44)

Hence to compute ψ(x), it suffices to solve supQ∈MEQ [|x−D|], and we proceed by a case analysis.

Recall that f(z) :=
(
(z−µ)2 +σ2

) 1
2 for all z ∈R, and f−1(z) denotes the reciprocal of f(z).

First, suppose x≥ µ2+σ2

2µ
. Let us define λ̄= (λ̄0, λ̄1, λ̄2) such that

λ̄0 :=
1

2

(
x2f−1(x)+ f(x)

)
, λ̄1 :=−xf−1(x), λ̄2 :=

1

2
f−1(x),

and let ḡ(d) := λ̄0+ λ̄1d+ λ̄2d
2 for all d∈R. Then it follows from a straightforward calculation that

ḡ(d) and |x− d| are tangent at d̄1 := x− f(x) and d̄2 := x+ f(x), and consequently ḡ(d)≥ |x− d|
for all d∈R+. Hence λ̄ is feasible for the dual Problem (8). Also, as x≥ µ2+σ2

2µ
implies d̄1 ≥ 0, it is

easily verified that the probability measure Q̄ such that

Q̄(d̄1) = σ2

(
σ2 +

(
x− f(x)−µ

)2
)−1

, Q̄(d̄2) = 1−σ2

(
σ2 +

(
x− f(x)−µ

)2
)−1

is feasible for the primal Problem (7). It follows from Proposition 2.1 that Q̄ is an optimal primal

solution. Combining the above and simplifying the relevant algebra, we conclude that in this case

ψ(x) = ψ1(x) := cµ+
b+h

2
f(x)− b−h− 2c

2
(x−µ). (45)

Alternatively, suppose x∈ [0, µ
2+σ2

2µ
). Let us define λ̂= (λ̂0, λ̂1, λ̂2) such that

λ̂0 := x , λ̂1 := 1− 4xµ(µ2 +σ2)−1 , λ̂2 := 2x
(
µ(µ2 +σ2)−1

)2
,

and let ĝ(d) := λ̂0 + λ̂1d+ λ̂2d
2 for all d ∈ R. Then it follows from a straightforward calculation

that ĝ(d) and |x− d| are tangent at d̂1 := µ−1(µ2 + σ2), and intersect at d̂2 := 0, with ĝ′(0)≥−1.

It follows that ĝ(d)≥ |x− d| for all d∈R+. Hence λ̂ is feasible for the dual Problem (8). Also, it is

easily verified that the probability measure Q̂ such that

Q̂(d̂1) = µ2(µ2+σ2)−1, Q̂(d̂2) = 1−µ2(µ2 +σ2)−1
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is feasible for the primal Problem (7). It follows from Proposition 2.1 that Q̂ is an optimal primal

solution. Combining the above and simplifying the relevant algebra, we conclude that in this case

ψ(x) = ψ2(x) :=
(h+ c)σ2− (b− c)µ2

µ2 +σ2
x+ bµ. (46)

We now use the above to complete the proof of the theorem. Note that since by assumption b > c, it

follows from (43) that argminx∈R
ψ(x)⊆R+. Recall that κ=

b−h−2c
b+h

. Furthermore, our assumptions,

i.e. b > c,h+ c> 0, imply that |κ|< 1. Let χ := µ+κσ(1−κ2)−
1
2 . It follows from a straightforward

calculation that ψ1 is a strictly convex function on R, and ψ1(χ) = 0, i.e. ψ1 is strictly decreasing

on (−∞, χ), and strictly increasing on (χ,∞). Furthermore, it follows from a similar calculation

that

σ2

µ2
− b− c

h+ c
is the same sign as

µ2 +σ2

2µ
−χ. (47)

We now proceed by a case analysis. First, suppose σ2

µ2 >
b−c

h+c
. In this case, ψ2 is a linear function

with strictly positive slope, and thus argmin
x∈[0,µ

2+σ2

2µ ]
ψ(x) = {0}. Furthermore, it follows from

(47) that χ < µ2+σ2

2µ
, which implies that ψ1 is strictly increasing on [µ

2+σ2

2µ
,∞). It follows from

the continuity of ψ that argmin
x≥µ2+σ2

2µ

ψ(x) = {µ2+σ2

2µ
}. Combining the above, we conclude that

argminx∈R
ψ(x) = {0}.

Next, suppose σ2

µ2 <
b−c

h+c
. In this case, ψ2 is a linear function with strictly negative slope, and thus

argmin
x∈[0,µ

2+σ2

2µ ]
ψ(x) = {µ2+σ2

2µ
}. Furthermore, it follows from (47) that χ> µ2+σ2

2µ
, which implies

that argmin
x≥µ2+σ2

2µ

ψ(x) = {χ}. Combining the above, we conclude that argminx∈R
ψ(x) = {χ}.

Finally, suppose that σ2

µ2 = b−c

h+c
. In this case, ψ2 is a constant function, and thus

argmin
x∈[0,µ

2+σ2

2µ ]
ψ(x) = [0, µ

2+σ2

2µ
]. Furthermore, it follows from (47) that χ= µ2+σ2

2µ
, which implies

that argmin
x≥µ2+σ2

2µ

ψ(x) = {µ2+σ2

2µ
}. Combining the above, we conclude that argminx∈R

ψ(x) =

[0, µ
2+σ2

2µ
].

Combining all of the above with another straightforward calculation completes the proof of the

theorem. �

6.2. Proof of Proposition 2.2

Proof of Proposition 2.2 : Let δ := σ2

µ2+σ2 , τ :=
µ2+σ2

µ
. Let Q∗

2 be the probability measure such

that

Q∗
2(0) = δ, Q∗

2 (τ) = 1− δ.
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Recall that b− c > 0, and (h+ c)σ2 > (b− c)µ2, which we denote by assumption A1. Note that

the value of any feasible solution Q1 to Problem (11) is at least EQ1×Q∗

2

[
Ψ(D1,D2)

]
, which itself

equals the sum of cµ and

EQ1

[(
δ
(
(b−c)[0−D1]++(h+c)[D1−0]+

)
+(1−δ)

(
(b−c)[τ−D1]++(h+c)[D1−τ ]+

))
I(D1> 0)

]

(48)

+ EQ1

[(
δ
(
(b−c)[0−D1]++(h+c)[D1−0]+

)
+(1−δ)

(
(b−c)[τ−D1]++(h+c)[D1−τ ]+

))
I(D1< 0)

]

(49)

+ EQ1

[(
δ
(
(b−c)[0−D1]++(h+c)[D1−0]+

)
+(1−δ)

(
(b−c)[τ−D1]++(h+c)[D1−τ ]+

))
I(D1 = 0)

]

(50)

Note that if P (D1> 0)> 0, then (48) is at least

E

[ σ2

µ2 +σ2
(h+ c)D1+

µ2

µ2 +σ2
(b− c)(

µ2+σ2

µ
−D1)

∣∣D1> 0
]
P (D1> 0)

> E

[ µ2

µ2 +σ2
(b− c)D1+

µ2

µ2 +σ2
(b− c)(

µ2+σ2

µ
−D1)

∣∣D1 > 0
]
P (D1> 0) by A1

= (b− c)µP (D1> 0). (51)

Similarly, if P (D1< 0)> 0, then (49) is at least

E

[
− σ2

µ2 +σ2
(b− c)D1+

µ2

µ2 +σ2
(b− c)(

µ2+σ2

µ
−D1)

∣∣D1 < 0
]
P (D1< 0)

= E

[
(b− c)(µ−D1)

∣∣D1< 0
]
P (D1< 0) > (b− c)µP (D1< 0). (52)

Furthermore, if P (D1 = 0)> 0, then (50) equals (b− c)µP (D1= 0). Combining with (51), (52), and

the fact that the measure δ0 attains value bµ (by Theorem 1), completes the proof. �

6.3. Proof of Theorem 2

Proof of Theorem 2 : Recall that η := 1
2
(c1 + c2), and f(z) :=

(
(z − µ)2 + σ2

) 1
2 for all z ∈ R.

Also, letting h1(d) :=−d+ c1, h2(d) := d− c2 for all d∈R, we have that ζ(d) =max{h1(d),0, h2(d)}
for all d ∈ R. Let Q be the probability measure described in (12), and λ= (λ0, λ1, λ2) the vector

described in (13). Let g(d) := λ0 + λ1d + λ2d
2. We now prove that g(d) ≥ ζ(d) for all d ∈ R. It

follows from a straightforward calculation that g(d) is tangent to h1(d) at d1 := η− f(η), and g(d)

is tangent to h2(d) at d2 := η+ f(η). Thus g(d)≥max
(
h1(d), h2(d)

)
for all d∈R, and to prove the

desired claim it suffices to demonstrate that g(d)≥ 0 for all d≥ 0. It is easily verified that for all

d∈R,

g(d) = 1
2
f−1(η)(d− η)2+ 1

2

(
f(η)+ c1 − c2

)
. (53)

Recall that
1

4
(2µ− 3c1+ c2)(3c2− c1 − 2µ)≤ σ2,
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which we denote by assumption A2. It follows from another straightforward calculation that

assumption A2 is equivalent to requiring that 1
2

(
f(η)+ c1 − c2

)
≥ 0. Combining with (53), we con-

clude that A2 implies g(d)≥ 0 for all d ∈ R, completing the proof that g(d)≥ ζ(d) for all d ∈ R.

Hence λ is feasible for the dual Problem (8). Also, it is easily verified that Q is feasible for the

primal Problem (7). It follows from Proposition 2.1 that Q is an optimal primal solution, and λ

is an optimal dual solution. That these optimal solutions are unique then follows from the second

part of Proposition 2.1 and a straightforward contradiction argument. Combining the above and

simplifying the relevant algebra completes the proof. �

6.4. Proof of Lemma 4.1

Proof of Lemma 4.1 : Suppose i ∈ {0, ..., T} and Q1, . . . ,Qi are fixed. As a notational conve-

nience, for k ∈ [1, T ], let Ek[·] denote E⊗k
j=1Qj

[·]. We now prove that (40) holds for all t≥ i+1, and

proceed by induction. Our particular induction hypothesis will be that there exist Qi+1, . . . ,Qi+n

such that

Ei+n

[
Ψ̂t

(
xt(yt),Dt

)]
≥ η̂t for all t∈ [i+1, i+n]. (54)

We first treat the base case n = 1. It follows from Jensen’s inequality, and the independence

structure of the measures in M, that for any Qi+1 ∈Mi+1,

Ei+1

[
Ψ̂i+1

(
xi+1(yi+1),Di+1

)]
≥ EQi+1

[
Ψ̂i+1

(
Ei[xi+1(yi+1)],Di+1)

]
.

Taking Qi+1 to be any element of Γ
Ei[xi+1(yi+1)]

i+1 (Γ
x1(y1)
1 if i= 0) completes the proof for n=1.

Now, suppose the induction holds for some n. It again follows from Jensen’s inequality, and the

independence structure of the measures in M, that for any Qi+n+1 ∈Mi+n+1,

Ei+n+1

[
Ψ̂i+n+1

(
xi+n+1(yi+n+1),Di+n+1

)]
≥EQi+n+1

[
Ψ̂i+n+1

(
Ei+n[xi+n+1(yi+n+1)],Di+n+1)

]
.

Taking Qi+n+1 to be any element of Γ
Ei+n[xi+n+1(yi+n+1)]

i+n+1 completes the induction, and the proof,

where the second part of the lemma follows by letting i= 0. �

6.5. Proof of Theorem 3

Proof of Theorem 3 : Note that under these assumptions, for any measure Q∈M (and in fact

any non-negative joint distribution for demand), for any such base-stock policy π, w.p.1 xπ
t (yt) = x∗

t

for all t= 1, ..., T . It then follows from a straightforward induction that π is a robust-w.p.1-optimal

policy for the distributionally robust DP formulation, and furthermore for all t=1, ..., T and y ≤ x∗
t ,

Vt(y) = η̂t − ctx
∗
t−1 + ctDt−1 +

T∑

s=t+1

ρs−t(η̂s + csµs−1),

and

V1(y) =
T∑

t=1

ρt−1η̂t − c1y+
T−1∑

t=1

ρtct+1µt.

Combining with Lemma 4.1 and Observation 4 completes the proof. �
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6.6. Proof of Theorem 4

Proof of Theorem 4 : Let Πopt denote the set of optimal policies for the multistage-static prob-

lem. It follows from Theorem 1.(i) and Theorem 3 that Π0 ⊆Πopt, and every policy π ∈Π0 is time

consistent. Thus to prove the theorem, it suffices to demonstrate that Π0 =Πopt, and we begin by

showing that π̄ = (x̄1, . . . , x̄T ) ∈ Πopt implies x̄1(y1) = 0. Indeed, it follows from Lemma 4.1 that

π̄ ∈Πopt implies

sup
Q∈M1

EQ

[
Ψ̂1

(
x̄1(y1),D1

)]
= η̂1 = b1µ1.

That x̄1(y1) must equal 0 then follows from Theorem 1.

We now show that π̄ ∈Πopt implies x̄2(z) = 0 for all z ≤ 0. We proceed by contradiction. Suppose

that there exists z′ ≤ 0 such that x̄2(z
′) 6= 0. It is easily verified that there exists Q1 ∈M1 such

that Q1(−z′)> 0, and consequently for this choice of Q1, x̄2(y2) is not a.s. equal to 0. We conclude

from Proposition 2.2 that there exists Q2 ∈M2 such that

EQ1×Q2

[
Ψ̂2

(
x̄2(y2),D2

)]
> η̂2 = b2µ2.

As we have already demonstrated that x̄1(y1) = 0, and Q1 ∈M1, we conclude that

EQ1

[
Ψ̂1

(
x̄1(y1,D1

)]
= η̂1 = b1µ1.

Combining with Lemma 4.1 then yields a contradiction. The proof that x̄t(z) = 0 for all z ≤ 0 and

t≥ 3 follows from a nearly identical argument, and we omit the details. �

6.7. Proof of Theorem 5

We first characterize the set of optimal policies for the multistage-static problem.

Lemma 6.1 Πopt
s = Π̃s, and the multistage-static problem has optimal value 18.

Proof : It follows from Observation 1 that M1 consists of the single probability measure Q1

such that Q1(1) =Q1(3) =
1
2
. Let D1 denote a random variable distributed as Q1. Note that for

any policy π = (x1, x2) ∈Π, one has that x1(y1) = x1(10)≥ 10. Consequently, Pr(x1(y1)≥D1) = 1,

and |x1(y1)−D1|= x1(y1)−D1 w.p.1. It then follows from a straightforward calculation that the

cost of any policy π= (x1, x2)∈Π under the multistage-static formulation equals

2x1(10)− 4+ sup
Q2∈M2

EQ2

[
1
2

(∣∣x2

(
x1(10)− 1

)
−D2

∣∣+
∣∣x2

(
x1(10)− 3

)
−D2

∣∣)
]
. (55)

Let π̄= (x̄1, x̄2) denote any optimal policy for the multistage-static problem, i.e. π̄ ∈Πopt
s . Then it

follows from (55) and a straightforward contradiction argument that

x̄1(10) = 10. (56)
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Combining (55) and (56), we conclude that

(
x̄2(9), x̄2(7)

)
∈ argmin

(x,y):x≥9,y≥7

sup
Q2∈M2

EQ2

[
1
2

(
|x−D2|+ |y−D2|

)]
. (57)

Furthermore, it follows from Lemma 4.1 and Theorem 1 that

inf
(x,y):x≥9,y≥7

sup
Q2∈M2

EQ2

[
1
2

(
|x−D2|+ |y−D2|

)]
≥ sup

Q2∈M2

EQ2

[
|8−D2|

]
= 2. (58)

Noting that

1
2

(
|9−D2|+ |7−D2|

)
= 1+max(−D2+7,0,D2− 9),

it then follows from a straightforward calculation and Theorem 2 that

sup
Q2∈M2

EQ2

[
1
2

(
|9−D2|+ |7−D2|

)]
= 2. (59)

Combining the above, we conclude that Π̃s ⊆ Πopt
s . Also, it then follows from a straightforward

calculation that the multistage-static problem has optimal value 18.

We now prove that Π̃s =Πopt
s . Indeed, suppose for contradiction that there exists some optimal

policy π̂ = (x̂1, x̂2) /∈ Π̃s. In that case, it follows from (56) and (57) that 1
2

(
x̂2(9) + x̂2(7)

)
> 8.

However, it then follows from Jensen’s inequality, Theorem 1, and (58) that

sup
Q2∈M2

EQ2

[
1
2

(
|x̂2(9)−D2|+ |x̂2(7)−D2|

)]
≥ sup

Q2∈M2

EQ2

[∣∣ 1
2

(
x̂2(9)+ x̂2(7)

)
−D2

∣∣] > 2.

Combining with (58) and (59) yields a contradiction, completing the proof �

We now (partially) characterize the set of robust-w.p.1-optimal policies for the distributionally

robust DP problem.

Lemma 6.2 Πopt
d ⊆ Π̃d, and the distributionally robust DP problem has optimal value 17+

√
5
2
.

Proof : Let π̄= (x̄1, x̄2) denote any robust-w.p.1-optimal policy for the distributionally robust

DP problem, i.e. π̄ ∈ Πopt
d . Then it again follows from a straightforward contradiction argument

that

x̄1(10) = 10. (60)

It then follows from (26) that

x̄2(9)∈ argmin
x≥9

sup
Q2∈M2

EQ2
[|x−D2|],

and

x̄2(7)∈ argmin
x≥7

sup
Q2∈M2

EQ2
[|x−D2|].

The lemma then follows from Theorem 1 and a straightforward calculation. �

Combining Lemmas 6.1 and 6.2 completes the proof of Theorem 5.
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6.8. Proof of Theorem 6

We first prove that the multistage-static problem is weakly time consistent.

Lemma 6.3 The multistage-static problem is weakly time consistent, and both the multistage-static

and distributionally robust DP problems have optimal value 2.

Proof : Note that

Ψ̂1(x1, d1) = |x1 − d1|, Ψ̂2(x2, d2) = |x2 − d2|.

It follows from Observation 1 that M1 consists of the single probability measure Q1 such that

Q1(1) =Q1(3) =
1
2
. It follows from Theorem 1 and a straightforward calculation that

Γ̂1 = [1,3] , Γ̂2 = 10 , η̂2 = 1.

Combining the above with Theorem 3, we conclude that the base-stock policy π such that x1(y) =

max{3, y}, and x2(y) =max{10, y} for all y ∈R, is optimal for both the multistage-static formula-

tion and robust-w.p.1-optimal for the distributionally robust DP formulation, which have common

optimal value 2. �

We now prove that the multistage-static problem is not strongly time consistent. In particular,

consider the policy π′ = (x′
1, x

′
2) such that

x′
1(y) =max{3, y}, and x′

2(y) =

{
9.9, if y≤ 0,

max{10.1, y}, otherwise.
(61)

Lemma 6.4 The policy π′ ∈Πopt
s , but π′ /∈Πopt

d . Consequently, the multistage-static problem is not

strongly time consistent.

Proof : We first show that π′ ∈Πopt
s . It follows from a straightforward calculation that the cost

of π′ under the multistage-static formulation equals

EQ1
|3−D1|+0.1+ sup

Q2∈M2

EQ2
max

{
9.9−D2,0,D2 − 10.1

}
. (62)

It is easily verified that the conditions of Theorem 2 are met, and we may apply Theorem 2 to

conclude that argmaxQ2∈M2
EQ2

max
{
9.9−D2,0,D2 − 10.1

}
is the probability measure Q2 such

thatQ2(9) =
1
2
, Q2(11) =

1
2
. It follows that the value of (62) equals 2, and we conclude that π′ ∈Πopt

s ,

completing the proof.
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We now show that π′ /∈Πopt
d . Suppose, for contradiction, that π′ ∈Πopt

d . It then follows from a

straightforward calculation (and considering the measure Q1 ∈M1 such that Q1(1) =Q1(3) =
1
2
)

that

9.9 ∈ argmin
x≥0

sup
Q2∈M2

EQ2
[|x−D2|]. (63)

However, it follows from Theorem 1 that the right-hand side of (63) is the singleton {10}, completing

the proof. �

Combining Lemmas 6.3 and 6.4 completes the proof of Theorem 6.

6.9. Proof of Theorem 7

We first characterize the set of optimal policies for the multistage-static problem.

Lemma 6.5 Πopt
s = Π̃, and the multistage-static problem has optimal value 5.

Proof : It follows from Observation 1 that M1 consists of the single probability measure Q1

such that Q1(1) = Q1(3) =
1
2
. In this case, the cost of any policy π = (x1, x2) ∈ Π under the

multistage-static formulation equals

sup
Q2∈M2

EQ2

[
EQ1

[
2
(
x2

(
x1(0)−D1

)
−
(
x1(0)−D1

))
+
∣∣x2

(
x1(0)−D1

)
−D2

∣∣
]]
. (64)

We now prove that for any policy π̄= (x̄1, x̄2)∈Πopt
s , one has that

x̄2

(
x̄1(0)− 1

)
= x̄1(0)− 1 and x̄2

(
x̄1(0)− 3

)
= x̄1(0)− 3. (65)

Indeed, note that w.p.1, it follows from the triangle inequality that

2
(
x2

(
x1(0)−D1

)
−
(
x1(0)−D1

))
+
∣∣x2

(
x1(0)−D1

)
−D2

∣∣

= 2
(
x2

(
x1(0)−D1

)
−
(
x1(0)−D1

))
+
∣∣x2

(
x1(0)−D1

)
−
(
x1(0)−D1)+

(
x1(0)−D1)−D2

∣∣

≥ 2
(
x2

(
x1(0)−D1

)
−
(
x1(0)−D1

))
+
∣∣(x1(0)−D1)−D2

∣∣−
∣∣x2

(
x1(0)−D1

)
−
(
x1(0)−D1)

∣∣

= x2

(
x1(0)−D1

)
−
(
x1(0)−D1

)
+
∣∣x1(0)−D1−D2

∣∣. (66)

Now, suppose for contradiction that (65) does not hold. It follows that

EQ1

[
x2

(
x1(0)−D1

)
−
(
x1(0)−D1

)]
> 0,

and combining with (66), we conclude that (64) is strictly greater than

sup
Q2∈M2

EQ2

[
EQ1

[∣∣x1(0)−D1−D2

∣∣
]]
. (67)

Noting that (67) is the cost incurred by some policy satisfying (65) completes the proof.
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We now complete the proof of the lemma. It suffices from the above to prove that

argmin
x1∈R+

sup
Q2∈M2

EQ2

[
1
2

(
|x1 − 1−D2|+ |x1 − 3−D2|

)]
= {102}. (68)

It follows from a straightforward calculation that as long as x1 ≥ 3, (x1 − 100)(104−x1)≤ 25 and

x1 − 2−
(
(x1 − 2− 100)2+25

) 1
2 ≥ 0, which holds for all x1 ∈ [100,104], the conditions of Theorem

2 are met. We may thus apply Theorem 2 to conclude that for all x1 ∈ [100,104],

sup
Q2∈M2

EQ2

[
1
2

(
|x1 − 1−D2|+ |x1 − 3−D2|

)]
(69)

has the unique optimal solution Q̂2 such that

Q̂2

(
x1 − 2−

(
(x1 − 2− 100)2+25

) 1
2
)
= 25

(
25+

(
x1 − 2−

(
(x1 − 2− 100)2+25

) 1
2 − 100

)2)−1

,

and

Q̂2

(
x1 − 2+

(
(x1 − 2− 100)2+25

) 1
2
)
=1− 25

(
25+

(
x1 − 2−

(
(x1 − 2− 100)2+25

) 1
2 − 100

)2)−1

.

It then follows from a straightforward calculation that for x1 ∈ [100,104], (69) has the value

g(x1) :=
(
x2
1 − 204x1+10429

) 1
2 .

It is easily verified that g is a strictly convex function on [100,104], g has its unique minimum on

that interval at the point 102, and g(102) = 5. The desired result then follows from the fact that

(69) is a convex function of x1 on R. �

We now prove that the multistage-static problem is strongly time consistent.

Lemma 6.6 The multistage-static problem is strongly time consistent, and the optimal value of

the distributionally robust DP problem equals
√
26.

Proof : First, we note that as in the multistage-static setting, any policy π̄ = (x̄1, x̄2) ∈ Πopt

d

also satisfies (65). The proof is very similar to that used for the multistage-static case, and we omit

the details. To prove the lemma, it thus suffices to prove that

argmin
x1∈R+

(
1
2

sup
Q2∈M2

EQ2

[
|x1 − 1−D2|

]
+ 1

2
sup

Q2∈M2

EQ2

[
|x1 − 3−D2|

])
= {102}. (70)

It is easily verified that for all x1 ∈ [100,104], we may apply Theorem 1 to conclude that

sup
Q2∈M2

EQ2

[
|x1 − 1−D2|

]
=
(
(x1 − 101)2+25

) 1
2 ,

sup
Q2∈M2

EQ2

[
|x1 − 3−D2|

]
=
(
(x1 − 103)2+25

) 1
2 .



Xin and Goldberg: Time (in)consistency of multistage robust inventory models
42 Article submitted to ; manuscript no.

We conclude that for all x1 ∈ [100,104],

1
2

sup
Q2∈M2

EQ2

[
|x1 − 1−D2|

]
+ 1

2
sup

Q2∈M2

EQ2

[
|x1 − 3−D2|

]
(71)

equals

g(x1) :=
1
2

((
(x1 − 101)2+25

) 1
2 +

(
(x1 − 103)2+25

) 1
2

)
. (72)

It is easily verified that g(x) is a strictly convex function of x on [100,104], g has its unique

minimum on that interval at the point 102, and g(102)=
√
26. The desired result then follows from

the fact that (71) is a convex function of x1 on R. �

Combining Lemmas 6.5 and 6.6 completes the proof of Theorem 7.

6.10. Proof of Theorem 8

Let Q̃2 denote the probability measure such that Q̃2(5) = Q̃2(11) =
1
2
. It may be easily verified that

Q̃2 ∈M2. We begin by proving the following auxiliary lemma.

Lemma 6.7

sup
Q1∈M1, Q2∈M2

EQ1×Q2

[
|10−D1 −D2|

]
= 3.

Proof : Note that

EQ1×Q2

[
|10−D1 −D2|

]
=EQ2

[
EQ1

[
|10−D1−D2|

∣∣∣D2

]]
.

Let us define

φQ1
(d)

∆
=EQ1

[
|10−D1−D2|

∣∣∣{D2 = d}
]
,

and

q(d)
∆
=

1

6
(d− 8)

2
+

3

2
=

73

6
− 8

3
d+

1

6
d2.

As Q̃2 ∈M2, to prove the lemma, it follows from Proposition 2.1 that it suffices to demonstrate

that for all Q1 ∈ M1, q(5) = φQ1
(5), q(11) = φQ1

(11), and q(d) ≥ φQ1
(d) for all d ∈ R, as in this

case for any Q1 ∈M1, supQ2∈M2
EQ2

[φQ1
(D2)] =EQ2

[q(D2)] = 3. We now prove that q(d)≥ φQ1
(d)

for all d ∈ R. For any Q1 ∈M1, since 10−D1 ∈ [7− ǫ, 9+ ǫ] w.p.1, it follows that φQ1
(d) = 10−

µ1 − d = 8 − d if d ∈ [0,7 − ǫ], and φQ1
(d) = d + µ1 − 10 = d − 8 if d ∈ [9 + ǫ,∞). It is easily

verified that q(d)− (8− d)≥ 0, and q(d)− (d− 8)≥ 0, for all d ∈R. It follows that q(d)≥ φQ1
(d)

for all d ∈ (−∞,7 − ǫ]
⋃
[9 + ǫ,∞). Noting that φQ1

(d) is a convex function of d on (−∞,∞),

we conclude that φQ1
(d) ≤ max

(
φQ1

(7 − ǫ), φQ1
(9 + ǫ)

)
for all d ∈ [7 − ǫ,9 + ǫ]. As it is easily

verified that infd∈R q(d) =
3
2
, to prove that q(d) ≥ φQ1

(d) for d ∈ [7− ǫ,9+ ǫ], it suffices to show

that max
(
φQ1

(7− ǫ), φQ1
(9 + ǫ)

)
≤ 3

2
. As φQ1

(7− ǫ) = 8− (7− ǫ) = 1 + ǫ < 3
2
, and φQ1

(9 + ǫ) =

(9 + ǫ)− 8 = 1 + ǫ < 3
2
, combining the above we conclude that q(d)≥ φ(d) for all d ∈ R. As it is

easily verified that q(5) = φQ1
(5) = 3 and q(11) = φQ1

(11) = 3, combining the above completes the

proof. �
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Proof of Theorem 8 : Note that the cost under any policy π = (x1, x2) ∈ Π under the

multistage-static formulation equals

sup
Q1∈M1, Q2∈M2

EQ1×Q2

[
2|x1(y1)−D1|+ |x2(D1)−D2|

]
.

As D1 ≤ 3+ ǫ≤ 10− ǫ w.p.1, and x1(y1)≥ y1 =10− ǫ, we conclude that w.p.1

|x1(y1)−D1|= x1(y1)−D1 ≥ 10− ǫ−D1.

Combining with the fact that µ1 = 2, we conclude that

EQ1×Q2

[
2|x1(y1)−D1|

]
≥ 2

(
10− ǫ− 2)= 2(8− ǫ).

As
σ2
2

µ2
2
= 9

64
< b2

h2
= 1, and

(
h2b2

) 1
2σ2 = 3, it follows from Lemma 4.1 and Theorem 1 that

EQ1×Q2

[
|x2(D1)−D2|

]
≥ 3.

Combining the above, we conclude that the cost incurred under any policy π is at least 19− 2ǫ.

We now show that the cost incurred under any such policy π̃ achieves this bound, and is thus

optimal. In particular,

sup
Q1∈M1, Q2∈M2

EQ1×Q2

[
2|x̃1(y1)−D1|+ |x̃2(D1)−D2|

]

equals

sup
Q1∈M1, Q2∈M2

EQ1×Q2

[
2|10− ǫ−D1|+ |10−D1 −D2|

]

= sup
Q1∈M1, Q2∈M2

EQ1×Q2

[
2(10− ǫ−D1)+ |10−D1 −D2|

]

=2(10− ǫ−µ1)+ sup
Q1∈M1, Q2∈M2

EQ1×Q2

[
|10−D1−D2|

]
= 19− 2ǫ,

where the final equality follows from Lemma 6.7.

Next we show that there is no optimal base-stock policy, i.e. no base-stock policy belongs to

Πopt
s . Indeed, let us suppose for contradiction that π̂ is a base-stock policy with constants x̂1, x̂2.

The cost incurred under such a policy π̂ equals

sup
Q1∈M1, Q2∈M2

EQ1×Q2

[
2|max(x̂1, y1)−D1|+

∣∣max
(
max(x̂1, y1)−D1, x̂2

)
−D2

∣∣].

It follows from the fact that D1 ≤ 3 + ǫ < 10 − ǫ w.p.1 for all Q1 ∈ M1, and a straightforward

contradiction argument (the details of which we omit), that π̂ cannot be optimal unless x̂1 ≤ 10− ǫ,
in which case repeating our earlier arguments, we conclude that max(x̂1, y1) = 10− ǫ, and for any

Q1 ∈M1,Q2 ∈M2,

EQ1×Q2

[
2|max(x̂1, y1)−D1|

]
=2(8− ǫ).
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Thus to prove the desired claim, it suffices to demonstrate that

inf
x̂2∈R

sup
Q1∈M1,Q2∈M2

EQ1×Q2

[∣∣∣max{10− ǫ−D1, x̂2}−D2

∣∣∣
]
> 3. (73)

We treat two different cases: x̂2 ∈ (−∞,7+ 1
2
ǫ] and x̂2 ∈ [7+ 1

2
ǫ,∞). If x̂2 ≤ 7+ 1

2
ǫ, let the probability

measure Q̃1 be such that Q̃1(1) = Q̃1(3) =
1
2
, where it is easily verified that Q̃1 ∈M1. In this case,

sup
Q1∈M1,Q2∈M2

EQ1×Q2

[∣∣∣max{10− ǫ−D1, x̂2}−D2

∣∣∣
]

(74)

is at least

sup
Q2∈M2

EQ̃1×Q2

[∣∣∣max{10− ǫ−D1, x̂2}−D2

∣∣∣
]

= sup
Q2∈M2

EQ2

[1
2
|max{7− ǫ, x̂2}−D2|+

1

2
|9− ǫ−D2|

]
, (75)

where the final equality follows from the fact that x̂2 ≤ 7 + 1
2
ǫ implies max{9− ǫ, x̂2} = 9− ǫ. It

follows from convexity of the absolute value function that (75) is at least

sup
Q2∈M2

EQ2

[ ∣∣∣∣
1

2
max{7− ǫ, x̂2}+

1

2
(9− ǫ)−D2

∣∣∣∣
]
. (76)

Note that

1

2
max{7− ǫ, x̂2}+

1

2
(9− ǫ) ≥ 1

2
(7− ǫ)+

1

2
(9− ǫ)

= 8− ǫ. (77)

Letting z
∆
= 1

2
max{7− ǫ, x̂2}+ 1

2
(9− ǫ), note that (76) equals supQ2∈M2

EQ2

[
(z−D2)

++(D2−z)+
]
.

Applying Theorem 1 with c=0, b= h= 1, and noting that
µ2
2+σ2

2
2µ2

= 73
16
< 8− ǫ= z, we conclude that

(76) equals ((1
2
max{7− ǫ, x̂2}+

1

2
(9− ǫ)− 8

)2
+9

) 1
2

. (78)

Combining (77) with the fact that

1

2
max{7− ǫ, x̂2}+

1

2
(9− ǫ) ≤ 1

2
(7+

1

2
ǫ)+

1

2
(9− ǫ)

= 8− 1

4
ǫ,

we conclude that (78) is strictly greater than 3, completing the proof of (73) for the case x̂2 ≤ 7+ 1
2
ǫ.

Alternatively, if x̂2 ≥ 7+ 1
2
ǫ, let the probability measure Q̃1 be such that Q̃1(

1+2ǫ
1+ǫ

) = (1+ǫ)2

(1+ǫ)2+1
and

Q̃1(3+ ǫ) = 1
(1+ǫ)2+1

. Again, it is easily verified that Q̃1 ∈M1. In this case, (74) is at least

sup
Q2∈M2

EQ2

[
1

(1+ ǫ)2 +1
|x̂2 −D2|+

(1+ ǫ)2

(1+ ǫ)2 +1

∣∣∣∣max

{
10− ǫ− 1+2ǫ

1+ ǫ
, x̂2

}
−D2

∣∣∣∣
]
. (79)
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It follows from convexity of the absolute value function that (79) is at least

sup
Q2∈M2

EQ2

[∣∣∣∣
1

(1+ ǫ)2 +1
x̂2 +

(1+ ǫ)2

(1+ ǫ)2 +1
max

{
10− ǫ− 1+2ǫ

1+ ǫ
, x̂2

}
−D2

∣∣∣∣
]
. (80)

Letting z
∆
= 1

(1+ǫ)2+1
x̂2 +

(1+ǫ)2

(1+ǫ)2+1
max

{
10− ǫ− 1+2ǫ

1+ǫ
, x̂2

}
, note that (80) equals

sup
Q2∈M2

EQ2

[
(z−D2)

++(D2 − z)+
]
.

Furthermore,

1

(1+ ǫ)2+1
x̂2 +

(1+ ǫ)2

(1+ ǫ)2+1
max

{
10− ǫ− 1+2ǫ

1+ ǫ
, x̂2

}

≥ 1

(1+ ǫ)2 +1

(
7+

1

2
ǫ

)
+

(1+ ǫ)2

(1+ ǫ)2+1

(
10− ǫ− 1+2ǫ

1+ ǫ

)

= 8+
1
2
− 2ǫ− ǫ2

(1+ ǫ)2+1
ǫ. (81)

Applying Theorem 1 with c= 0, b= h= 1, and noting that
µ2
2+σ2

2
2µ2

= 73
16
< 8+

1
2−2ǫ−ǫ2

(1+ǫ)2+1
ǫ= z (having

applied (42)), we conclude that (80) equals

(( 1

(1+ ǫ)2 +1
x̂2 +

(1+ ǫ)2

(1+ ǫ)2 +1
max

{
10− ǫ− 1+2ǫ

1+ ǫ
, x̂2

}
− 8

)2
+9

) 1
2

. (82)

Combining with (81) and (42), we conclude that (82) is strictly greater than 3, completing the

proof of (73) for the case x̂2 ≤ 7+ 1
2
ǫ, which completes the proof. �
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