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Abstract

In this paper, we define new functionals generalizing scientometric indices proposed by Mesiar

and Gągolewski in 2016 to overcome some limitations of h-index. These functionals are integrals

with respect to a monotone measure as well as aggregation functions under some mild conditions.

We derive numerous properties of the new integrals and analyze subadditivity property in detail. We

also give a partial solution to the problem posed by Mesiar and Stupňanová to find an algorithm

for computing the pseudo-decomposition integral of n-th order based on operations ⊕ = + and

� = ∧, which will be useful in multi-criteria decision problems.

Keywords: scientometrics; Multiple criteria analysis; h-index; Aggregation function; Pseudo-decomposition

integral.

1 Introduction

In order to compare the efficiency of work of two researchers, one must construct a rule that is the most

objective and fair. It turns out that the task is very difficult. Currently, there are many scientometric

indices known in the literature. Their calculations are based on two inputs: number of publications

and number of citations of each publication (measuring the quality and importance of publications).

Nowadays, the most popular scientometric index is h-index introduced in 2005 by Hirsch [23]. It

is implemented in the largest scientific databases such as Scopus, or WoS. An axiomatic approach

explaining the nature of h-index can be found in papers [8, 32, 33, 42], whereas its mathematical

properties can be found in [17]. Torra and Narukawa [39] proved that h-index is the Sugeno integral
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with respect to the counting measure. And because of specificity of the Sugeno integral, h-index has

some drawbacks, see [31]. For example, let’s consider two researchers possessing the same number of

papers, say n, but each paper of the first one is cited n-times, and each paper of the second one is

cited exactly 3n-times. Using the criterion of importance of author’s publication and the number of

quotations for each paper, one can see that the second researcher should have a higher scientometric

index if both authors work in the same domain and have similar research experience measured by the

years of work. However, h-index of both authors is the same and is equal to n. To overcome the above

limitations, Mesiar and Gągolewski [28] have proposed two new indices based on the idea of h-index

(for more details, see Section 5).

The present paper introduces and studies properties of two functionals: upper n-Sugeno integral

and lower n-Sugeno integral of a measurable function with respect to a monotone measure. Both

functionals are integrals in the spirit of definition introduced here. Integrals have many applications,

especially in multicriteria decision theory, economy, optimalization or data classification [5, 10, 12, 14,

22, 23, 38, 39, 44]. To the best of our knowledge, there are only very few papers which describe the

connection between integrals and scientometric indices, see [21, 39]. From those papers it follows that

total number of citations is related to Choquet integral, h-index and Kosmulski h(2)-index are related

to Sugeno integral, Kosmulski MAXPROD index is related to Shilkret integral, etc. In this paper we

further show that the upper and lower n-Sugeno integrals generalize scientometric indices introduced

by Mesiar & Gągolewski and others, e.g. generalized Kosmulski index [13], iterated h-index [18], Hα

and Hβ indices [24].

The second main result of the work is a relation between the lower n-Sugeno integral and some

special pseudo-decomposition integral introduced by Mesiar and Stupňanová in [30] (see Theorem 4.10

below). Their question from [30, Conclusion] motivated us to describe an algorithm for computation

of the pseudo-decomposition integral.

Our paper is organized as follows. In Section 2 we provide basic notations and definitions we work

with. In Sections 3 and 4 we introduce new concepts of upper and lower n-Sugeno integral, examine

their basic properties and provide their equivalent forms. Section 5 includes applications of the obtained

results mainly to aggregation and scientometrics. For better readability we postpone some technical

proofs of our statements to Appendix.

2 Basic notations and preliminaries

Let (X,A) be a measurable space, where A is a σ-algebra of subsets of a non-empty set X. The class

of all measurable functions f : X → Y, where Y = [0, ȳ] for 0 < ȳ 6∞, is denoted by F(X,Y ). Usually,

2



we take ȳ = 1 or ȳ = ∞. A monotone measure on A is a nondecreasing set function µ : A → [0,∞],

i.e., µ(A) 6 µ(B) whenever A ⊂ B with µ(∅) = 0 and µ(X) > 0. The range of µ we write as µ(A). We

denote byM(X,A) the class of all monotone measures on (X,A). Given f, g ∈ F(X,Y ) and µ ∈M(X,A),

we say that g dominates f with respect to µ and write f 6µ g if µ({f > t}) 6 µ({g > t}) for all

t, where {f > t} = {x ∈ X : f(x) > t}. Hereafter, a ∧ b = min(a, b) and a ∨ b = max(a, b). We say

that a function ◦ : Y1 × Y2 → [0,∞] is nondecreasing if a1 ◦ a2 6 b1 ◦ b2 whenever ai 6 bi, where

ai, bi ∈ Yi ⊂ [0,∞] for i = 1, 2.

Sugeno integral of f ∈ F(X,Y ) with respect to µ ∈M(X,A) [37, 41] is defined by

Su(µ, f) := sup
t∈Y
{t ∧ µ({f > t})}. (1)

To this day, many researchers introduced numerous generalizations of the Sugeno integral like general-

ized upper Sugeno integral, pseudo-decomposition integral or q-integral for ȳ = µ(X) = 1, and studied

their properties [6, 7, 14, 25, 30, 36].

To make our paper as self-contained as it gets, we give some properties of the Sugeno integral that

we follow later. Hereafter, c↘ a and c↗ a means that c→ a for c > a and c < a, respectively.

Lemma 2.1. Let (µ, f) ∈M(X,A) ×F(X,Y ). The Sugeno integral possesses the following properties:

(a) Su(µ, f) ∈ Y,

(b) t > µ({f > t}) for t > Su(µ, f) and t < µ({f > t}) for t < Su(µ, f),

(c) Su(µ, f) = lim
t↗Su(µ,f)

(t ∧ µ({f > t})) if Su(µ, f) > 0,

(d) Su(µ, f) = lim
t↘Su(µ,f)

(t ∨ µ({f > t})) if Su(µ, f) < ȳ,

(e) Su(µ, f) = 0 if and only if µ({f > t}) = 0 for all t > 0.

Proof. Properties (a) and (b) follow from (1), since Y = [0, ȳ] (see also [41, Lemma 9.7]). Properties

(c) and (d) follow from (b) as

Su(µ, f) = lim
t↗Su(µ,f)

t = lim
t↗Su(µ,f)

(
t ∧ µ({f > t})

)
,

Su(µ, f) = lim
t↘Su(µ,f)

t = lim
t↘Su(µ,f)

(
t ∨ µ({f > t})

)
.

To prove (e), by the definition of the Sugeno integral we have that

0 = sup
t>0
{t ∧ µ({f > t})} = (0 ∧ µ(X)) ∨ sup

t>0
{t ∧ µ({f > t})}.

Now it is evident that µ({f > t}) = 0 for all t > 0.

We formulate properties which any integral should possess.

Definition 2.2. A functional J: M(X,A) ×F(X,Y ) → [0,∞] is called an integral if
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(C1) J(µ, f) 6 J(µ, g) whenever f 6µ g,

(C2) J(µ, f) 6 J(ν, f) whenever µ(A) 6 ν(A) for all A ∈ A,

(C3) J(µ, a1A) = s(a, µ(A)) for all a ∈ Y and A ∈ A, where s : Y × [0,∞] → Y is a nondecreasing

function such that s(a, 0) = s(0, b) = 0 for any a, b.

For a fixed µ ∈ M(X,A), the property (C3) is known in the literature as µ-generated property of

the integral J, see [26, Definition 3.3]. Restriction to the class of monotone measures with µ(X) = 1

and Y = [0, 1] in Definition 2.2 is closely related to fuzzy integral introduced by Struk [35]. In fact,

the condition (C3) with s(a, 1) = a = s(1, a) for any a ∈ [0, 1] implies the conditions (2) and (3) in

[35, Definition 1]. However, the assumption (1) from [35, Definition 1] is stronger than (C1). Examples

of integrals of nonnegative functions with respect to monotone measures include the Choquet integral

[11], Sugeno integral or generalized upper Sugeno integral (see formula (2) in [5]) under some additional

restrictions.

3 Upper n-Sugeno integral

In this section, we introduce a new type of integral with respect to a monotone measure. Our motivation

for doing so comes from the lower 2-h-index defined by Mesiar and Gągolewski (see (19)).

We say that ◦ : Y × Y → Y is an admissible fusion map if it is nondecreasing and 0 ◦ a 6 a for all

a ∈ Y. The most important examples for Y = [0,∞] are: the standard addition, pseudo-addition [3],

the standard product, minimum, maximum or means [2]. Moreover, for Y = [0, 1] the examples are:

boolean conjunctions such as semicopulas [1, 5, 15], copulas [16], t-norms, conjunctive aggregations [2]

and fuzzy conjunctions [14], and other binary operations like uninorms, t-semiconorms or averaging

aggregations [2].

Definition 3.1. Let (µ, f) ∈ M(X,A) × F(X,Y ) and ◦ be an admissible fusion map. For n > 1 the

upper n-Sugeno integral is defined using the recurrence

Su◦n+1(µ, f) := sup
t∈Y

{
(t ◦ Su◦n(µ, f)) ∧ µ({f > t})

}
with the initial condition Su◦1(µ, f) := Su(µ, f).

Lemma 2.1 (a) yields Su◦1(µ, f) ∈ Y. The induction implies that Su◦n(µ, f) ∈ Y for all n > 2, so the

functional Su◦n(µ, f) in Definition 3.1 is well-defined. We show that the upper n-Sugeno integral is an

integral in the sense of Definition 2.2.

Proposition 3.2. Let n > 1, f, g ∈ F(X,Y ) and µ, ν ∈M(X,A). Then

(a) Su◦n(µ, f) 6 Su◦n(µ, g) whenever f 6µ g.
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(b) Su◦n(µ, f) 6 Su◦n(ν, f) whenever µ(A) 6 ν(A) for all A ∈ A.

(c) Su◦n(µ, a1A) = sn(a, µ(A)) for a ∈ Y and A ∈ A, where sn : Y × [0,∞] → Y is a nondecreasing

function such that sn(a, 0) = sn(0, b) = 0 and sn+1(a, b) = (a ◦ sn(a, b)) ∧ b for all a, b.

Proof. Properties (a) and (b) follow immediately from Definition 3.1 and monotonicity of ◦. We shall

prove by induction that (c) holds. Clearly, Su(µ, a1A) = a ∧ b with b = µ(A). If (c) is true for some

n > 1, by monotonicity of function t 7→ t ◦ b we have

Su◦n+1(µ, a1A) =
[
(0 ◦ Su◦n(µ, a1A)) ∧ µ(X)

]
∨ sup
t∈(0,ȳ]

{
(t ◦ Su◦n(µ, a1A)) ∧ µ({a1A > t})

}
= (0 ◦ sn(a, b)) ∨

[
(a ◦ sn(a, b)) ∧ b

]
= (a ◦ sn(a, b)) ∧ b = sn+1(a, b),

as 0 ◦ sn(a, b) 6 sn(a, b) = Su◦n(µ, a1A) 6 b 6 µ(X) and 0 ◦ sn(a, b) 6 a ◦ sn(a, b). The induction

hypothesis implies that sn+1 is nondecreasing and sn+1(a, 0) = sn+1(0, b) = 0, as desired.

Now, we provide other properties of the upper n-Sugeno integral. From now on, to shorten the

notation, we write Su◦n(f) and Su(f) instead of Su◦n(µ, f) and Su(µ, f), respectively f there is no

ambiguity.

Proposition 3.3. (a) Let (µ, f) ∈ M(X,A) × F(X,Y ). If Su(f) = 0, then Su◦n(f) = 0 for all n.

Moreover, if Su◦k(f) = 0 for some k > 1 and a ◦ b > 0 for all a, b > 0, then Su◦n(f) = 0 for any n.

(b) Su◦n(af) 6 aSu◦n(f) for some a > 1 and for all (µ, af) ∈ M(X,A) × F(X,Y ) and n > 1 provided

that (ax) ◦ (ay) 6 a(x ◦ y) for all ax, ay ∈ Y. Moreover, Su◦n(af) > aSu◦n(f) for some a ∈ (0, 1)

and all (µ, f) ∈M(X,A) ×F(X,Y ) whenever (ax) ◦ (ay) > a(x ◦ y) for all x, y ∈ Y.

(c) µ(A) = Su◦n(ȳ1A) for any A ∈ A and n > 1 whenever µ(X) 6 ȳ and ȳ ◦ b > b for all b ∈ Y.

(d) (Idempotency) Su◦n(a1X) = a for all a ∈ Y and n > 1 if and only if µ(X) > ȳ and a ◦ a = a for

any a ∈ Y.

Proof. (a) If Su(f) = 0, then by Lemma 2.1 (e) we have µ({f > t}) = 0 for all t > 0. Hence

Su◦2(f) =
[
(0 ◦ 0) ∧ µ(X)

]
∨ sup
t∈(0,ȳ]

{(t ◦ 0) ∧ 0} = 0,

as 0 ◦ 0 = 0. Applying the induction, we will prove that Su◦n(f) = 0 for all n.

Assume that Su◦k(f) = 0 for some k > 1. Thus t ◦ Su◦k−1(f) = 0 for all t > 0 or µ({f > t}) = 0 for

all t > 0. Suppose that Su◦k−1(f) > 0. Then by the assumption on ◦, we have µ({f > t}) = 0 for all

t > 0, so Su(f) = 0, which implies that Su◦k−1(f) = 0, a contradiction. Therefore Su◦k−1(f) = 0, which

leads to Su(f) = 0, and so Su◦n(f) = 0 for all n.
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The proof of part (b) is again by induction on n. Clearly,

Su(af) = sup
t∈Y

{
(a(t/a)) ∧ µ({f > t/a})

}
6 sup

s6ȳ/a

{
(as) ∧ (aµ({f > s}))

}
= aSu(f)

for a > 1. Assume that the assertion holds for some n > 1. Then, by induction hypothesis,

Su◦n+1(af) = sup
s6ȳ/a

{(
(as) ◦ Su◦n(af)

)
∧ µ({f > s})

}
6 sup

s6ȳ/a

{(
(as) ◦ (aSu◦n(f))

)
∧
(
aµ({f > s})

)}
6 a sup

s6ȳ/a

{
(s ◦ Su◦n(f)) ∧ µ({f > s})

}
= a Su◦n+1(f).

The proof for the case 0 < a < 1 is analogous. To prove (c) and (d) one can use Proposition 3.2 (c).

Proposition 3.4. The sequence (Su◦n(f))n>1 is nondecreasing for all (µ, f) ∈M(X,A)×F(X,Y ) if and

only if a ◦ b > a ∧ b for all a, b ∈ Y.

Proof. “⇒” By Proposition 3.2 (c) we get Su◦2(a1A) = (a ◦ (a ∧ b)) ∧ b, where A ∈ A, a ∈ Y and

b = µ(A). Since Su◦2(a1A) > Su◦1(a1A), we have (a ◦ (a∧ b))∧ b > a∧ b for all a ∈ Y, b ∈ µ(A)∩Y and

any monotone measure µ. Hence, a ◦ b > (a ◦ b) ∧ b > (a ◦ (a ∧ b)) ∧ b > a ∧ b for all a, b ∈ Y.

“⇐” By assumption Su◦2(f) > sup
t∈Y

{
(t∧Su(f))∧µ({f > t})

}
= Su(f). Suppose that Su◦n(f) > Su◦n−1(f)

for some n > 1. By the monotonicity t 7→ a ◦ t for all a and the induction hypothesis, we obtain

Su◦n+1(f) = sup
t∈Y

{
(t ◦ Su◦n(f)) ∧ µ({f > t})

}
> sup

t∈Y

{
(t ◦ Su◦n−1(f)) ∧ µ({f > t})

}
= Su◦n(f),

thus (Su◦n(f))n>1 is a nondecreasing sequence.

Let (µ, f) ∈M(X,A) ×F(X,Y ). Recall that

Su(f) = inf
t∈Y
{t ∨ µ({f > t})} = sup

A∈A
{ inf
x∈A

f(x) ∧ µ(A)}, (2)

see [5, 37, 41]. We present formulas for the upper n-Sugeno integral, which have the forms as in (2).

Theorem 3.5. Let ◦ be an admissible fusion map that is continuous in the first argument. Then for

all (µ, f) ∈M(X,A) ×F(X,Y ) and n > 2 we have

Su◦n(f) = inf
t∈Y

{(
t ◦ Su◦n−1(f)

)
∨ µ({f > t})

}
.

Proof. The proof is given in Appendix.
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Theorem 3.6. For all (µ, f) ∈M(X,A) ×F(X,Y ) and n > 2 we have

Su◦n(f) = sup
A∈A

{(
inf
x∈A

f(x) ◦ Su◦n−1(f)
)
∧ µ(A)

}
.

Proof. Arguing as in the proof of Theorem 2.2 in [7], we shall show more than it is needed, i.e., if

a map ◦ is nondecreasing in the first coordinate, then

sup
t∈Y
{(t ◦ a) ∧ µ({f > t})} = sup

A∈A
{( inf
x∈A

f(x) ◦ a) ∧ µ(A)} (3)

for all a ∈ Y. In fact, let t ∈ Y and At = {f > t}. Thus, inf
x∈At

f(x) > t and

(t ◦ a) ∧ µ({f > t}) 6 ( inf
x∈At

f(x) ◦ a) ∧ µ(At) 6 sup
A∈A
{( inf
x∈A

f(x) ◦ a) ∧ µ(A)}.

Therefore, the left hand side in (3) is not greater than the right one. Let A ∈ A and t0 = inf
x∈A

f(x).

Then A ⊂ {f > t0} and

( inf
x∈A

f(x) ◦ a) ∧ µ(A) 6 (t0 ◦ a) ∧ µ({f > t0}) 6 sup
t∈Y
{(t ◦ a) ∧ µ({f > t})}.

Thus, the left hand side in (3) is greater than or equal to the right one, which finishes the proof.

The most important property of an integral is subadditivity. The following concept was introduced

in [5].

Definition 3.7. Let µ ∈ M(X,A). We say that f, g ∈ F(X,Y ) are µ-subadditive with respect to a map

O : µ(A)× µ(A)→ µ(A) (µ-O-subadditive for short) if

µ({f > a} ∪ {g > b}) 6 µ({f > a})Oµ({g > b})

for all a, b ∈ Y.

Note that all functions f, g are µ-O-subadditive if aO b = (a + b) ∧ µ(X) whenever the monotone

measure µ is subadditive, that is, µ(A ∪B) 6 µ(A) + µ(B) for all A,B ∈ A. Recall that f, g ∈ F(X,Y )

are comonotone if (f(x)−f(y))(g(x)−g(y)) > 0 for all x, y ∈ X. Equivalently, f and g are comonotone,

if for any t ∈ Y either {f > t} ⊂ {g > t} or {g > t} ⊂ {f > t}. Thus, comonotone functions are

µ-O-subadditive for O > ∨. For more examples of µ-O-subadditive functions we refer to [5].

Theorem 3.8. Assume that O : µ(A)× µ(A)→ µ(A), f, g ∈ F(X,Y ) and

[((a+ b) ∧ ȳ)� ((c+ d) ∧ ȳ)] ∨ (αOβ) 6 [(a� c) ∨ α] + [(b� d) ∨ β] (4)

for a, b, c, d ∈ Y and α, β ∈ µ(A) such that a + b, c + d ∈ Y with � ∈ {◦,P}, where the admissible

fusion map ◦ is continuous in the first argument and xPy = x for any x, y. If f, g are µ-O-subadditive

and f + g ∈ F(X,Y ), then

Su◦n(f + g) 6 Su◦n(f) + Su◦n(g) (5)
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for n > 1. Moreover, µ is a subadditive monotone measure whenever there is some n > 1 such that (5)

holds for all f, g ∈ F(X,Y ) with µ(X) 6 ȳ and ȳ ◦ b > b for all b ∈ Y.

Proof. The proof is by induction on n. Let n = 1. Evidently, {f 6 a} ∩ {g 6 b} ⊂ {f + g 6 a+ b}. As

f(x) + g(x) 6 ȳ for any x and f, g are µ-O-subadditive, we have

[(a+ b) ∧ ȳ] ∨ µ({f + g > (a+ b) ∧ ȳ}) 6 [(a+ b) ∧ ȳ] ∨ [µ({f > a})Oµ({g > b})]

6 [a ∨ µ({f > a})] + [b ∨ µ({g > b})],

where the last inequality holds by (4) with x� y = x. By (2) we get

Su(f + g) 6 [a ∨ µ({f > a})] + [b ∨ µ({g > b})].

Taking the lower bound for a, b ∈ Y finishes the proof of (5) for n = 1.

Assume that (5) holds for some n > 1. By µ-O-subadditivity and (4) with � = ◦, we get[[
(a+ b) ∧ ȳ

]
◦
[
(Su◦n(f) + Su◦n(g)) ∧ ȳ

]]
∨ µ({f + g > (a+ b) ∧ ȳ})

6
[[

(a+ b) ∧ ȳ
]
◦
[
(Su◦n(f) + Su◦n(g)) ∧ ȳ

]]
∨ [µ({f > a})Oµ({g > b})]

6
[
(a ◦ Su◦n(f)) ∨ µ({f > a})

]
+
[
(b ◦ Su◦n(g)) ∨ µ({g > b})

]
.

By the induction hypothesis and Su◦n(f + g) 6 ȳ, we have for all a, b ∈ Y

[
[(a+ b) ∧ ȳ] ◦ Su◦n(f + g)

]
∨ µ({f + g > (a+ b) ∧ ȳ})

6
[
(a ◦ Su◦n(f)) ∨ µ({f > a})

]
+
[
(b ◦ Su◦n(g)) ∨ µ({g > b})

]
.

As a consequence of Theorem 3.5 we obtain

Su◦n+1(f + g) 6
[
(a ◦ Su◦n(f)) ∨ µ({f > a})

]
+
[
(b ◦ Su◦n(g)) ∨ µ({g > b})

]
.

Taking the lower bound for a and then for b we finish the proof of (5).

Suppose that (5) is satisfied for some n > 1. Then Proposition 3.3 (c) yields Su◦k(ȳ1D) = µ(D) for all

D and k. Putting f = ȳ1A and g = ȳ1B\A in (5), we obtain µ(A∪B) 6 µ(A)+µ(B\A) 6 µ(A)+µ(B).

This completes the proof.

Corollary 3.9. If µ ∈M(X,A) is subadditive and µ(X) 6 ȳ, then

Su+
n (f + g) 6 Su+

n (f) + Su+
n (g) (6)

for any n > 1 and all f, g ∈ F(X,Y ) such that f + g ∈ F(X,Y ). Moreover, if there is n such that (6)

holds for all f, g ∈ F(X,Y ), then µ is a subadditive monotone measure.
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Proof. The assertion follows from Theorem 3.8 for a ◦ b = (a+ b) ∧ ȳ and aO b = (a+ b) ∧ µ(X).

Corollary 3.10. If f, g ∈ F(X,Y ) are comonotone functions and µ(A) ⊂ Y, then Su+
n (f + g) 6

Su+
n (f) + Su+

n (g) for all n > 1 and f + g ∈ F(X,Y ).

Proof. Apply Theorem 3.8 for a ◦ b = (a+ b) ∧ ȳ and O = ∨.

Condition (4) is valid if O 6 + and [(a+ b)∧ ȳ] ◦ [(c+ d)∧ ȳ] 6 (a ◦ c) + (b ◦ d) for any a, b, c, d ∈ Y.

Examples of maps ◦ satisfying the last inequality are:

(i) a ◦ b = λa for Y = [0, 1] and λ ∈ (0, 1], or Y = [0,∞] and λ > 0,

(ii) a ◦ b = aγ with γ ∈ (0, 1),

(iii) a ◦ b = λ(a+ b) + (1− λ)(a ∨ b) for λ ∈ [0, 1] and Y = [0,∞],

(iv) a ◦ b = a+ b− ab for Y = [0, 1].

As we have shown above, the upper n-Sugeno integral possesses several properties of the Sugeno

integral, but not all. Hereafter, a1X ∨ f = (a1X) ∨ f and a1X ∧ f = (a1X) ∧ f. We say that the

integral J is maxitive homogeneous and minitive homogeneous if J(µ, a1X ∨ f) = a ∨ J(µ, f) and

J(µ, a1X ∧ f) = a ∧ J(µ, f) for any a, µ, f, respectively. Next example demonstrates that it is not the

case of upper and lower n-Sugeno integral.

Example 3.11. Let f = 0.251A + 0.751B, where A ∩B = ∅ and A ∪B = X. Assume that µ(X) = 1

and µ(B) = 0.5. It is clear that (1/3)1X ∧f = 0.251A+(1/3)1B and (1/3)1X ∨f = (1/3)1A+0.751B.

Thus,

Su+
2 (f) = 0.75, Su+

2 ((1/3)1X ∧ f) = 7/12, Su+
2 ((1/3)1X ∨ f) = 5/6,

so Su+
2 ((1/3)1X ∧ f) > (1/3) ∧ Su+

2 (f) and Su+
2 ((1/3)1X ∨ f) > (1/3) ∨ Su+

2 (f).

Now we give one sufficient condition for minitive/maxitive homogeneity of the integral.

Proposition 3.12. Let n > 2 and (µ, f) ∈M(X,A) ×F(X,Y ). Then

(a) Su◦n(a1X ∧ f) = a ∧ Su◦n(f) for any a ∈ Y if (a ∧ b) ◦ (a ∧ c) = a ∧ (b ◦ c) for all a, b, c ∈ Y.

(b) Su◦n(a1X ∨ f) = a ∨ Su◦n(f) for any a ∈ Y if (a ∨ b) ◦ (a ∨ c) = a ∨ (b ◦ c) for all a, b, c ∈ Y.

Proof. We show only (a) since the proof of (b) is analogous. Since Su(a1X ∧ f) = a ∧ Su(f), we have

from Theorem 3.6 that Su◦2(a1X ∧ f) = sup
A∈A

{[
(a∧ inf

x∈A
f(x)) ◦ (a∧ Su(f))

]
∧µ(A)

}
= a∧ Su◦2(f). The

second induction step proceeds similarly.

The admissible fusion map x ◦ y = ϕ(x) ∧ γ(y) satisfies the condition of Proposition 3.12 (a) if

ϕ, γ : Y → Y are nondecreasing functions such that ϕ(a) ∧ γ(a) = a for any a ∈ Y. The assumption of

Proposition 3.12 (b) holds if x ◦ y = ϕ(x) ∨ γ(y), where the functions ϕ, γ : Y → Y are nondecreasing

with ϕ(a) ∨ γ(a) = a for all a ∈ Y.
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4 Lower n-Sugeno integral

This section is devoted to defining a new functional generalizing the upper 2-h-index (18) and its

properties. We say that ? : [0,∞]× Y → [0,∞] is a link map if it is nondecreasing and 0 ? a 6 a for all

a ∈ Y. Clearly, the link map coincides with the admissible fusion map if and only if Y = [0,∞].

Definition 4.1. Let (µ, f) ∈ M(X,A) × F(X,Y ) and ? be a link map. For n > 1 the lower n-Sugeno

integral is defined by

Sun+1
? (µ, f) := sup

t∈Y

{
t ∧
(
µ({f > t}) ? Sun? (µ, f)

)}
,

where Su1
?(µ, f) = Su(µ, f).

It is clear that Sun? (µ, f) ∈ Y for all n. The next proposition shows that the lower n-Sugeno integral

satisfies all the properties in Definition 2.2.

Proposition 4.2. Let n > 1, f, g ∈ F(X,Y ) and µ, ν ∈M(X,A).

(a) If f 6µ g, then Sun? (µ, f) 6 Sun? (µ, g).

(b) If µ(A) 6 ν(A) for all A ∈ A, then Sun? (µ, f) 6 Sun? (ν, f).

(c) Sun? (µ, a1A) = sn(a, µ(A)) for a ∈ Y and A ∈ A, where sn : Y × [0,∞] → Y is a nondecreasing

function such that sn(a, 0) = sn(0, b) = 0 and sn+1(a, b) = a ∧ [b ? sn(a, b)] for all a, b.

Proof. Parts (a) and (b) are immediate by induction.

(c) We have the following recurrence formula

Sun+1
? (µ, a1A) =

[
a ∧ (µ(A) ? Sun? (µ, a1A))

]
∨
[
ȳ ∧ (0 ? Sun? (µ, a1A))

]
,

where a ∈ Y. First we show that

Sun? (µ, a1A) 6 a (7)

for all n and a ∈ Y. We use induction on n. In fact, Su(a1A) = a ∧ µ(A) 6 a. Assume that (7) holds

for some n. Since 0 ? a 6 a, we have

Sun+1
? (µ, a1A) 6 [a ∧ (µ(A) ? a)] ∨ [ȳ ∧ (0 ? a)] 6 a ∨ a = a

and the proof of (7) is complete. From (7), we obtain 0 ? Sun+1
? (µ, a1A) 6 0 ? a 6 a 6 ȳ for all a ∈ Y.

Hence,

Sun+1
? (µ, a1A) =

[
a ∧ (µ(A) ? Sun? (µ, a1A))

]
∨
[
0 ? Sun? (µ, a1A)

]
.

As 0 ? Sun? (µ, a1A) 6 0 ? a 6 a and 0 ? Sun? (µ, a1A) 6 µ(A) ? Sun? (µ, a1A), we get

Sun+1
? (µ, a1A) = a ∧

[
µ(A) ? Sun? (µ, a1A)

]
. (8)

Applying induction on n, we obtain the statement (c).
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To shorten the notation, we write Sun? (f) instead of Sun? (µ, f) if there is no ambiguity. Hereafter,

for a link map ? and µ ∈ M(X,A) we use the convention µ?k+1(A) := µ(A) ? µ?k(A) for all k > 1

with µ?1(A) = µ(A) provided that µ?k(X) ∈ Y for all k. It is evident that µ?n is a monotone measure

if µ?n(X) > 0. Some properties of the lower n-Sugeno integral are analogous to those of the upper

n-Sugeno integral, which is shown in what follows.

Proposition 4.3. Let (µ, f) ∈M(X,A) ×F(X,Y ) and A ∈ A.

(a) If Su(f) = 0, then Sun? (f) = 0 for all n > 2. If Suk?(f) = 0 for some k > 1 and a ? b > 0 for all

a, b > 0, then Sun? (f) = 0 for all n > 1.

(b) Sun? (f) = lim
t↗Sun

? (f)

(
t ∧ (µ({f > t}) ? Sun−1

? (f))
)
if Sun−1

? (f) > 0.

(c) Sun? (f) = lim
t↘Sun

? (f)

(
t ∨ (µ({f > t}) ? Sun−1

? (f))
)
if Sun? (f) < ȳ.

(d) There is a > 1 such that Sunν (ag) 6 aSunν (g) for all (ν, ag) ∈ M(X,A) × F(X,Y ) and n > 1, if

x? (ay) 6 a(x?y) for all x ∈ ν(A) and ay ∈ Y. Moreover, Sunν (ag) > aSunν (g) for some a ∈ (0, 1)

and for all (ν, g) ∈M(X,A)×F(X,Y ) and n > 1, if x? (ay) > a(x? y) for all x ∈ ν(A) and y ∈ Y.

(e) Sun? (a1A) = µ?n(A) for a ∈ [ max
16k6n

µ?k(A), ȳ].

(f) (Idempotency) Sun? (a1X) = a for all a ∈ Y and n > 1 if and only if µ(X) > ȳ and µ(X) ? a > a

for all a ∈ Y.

Proof. (a) The first assertion follows from Lemma 2.1 (e) and the induction, since 0?0 = 0. If Suk?(f) = 0

for some k > 1, then repeating similar argument as in the proof of Proposition 3.3 (a), we get the

assertion.

(b) and (c) By monotonicity of ?, we have t > µ({f > t}) ? Sun−1
? (f) for t > Sun? (f) and t < µ({f >

t}) ? Sun−1
? (f) for t < Sun? (f). In consequence, both properties (b) and (c) hold. See the proof of

Lemma 2.1 (c)-(d).

(d) The proof is similar to that of Proposition 3.3 (b).

(e) and (f) The proofs go by induction on n; see (8).

Proposition 4.4. The sequence (Sun? (f))∞n=1 is nondecreasing for all (µ, f) ∈M(X,A)×F(X,Y ) if and

only if a ? b > a ∧ b for all a ∈ [0,∞] and b ∈ Y.

Proof. “⇒” By (8) for n = 1, we have Su2
?(a1A) = a∧ [b ? (a∧ b)], where A ∈ A, a ∈ Y and b = µ(A).

Since Su1
?(a1A) 6 Su2

?(a1A), we obtain a ∧ b 6 a ∧ [b ? (a ∧ b)] 6 b ? a for all a ∈ Y and b ∈ [0,∞], as

desired.

“⇐” The proof is similar to that of Proposition 3.4, so we omit it.

Theorem 4.5. For all (µ, f) ∈M(X,A) ×F(X,Y ) and n > 2

Sun? (f) = sup
A∈A

{
inf
x∈A

f(x) ∧
(
µ(A) ? Sun−1

? (f)
)}
.
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Proof. Use the same arguments as in the proof of Theorem 3.6 for a nondecreasing map ? in the first

coordinate.

The following extension of the first equality in (2) will be needed to prove the subadditivity property

of the lower integral.

Theorem 4.6. Assume that ? is a continuous link map in the first argument. Then for each (µ, f) ∈

M(X,A) ×F(X,Y ) and n > 2 we have

Sun? (f) = inf
t∈Y

{
t ∨
(
µ({f > t}) ? Sun−1

? (f)
)}
.

Proof. The proof is given in Appendix.

Next, we show that the lower n-Sugeno integral is also a subadditive functional under some extra

assumptions.

Theorem 4.7. Suppose that O : µ(A)× µ(A)→ µ(A), f, g ∈ F(X,Y ) and

[(a+ b) ∧ ȳ] ∨
[
(αOβ) ~ ((c+ d) ∧ ȳ)

]
6 [a ∨ (α~ c)] + [b ∨ (β ~ d)] (9)

for a, b, c, d ∈ Y and α, β ∈ µ(A) with ~ ∈ {?,P}, where ? is a continuous link map in the first

argument and xPy = x for any x, y. If f, g are µ-O-subadditive and f + g ∈ F(X,Y ), then

Sun? (f + g) 6 Sun? (f) + Sun? (g) (10)

for all n > 1. Moreover, if (10) is valid for all f, g ∈ F(X,Y ) such that f + g ∈ F(X,Y ) and n such that

µ?n(X) > 0, then the monotone measure µ?n is subadditive.

Proof. We use the induction by n. The proof of subadditivity of the Sugeno integral (the case n = 1

and ~ = P) can be found in the proof of Theorem 3.8. Assume that inequality (10) holds for some

n > 2 and all µ-O-subadditive functions f, g. Combining inductive hypothesis and (9) with ~ = ?

yields

[(a+ b) ∧ ȳ]∨
[
µ({f + g > (a+ b) ∧ ȳ}) ? (Sun? (f + g) ∧ ȳ)

]
6
[
(a+ b) ∧ ȳ

]
∨
[(
µ({f > a})Oµ({g > b})

)
?
(
(Sun? (f) + Sun? (g)) ∧ ȳ

)]
6
[
a ∨

(
µ({f > a}) ? Sun? (f)

)]
+
[
b ∨
(
µ({g > b}) ? Sun? (g)

)]
for all a, b ∈ Y. By Theorem 4.6, we get

Sun+1
? (f + g) 6

[
a ∨

(
µ({f > a}) ? Sun? (f)

)]
+
[
b ∨
(
µ({g > b}) ? Sun? (g)

)]
for any a, b ∈ Y. Taking infimum over a and then with b gives (10).

Put f = a1A and g = a1B\A in (10), where a > max
k6n

µ?k(A∪B). Then from Proposition 4.3 (e) and

by monotonicity of µ?n, we get µ?n(A ∪B) 6 µ?n(A) + µ?n(B\A) 6 µ?n(A) + µ?n(B), as desired.
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Example 4.8. There are many link maps ? with Y = [0,∞] such that subadditivity of µ?n with

arbitrary n implies subadditivity of µ. For instance, all idempotent operators (e.g. a ? b = apb1−p and

a ? b = p(a ∧ b) + (1− p)(a ∨ b) with p ∈ (0, 1)) as well as mappings

a ? b = f(a)f(b),a) a ? b = g(ab),b) a ? b = h(a+ b),c) a ? b = (aq + bq)1/q,d)

where q > 0 and f, g, h : [0,∞] → [0,∞] are increasing superadditive functions1 vanishing at 0, such

that h(x) 6 x for all x. In order to prove a) and b) one can use the inequality an + bn 6 (a+ b)n.

Corollary 4.9. If µ is a subadditive monotone measure, or f, g ∈ F(X,[0,∞]) are comonotone functions,

then

Sun+(f + g) 6 Sun+(f) + Sun+(g) (11)

for all n > 1. Moreover, if (11) is valid for some n and all f, g ∈ F(X,[0,∞]), then µ is subadditive.

Proof. Put Y = [0,∞], ? = + and aO b = (a + b) ∧ µ(X) or O = ∨ in Theorem 4.7 and use

Example 4.8 (d) with q = 1.

Next, we give a partial solution to the problem posed in [30]. The question is how to compute the

pseudo-decomposition integral of n-th order defined as

I⊕,�n (µ, f) = sup
{ n⊕
i=1

(ai � µ(Ai)) :
n⊕
i=1

ai1Ai 6 f, ai ∈ Y, A1 ⊂ . . . ⊂ An
}

(12)

based on a pseudo-addition ⊕ : Y 2 → Y and a ⊕-fitting pseudo-multiplication � : Y × [0, µ(X)] → Y

(see [3, Definition 3.1 and 3.4]). The integral I⊕,�n is also called the Benvenuti integral of n-th order.

Our aim is to compute the integral I+,∧
n (µ, f). By the definition (12) we get

I+,∧
n (µ, f) = sup

{ n∑
i=1

(ai ∧ µ(Ai)) :
n∑
i=1

ai1Ai 6 f, A1 ⊂ . . . ⊂ An
}

= sup
{ n∑
i=1

(ai ∧ µ(Ai)) :
n∑
i=1

( n∑
k=i

ak

)
1Ai\Ai−1

6 f, A1 ⊂ . . . ⊂ An
}

= sup
{ n∑
i=1

(
(bi − bi+1) ∧ µ({f > bi})

)
: 0 = bn+1 6 bn 6 . . . 6 b1 6 ȳ

}
(13)

with bi =

n∑
k=i

ak and A0 := ∅, but computation of the integral from formula (13) is still a difficult task.

However, there is a connection with the lower n-Sugeno integral.

Theorem 4.10. For all (µ, f) ∈M(X,A) ×F(X,Y ) and n > 1

I+,∧
n (µ, f) = Sun+(µ, f). (14)

1 A function f is superadditive if f(a+ b) > f(a) + f(b) for any a, b.
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Proof. See Appendix.

Combining the definition of Sun+(µ, f) with Theorem 4.10 gives the following simple recurrence

scheme

I+,∧
n (µ, f) = sup

y∈Y

{
y ∧

(
µ({f > y}) + I+,∧

n−1(µ, f)
)}

with I+,∧
1 (µ, f) := Su(f).

Example 4.11. Let X = [0, 1], f(x) = x and µ(A) = (λ(A))1/2, where λ is the Lebesgue measure.

Then

In =
2 In−1 − 1 +

√
5− 4 In−1

2
, n = 1, 2, . . . ,

where In := I+,∧
n (µ, f) and I0 := 0. If µ(A) = (λ(A))2, then

In =
3−

√
5− 4 In−1

2
, n = 1, 2, . . . .

The next result provides a connection between the lower n-Sugeno integral and the generalized

Choquet integral introduced in [9] and deeply studied in [29].

Theorem 4.12. Let (µ, f) ∈ M(X,A) × F(X,Y ) and n > 2. The lower n-Sugeno integral can be repre-

sented as

Sun+(f) = inf
{ n∑
i=1

(
(bi − bi+1) ∨ µ({f > bi})

)
: 0 = bn+1 6 bn 6 . . . 6 b1 6 ȳ

}
.

Proof. See Appendix.

The lower 2-Sugeno integral is neither maxitive nor minitive homogeneous functional.

Example 4.13. Consider f as in the Example 3.11. Let µ(B) = 0.25 and µ(X) = 1. Then Su2
+(f) =

0.5 and Su2
+((1/3)1X ∨ f) = 7/12, so Su2

+((1/3)1X ∨ f) > (1/3) ∨ Su2
+(f).

Example 4.14. Let f = 0.51A, µ(A) = 0.5, µ(X) = 1 and ? = ·. After simple calculations, we get

Su2
· (f) = 0.25 and Su2

· (0.11X ∧ f) = 0.05. Thus, Su2
· (0.11X ∧ f) < 0.1 ∧ Su2

· (f).

Now we give a sufficient condition for minitive/maxitive homogeneity.

Proposition 4.15. Suppose that n > 2 and (µ, f) ∈M(X,A) ×F(X,Y ).

(a) Sun? (a1X ∧ f) = a ∧ Sun? (f) for any a ∈ Y if a ∧ (b ? (a ∧ c)) = a ∧ (b ? c) for all a, c ∈ Y and

b ∈ µ(A).

(b) Sun? (a1X ∨ f) = a∨ Sun? (f) for any a ∈ Y if µ(X) > ȳ and b∧ c 6 b ? c 6 b∨ c for all b ∈ [0,∞]

and c ∈ Y.
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Proof. The proof of part (a) is similar to that of Proposition 3.12 (a) (applying Theorem 4.5), so we

omit it.

Now we show (b) by induction. The proof for n = 2 will be omitted as it is quite similar to the proof

of the second induction step. From Theorem 4.5 and the induction hypothesis, we have

Sun? (a1X ∨ f) = sup
A

{
(a ∨ inf

x∈A
f(x)) ∧

[
µ(A) ? (a ∨ Sun−1

? (f))
]}

= sup
A

{
(a ∨ inf

x∈A
f(x)) ∧

[
(µ(A) ? a) ∨ (µ(A) ? Sun−1

? (f))
]}

= sup
A

{
[a ∧ (µ(A) ? a)] ∨

[
a ∧ (µ(A) ? Sun−1

? (f))
]

∨ [ inf
x∈A

f(x) ∧ (µ(A) ? a)] ∨
[

inf
x∈A

f(x) ∧ (µ(A) ? Sun−1
? (f))

]}
,

where we write sup
A

instead of sup
A∈A

. Furthermore

Sun? (a1X ∨ f) = [a ∧ (µ(X) ? a)] ∨ [a ∧ (µ(X) ? Sun−1
? (f))] ∨ sup

A

{
inf
x∈A

f(x) ∧ (µ(A) ? a)
}

∨ sup
A

{
inf
x∈A

f(x) ∧ (µ(A) ? Sun−1
? (f))

}
.

By the assumption that µ(X)?a > µ(X)∧a = a and the fact that a∧ (µ(X)?Sun−1
? (f)) 6 a, we have

Sun? (a1X ∨ f) = a ∨ sup
A
{ inf
x∈A

f(x) ∧ (µ(A) ? a)} ∨ Sun? (f). (15)

Observe that

sup
A

{
inf
x∈A

f(x) ∧ (µ(A) ? a)
}
6 sup

A

{
inf
x∈A

f(x) ∧ (µ(A) ∨ a)
}

= sup
A

{
( inf
x∈A

f(x) ∧ µ(A)) ∨ ( inf
x∈A

f(x) ∧ a)
}

6 Su(f) ∨ a 6 Sun? (f) ∨ a,

where the last inequality follows from Proposition 4.4. By (15), we obtain Sun? (a1X ∨ f) = a∨Sun? (f),

as desired.

The condition in (a) is satisfied if x ? a > a for any x and a, e.g. x ? a := (xp + ap)1/p for p > 0. On

the other hand, any OWA operator of the form x ? y = p(x∧ y) + (1− p)(x∨ y) satisfies the condition

in (b) for p ∈ [0, 1].

5 Applications

(A) Scientometric indices

We put X = N, where N = {1, 2, . . .} denotes the set of all positive integers, and µ : 2N → [0,∞]

is the counting measure, i.e., µ(A) = Card(A) for any A ∈ 2N. A scholar with some publications is
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formally described by an infinite vector x = (x1, x2, . . .), called a scientific record, where xi ∈ N0 with

N0 = N ∪ {0} such that x1 > x2 > . . . . The positive value of xi gives the number of citations of i-th

scholar publication, and the value xi = 0 means either a paper with zero citations or a nonexisting

paper. From now on we consider the scientific records with x1 > 1. The h-index of x is defined as

follows [23, 28]

H(x) = max{k : xk > k} = max
k
{k ∧ xk}.

Note that there are several papers characterizing the Hirsch index via various axioms, e.g. [8, 32, 33, 42].

An interesting axiom H(x) = H(yx) is called the symmetry of the h-index, see [43, Proposition 3.1].

Here yx := (y1, y2, . . .) is called the conjugate of x with yi =
∞∑
k=1

1{xk>i} providing the number of

publications with at least i citations.

As it is well known, the Hirsch index has some drawbacks. In order to compensate some defects of

h-index, many authors have introduced new scientometric indices that lead to better discrimination

of some types of data than h-index (see [28, 31, 42]). Here we discuss a few of them and show that

the upper/lower n-Sugeno integrals generalize some known scientometric indices. Firstly, recall that

Narukawa and Torra [39] have shown that h-index is the Sugeno integral with respect to counting

measure. In consequence, the upper/lower n-Sugeno integral generalizes h-index too.

(i) Generalized Kosmulski index There are several modifications of h-index based on the input

k, e.g. hλ(x) = max{k : xk > λk} of Van Eck [40], h(2)-index H2(x) = max{k : xk > k2} of Kosmulski

[27], or its extended version max{k : xk > km} with m = 3, 4, . . . . In general, for any nondecreasing

function s : [0,∞] → [0,∞] the generalized Kosmulski index is given by Ks(x) = max{k : xk > s(k)},

see [13]2.

Now we will show the connection between generalized Kosmulski index and upper/lower 2-Sugeno

integral. For this purpose consider ◦s : [0,∞]2 → [0,∞] defined as a◦s b = s(a) with s : [0,∞]→ [0,∞]

being a nondecreasing function such that s(0) = 0. Immediately, ◦s is an admissible fusion as well

as a link function with Y = [0,∞]. Note that each scientific record x uniquely determines a function

f : X → N0 as xi = f(i), and vice versa. Hence, the notation Su◦s2 (x) is justified and

Su◦s2 (x) = max
k
{s(k) ∧ µ({i : xi > k})} = max

j
{s(xj) ∧ µ({i : xi > xj})}.

Since µ is the counting measure, we get

Su◦s2 (x) = max
j
{s(xj) ∧ j} = max

j

{
s(µ({i : yi > j})) ∧ j

}
= Su2

◦s(yx), (16)

2In order to get an integer-valued index, in the original paper authors consider the function s : N0 → N0 with s(0) = 0

and s(k) > 1 for each k ∈ N.
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where yx is the conjugate of x. Moreover,

Su2
◦s(x) = max

k

{
k ∧ s(µ({i : xi > k}))

}
= max

k

{
xk ∧ s(µ({i : xi > xk}))

}
= max

k
{xk ∧ s(k)} = max

k
{µ({i : yi > k}) ∧ s(k)} = Su◦s2 (yx). (17)

It is easy to see that Su2
◦s(x) and Su◦s2 (x) for s(a) = a (under the convention s(∞) =∞) coincide with

the h-index of x. In consequence, this proves Proposition 31 from [43], i.e., the symmetry H(x) = H(yx)

of h-index. However, the integrals Su◦s2 (·) and Su2
◦s(·) are not symmetric in general, i.e., the equalities

Su◦s2 (x) = Su◦s2 (yx) and Su2
◦s(x) = Su2

◦s(yx) need not hold for each s and x.

Example 5.1. For s(a) = 2a and the scientific record x = (3, 0, . . .) with yx = (1, 1, 1, 0, . . .) we have

Su◦s2 (x) = 1 = Su2
◦s(yx), but Su◦s2 (yx) = 2 = Su2

◦s(x). Note that for s(a) = λa with λ > 0 it follows

from (17) that Su2
◦s(x) = max

k
{xk ∧ (λk)}. This index was introduced in [20, Definition 2].

Proposition 5.2. Let ◦s : [0,∞]2 → [0,∞] be such that a ◦s b = s(a) with s : [0,∞]→ [0,∞] being an

increasing and continuous function such that s(0) = 0. Then for each scientific record x we have

(a) Ks(x) = Su
◦bŝc
2 (x),

(b) Ks(x) = bSu◦ŝ2 (x)c =
⌊
ŝ
(
Su2
◦s(x)

)⌋
,

where b·c is the floor function and ŝ = s−1.

Proof. Observe that Ks(x) = max{k : s−1(xk) > k} = max{k : bs−1(xk)c > k} = max
k
{k ∧ bs−1(xk)c}.

From (16), we get Ks(x) = Su
◦bŝc
2 (x), as ◦bŝc is an admissible fusion function. Next, note that

Su
◦bŝc
2 (x) = bmax

k
{k ∧ s−1(xk)}c, since bk ∧ ac = k ∧ bac for each a > 0 and k ∈ N and max

k
g(zk) =

g(max
k

zk) for any nondecreasing function g. Using (16) again, we obtain Ks(x) = bSu◦ŝ2 (x)c. Moreover,

Ks(x) = bs−1(max
k
{s(k) ∧ xk)})c =

⌊
ŝ
(
Su2
◦s(x)

)⌋
, where the latter equality follows from (17).

All the above considerations are true also for the upper/lower n-Sugeno integral for any n > 2.

(ii) Upper and lower 2-h-indices We return back to the original indices our motivation comes

from. Indeed, Mesiar and Gągolewski [28] introduced the upper 2-h-index and the lower 2-h-index of

a scientific record x as follows:

Hu2(x) = max
k

{
(k + H(x)) ∧ xk

}
, (18)

Hl2(x) = H(x) + max
k

{
(k − H(x))+ ∧ xk

}
= max

k

{
k ∧ (xk + H(x))

}
, (19)

where a+ = max(a, 0). In other words, upper 2-h-index is h-index increased by the value of h-index cal-

culated for the scientist’s output after removing h citations from each work. On the other hand, lower 2-

h-index is h-index increased by the value of h-index of a scientific record x|H(x) = (xH(x)+1, xH(x)+2, . . .).

The latter h-index of x|H(x) corresponds to h-index of x without publications in the Hirsch core, cf. [34].
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Example 5.3. Let x = (6, 6, 4, 3, 1, 1, 1, 0, . . .). Clearly, H(x) = 3, and x|H(x) = (3, 1, 1, 1, 0, . . .) is

the scientific record obtained from x after removing the Hirsch core, i.e., the first three papers. Since

H(x|H(x)) = 1, we have Hl2(x) = 4. Analogously, Hu2(x) = 5, see Fig. 1.

1 2 3 4 5 6

1

2

3

4

5

6

xk

k 1 2 3 4 5 6

1

2

3

4

5

6

xk

k

Figure 1: Illustration of formula (18) for Hu2(x) = 5 (left) and (19) for Hl2(x) = 4 (right).

Proposition 5.4. For each scientific record x we have Su+
2 (x) = Hl2(x) = Su2

+(yx) and Su2
+(x) =

Hu2(x) = Su+
2 (yx).

Proof. For proving the statements, the admissible fusion function and the link function is ◦s = +.

Repeating the considerations from (16) and (17) we finish the proof.

(iii) Hα and Hβ-indices Next we show that the indices Hα and Hβ recently introduced in [24] as

Hα(x) = max
k

{
b(xk/α) ∧ µ({i : xi > xk})c

}
= max

k
{b(xk/α) ∧ kc}, α > 0,

Hβ(x) =
⌈

max
k

{
xk ∧ (µ({i : xi > xk})/β)

}⌉
= dmax

k
{xk ∧ (k/β)}e, β > 0,

are also a special case of upper/lower Sugeno integral. Here, d·e is the ceiling of a real number. Index

Hα is able to compensate a lower number of citations and Hβ compensates a lower number of papers.

Proposition 5.5. For each scientific record x we have

(i) Hα(x) = Su◦s2 (x) with s(a) = ba/αc,

(ii) Hβ(x) = Su2
◦s(x) with s(a) = da/βe.

Proof. (i) Based on (16) we have Su◦s2 (x) = max
k
{bxk/αc ∧ k}. To finish the proof one can use the fact

that ba ∧ kc = bac ∧ k for each a > 0 and k ∈ N.

(ii) Using (17) we get Su2
◦s(x) = max

k
{xk ∧ dk/βe}. Since da ∧ ke = dae ∧ k for a > 0 and k ∈ N, so

Su2
◦s(x) = max

k
{dxk ∧ (k/β)e}. To get the statement, use max

k
g(zk) = g(max

k
zk) for any nondecreasing

function g.

18



Using the similar arguments as in the proof of Proposition 5.5 (ii) one can show that Hα(x) =

bSu◦s2 (x)c with s(a) = a/α and Hβ(x) = dSu2
◦s(x)e with s(a) = a/β. Thence and from Proposi-

tion 5.2 (b) we conclude that Hα is a special case of the generalized Kosmulski index Ks with s(k) = αk.

(iv) Iterated h-index In 2009 in García-Pérez [18, 19] considered a multidimensional h-index and

showed that the additional components are useful to distinguish individuals with the same h-index.

This approach has been studied further in [4] in order to provide its axiomatic characterization. For-

mally, the iterated h-index iH of a scientific record x is a vector iH(x) = (iH1(x), iH2(x), . . .) with the

components iHn(x) defined for each n ∈ N by

iHn(x) = max
k

{
k ∧ xiH0(x)+...+iHn−1(x)+k

}
with iH0(x) := 0. Clearly, iH1(x) = H(x) and iH1(x) > iH2(x) > . . . . Also, it is easy to see that

iHn(x) = Sun+(x)− Sun−1
+ (x). Thus,

Proposition 5.6. For each scientific record x and each n ∈ N we have Sun+(x) =

n∑
k=1

iHk(x).

(v) p-index and c-index It follows from Proposition 5.6 that the functional defined by Su∞+ (x) :=

sup
n

Sun+(x) gives a number of publications with at least one citation. This index is known as the p-

index (see [40, Definition 2.5]). On the other hand, the number Su+
∞(x) := sup

n
Su+

n (x) = x1 represents

a number of citations of the most important paper and it is called the c-index [40, Definition 2.6],

or the maximum-index [42, Definition 2.5]. The p- and c-indices measure almost completely opposite

aspects of the performance of a researcher. The p-index can be seen as a measure of productivity

with focusing on productivity (i.e., number of papers) and paying almost no attention to impact (i.e.,

number of times a paper has been cited). On the other hand, the c-index can be seen as a measure of

impact with focusing on impact and paying no attention at all to productivity. For instance, it prefers

a single highly cited paper over a large number of slightly lower cited papers. Finally, the s-index

defined by s(x) =
∞∑
i=1

xi equals the total number of citations of all papers published by the scientist.

Thus, the s-index takes into account all papers published by a scientist and not only the most cited

paper (as in c-index).

(B) Aggregation functions

Nowadays, aggregation processes naturally appear in almost every discipline and importance of aggre-

gation functions may be seen in various applications including data fusion, decision making, computer

science, social choice, etc. We shall show here that both the upper n-Sugeno and the lower n-Sugeno
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integrals are new aggregation functions under some mild assumptions on maps ◦ and ? with a very

natural max-min-type representations. Firstly we recall the definition of an aggregation function.

Definition 5.7. [2, Definition 1.5] A function A : [0, ȳ]m → [0, ȳ] is said to be an m-ary aggregation

function, if it is nondecreasing and it satisfies the boundary conditions A(0, . . . , 0) = 0 and A(ȳ, . . . , ȳ) =

ȳ.

Put X = {1, 2, . . . ,m}, Y = [0, ȳ] and µ ∈ M(X,A) such that µ(X) > ȳ. For n > 2 the upper

n-Sugeno integral Su◦n(x) with x = (x1, . . . , xm), xi ∈ Y, and an admissible fusion map ◦ satisfying

ȳ ◦ ȳ = ȳ, is an m-ary aggregation function. Indeed, from Proposition 3.3 (d) we get Su◦n(ȳ1X) = ȳ

and Su◦n(01X) = 0 for all n. Monotonicity follows from Proposition 3.2 (a). Additionally, the lower n-

Sugeno integral Sun? (x) for n > 2 is also an aggregation function if the link map ? : [0,∞]×Y → [0,∞]

is such that ? > ∧. In fact, the monotonicity follows from Proposition 4.2 (a), and by Proposition 4.3 (f)

we have Sun? (ȳ1X) = ȳ and Sun? (01X) = 0. Moreover, for each n ∈ N we obtain

Su◦n+1(x) =
∨
T⊂X

[(
(
∧
i∈T

xi) ◦ Su◦n(x)
)
∧ µ(T )

]
, Sun+1

? (x) =
∨
T⊂X

[
(
∧
i∈T

xi) ∧
(
µ(T ) ? Sun? (x)

)]
(see Theorem 3.6 and Theorem 4.5 for A = 2X) providing the weighted max-min-type representations

of the two sequences of aggregation functions.

Conclusions

Generalizing the upper and lower 2-h-indices of Mesiar and Gągolewski [28] we have constructed upper

and lower n-Sugeno integrals via iterating the Sugeno integral. These two classes of new functionals

also include the generalized Kosmulski index [13] and Hα-index [24]. We have examined some of their

universal mathematical properties that are useful in various fields such as scientometry, theory of

integral and aggregation functions. Since there is only a few number of papers combining the above

fields, the present paper stimulates a deeper study of the relationship between nonlinear functionals

and scientometric indices. Thus, an applied research is supported by a theoretical research.

As a by-product, we have partially solved the question on computation of certain pseudo-decomposition

integral providing the representation of Benvenuti integral of n-th order with respect to operations

⊕ = + and � = ∧ as the lower n-Sugeno integral with respect to +. So, our approach provides a new

way to look at pseudo-decomposition integrals and possibilities of their computation.
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Appendix

Proof of Theorems 3.5 and 4.6. The arguments are similar to those of [6, Theorem 2]. Put

Sn+1 = sup
t∈Y

{
(t ◦ Sn) ∧

(
µ({f > t}) ? Sn

)}
, Zn+1 = inf

t∈Y

{
(t ◦ Zn) ∨

(
µ({f > t}) ? Zn

)}
for all n > 1 with S1 = Su(f) = Z1, where

(A) the map ◦ is given in Theorem 3.5 and a ? b = a, or

(B) the map ? is defined in Theorem 4.6 and a ◦ b = a.

Assume that S1 > 0 as if S1 = 0, then Sn = 0 = Zn for all n (see Propositions 3.3 (a) and 4.3 (a)). By

induction we show that Sn = Zn for all n. Clearly S1 = Z1. Suppose that Sk = Zk for all k 6 n. Set

I := {t ∈ Y : µ({f > t}) ? Sn > t ◦ Sn}, J := {t ∈ Y : µ({f > t}) ? Sn > t ◦ Sn}.

Clearly, J ⊂ I and 0 ∈ J in the case (B). In the case (A) we have a ? b = a, so we find that

0 ◦ Sn 6 Sn = inf
t∈Y

{
(t ◦ Sn−1) ∨ µ({f > t})

}
6 (0 ◦ Sn−1) ∨ µ({f > 0}) 6 Sn−1 ∨ µ({f > 0})

6 . . . 6 S1 ∨ µ({f > 0}) = µ({f > 0}),

as 0 ◦ y 6 y and S1 = Su(f) = inf
t∈Y
{t ∨ µ({f > t})} 6 µ({f > 0}). In consequence, 0 ∈ J in both

cases. Since t 7→ t ◦ S is nondecreasing and t 7→ µ({f > t}) ? Sn is nonincreasing, we have I = [0, a]

or I = [0, a) and J = [0, b] or J = [0, b) with b 6 a. We need to show that a = b. Suppose that b < a.

Hence by the definition of I and J, we have

µ({f > t}) ? Sn < t ◦ Sn 6 µ({f > t}) ? Sn

for any t ∈ (b, a). Let b < d < c < a. As {f > c} ⊂ {f > d}, we get

µ({f > c}) ? Sn 6 µ({f > d}) ? Sn < d ◦ Sn 6 c ◦ Sn 6 µ({f > c}) ? Sn,
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a contradiction.

For each interval D, let Dc = [0, ȳ] \D. By continuity of the maps t 7→ t ◦ s and t 7→ t ? s we obtain

Sn+1 = sup
t∈Y

{
(t ◦ Sn) ∧

(
µ({f > t}) ? Sn

)}
= sup

t∈I
{t ◦ Sn} ∨ sup

t∈Ic

{
µ({f > t}) ? Sn

}

=


ȳ ◦ Sn if I = [0, ȳ],

(a ◦ Sn) ∨
(
µ({f > a+}) ? Sn

)
if I = [0, a], a < ȳ,

(a ◦ Sn) ∨
(
µ({f > a}) ? Sn

)
if I = [0, a), a 6 ȳ

with the convention that sup
∅

= 0 and inf
∅

=∞. Observe that

• if I = [0, a] for a < ȳ, then from the definition of I, µ({f > a+}) ? Sn 6 a ◦Sn, so Sn+1 = a ◦Sn,

• if I = [0, a) for a 6 ȳ, we have µ({f > a}) ? Sn < a ◦ Sn, so Sn+1 = a ◦ Sn.

This implies that Sn+1 = a ◦ Sn. Further, we have

Zn+1 = inf
t∈Y

{
(t ◦ Sn) ∨

(
µ({f > t}) ? Sn

)}
= inf

t∈J
{µ({f > t}) ? Sn} ∧ inf

t∈Jc
{t ◦ Sn}

=


0 ? Sn if J = [0, ȳ],

(a ◦ Sn) ∧
(
µ({f > a}) ? Sn

)
if J = [0, a], a < ȳ,

(a ◦ Sn) ∧
(
µ({f > a−}) ? Sn

)
if J = [0, a), a 6 ȳ

=


0 ? Sn if J = [0, ȳ],

a ◦ Sn if J = [0, a], a < ȳ or J = [0, a), a 6 ȳ,

as

• if J = [0, a] and a < ȳ, then µ({f > a}) ? Sn > a ◦ Sn, so Zn+1 = a ◦ Sn,

• if J = [0, a) and a 6 ȳ, then µ({f > a−}) ? Sn > a ◦ Sn, and so Zn+1 = a ◦ Sn.

Consequently, we need to show that Sn+1 = Zn+1 if J = [0, ȳ] = I. Indeed, we have Sn+1 = ȳ ◦Sn and

Zn+1 = 0 ? Sn. Moreover,

0 ? Sn = µ({f > ȳ}) ? Sn > ȳ ◦ Sn.

In the case (A), we have 0 = 0 ? Sn > ȳ ◦ Sn > 0, so Sn+1 = Zn+1. In the case (B), Sn+1 = ȳ,

Zn+1 = 0 ? Sn and 0 ? Sn > ȳ. As Sn > 0 ? Sn and Sn 6 ȳ, we get 0 ? Sn = ȳ, and so Sn+1 = Zn+1.

The proof is complete.

Proof of Theorem 4.10. We begin with the formula (13). It is clear that I+,∧
1 (µ, f) = Su(f) =

Su1
+(f). From Lemma 2.1 (e) it follows that if Su(f) = 0, then µ({f > t}) = 0 for all t > 0. Hence by

Proposition 4.3 (a), I+,∧
n (µ, f) = 0 = Sun+(f) and the assertion holds for any n.
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From now on let us assume Su(f) > 0. To get a better understanding, we first consider the case

n = 2, that is, we show that Su2
+(f) = sup

b2∈Y
M2(b2), where

M2(b2) = (b2 ∧ µ({f > b2})) + sup
b1>b2

{
(b1 − b2) ∧ µ({f > b1})

}
.

Clearly, b2 ∧ µ({f > b2}) 6 Su(f), so b2 ∧ µ({f > b2}) 6 b2 ∧ Su(f) and

M2(b2) 6 (b2 ∧ Su(f)) + sup
b1>b2∧Su(f)

{(
b1 − (b2 ∧ Su(f))

)
∧ µ({f > b1})

}
= sup

b1>b2∧Su(f)

{
b1 ∧

(
µ({f > b1}) + (b2 ∧ Su(f))

)}
6 sup

b1>b2∧Su(f)

{
b1 ∧

(
µ({f > b1}) + Su(f)

)}
= Su(f) + sup

b1>b2∧Su(f)

{
(b1 − Su(f)) ∧ µ({f > b1})

}
.

Since sup
b1∈[b2∧Su(f), Su(f)]

{
(b1 − Su(f)) ∧ µ({f > b1})

}
= 0, we have

M2(b2) 6 sup
b1>Su(f)

{
b1 ∧ (µ({f > b1}) + Su(f))

}
= Su2

+(f).

From the above it follows that

sup
b2∈Y

M2(b2) 6 Su2
+(f). (20)

Now we show that the reverse inequality holds in (20). Recall that Su(f) > 0. Evidently

sup
b2∈Y

M2(b2) > lim
b2↗Su(f)

M2(b2).

By Lemma 2.1 (c), we get

lim
b2↗Su(f)

M2(b2) = Su(f) + lim
b2↗Su(f)

sup
b1>b2

{
(b1 − b2) ∧ µ({f > b1})

}
> Su(f) + lim

b2↗Su(f)
sup
b1>b2

{
(b1 − Su(f)) ∧ µ({f > b1})

}
= Su(f) + sup

b1>Su(f)

{
(b1 − Su(f)) ∧ µ({f > b1})

}
.

Thus, sup
a2∈Y

M2(a2) > Su2
+(f), so there is the equality in (20), as claimed.

Now, we show that the assertion (14) holds for all n > 2. Observe that

I+,∧
n (µ, f) = sup

bn∈Y
Mn(bn, bn+1),

where bn+1 = 0 and Mn is defined recursively using the formula

Mk(bk, bk+1) :=
[
(bk − bk+1) ∧ µ({f > bk})

]
+ sup
bk−1>bk

Mk−1(bk−1, bk)
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for k = 2, . . . , n with the initial condition M1(b1, b2) = (b1 − b2) ∧ µ({f > b1}). Put M∗k (bk) :=

sup
bk−1>bk

Mk−1(bk−1, bk) for k > 2. Mimicking the proof for n = 2, we obtain

Mn(bn, bn+1) 6 (bn ∧ Su(f)) + sup
bn−1>bn

{[
(bn−1 − bn) ∧ µ({f > bn−1})

]
+M∗n−1(bn−1)

}
6 (bn ∧ Su(f))

+ sup
bn−1>bn∧Su(f)

{[(
bn−1 − (bn ∧ Su(f))

)
∧ µ({f > bn−1})

]
+M∗n−1(bn−1)

}
= sup

bn−1>bn∧Su(f)

{[
bn−1 ∧

(
µ({f > bn−1}) + (bn ∧ Su(f))

)]
+M∗n−1(bn−1)

}
6 sup

bn−1>bn∧Su(f)

{[
bn−1 ∧

(
µ({f > bn−1}) + Su(f)

)]
+M∗n−1(bn−1)

}
= sup

bn−1>bn∧Su(f)
Nn−1(bn−1).

Here and subsequently,

Nk(b) :=
[
b ∧
(
µ({f > b}) + Sun−k+ (f)

)]
+M∗k (b)

for all k = 1, . . . , n − 1 with the convention M∗1 (b) := 0. By the very definition of Su2
+(f), we have

b ∧ (µ({f > b}) + Su(f)) 6 b ∧ Su2
+(f) for b ∈ Y. Thus

Nn−1(bn−1) 6 (bn−1 ∧ Su2
+(f)) + sup

bn−2>bn−1

{[
(bn−2 − bn−1) ∧ µ({f > bn−2})

]
+M∗n−2(bn−2)

}
6 (bn−1 ∧ Su2

+(f))

+ sup
bn−2>bn−1∧Su2

+(f)

{[(
bn−2 − (bn−1 ∧ Su2

+(f))
)
∧ µ({f > bn−2})

]
+M∗n−2(bn−2)

}
= sup

bn−2>bn−1∧Su2
+(f)

{[
bn−2 ∧

(
µ({f > bn−2}) + (bn−1 ∧ Su2

+(f))
)]

+M∗n−2(bn−2)
}

6 sup
bn−2>bn−1∧Su2

+(f)

{[
bn−2 ∧

(
µ({f > bn−2}) + Su2

+(f)
)]

+M∗n−2(bn−2)
}

= sup
bn−2>bn−1∧Su2

+(f)

Nn−2(bn−2)

for any bn−1 > bn ∧ Su(f). In the same manner we obtain for k = 1, . . . , n− 2,

sup
bn−k>bn−k+1∧Suk

+(f)

Nn−k(bn−k) 6 sup
bn−k−1>bn−k∧Suk+1

+ (f)

Nn−k−1(bn−k−1).

As a consequence, we get

Mn(bn, bn+1) 6 sup
bn−1>bn∧Su(f)

Nn−1(bn−1) 6 . . . 6 sup
b1>b2∧Sun−1

+ (f)

N1(b1) = Sun+(f)

for all bn ∈ Y. Therefore,

I+,∧
n (µ, f) 6 Sun+(f).
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To finish the proof it is sufficient to show that sup
bn∈Y

Mn(bn, bn+1) > Sun+(f). Using Lemma 2.1 (c) and

mimicking the proof for n = 2, we obtain

sup
bn∈Y

Mn(bn, bn+1) > lim
bn↗Su(f)

Mn(bn, bn+1)

= Su(f) + lim
bn↗Su(f)

sup
bn−1>bn

{[
(bn−1 − bn) ∧ µ({f > bn−1})

]
+M∗n−1(bn−1)

}
> Su(f) + lim

bn↗Su(f)
sup

bn−1>bn

{[
(bn−1 − Su(f))+ ∧ µ({f > bn−1})

]
+M∗n−1(bn−1)

}
= Su(f) + sup

bn−1>Su(f)

{[
(bn−1 − Su(f)) ∧ µ({f > bn−1})

]
+M∗n−1(bn−1)

}
= sup

bn−1>Su(f)
Nn−1(bn−1). (21)

By Proposition 4.4, Su2
+(f) > Su(f) > 0. Proposition 4.3 (b) and (21) implies

sup
bn∈Y

Mn(bn, bn+1) > lim
bn−1↗Su2

+(f)

([
bn−1 ∧

(
µ({f > bn−1}) + Su(f)

)]
+M∗n−1(bn−1)

)
= Su2

+(f) + lim
bn−1↗Su2

+(f)
sup

bn−2>bn−1

Mn−2(bn−2, bn−1). (22)

Next, we get

lim
bn−1↗Su2

+(f)
sup

bn−2>bn−1

Mn−2(bn−2, bn−1)

> lim
bn−1↗Su2

+(f)
sup

bn−2>bn−1

{[
(bn−2 − Su2

+(f))+ ∧ µ({f > bn−2})
]

+M∗n−2(bn−2)
}

> sup
bn−2>Su2

+(f)

{[
(bn−2 − Su2

+(f)) ∧ µ({f > bn−2})
]

+M∗n−2(bn−2)
}
. (23)

Thus from (22) and (23) we obtain

sup
bn∈Y

Mn(bn, bn+1) > sup
bn−2>Su2

+(f)

Nn−2(bn−2).

Repeating the same reasoning we get

sup
bn∈Y

Mn(bn, bn+1) > sup
b1>Sun−1

+ (f)

N1(b1) = Sun+(f),

as required. The proof is complete.

Proof of Theorem 4.12. Let n > 2. We need to show that Sun+(f) = Ln, where

Ln = inf
{ n∑
i=1

(
(bi − bi+1) ∨ µ({f > bi})

)
: 0 = bn+1 6 bn 6 . . . 6 b1 6 ȳ

}
.

Clearly, Ln = inf
bn∈Y

Mn(bn, bn+1), where Mn is defined recursively using the formula

Mk(bk, bk+1) :=
[
(bk − bk+1) ∨ µ({f > bk})

]
+ inf
bk−1>bk

Mk−1(bk−1, bk)
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for any k = 2, . . . , n with M1(b1, b2) := (b1 − b2) ∨ µ({f > b1}). For simplicity, put M∗k (bk) :=

inf
bk−1>bk

Mk−1(bk−1, bk) for k = 2, . . . , n. Since b∨µ({f > b}) > Su(f), we have b∨µ({f > b}) > b∨Su(f)

for all b ∈ Y. Thus,

Mn(bn, bn+1) > (bn ∨ Su(f)) + inf
bn−1>bn∧Su(f)

{[(
bn−1 − (bn ∨ Su(f))

)
∨ µ({f > bn−1})

]
+M∗n−1(bn−1)

}
= inf

bn−1>bn∧Su(f)

{[
bn−1 ∨

(
µ({f > bn−1}) + (bn ∨ Su(f))

)]
+M∗n−1(bn−1)

}
> inf

bn−1>bn∧Su(f)

{[
bn−1 ∨

(
µ({f > bn−1}) + Su(f)

)]
+M∗n−1(bn−1)

}
= inf

bn−1>bn∧Su(f)
Nn−1(bn−1), (24)

where Nk(b) :=
[
b ∨

(
µ({f > b}) + Sun−k+ (f)

)]
+ M∗k (b) for k = 1, . . . , n − 1 with M∗1 (b1) := 0.

Theorem 4.6 gives that b ∨ (µ({f > b}) + Su(f)) > b ∨ Su2
+(f) for all b ∈ Y. Thus,

Nn−1(bn−1) > (bn−1 ∨ Su2
+(f)) + inf

bn−2>bn−1

{[
(bn−2 − bn−1) ∨ µ({f > bn−2})

]
+M∗n−2(bn−2)

}
> (bn−1 ∨ Su2

+(f))

+ inf
bn−2>bn−1∧Su2

+(f)

{[(
bn−2 − (bn−1 ∨ Su2

+(f))
)
∨ µ({f > bn−2})

]
+M∗n−2(bn−2)

}
= inf

bn−2>bn−1∧Su2
+(f)

{[
bn−2 ∨

(
µ({f > bn−2}) + (bn−1 ∨ Su2

+(f))
)]

+M∗n−2(bn−2)
}

> inf
bn−2>bn−1∧Su2

+(f)

{[
bn−2 ∨

(
µ({f > bn−2}) + Su2

+(f)
)]

+M∗n−2(bn−2)
}

= inf
bn−2>bn−1∧Su2

+(f)
Nn−2(bn−2)

for any bn−1 > bn ∧ Su(f). Analogously, for k = 1, . . . , n− 2 we get

inf
bn−k>bn−k+1∧Suk

+(f)
Nn−k(bn−k) > inf

bn−k−1>bn−k∧Suk+1
+ (f)

Nn−k−1(bn−k−1), (25)

where we use the fact that for all b ∈ Y and k = 2, . . . , n− 1

b ∨
(
µ({f > b}) + Suk−1

+ (f)
)
> b ∨ Suk+(f)

(see Theorem 4.6). As a consequence of (25) and (24), we obtain

Mn(bn, bn+1) > inf
bn−1>bn∧Su(f)

Nn−1(bn−1) > . . . > inf
b1>b2∧Sun−1

+ (f)
N1(b1)

> inf
b1∈Y

N1(b1) = Sun+(f)

for all bn ∈ Y. Therefore Ln > Sun+(f). We show that Ln 6 Sun+(f).

Let Sun+(f) = ȳ. Then

Ln 6Mn(ȳ, bn+1) = ȳ +M∗n(ȳ) = ȳ = Sun+(f).
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Assume that Sun+(f) < ȳ. Using Lemma 2.1 (d), we have

Ln 6 lim
bn↘Su(f)

Mn(bn, bn+1)

= Su(f) + lim
bn↘Su(f)

inf
bn−1>bn

{[
(bn−1 − bn) ∨ µ({f > bn−1})

]
+M∗n−1(bn−1)

}
6 Su(f) + lim

bn↘Su(f)
inf

bn−1>bn

{[
(bn−1 − Su(f)) ∨ µ({f > bn−1})

]
+M∗n−1(bn−1)

}
= Su(f) + inf

bn−1>Su(f)

{[
(bn−1 − Su(f)) ∨ µ({f > bn−1})

]
+M∗n−1(bn−1)

}
= inf

bn−1>Su(f)
Nn−1(bn−1). (26)

From (26), Propositions 4.4 and 4.3 (c) we get

Ln 6 inf
bn−1>Su(f)

Nn−1(bn−1) 6 inf
bn−1>Su2

+(f)
Nn−1(bn−1)

6 lim
bn−1↘Su2

+(f)

([
bn−1 ∨

(
µ({f > bn−1}) + Su(f)

)]
+M∗n−1(bn−1)

)
= Su2

+(f) + lim
bn−1↘Su2

+(f)
M∗n−1(bn−1). (27)

Next, we have

lim
bn−1↘Su2

+(f)
M∗n−1(bn−1) 6 lim

bn−1↘Su2
+(f)

inf
bn−2>bn−1

{[
(bn−2 − Su2

+(f)) ∨ µ({f > bn−2})
]

+M∗n−2(bn−2)
}

6 inf
bn−2>Su2

+(f)

{[
(bn−2 − Su2

+(f)) ∨ µ({f > bn−2})
]

+M∗n−2(bn−2)
}
. (28)

Thus, from (27) and (28) we obtain

Ln 6 inf
bn−1>Su2

+(f)
Nn−2(bn−2).

Repeating the same reasoning we get

Ln 6 inf
b1>Sun−1

+ (f)
N1(b1) = Sun−1

+ (f) + inf
b>Sun−1

+ (f)

{
(b− Sun−1

+ (f)) ∨ µ({f > b})
}

= Sun+(f),

as required.
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