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ABSTRACT 

Step size determination (also known as line search) is an important component in effective 
algorithmic development for solving the traffic assignment problem. In this paper, we explore 
a novel step size determination scheme, the Barzilai-Borwein (BB) step size, and adapt it for 
solving the stochastic user equilibrium (SUE) problem. The BB step size is a special step size 
determination scheme incorporated into the gradient method to enhance its computational 
efficiency. It is motivated by the Newton-type methods, but it does not need to explicitly 
compute the second-order derivative. We apply the BB step size in a path-based traffic 
assignment algorithm to solve two well-known SUE models: the multinomial logit (MNL) and 
cross-nested logit (CNL) SUE models. Numerical experiments are conducted on two real 
transportation networks to demonstrate the computational efficiency and robustness of the BB 
step size. The results show that the BB step size outperforms the current step size strategies, 
i.e., the Armijo rule and the self-regulated averaging scheme.
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1. Introduction 

Traffic assignment (TA) problem plays a central role in urban transportation network analysis 
(Sheffi, 1985). It has been widely used for various purposes, for example, transportation system 
assessment (Kitthamkesorn and Chen, 2017), impact prediction of projects and policies (Huang 
and Li, 2007; Cantarella et al., 2015), traffic restraints with respect to congestion or emission 
(Chen et al., 2011), time-cost tradeoff in traffic assignment (Leurent, 1993; Chen et al., 2010, 
2012; Perederieieva et al., 2018), traffic management strategy (Yang and Bell, 1997; Tan et al., 
2019), signal control optimization (Chiou, 2007), road network design (Yin et al., 2009; Szeto 
et al., 2015), paradox analysis (Yang and Bell, 1998; Yang and Chen, 2009; Yao and Chen, 2014; 
Yao et al., 2019), etc. The stochastic user equilibrium (SUE) problem is one of the important 
models of the TA problem. Substantial efforts have also been made on the design of efficient 
algorithms for solving the SUE problems (Chen and Alfa, 1991; Damberg et al., 1996; Maher, 
1998; Bekhor & Toledo, 2005; Liu et al., 2009; Xu et al., 2012; Zhou et al., 2012; Chen et al., 
2013; Yu et al., 2014; Zhou et al., 2014; Xu et al., 2019). However, the existing solution 
algorithms often need to either frequently evaluate the objective function (and/or its derivative) 
or use inflexible step size determination rules (e.g., monotonically decreasing the step size 
sequence), which impede the efficiency on both speed and precision of the algorithmic 
convergence. Recently, a novel step size determination scheme, called the BB step size (Barzilai 
and Borwein, 1988), has been reported to show great potential for solving the travel demand 
forecasting models (Gibb, 2016). The BB step size originates from the Newton-type method 
(second-order approach), but it involves nearly no extra cost over the standard gradient method 
(first-order approach) for solving various optimization problems. In this paper, we extend the 
BB step size scheme to solve the SUE problem. This scheme tries to incorporate the step size 
with the derivative information by only utilizing the mapping function value of the last two 
consecutive iterations. It does not need to compute the derivatives of the mapping function or 
extra evaluations of the mapping function. Our numerical results show the BB step size 
significantly outperforms the existing step size determination schemes. 

TA aims to allocate the origin-destination (O-D) travel demand to the transportation 
network based on the given path choice criterion (Sheffi, 1985). The most widely used criterion 
is the user equilibrium (UE) principle (Wardrop, 1952). However, the UE principle is 
recognized to be unrealistic, because it assumes that all travelers have accurate perceptions on 
the condition of the transportation network (Prashker and Bekhor, 2004). Daganzo and Sheffi 
(1977) suggested the stochastic user equilibrium (SUE) principle to capture travelers’ 
perception errors on travel time. Further, in order to reflect the perception errors, the SUE 
principle incorporates an additional random error term into the travel cost. In practical 
applications, the random error terms are usually assumed to follow the Gumbel distribution 
(Dial, 1971), the Normal distribution (Daganzo and Sheffi, 1977), or the Weibull distribution 
(Castillo, 2008), which correspond to the logit-based, probit-based and weibit-based SUE 
models, respectively. Among these models, the logit-based SUE model has drawn the most 
attention since it has a closed-form expression and is computationally tractable. However, the 
logit-based SUE model suffers from the independence assumption which causes flows on the 
overlapping paths to be overestimated. In order to overcome the drawbacks of the logit-based 
SUE model, various extended logit-based SUE models have been proposed, e.g., C-logit 
(Cascetta et al., 1996), cross-nested logit (Vovsha and Bekhor, 1998), paired combinatorial logit 
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(Prashker and Bekhor, 1999; Pravinvongvuth and Chen, 2005), and path-size logit models 
(Ben-Akiva et al., 1999; Chen et al., 2012). For more comprehensive reviews of these extended 
models, readers can refer to Prashker and Bekhor (2004) and Kitthamkesorn and Chen (2013). 
Nevertheless, solving the logit-based SUE model or its extensions is still challenging. The 
difficulty mainly comes from the large dimension of solution variables and the complicated 
objective function under congested and realistic networks (Chen et al., 2014).  

In optimization, line search and trust region are two basic iterative approaches to find a 
local minimum solution. The former first generates a search direction and then focuses on 
determining a suitable step size along the search direction; the latter defines a region around the 
current approximate solution within which a quadratic function is used to approximate the 
original objective function. Zhou et al. (2014) recently explored the trust region method to solve 
the MNL SUE model. For the trust-region method, the fast convergence can only be obtained 
when the approximate solution is close enough to the optimal solution. If this assumption does 
not hold, the trust-region radius has to be limited to a small range to satisfy the strictly positive 
constraints, which eventually degrades its overall performance. Besides, the trust-region 
method requires to compute second-order derivatives, which is computationally expensive on 
realistic networks, especially for the SUE problem embedded with advanced choice models 
(e.g., the extended logit-based models). Consequently, this study will explore the line search 
approach (or step size determination) and contribute to the computational efficiency for solving 
the SUE models. 

In the literature, step size determination strategies adopted to solve the SUE problem can 
be divided into three types: predetermined, inexact and exact (Chen et al., 2014). The 
predetermined step size sequence does not require to evaluate the objective function value or 
the derivative information and thus is easy to implement. The most widely used predetermined 
scheme is the method of successive averages (MSA). The MSA scheme generates a sequence 
{αn} that satisfies Blum’s theorem (Blum, 1954) to guarantee the convergence (i.e. αn → 0, 
∑ αn

∞
n=0 =∞). However, the MSA suffers from a sublinear convergence rate. Following the MSA, 

Liu et al. (2009) developed the self-regulated averaging (SRA) scheme that improves the 
convergence speed of the MSA scheme whilst retains its simplicity. On the other hand, the exact 
and inexact step size determination schemes are proposed to overcome the sublinear 
convergence rate of the MSA scheme. By contrast, with fewer evaluation times of the objective 
function value and/or the derivative, the inexact one is more efficient and preferred in practice. 
Among others, the Armijo scheme is perhaps the most widely used inexact step size 
determination scheme for solving the SUE problem with an extended logit path choice model 
(Bekhor et al., 2007; Bekhor et al., 2008). 

Although the SRA and Armijo schemes usually perform satisfactorily, they still retain some 
unattractive properties. The step size sequence of the SRA scheme is monotonically decreasing 
with iterations. If the step size has decreased sharply in the early iterations, the convergence 
will be rather slow. On the other hand, the Armijo scheme requires to evaluate the objective 
function and/or its gradient, and the computational cost is not cheap, especially for the models 
with a large dimension of solution variables and complicated objective functions (e.g., cross-
nested logit SUE model).  

This paper aims to develop a more efficient step size determination scheme for solving the 
SUE problem. Specifically, we will adopt the Barzilai-Borwein (BB) step size to develop an 
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efficient path-based traffic assignment algorithm for solving two logit-based SUE models (i.e., 
the multinomial logit (MNL) and the cross-nested logit (CNL) SUE models). We discover that 
the BB step size scheme has following attractive properties. First, the BB scheme determines 
the step size by using the information from the last two consecutive iterations and does not 
require any function evaluation and/or its gradient. This property is rather attractive for solving 
the SUE problem on realistic networks, especially the SUE models embedded with an advanced 
discrete choice model. Second, the convergence speed is faster. Our numerical results show that 
fewer iterations are required compared with the Armijo and SRA schemes. This outstanding 
performance comes from the merit of the BB step size which enables to utilize the second-order 
derivative information (i.e., the derivative of the mapping function) for accelerating the 
convergence. Third, no parameter is assumed for the BB step size determination, which makes 
it rather practical for large-scale transportation networks. 

The remainder of this paper is organized as follows. Section 2 gives a description of the 
BB step size. After that, we briefly introduce two well-known stochastic traffic equilibrium 
models (i.e. the MNL SUE and the CNL SUE models) and review some well-known existing 
step size schemes. Then, we develop a path-based traffic assignment algorithm incorporated 
with the BB step size for solving the SUE problem, and gives the convergence results of the 
proposed algorithm under some restrictive assumptions. Next to that, numerical experiments 
are conducted to examine the convergence characteristics and sensitivity analysis of the BB 
scheme, and compare the flow allocation results between the MNL SUE model and the CNL 
SUE model. In addition, we introduce some extended applications of the proposed algorithm. 
At last, some concluding remarks are provided. 

2. Review of the BB Step Size Determination Scheme 

The BB step size was proposed by Barzilai and Borwein (1988) for the gradient-based descent 
method for solving the unconstrained optimization problem. The BB step size can be derived 
based on the quasi-Newton method which is regarded to be efficient in solving optimization 
problems. Before the discussion of the BB step size, the quasi-Newton method is briefly 
discussed. 

Consider the following unconstrained nonlinear programming: 

min f (x)  (1) 

where f(x) is assumed to be a continuously differentiable convex function. Let xn be an 
approximate solution at iteration n, and g(xn) = ∇f (xn) denotes the gradient of f (x) at xn. The 
steepest descent method defines the next approximate solution as 

xn+1 = xn - α�ng(xn)  (2) 

where the step size is determined as follows: α�n = argmin
αn>0

f (xn - αng(xn)). The steepest descent 

method is quite simple and does not require to compute the second-order derivative. It has been 
modified to solve the constrained optimization problems, e.g., Rosen’s gradient projection 
method (Rosen, 1960), and further employed to solve the user equilibrium (UE) traffic 
assignment problem, e.g., the projected gradient algorithm (Florian et al., 2009). 

However, it is well known that the steepest descent method suffers from the zigzag 
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phenomenon (Yuan, 2008) and performs poorly in ill-conditioned problems (i.e., the ratio 
between the largest eigenvalue and the smallest eigenvalue of the Hessian matrix is very large). 
As an alternative to the steepest descent method, Newton’s method has often been adopted.  

Solving problem (1) can be transformed into solving its stationary point. The first-order 
necessary condition of optimality is 

g(x) = 0.   (3) 

Note that Eq. (3) is a system of nonlinear equations. The essence of Newton’s method is 
to iteratively linearize g(x) and solve the linearized problem. If g(x) is differentiable (i.e., f (x) 
is second-order differentiable), it can be approximated as follows 

g(x) ≈ g(xn) + H(xn)(x -xn) = 0   (4) 

where H(xn) = ∇2f (x)  is the Hessian matrix at xn . Newton’s method defines the next 
approximate solution by solving Eq. (4). Hence, the next approximate solution is defined as  

xn+1 = xn - [H(xn)]-1g(xn).  (5) 

Newton’s method has a local second-order convergence rate, but it requires to compute the 
inverse of Hessian matrix in Eq. (5). Hence, it may be only suitable for solving small-scale 
problems, e.g., trajectory control of autonomous vehicles (Shivam et al., 2019), and 
computationally unattractive for solving large-scale traffic assignment problems. 

If the second-order derivative information is unavailable or the computational cost of the 
Hessian inverse is expensive, the quasi-Newton method will often be adopted as an alternative. 
The idea of the quasi-Newton method is to replace the exact inverse of the Hessian matrix with 
an approximate matrix An as follows: 

xn+1 = xn - Ang(xn).  (6) 

Different ways to construct An yield different schemes of the quasi-Newton method. One 
approach is to approximate the Hessian matrix with its diagonal. This approach has been widely 
adopted for solving various traffic assignment problems, for example, the gradient projection 
algorithm (Jayakrishnan et al., 1994), the origin-based algorithm (Bar-Gera, 2002), and the 
greedy path-based algorithm (Xie et al., 2018) for the UE traffic assignment problem, the 
gradient projection algorithm (Bekhor and Toledo, 2005), the trust region method (Zhou et al., 
2014), and the truncated Newton method (Xu et al., 2019) for the logit-based SUE traffic 
assignment problem, and the modified gradient projection algorithm (Ryu et al., 2014) for the 
elastic demand traffic assignment problem. However, the second-order derivative is still 
required, which limits its applicability. A more robust way is to construct the approximate 
matrix with only the first-order derivative. This approach has also been adopted to solve various 
bi-level network design problems, e.g., road network design problem (Huang et al., 2001) and 
area traffic control problem (Chiou, 2007). In this study, we refer to this approach as the secant 
equation scheme, in order to avoid confusion.  

Note that the Hessian matrix H(xn) represents the local change rate of the gradient at xn. 
Instead of computing H(xn), it is reasonable to use the average change rate of the gradient to 
approximate it. If the inverse operation is also avoided, the approximate matrix An  should 
satisfy 
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xn-xn-1=An(g(xn) - g(xn-1)).  (7) 

Eq. (7) is called the secant equation and is underdetermined. The essence of the secant equation 
scheme is to use the average change rate of the gradient to approximate the second-order 
derivative.  

xn
-Ang(xn)

x* 

Contour line of objective function

xn+1

xBB
n+1

steepest decent 
method
secant method 
BB step size 

 secant method: Find matrix An such that 
                        (xn-xn-1)=An(g(xn)-g(xn-1))

BB step size: Find scalar αn such that
                     min ||(xn-xn-1) - αn(g(xn)-g(xn-1))||2

approximate 
An with αn

xn-1

 

FIGURE 1 Illustration to the principle of the BB step size scheme 
As indicated in Eq. (6), the secant equation scheme uses matrix An to modify the anti-

gradient direction so as to produce a preferred search direction as shown in Figure 1. For the 
secant equation scheme, a superlinear convergence rate can be attained if the sequence of matrix 
An is designed appropriately (Nocedal and Stephen, 1999). Nevertheless, the matrix An needs 
to be stored and updated at each iteration so as to progressively approximate the inverse Hessian 
of f(x), which is computationally burdensome especially for large-scale problems. These 
advantages and disadvantages motivated researchers to simplify the secant equation scheme by 
approximating the matrix An with a scalar αn, which gives rise to the idea of the BB step size 
scheme. As shown in Figure 1, the BB step size scheme utilizes a special step size along the 
gradient direction to approximate the second-order derivative information while satisfying the 
secant equation. Although the BB scheme seems not to take the optimal movement along the 
anti-gradient direction at iteration n, the descent direction obtained at the next solution xn+1

BB  is 
actually better than that at point xn+1. The BB step size can be regarded as a simplified version 
of the secant equation scheme. 

Barzilai and Borwein (1988) first suggested substituting the matrix An with a scalar αn 
(can also be regarded as αnI, where I is the unit matrix) 

xn+1 = xn - αng(xn).  (8) 

In general, the secant equation in Eq. (7) does not hold if the matrix An is replaced with 
a scalar αn, since a scalar cannot complete the linear transformation from one vector to another. 
In order to force the scalar to have a certain quasi-Newton property, it is reasonable to minimize 
the absolute difference between the left- and right-hand sides as follows: 

min ‖(xn-xn-1)-αn(g(xn)- g(xn-1))‖2. (9) 

Consequently, we have 
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αBB1= argmin
αn

{‖(xn-xn-1)-αn(g(xn)- g(xn-1))‖2} =
(xn-xn-1)T(g(xn)- g(xn-1))

‖g(xn)- g(xn-1)‖2
  (10) 

where ‘T’ is the transpose operation. The step size calculated by Eq. (10) is called BB1. 
Similarly, if the scalar αn is placed the term (xn-xn-1) of Eq. (9), the step size is called BB2. 

αBB2= argmin
αn

��
1
αn

(xn-xn-1)-(g(xn)- g(xn-1))�
2
� =

‖xn-xn-1‖2

(xn-xn-1)T(g(xn)- g(xn-1))
. (11) 

 
Figure 2 Solution trajectories of steepest descent, secant equation and BB methods 
An example is employed to illustrate the performance of steepest descent, secant equation 

and BB methods. The objective function is f(x1, x2) = 4x1
2+ x2

2 and the initial point is (1, 1). 
Figure 2 shows the approximate solution trajectories of these three methods. The secant 
equation scheme adopted here is the BFGS method1 with an exact line search. It is clear that 
the steepest descent method suffers from the zigzag phenomenon and consumes 41 iterations 
to achieve convergence. The BFGS and BB methods do not show this behavior and converge 
much faster (take only 4 and 9 iterations, respectively). It is noteworthy that the objective 
function value is not monotonically decreasing in the BB method from Figure 2b. There is a 
slight increase in the objective function value, resulting from an aggressive movement along 
the X1 axis. Although the BFGS seems to be more efficient, it involves many matrix operations 
and is usually bundled with a step size determination (e.g., using an exact or inexact line search), 
which requires frequent evaluations of the objective function and/or gradient value. On the 
other hand, the calculation of the BB step size is quite simple, as indicated by Eqs. (10) and 
(11). Consequently, the BB step size could be more appealing for solving large-scale problems. 

The BB step size has been extended to solve other mathematical problems, e.g., 
unconstrained/constrained system of equations (Cruz and Raydan, 2003; Liu and Feng, 2019) 
and variational inequality with convex constraints (He et al., 2012). Also, the BB step size has 
been employed in practice to solve the travel demand forecasting problem (Gibb, 2016). 
Besides, the convergence of the BB step size has been extensively discussed by Barzilai and 
Borwein (1988), Raydan (1993) and Yuan (2008). Interested readers can refer to these papers 
for more details. The motivation of the BB step size scheme is summarized in Figure 3. 

                                                      
1  The BFGS method, named for its discoverers Broyden, Fletcher, Goldfarb and Shanno, is one of the most 

prevailing secant equation algorithms to date. 
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direction scaled 
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m
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FIGURE 3 Derivation of the BB step size scheme with applications 
From Figure 3, the steepest descent method is simple to implement, but it suffers from the 

zigzag phenomenon in ill-conditioned problems. Newton’s method defines a new search 
direction with the inverse Hessian matrix which, however, is expensive to compute in large-
scale problems. With a relatively modest computational cost per iteration, the quasi-Newton 
method alternatively employs either a diagonal Hessian or a matrix that satisfies the secant 
equation in Eq. (7). Furthermore, in order to avoid the second-order derivative computation or 
frequent matrix operations, the BB step size simplifies the quasi-Newton method by replacing 
matrix An with a scalar αn. In summary, the steepest descent and BB methods use the gradient 
direction, while the Newton and Quasi-Newton methods modify the search direction with a 
matrix, which in general will take more computational cost per iteration. The steepest descent 
method takes more time per iteration than the BB method due to the frequent function 
evaluations by the exact/inexact line search schemes. On the other hand, the steepest and 
Newton’s methods only use the information in the current iteration, but the secant method and 
BB step size utilize the information of the last two consecutive iterations.  

3. Two Logit-based SUE Models and Step Size Determination Schemes 

In this section, we first give a brief introduction to two SUE models, the multinomial logit 
(MNL) and cross-nested logit (CNL) SUE models. The former is a widely used SUE model, 
but it suffers from two drawbacks (i.e., path overlapping and identical perception variance 
problems); the latter is an extension of the MNL SUE model to overcome the path overlapping 
drawback (Prashker and Bekhor, 1999, 2004). In addition, some prevailing step size 
determination schemes for solving the SUE problem are also reviewed.  
3.1. Two well-known SUE models 
3.1.1. Multinomial logit (MNL) SUE model  
As introduced, the SUE principle incorporates a random error term into the travel cost. Usually, 
the term is assumed to follow the Gumbel, Normal, and Weibull distributions, which correspond 
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to the logit-based, probit-based and weibit-based path choice models respectively. The logit-
based SUE model is perhaps the most widely used in the transportation literature (Prashker & 
Bekhor, 2004; Kitthamkesorn & Chen, 2013). 

According to the logit-based SUE model, the probability of choosing path k, Pk, can be 
expressed as 

 Pk = exp(-θck)
∑ exp(-θcl)l∈Krs

 , ∀k∈Krs, r∈R, s∈S (12) 

where ck  is the travel cost on path k, Krs denotes the active path set between origin r and 
destination s, and θ is a positive dispersion parameter, which reflects an aggregate measure of 
travelers’ perception of travel costs. Fisk (1980) developed the following mathematical 
programming (MP) formulation for the MNL SUE problem.  

min z = � � ta(ω)
xa

0
a∈A

dω + 
1
θ

� � � fk
 rslnfk

 rs

k∈Krss∈Sr∈R

 (13) 

subject to  

� fk
 rs

k∈Krs

= qrs, ∀r∈R, s∈S (14) 

fk
 rs ≥ 0, ∀k∈Krs, r∈R, s∈S (15) 

xa= � � � fk
 rsδa,k

rs

k∈Krss∈Sr∈R

, ∀a∈A   (16) 

where A is the set of links, R and S denote the origin and destination set respectively, xa is the 
flow on link a, the cost of link a is denoted by ta, which is a function of xa, fk

 rs is the flow on 
path k and δa,k

rs  is a link/path indicator, which equals 1 if link a is on path k, and 0 otherwise. 
Eqs. (14)-(16) are the conservation, non-negativity and definitional constraints, respectively. 

The MNL SUE model is straightforward and easy to implement in practice. However, it 
has some inherent drawbacks. The independently and identically distributed (IID) assumption 
of the logit-based SUE model implies that all paths connecting an O-D pair are unrelated to 
each other and travelers have the same perception variance on all available paths. Consequently, 
the logit-based SUE model is not capable of accounting for path overlapping and perception 
variance with respect to different trip lengths. To overcome the path overlapping problem and 
to keep a closed-form probability expression, various extended logit-based models have been 
developed, for example, C-logit (Cascetta et al., 1996), cross-nested logit (CNL) (Vovsha & 
Bekhor, 1998), paired combinatorial logit (PCL) models (Prashker & Bekhor, 1999; 
Pravinvongvuth & Chen, 2005), and path-size logit (Ben-Akiva et al., 1999; Chen et al., 2012). 
In the following section, we will introduce the CNL SUE model, which is considered as the 
most flexible and general SUE model among the four extended logit-based SUE models 
(Prashker & Bekhor, 2004). 
3.1.2. Cross-Nested logit (CNL) SUE model 
The CNL model is one of the well-known extended logit-based models. It was originally 
proposed by Vovsha (1997) to handle the mode similarity issue in the mode choice problem. 
Vovsha & Bekhor (1998) and Prashker and Bekhor (1999) further exploited it to model travelers’ 
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path choice behavior and developed an equivalent MP formulation for the CNL SUE problem. 
This model is designed to overcome the inability of the MNL model to account for the path 
overlapping problem. The CNL model adopts a two-level structure in which the upper level 
consists of links (called nest) and the lower level represents the paths. This structure 
decomposes the path choice probability into the marginal probability and the conditional 
probability as follows:  

 P(k)= � P(m)P(k|m)
m

, ∀m∈A, k∈Krs, r∈R, s∈S (17) 

where P(m) is the marginal probability of nest m being chosen which can be expressed as  

  P(m)=
(∑ (αmlexp(-θcl))

1/μ
l )μ

∑ (∑ (αblexp(-θcl))
1/μ

l∈Krs
)μ

b
, ∀m∈A, k∈Krs, r∈R, s∈S (18) 

where θ  reflects an aggregate measure of drivers’ perception of travel costs, and μ  is the 
degree of nesting, 0 ≤ μ ≤ 1, and αmk is the inclusion coefficient allocating alternatives to nests. 

P(k|m) is the conditional probability of path k given a nest (link) has been chosen and can 
be calculated by 

 P(k|m)=
(αmkexp(-θck))1/μ

∑ (αmlexp(-θcl))
1/μ

l∈Krs

, ∀m∈A, k∈Krs, r∈R, s∈S (19) 

Prashker and Bekhor (1998) suggested the following specification: 

αmk=(
Lm

Lk
)γδmk (20) 

where Lm and Lk are the lengths of link m and path k, respectively; δmk equals to 1 if link m 
is on path k and 0, otherwise; γ is a parameter that reflects drivers’ perception of similarity 
among paths and is assumed to be 1 in this case, which aims at forcing the inclusion coefficient 
to satisfy the regularity constraint 

� αmk
m

=1. (21) 

Here, a simple network is employed to explain the differences between the MNL and CNL 
models and how the CNL model accounts for the path overlapping issue. Figure 4 shows a 
simple network where there are four links and three paths connecting origin r and destination 
s. Path 1 is independent with the others, while path 2 and path 3 have a common link B. As 
shown in Figure 4, the MNL model assumes that path 2 and path 3 are irrelevant to each other, 
which indicates that the MNL model is not capable of capturing the path overlapping problem, 
because it views all paths are independent. In the CNL model, the upper level consists of the 
nests (links) and the lower level shows the paths may belong to several nests. Consequently, 
each path is decomposed into several parts corresponding to each nest it belongs to, and the 
inclusion coefficients represent the proportion of each part. In this two-level hierarchical 
structure, paths that share common links are explicitly captured. 



11 

 

r sA

B
C

D

MNL Model

A B-C B-D

1 2 3

CNL Model

1 2 3

Path 1: {A}
Path 2: {B,C}
Path 3: {B,D}

A B C D

αA1 αB2 αD2
αC2

αB3

 

FIGURE 4 Illustration of path overlapping in MNL and CNL Models 
Prashker and Bekhor (1999) developed an equivalent MP formulation for the CNL SUE 

model as follows: 

min z = z1+ z2 + z3 (22) 

z1 = � � ta(ω)dω
xa

0a∈A

 (23) 

z2 = 
μ
θ

� � � fmk
 rs

kmrs

ln
fmk
 rs

(αmk
rs )1/μ (24) 

z3 = 
1-μ
θ

� � ( � fmk
 rs

k

)
mrs

ln( � fmk
 rs

k

) (25) 

subject to 

� � fmk
 rs

km

= qrs, ∀m, k∈Krs, r∈R, s∈S (26) 

fmk
 rs  ≥ 0, ∀m, k∈Krs, r∈R, s∈S (27) 

where fmk
 rs   is the flow on path k of nest m between origin r and destination s. The term, 

fmk
 rs ln fmk

 rs

(αmk
rs )1/μ, is defined as zero if either fmk

 rs = 0 or αmk
rs = 0. It can also be observed from Eq. (18) 

that fmk
 rs = 0 once αmk

rs  equals to 0 (i.e., link m is not on path k). 
Compared with the MNL SUE model, there are two entropy terms in the CNL SUE model, 

which correspond to the two-level hierarchical structure of the CNL path choice model (i.e., z2 
corresponds to the conditional probability in Eq. (18) and z3 corresponds to the marginal 
probability in Eq. (19)). Another main difference is the decision variable (fmk

 rs ) defined as the 
flow on path k of nest m between origin r and destination s, which is more complex than the 
simple path flow defined in the MNL SUE model. For more details, see Prashker & Bekhor 
(1999). 
3.2.  Step size determination for solving the logit-based SUE models 
The classical iterative approach of solving the SUE problem is to identify a search direction 
first and then determine a step size to guide how far the solution should move along the direction. 
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The search direction, in the standard SUE solution algorithm, is typically determined by 
obtaining an auxiliary solution at each iteration. Thus, much attention has been paid to design 
good step size determination schemes to improve solution efficiency. In this section, we briefly 
introduce the standard search direction for solving the logit-based SUE models, and focus on 
reviewing some existing step size determination schemes. 

In the SUE traffic assignment problem, the path flow pattern is determined by a path choice 
model, which can be expressed as follows (for convenience, we omit the superscript related to 
OD pairs) 

fk= qPk(f) , ∀k∈K (28) 

where Pk(f) represents the probability of path k being chosen, and is a function of the flows 
on all paths represented by vector f. Note that the solution of Eq. (28) satisfies both the demand 
conservation and non-negativity constraints due to the properties of probability theory (i.e., 

Pk(f) ≥ 0, ∀k∈K and ∑ Pk(f)k∈K =1) despite that these constraints have not been explicitly 

presented. 
If we denote qPk(f) by Fk(f) and rewrite Eq. (28) in a vector form as 

f =F(f) (29) 

where F(f) denotes the vector (…, Fk(f), …). The SUE problem is equivalent to a fixed-point 
problem (Cantarella et al., 2015). 

For a fixed-point problem given in Eq. (29), the standard solution procedure can be 
represented as  

fk
 n+1 = fk

 n + α(Fk(f n) - fk
 n), ∀k∈K (30) 

where fk
 n denotes the flow on path k at iteration n, f n is the path flow pattern at iteration n and 

α denotes the step size. The term Fk(f n) (i.e., qPk
n( f n))  ∀k∈K, called the auxiliary solution, 

is to allocate the demand q onto the network based on the path flow pattern f n. The procedure 
for computing the auxiliary solution is called stochastic network loading. Note that if the vector 
Fk(f n) - fk

 n, ∀k∈K is equal to zero, the current flow pattern is a solution of Eq. (29); else, it 
defines a new search direction towards the auxiliary solution.  

The efficiency of the above solution procedure heavily relies on the step size determination, 
and therefore it has drawn great attention to design good step size determination schemes. Sheffi 
and Powell (1981) employed the method of successive averages (MSA) to solve the probit-
based SUE problem. The MSA determines the step size as 𝛼𝛼n=1/n, where n is the iteration 
number. The MSA scheme satisfies the Blum’s Theorem (Blum, 1954) (i.e., αn → 0, 
∑ αn

∞
n=0 =∞) and guarantees the convergence. It is simple to implement as it avoids evaluating 

the objective function value and/or its gradient. However, it has been found that the MSA step 
size gets too small when the iteration number is large, which may lead to slow convergence 
speed. Some researchers have proposed alternative predetermined line search schemes to slow 
down the decrease of the step sizes. For instance, Polyak (1990) suggested a new predetermined 
step size sequence as 𝛼𝛼n =n-2/3, and Nagurney and Zhang (1996) proposed the following 

sequence {𝛼𝛼n} ={1, 1
2

, 1
2

, 1
3

, 1
3

, 1
3

,…, n repetitions of 1
n

}. Following this, Liu et al. (2009) pointed 

out that these predetermined schemes share the same inherent drawback: the step size may be 



13 

 

too large or too small at some iterations so that the next solution gets farther away from the 
optimal solution than the previous one or moves towards the optimal solution quite slowly. In 
order to overcome this drawback whilst maintaining its simplicity, Liu et al. (2009) developed 
a self-regulated averaging (SRA) scheme on the basis of the MSA scheme as follows: 

SRA scheme: This scheme utilizes the information of consecutive iterations to guide the 
choice of step size to either “speed up” or “slow down”. The absolute residual error, �yn − xn�, 
is used to monitor the convergence. The step size of SRA is calculated by 

𝛼𝛼n =
1
𝜇𝜇n

, 𝜇𝜇n = �
𝜇𝜇n -1 + ψ, ψ > 1, if �yn − xn� ≥ �yn-1 − xn-1�
𝜇𝜇n -1 + φ, φ < 1, if �yn − xn� < �yn-1 − xn-1�

 (31) 

where yn  is the auxiliary solution based on the current flow pattern, and ψ  and φ  are two 
parameters. When the absolute error �yn − xn� gets larger (i.e., the iteration tends to diverge), 
the step size, 𝛼𝛼n, will decrease quickly (ψ is active); otherwise, the step size should decrease 
slowly (φ is active). The SRA scheme also satisfies Blum’s theorem (Blum, 1954) to guarantee 
the convergence.  

Liu et al. (2009) conducted several numerical experiments and reported that the SRA 
scheme outperforms the aforementioned predetermined schemes. Besides, the SRA scheme has 
also been adopted to solve various SUE models, e.g., the C-logit SUE problem with elastic 
demand (Xu & Chen, 2013), the PCL SUE problem (Chen et al., 2014), the unconstrained 
weibit-based SUE problem (Kitthamkesorn & Chen, 2014), the unconstrained combined 
distribution and assignment problem (Yao et al., 2014), and the weibit-based SUE problem with 
elastic demand (Kitthamkesorn et al., 2015). The results in these studies verified the good 
performance of the SRA scheme over the MSA scheme. 

On the other hand, other studies attempted to determine the step size based on the principle 
that reduces the objective function along the given search direction, instead of focusing on 
modifying the MSA scheme. Chen and Alfa (1991) suggested the exact line search method for 
determining the step size, while Maher (1998) utilized a quadratic interpolation technique and 
put forward the optimal step length algorithm (OSLA) for the MNL SUE model. Recently, 
Bekhor and Toledo (2008) and Chen et al. (2014) adopted Armijo’s rule for solving the CNL 
and PCL SUE models, respectively. Both reported promising numerical results. Armijo’s rule 
is reviewed as follows. 

Armijo’s rule: Armijo’s rule (Armijo, 1966) was originally proposed for unconstrained 
optimization problems. Bertsekas (1976) developed a generalized Armijo strategy for 
constrained optimization problems. Recently, Chen et al. (2013) incorporated a self-adaptive 
technique, which had been adopted to solve the TA problem with path-specific costs (Chen et 
al., 2001), into the Armijo strategy (i.e., the self-adaptive Armijo (SAA) strategy). The SAA 
scheme can adjust the starting step size at each iteration based on certain rules. However, more 
parameters need to be calibrated. Hence, the generalized Armijo strategy is adopted as follows: 

Given that xk is not an optimal solution, set 

𝛼𝛼k = βmγk (32) 

where mk is the first non-negative integer m such that  

Z(xk) −  Z�xk(βmγk)� ≥𝜎𝜎∇Z(xk)𝑇𝑇�xk − xk(βmγk)� (33) 

where 𝜎𝜎 ∈ (0, 1) and β ∈ (0, 1) are fixed scalars, γk is the upper bound, Z(∙) represents the 
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objective function value and xk(βmγk) is a new approximate solution based on xk and βmγk. 
Inequality (33) is also called the adequate decrease condition. As an inexact line search scheme, 
Armijo’s rule typically requires fewer evaluations of the objective function and/or its gradient 
compared to the exact line search schemes, e.g., the golden section and the bi-section methods. 

In this section, we introduce the residual error as the search direction by reformulating the 
SUE problem into a fixed-point problem. In the literature, there are different methods to 
determine the search direction. Damberg et al. (1996) adapted the disaggregate simplicial 
decomposition (DSD) algorithm for solving the MNL SUE problem. By partially linearizing 
the objective function, the DSD algorithm defines the difference between the auxiliary and the 
current flow patterns as the search direction. The auxiliary flow pattern is obtained by 
reassigning the demand based on the current cost pattern. The search direction of the DSD 
algorithm coincides with the residual error. However, the DSD algorithm can only be applied 
to solve SUE models formulated as a mathematical program since it needs to partially linearize 
the objective function, and our approach can be extended to more general cases (e.g., the fixed-
point problem). Bekhor and Toledo (2005) also adapted the gradient projection (GP) algorithm 
to solve the MNL SUE model. At each iteration, the GP algorithm approximates the original 
problem with a quadratic program and replaces the Hessian matrix with its diagonal elements 
so as to easily solve the quadratic subproblem. For each subproblem, the search direction is 
determined by projecting the gradient (scaled by the diagonal Hessian) onto the equality 
constraints. Yu et al. (2014) proposed the interior-point method to solve the MNL SUE model 
with elastic demand. The interior-point method identifies the search direction by solving a linear 
system of equations. Nevertheless, both the GP and interior-point methods need to compute the 
second-order derivative, which is expensive for the SUE problem embedded with advanced 
discrete choice models (e.g., the CNL model) on realistic networks (Chen et al., 2014). In 
conclusion, these alternative search directions maybe not very appealing for solving extended 
logit-based SUE models on realistic networks. 

Here we should also clarify that the BB scheme is not applicable for all descent directions 
(e.g., the aforementioned GP and interior-point methods). Recall that the BB scheme was 
designed to incorporate into the gradient method in an unconstrained optimization problem. In 
the next section, we will develop an efficient path-based traffic assignment algorithm embedded 
with the BB step size scheme to solve the SUE problem. Besides, we will also show that 
restricting the search direction does not impede the extendibility of our algorithm. 

4. A Faster Path-based Traffic Assignment Algorithm with the BB Step Size 
Scheme 

In this section, we will link the SUE problem to the system of equations and embed the 
BB step size scheme into a path-based traffic assignment algorithm to solve the SUE problem 
in a simple and elegant way. Then we will conduct the convergence analysis of the proposed 
algorithm for solving SUE models which shows that the convergence can be ensured under 
some mild assumptions. 
4.1. The implementation of the proposed algorithm 

As discussed in Section 3, the SUE problem can be equivalently represented as a fixed-
point problem in Eq. (29). Specifically, based on the MNL and CNL path choice models in Eq. 
(12) and Eqs. (17)-(19), respectively, the network flow pattern defined by the MNL and CNL 
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SUE models can be written as 

MNL  fk= qrs∙
exp(-θck)

∑ exp(-θcl)l∈Krs
, ∀k∈Krs, r∈R, s∈S  (34) 

CNL  fk= qrs∙
∑ (αmkexp(-θck))1/μ�∑ (αmlexp(-θcl))

1/μ
l∈Krs

�
μ-1

m

∑ �∑ (αmlexp(-θcl))
1/μ

l∈Krs
�

μ
m

,                                                

∀k∈Krs,∀m∈A, r∈R, s∈S  

(35) 

Note that the path cost ck is a function of the path flow pattern f.  Hence, Eqs. (34) and (35) 
can be simply expressed as a fixed-point problem in Eq. (29). Furthermore, Eq. (29) can be 
regarded as a system of equations and rewritten in vector form as follows: 

f  - F(f) = 0.  (36) 

Recall that the BB step size was derived on the basis of solving the necessary conditions 
of the unconstrained optimization problem. This provides a way to solve the system of 
equations g(x) = 0 in Eq. (3), which allows us to bridge the BB step size and the SUE problem. 
As a result, the aforementioned formulas in Section 2 can be directly used to solve Eq. (36). 
According to Eq. (8), the BB scheme defines the following iterative formula: 

f n+1 = f n + αBB(F(f n) - f n). (37) 

Following Eqs. (10) and (11), the calculation of αBB is given by 

αBB1=
(f n-f n-1)

T
[(f n-f n-1) - (F(f n)-F(f n-1))]

�(f n-f n-1) - (F(f n)-F(f n-1))�2

 (38) 

and 

αBB2=
�f n-f n-1�2

(f n-f n-1)
T

[(f n-f n-1) - (F(f n)-F(f n-1))]
. (39) 

It can be observed from Eq. (37) that the search direction is consistent with the one of Eq. 
(30). However, the BB scheme attempts to obtain the derivative information of the mapping 
function, instead of modifying the MSA scheme (e.g., the SRA scheme) or pursuing an adequate 
decrease in the objective function value (e.g., the Armijo scheme). Compared with other step 
size determination schemes, the BB scheme only needs to record the mapping function values 
of two consecutive iterations, without any parameter settings and requirement to evaluate the 
objective function value and/or its derivatives. 

There is still a potential problem that remains unsolved in the iterative procedure. The term 
F(f n) in Eq. (37) refers to the loading of the traffic demand onto the network based on the 
current flow pattern (i.e., stochastic network loading), which implies that every approximate 
solution f n should also satisfy the demand conservation and non-negativity constraints.  

We find that every approximate solution defined by the BB scheme indeed satisfies the 
constraints, which is proven below. 

Proposition 1. For solving the SUE problem, every approximate solution produced by Eqs. 
(37)-(39) satisfies the demand conservation and non-negativity constraints. 
Proof. The first approximate solution f 0 is initialized by the stochastic network loading, which 
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implies that the initialization solution satisfies the constraints. Besides, the constraint set is 
convex. Hence, we only need to prove that the new approximate solution f n+1 is the convex 
combination of the current approximate solution f n  and the auxiliary one F(f n) , i.e., αBB

∈(0,1]. 

Let P denote the path choice probability vector, and thus the path flow pattern can be given 
by qP. Note that ∇P is the Hessian matrix of the satisfaction function which is concave with 
respect to path flows (see Chapter 10 in Sheffi (1985) for details). Hence, the Jacobian matrix 
∇P (with respect to path flows) is semi-negative definite. From the Taylor’s expansion, we 
obtain 

P n = P n-1 + ∇P*(f n-f n-1) (40) 

where ∇P*  denotes the Jacobian matrix at point ϑf n-(1-ϑ)f n-1 , ϑ∈(0,1). Clearly, ∇P*  is 

semi-negative and the following inequality is obtained  

(f n-f n-1)
T
(F(f n)-F( f n-1)) = q(f n-f n-1)

T
(P n-P n-1)=q(f n-f n-1)

T
∇P*(f n-f n-1) ≤ 0. (41) 

It can be inferred from inequality (41) that αBB1 will satisfy 

αBB1=
(f n-f n-1)

T
(f n-f n-1) - (f n-f n-1)

T
(F(f n)-F(f n-1))

�(f n-f n-1) - (f n-f n-1)
T
(F(f n)-F(f n-1))�

2

 > 0 (42) 

and  

αBB1=
(f n-f n-1)

T
(f n-f n-1) - (f n-f n-1)

T
(F(f n)-F(f n-1))

�(f n-f n-1) - (F(f n)-F(f n-1)�2

 

≤
� (f n-f n-1)�2 - 2(f n-f n-1)

T
(F(f n)-F(f n-1))+� (F(f n)-F(f n-1))�2

�(f n-f n-1) - (F(f n)-F(f n-1))�2

=1. 

(43) 

Inequalities (42) and (43) indicate that αBB1 ranges from 0 to 1. Similarly, the step size, 
αBB2, has the same property. This completes the proof of Proposition 1. 

Based on the above discussion, the flowchart for implementing the path-based traffic 
assignment algorithm with the BB step size is presented in Figure 5. Note that the BB step size 
takes the information of two consecutive iterations. In the first iteration (n=1), ρ can be obtained 
by an exact or inexact step size determination or other approaches. In this study, we simply set 
it to the value consistent with the SRA scheme. In Figure 5, cn denotes the vector of path costs 
at the nth iteration; Δ is the incidence matrix describing the relationship between links and 
paths; t(∙) is the vector of link cost functions. 
Remark 1: Eqs. (36)-(39) extend the BB step size to solve the fixed-point problem which is 
associated with the system of equations. The search direction is determined by the residual error, 
which coincides with the search direction proposed by Damberg et al. (1996). However, our 
approach can solve not only the SUE problems formulated as a MP, but also more general 
mathematical formulations (e.g., fixed-point problem) that can account for more complex cost 
structures (e.g., non-separable link cost functions, non-additive path cost functions, etc.). In this 
sense, the principle of the BB scheme provides a simple and powerful tool for solving many 
traffic equilibrium problems formulated as a fixed-point problem with a point-to-point mapping 
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function. Note that this method can be easily adapted to solve the SUE problem with elastic 
demand. The elasticity of demand is characterized by a monotonically decreasing function with 
respect to the expected minimum travel cost for each O-D pair (Yu et al., 2014). Since the travel 
cost is decided by the flow pattern, the SUE problem with elastic demand can be represented 
like Eq. (28) as follows 

fk= q(f)Pk(f), ∀k∈K. (44) 

Clearly, Eq. (44) has the same form as Eq. (36) and hence can be directly solved by the proposed 

algorithm. Due to the monotonicity of the mapping function -q(f)Pk(f), ∀k∈K, the properties 

are also applicable in this case. More extended applications of the proposed method will be 
discussed in Section 6. 

Set n = 0, f n= 0 

Obtain the auxiliary flow pattern: faux
 n = qP n 

Update flow: f n= faux
 n  
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E
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 n-1-f n-2)

T
[(f n-1-f n-2) - (faux
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 n-1)]

�(f n-1-f n-2) - (faux
 n -faux

 n-1)�2
 (BB1) 

or  
�f n-1-f n-2 �2

(f n-1-f n-2)
T

[(f n-1-f n-2) - (faux
 n -faux

 n-1)]
 (BB2) 

, update cost: cn = ∆T∙t(∆∙f n) 

 

FIGURE 5 Flowchart for implementing the path-based traffic assignment algorithm 
with the BB step size 

Remark 2: The BB step size is preferred to the SRA and Armijo schemes in several ways. For 
the SRA scheme, the information in two consecutive iterations may not be fully utilized. 
According to Eq. (30), only the absolute residual is obtained to determine the choice of the step 
size. Moreover, the step size sequence of this scheme is monotonically decreasing. If the step 
size decreases sharply in the early iterations, the overall convergence speed will be rather slow. 
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For the Armijo method, the main drawback is the requirement to evaluate the objective function 
and/or its gradients. When the objective function is complicated (e.g., the CNL SUE model), 
the computation cost of function evaluations is quite expensive, which will lead to poor 
performance. In addition, another drawback of both schemes is that their convergence 
performance heavily relies on setting the initial parameter values. Inappropriate parameter 
settings may greatly affect the convergence speed. Consequently, the BB step size seems quite 
appealing for solving the SUE problem under congested and realistic networks. 
4.2. Convergence results 

Raydan (1993) has established the convergence of the BB method when the mapping 
function T(f) = f - F(f) is affine and its Jacobian matrix is symmetric positive definite (i.e., it 
is equivalent to a MP formulation whose objective function is convex quadratic). Despite that 
the BB method is often shown to converge in practical applications (He et al., 2012), it still 
lacks a theoretical convergence proof to show that the BB method converges in the case of 
fixed-point problem. Here we provide the convergence results for solving the SUE problem 
under some mild assumptions. 

The following proposition presents some useful properties of the mapping function in the 
SUE problem. 
Proposition 2. The mapping function T(f) = f  - F(f)  is strongly monotone and Lipschitz 
continuous, i.e., (T(f1)-T( f2))T(f1-f2) ≥ η(f1-f2)T(f1-f2)  and ‖T(f1)-T(f2)‖ ≤ L‖f1-f2‖  for 
any f1 and f2 in the feasible region where ‖∙‖ represents the Euclidean-norm. 
Proof. Note that Eq. (41) indicates that - F(f)  is monotone. Obviously, T(f)  is strongly 
monotone. Specifically, according to inequality (41) and the definition of T(f), we have  

(T(f1)-T( f2))T(f1-f2) ≥ (f1-f2)T(f1-f2). (45) 

Inequality (45) indicates that the largest strongly monotone modulus is not smaller than 1. 
On the other hand, path flow variables are bounded from 0 to qrs. Note that we can always 

find a sufficiently small amount of flow ε not larger than any path flow (i.e., the demand has 
an upper bound and every auxiliary path flows has a positive lower bound), which indicates the 
domain is bounded and closed. In this case, F(f) and T(f) are bounded and continuous. Thus, 
T(f) is Lipschitz continuous. This completes the proof of Proposition 2. 

The following proposition describes some relationship between the mapping function 
values of two consecutive iterations. 
Proposition 3. The sequence {f n} generated by Eq. (37) satisfies 

�T(f n+1)�2≤(1+αBB
n 2L2-2αBB

n η)‖T(f n)‖2 

Proof. �αBB
n T(f n+1)�2=�(f n-αBB

n T(f n))-(f n+1-αBB
n T(f n+1))�2 

=�(f n-f n+1)-αBB
n (T(f n)-T(f n+1))�2 

=�(f n-f n+1)�2-2αBB
n (f n-f n+1)(T(f n)-T(f n+1))+�αBB

n (f n-f n+1)�2 

Invoking the strong monotonicity and Lipschitz continuity conditions of T(∙), we obtain 

�αBB
n T(f n+1)�2≤�(f n-f n+1)�2+�αBB

n 2L2-2αBB
n η��(f n-f n+1)�2 
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=(1+αBB
n 2L2-2αBB

n η)‖αBB
n T(f n)‖2 

The proof is completed. 
Proposition 4. For n>1, two versions of the BB step size defined by Eqs. (38) and (39) are 

bounded with αBB1
n ∈[η/L2,1/η] and αBB2

n ∈[1/L, 1/η]. 

Proof. For the BB1 scheme, it follows from the strong monotonicity and Lipschitz continuity 
conditions of T(∙) that 

αBB1
n =

(f n-f n-1)
T
(T(f n)-T(f n-1))

�T(f n)-T(f n-1)�2

≥
η(f n-f n-1)

T
(f n-f n-1)

�T(f n)-T(f n-1)�2

≥
η
L2. 

Using the Cauchy-Schwarz inequality and the strong monotonicity condition, we have 

αBB1
n =

(f n-f n-1)
T
(T(f n)-T(f n-1))

�T(f n)-T(f n-1)�2

≤
�f n-f n-1�

�T(f n)-T(f n-1)�
≤

1
η
 

For the BB2 scheme, it follows from the Cauchy-Schwarz inequality and the Lipschitz 
continuity condition that 

αBB2=
�f n-f n-1�2

(f n-f n-1)
T

[T(f n)-T(f n-1)]
≥

1
L

 

Invoking the strong monotonicity condition, we obtain 

αBB2=
�f n-f n-1�2

(f n-f n-1)
T

[T(f n)-T(f n-1)]
≤

1
η
 

The proof is completed. 
The following assumptions are necessary to derive our results. 

Assumption 1. The strongly monotone modulus η and the Lipschitz constant L satisfy  

L ≤ 
��ξI+8-ξI

2
η,   ξI∈(0,1). 

Assumption 2. The strongly monotone modulus η and the Lipschitz constant L satisfy L ≤ λη, 
where λ is a positive solution of the following equation: 

x2-
2
x

+ξII= 0,   ξII∈(0,1). 

The following propositions give the convergence results. 
Proposition 5. If assumption 1 holds, the BB1 scheme is globally convergent to the solution of 
Eq. (36). 
Proof. It follows from Propositions 3 and 4 and assumption 1 that 

�T(f n+1)�2≤�1+αBB1
n 2L2-2αBB1

n η�‖T(f n)‖2≤ �1+
L2

η2 -2
η2

L2� ‖T(f n)‖2 

≤ 

⎝

⎛1+
�ξI+8-ξI

2
-

4

�ξI+8-ξI
⎠

⎞ ‖T(f n)‖2= �1-ξI�‖T(f n)‖2≤ �1-ξI�
n
�T(f 1)�2 
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We have �T(f n+1)�2= �f n+2-f n+1

αBB1
n+1 �

2
≤ �1-ξI�

n
�T(f 1)�2, which indicates 

�f n+2-f n+1�2≤ αBB1
n+1 2

�1-ξI�
n
�T(f 1)�2≤ 1

η2 �1-ξI�
n
�T(f 1)�2. 

Since �1-ξI�∈(0,1), {f n} is a Cauchy sequence and converges to its cluster point which is 

denoted as f ∞ . Besides, lim
n→∞

‖f n-F(f n)‖2 = lim
n→∞

�T(f n+1)�2 = 0  which means f ∞  is the 

solution of Eq. (36). This completes the proof. 
Proposition 6. If assumption 2 holds, the BB2 scheme is globally convergent to the solution of 
Eq. (36). 
Proof. It follows from Propositions 3 and 4 and assumption 2 that 

�T(f n+1)�2≤�1+αBB2
n 2L2-2αBB2

n η�‖T(f n)‖2≤ �1+
L2

η2 -2
η
L

� ‖T(f n)‖2 

≤ �1+λ2-2 1
λ
� ‖T(f n)‖2= �1-ξII�‖T(f n)‖2. 

We have �T(f n+1)�2= �f n+2-f n+1

αBB2
n+1 �

2
≤ �1-ξII�

n
�T(f 1)�2, which indicates 

�f n+2-f n+1�2≤ αBB2
n+1 2

�1-ξI�
n
�T(f 1)�2≤ 1

η2 �1-ξII�
n
�T(f 1)�2. 

The rest of the proof is similar to Proposition 5 and it is omitted here. 
We have provided the theoretical convergence proof of the BB method under mild 

assumptions. In the next section, we will show detailed convergence characteristics for the BB 
method solving various SUE models in practical applications. 

5. Numerical Results 

This section presents several experiments to examine the convergence characteristics of the BB 
step size compared to two existing prevailing step size schemes (i.e., Armijo and SRA) in a 
path-based traffic assignment algorithm for solving the SUE problem. The sensitivity of the BB 
step size is also analyzed with respect to different demand levels and dispersion parameter 
values. In addition, we compare the flow allocation results of the MNL SUE and CNL SUE 
models.  

In order to draw a relatively general conclusion, we test the proposed algorithm on two 
well-known SUE models (the MNL and CNL SUE models) and two realistic road networks, 
the Winnipeg and Chicago Sketch networks (obtained from http://www.bgu.ac.il/~bargera/tntp/) 
whose maps are exhibited in Figure 6 and Figure 7, respectively. In both networks, the traffic 
zones are the origins and destinations of the O-D flows. To have a fair comparison of different 
step size determination schemes, fixed working path sets are used for the computational tests. 
The working path set of the Winnipeg network was generated by Bekhor et al. (2008), and the 
working path set of the Chicago Sketch network was generated by using the seSUE, an open-
source software obtained from http://sesue.uurari.com/#secDownloads. More details about the 
test examples are reported in Table 1. 

http://www.bgu.ac.il/%7Ebargera/tntp/
http://sesue.uurari.com/#secDownloads
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FIGURE 6 Map of the Winnipeg network 

 

FIGURE 7 Map of the Chicago Sketch network 
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TABLE 1 Characteristics of test networks 
Network  Zones # Nodes # Links # O-D Pairs # Paths # 
Winnipeg 154 1,067 2,535 4,345 174,491 

Chicago Sketch 387 933 2,950 93,135 836,346 

The convergence criterion measure employed in this paper is based on the relative gap 
(RGAP), which is widely used to monitor the convergence process for solving the deterministic 
UE problem. For the MNL SUE model, it is calculated by 

RGAP(MNL SUE)=
∑ ∑ ∑ fk

 rs∙(gk - gmin
rs )ksr

∑ ∑ ∑ fk
 rs∙�gk �ksr

, 
 

 (46) 

where gk is the first-order derivative of the objective function with respect to fk
 rs and can be 

interpreted as the perceived path cost of path k; gmin
rs  denotes the minimum perceived cost from 

origin r to destination s. For the CNL SUE model, it is calculated in the same manner as follows: 

RGAP(CNL SUE)=
∑ ∑ ∑ ∑ fmk

 rs ∙(gk
 m- gmin

rs )kmsr

∑ ∑ ∑ ∑ fmk
 rs ∙kmsr �gk

 m�
, 

 
 (47) 

where gk
 m is the first-order partial derivative of the objective function with respect to fmk

 rs  and 
gmin

rs  is the minimum of all gk
 m for O-D pair rs. The difference between the above two formulas 

comes from the decision variables of the MNL SUE and CNL SUE models.  
The nesting coefficient of the CNL SUE model, μ, is set to 0.5 for all experiments. In 

addition, we set the upper bound, γk , to 1 for the Armijo scheme, which can guarantee the 
feasibility of every approximate solution. Other parameters are set as: ψ = 1.9 and φ = 0.1 for 
the SRA scheme as suggested by Liu et al. (2009); for the Armijo scheme, β = 0.6 and 𝜎𝜎 = 0.5 
which was adopted by Chen et al. (2014). The numerical experiments are conducted on 
Microsoft Windows 10 operating system with Intel Core i3-6100 CPU @ 3.70 GHz, 4GB RAM. 
The path-based traffic assignment algorithm embedded with different step size determination 
schemes is coded in Visual C#.  
5.1. Convergence characteristics 

Figure 8 shows the convergence curves of various step size schemes embedded in the path-
based traffic assignment algorithm for solving the MNL and CNL SUE models on the two test 
networks. The horizontal and vertical axes represent the CPU time and RGAP, respectively. All 
algorithms are terminated when RGAP=1E-10 is achieved or the maximum CPU time is taken 
(i.e., 10 and 60 seconds for the MNL and CNL SUE models on the Winnipeg network; 600 and 
1,200 seconds for the MNL and CNL SUE models on the Chicago Sketch network). As shown 
in Figure 8, the performances of the two versions (BB1 and BB2) of the BB scheme are quite 
similar in all experiments. Note that both versions of the BB scheme can converge to the 
desirable precision (i.e., RGAP=1E-10) within the maximum CPU time, while the SRA and 
Armijo can only achieve RGAP=1E-6~1E-8. 

Moreover, Table 2 exhibits more specific information about the comparative performance 
of different step size schemes. Due to the similar trend reported for both networks, here we only 
list the detailed comparative performance on the Winnipeg network to avoid duplication. 
Specifically, the BB scheme performs 1.75 and 2.25 times faster than the SRA and Armijo 
schemes for solving the MNL SUE model, and 1.89 and 2.75 times faster for the CNL SUE 
model. These results indicate that the proposed BB scheme can outperform the Armijo and SRA 
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schemes in terms of computational efficiency with a wide margin for solving the two logit-
based SUE problems. 

 
(a) MNL SUE model on Winnipeg (b) CNL SUE model on Winnipeg 

 
(c) MNL SUE model on Chicago Sketch 

 
(d) CNL SUE model on Chicago Sketch 

FIGURE 8 RGAP versus CPU time for solving different SUE models on different 
networks.  

Table 2 also reveals some reasons behind the outstanding performance of the BB scheme. 
Note that the computational efforts can be roughly separated into two parts: the network loading 
step and the step size determination step. Since we use a working path set, the network loading 
time is similar for different step size schemes at each iteration. Hence, the differences in 
computational costs among different step size schemes mainly come from the step size 
determination step for each iteration. As shown in Table 2, the Armijo scheme takes fewer 
iterations than the SRA scheme during the whole convergence process, but the computational 
cost per iteration is much more expensive due to the need of evaluating the objective function 
value, which degrades the overall performance of the Armijo scheme. On the other hand, the 
BB scheme requires fewer iterations than that of the Armijo scheme. The average time per 
iteration of the BB scheme is 0.14 and 5.9 seconds for the MNL SUE and CNL SUE models, 
respectively. At each iteration, the computational cost of the BB scheme is quite close to that of 
the SRA scheme. Both only record the information from the last two consecutive iterations and 
do not require additional function evaluations of the objective function and/or its gradient. 
However, the BB scheme uses much fewer iterations than that of the SRA. In summary, the BB 
scheme needs fewer iterations to reach a desired level of convergence than the Armijo scheme, 
while it takes similar computational efforts per iteration compared to the SRA scheme. Table 2 
also shows that the calculation of the BB scheme does not need to assume any parameter values 
compared to the Armijo and SRA schemes. The above analysis demonstrates that the BB 
scheme is quite efficient and practical. 
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TABLE 2 Comparative performance of different step size schemes to achieve RGAP = 
1E-6 on the Winnipeg network 

SUE Models 
Step size 
Schemes 

# of 
iterations 

CPU time 
(sec) 

# of function 
evaluations 

Parameter settings 

MNL SUE 

Armijo 28 11.39 97 β = 0.6, 𝜎𝜎 = 0.5 

SRA 63 9.62 - ψ = 1.9, φ = 0.1 

BB1 24 3.30 - - 

BB2 26 3.52 - - 

CNL SUE 

Armijo 37 552.15 140 β = 0.6, 𝜎𝜎 = 0.5 

SRA 68 425.59 - ψ = 1.9, φ = 0.1 

BB1 25 147.53 - - 

BB2 25 147.50 - - 

In order to further explore why fewer iterations are used for the BB scheme, we plot the 
step size trajectories of all step size determination schemes in the first 30 iterations for both 
networks in Figure 9. The horizontal and vertical axes separately represent the iteration number 
and the step size determined by each scheme. To improve the readability, we plot the step size 
trajectories of the BB scheme and the Armijo and SRA schemes separately. For brevity, we only 
present the trajectories of solving the MNL SUE model on both networks here. As shown in 
Figure 9, the SRA scheme produces a strictly decreasing step size sequence as required by the 
Blum’s Theorem to guarantee the convergence (see Eq. (31)). One the other hand, the Armijo 
scheme produces a non-monotone (i.e., not strictly decreasing) step size sequence as long as it 
satisfies the adequate decrease condition given in Eq. (33). It is interesting to see that the step 
size sequence of the SRA scheme lies within an acceptable range of the sequence produced by 
the Armijo scheme, which suggests that using the solution information from the last two 
consecutive iterations without the need to evaluate the objective function and/or its derivative 
could provide a good approximate step size. Compared with the Armijo scheme, the BB scheme 
also produces a non-monotone step size sequence, but it takes a more aggressive (or larger) step 
size to achieve a better solution with a lower objective value as opposed to just satisfying the 
adequate decrease condition in the Armijo scheme. In summary, the BB step size scheme takes 
the advantages of the SRA and Armijo schemes (i.e., solution from last two consecutive 
iterations and non-monotone step size sequence) in determining a more flexible step size 
sequence to achieve a better solution with lower computational efforts. 

An interesting observation is also revealed by examining the convergence characteristics 
in Figure 8 and step size sequence in Figure 9 together. It can be observed that the SRA scheme 
performs about 18% faster than the Armijo scheme in solving the MNL SUE model on the 
Winnipeg network (Figure 8a), but around 83% faster on the Chicago Sketch network (Figure 
8c). Now we focus on the differences of the corresponding step size trajectories (Figures 9a and 
9c) to find out the reason. We can see that the SRA step size trajectories in both networks 
experience a sharp decrease, which indicates that ψ in Eq. (30) is active at the 2nd and 14th 
iteration for the Winnipeg and Chicago Sketch networks, respectively. In the Chicago Sketch 
network, more aggressive movements are made in the early iterations, which result in a better 
overall performance. In fact, the monotonically decreasing property of the SRA scheme will 
eventually force the step size to be very small when the step size decreases sharply (ψ is active) 
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in early iterations. Consequently, the convergence speed will also be slow. In addition, we can 
see in Figure 8c that the proposed BB scheme is much more efficient than the SRA scheme in 
early iterations. Specifically, the BB scheme only takes 5 iterations and 2.1 seconds to achieve 
the precision which the SRA scheme takes 13 iterations and 6.4 seconds to achieve. This implies 
that the BB schemes can greatly outperform the SRA scheme, even when the SRA scheme is in 
the best condition (φ is active all the time) due to the need to ensure the strictly decreasing 
condition required by the Blum’s Theorem to ensure convergence. 

 
(a) Armijo and SRA on Winnipeg 

 
(b) BB1 and BB2 on Winnipeg 

 
(c) Armijo and SRA on Chicago Sketch 

 
(d) BB1 and BB2 on Chicago Sketch 

FIGURE 9 Step size trajectories of all step size determination schemes on different 
networks.  

5.2. Sensitivity analysis 
The above analysis indicates that the BB scheme outperforms the prevailing Armijo and SRA 
schemes in terms of computational efficiency. In the following, we examine the sensitivity of 
the BB scheme with respect to different demand levels and dispersion parameter values for both 
MNL and CNL SUE models on the Winnipeg network. For completeness, we also include the 
Armijo and SRA schemes in the comparison. The convergence criterion is set to RGAP=1E-6 
for the MNL SUE model. Since it is much more computationally expensive to solve the CNL 
SUE model, the convergence criterion is set to a higher value, i.e. RGAP=1E-5. 

The experiment results are shown in Figure 10. First, we investigate the effects of different 
demand levels on computational performance by varying the demand level from 0.6 to 1.4 of 
the base demand. As shown in Figures 9a and 9b, the CPU time generally increases as the 
demand level increases for all step size determination schemes in solving both logit-based SUE 
models. However, the CPU time of the Armijo and SRA schemes grows at a faster rate 
compared to that of the BB scheme. Specifically, the Armijo and SRA schemes respectively 
take 4.47 and 5.26 times of computational efforts to solve the MNL SUE model for the demand 
level from 0.6 to 1.4, while the BB scheme just takes 1.8 times for the same demand range. It 
clearly reveals that the Armijo and SRA schemes are quite sensitive to the congestion level. 
Next, we investigate the effects of different dispersion parameter values on the computational 
performance by varying the dispersion parameter value from 0.1 to 1.6 with an interval of 0.5. 
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Figures 9c and 9d also show the CPU time generally increases as the dispersion parameter value 
increases (i.e., flow allocations are more concentrated on the minimum cost paths). The trend 
for the BB scheme is quite stable and shows only a minor increase in CPU time as the dispersion 
parameter value increases. However, the trend for the Armijo and SRA schemes is less obvious 
and requires significantly more CPU times than the BB scheme for both logit-based SUE 
models. 

 

(a) Effect of demand level on the MNL SUE 
model 

 

(b) Effect of demand level on the CNL SUE 
model 

 
(c) Effect of dispersion parameter on the MNL 

SUE model 

 
(d) Effect of dispersion parameter on the CNL 

SUE model 
FIGURE 10 Computational effort under different demand levels and dispersion 

parameter values on the Winnipeg network. 
5.3. Flow allocation comparison 
This section compares the differences in path and link flows between the MNL SUE and CNL 
SUE models on the Winnipeg network. These two models share a common dispersion parameter 
θ which reflects an aggregate measure of driver’s perception of path cost (Sheffi, 1985). For a 
fair comparison, θ  is set to 0.1 in both models. In addition, the CNL model has another 
parameter μ which accounts for the similarity among paths. The CNL model collapses to the 
MNL model if μ is set to 1 and reduces to a deterministic choice probability pattern when μ 
tends to 0. In this comparison, μ is set to 0.5. Recall that the CNL SUE model can overcome 
the path overlapping issue which the MNL SUE model suffers from. Thus, different flow 
patterns can be expected on realistic networks. 
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FIGURE 11 Differences in path flow between the MNL SUE and CNL SUE models 

We first examine the differences in path flow shown in Figure 11. The horizontal axis 
represents the percentage of relative differences in path flow (i.e., (f MNL- f CNL)/ f MNL) and the 
vertical axis represents the corresponding numbers of paths. It can be seen that the around 55.6% 
of the paths have a relative difference larger than 10% (or 96,976 paths), while 44.4% of the 
paths, have a relative difference smaller than 10%. Furthermore, a large number of paths 
(specifically, 45,518 paths) have a relative difference larger than 20%. This shows that the two 
logit-based SUE models allocate significantly different path flow patterns, because the CNL 
SUE model can account for the path overlapping issue while the MNL SUE cannot. 

 
FIGURE 12 Differences in link flows between MNL SUE and CNL SUE models 
On the other hand, we examine the differences in link flow pattern to see how these 

differences are distributed on the network and study the effects of the path overlapping issue on 
the link flow pattern. Figure 12 shows the differences in link flow between the MNL SUE and 
CNL SUE models (i.e., f MNL- f CNL) with a Geographical Information System (GIS) map. We 
use different colors for each link to highlight the magnitude of the flow difference. Compared 
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with the MNL SUE model, the CNL SUE model allocates less flows to the links in the urban 
center area. It is because that the links in center area are shared by more paths and thus the 
similarity is higher among these paths. As the CNL SUE model accounts for the effect of route 
overlapping problem, less flow will be allocated to the center area. The situation is opposite in 
the outer area.  

Overall, the flow patterns are significantly different for the MNL SUE and CNL SUE 
models. It is important to handle the path overlapping issue and this problem gets more severe 
in the urban center area than the outer area. 

6. Extensions 

In this section, we introduce some extended applications of the proposed algorithm 
following the discussion in Remark 1. 
6.1. Link-based SUE models 

We have proposed an efficient path-based algorithm incorporated with the BB step size 
scheme for solving the SUE problem. In this subsection, we take the link-based MNL SUE 
model as an example to show how to adapt the BB step size scheme into the link-based solution 
algorithm. Compared to path-based algorithms, link-based algorithms do not need an explicit 
path set and thus take less storage memory, but are less flexible (Maher, 1998; Kitthamkesorn 
and Chen, 2014). The link-based formulation of the MNL SUE model is shown as the following 
unconstrained program. 

min z = − � qrsSrs[crs(x)]
rs

+ � xata(xa)
a∈A

− � � ta(ω)
xa

0
a∈A

dω (48) 

where Srs[crs(x)]=E[ min
k∈Krs

{ck
rs} ]  and 𝜕𝜕Srs[crs(x)]

ck
rs =Pk

rs . Note that the decision variable is link 

flow xa in this formulation. The meanings of other notations are the same as in Section 3. 
The first-order necessary condition of optimality of the unconstrained program in Eq. (48) 

is 

∇xz = ∇xt ∙[x − ∆∙(ΛT∙q○P)] = 0 (49) 

where x, t, q,  and P  represent the vectors of link flow, link cost, O-D demand, and path 
choice probability, respectively; ‘○’ is the Hadamard product; ∆ and Λ are incidence matrices 
for describing the relationship between links and paths and the relationship between O-D pairs 
and paths, respectively. Since ∇xt is a diagonal positive definite matrix here, we only need to 
solve the following system of equations 

x − ∆∙(ΛT∙q○P) = 0. (50) 

Following the approach developed in section 4, the BB scheme can be easily adapted to solve 
Eq. (50). The solution procedure can be concluded as follows. 
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Algorithm. Link-based SUE solution algorithm 

Step 0: Initialization 
       Set n=0, update cost, and perform the SNL to obtain initial link flows xa

0, ∀a 
Step 1: Direction finding 
       Set n=n+1, update cost, perform the SNL to obtain auxiliary link flows 𝑥𝑥�a

n, ∀a, and 
define the direction 𝑥𝑥�a

n − 𝑥𝑥a
n, ∀a. 

Step 2: Step size determination 
       Determine the BB step size αBB

n  and obtain new link flows: 𝑥𝑥a
n+1 = 𝑥𝑥a

n + αBB
n (𝑥𝑥�a

n −
𝑥𝑥a

n), ∀a. 
Step 3: Convergence test 

If the stopping criterion is satisfied, terminate; otherwise, go to step 1. 
Due to the monotonicity of -∆∙(ΛT∙q○P)  (Sheffi, 1985), the properties we have 

established in Section 4 also holds in this situation. In fact, Eq. (50) is equivalent to Eq. (28). 
The only difference is that link flows are decision variables in Eq. (50) while path flows in Eq. 
(28). Further, we can compute -∆∙(ΛT∙q○P)  by performing a link-based stochastic network 
loading procedure. Readers can refer to Dial (1971) and Bell (1995) for more details about the 
logit-based stochastic loading schemes. 
6.2. Hierarchical travel choice models 

Hierarchical (or combined) travel choice models aim to overcome the inherent drawbacks 
of the traditional four-step model, which considers trip generation, trip distribution, modal split 
and traffic assignment sequentially, in travel demand forecasting. In the four-step model, the 
outputs of one step serve as the inputs of the next step, which leads to inconsistency in travel 
times and congestion effects among different steps (Yao et al., 2014; Zhou et al., 2009). In 
contrast, the hierarchical travel choice model assumes that travelers make different travel 
choices simultaneously in a combined model. Under the random utility theory framework in 
microeconomics, an integrated model can be conveniently constructed to account for these steps 
(not necessarily all steps) simultaneously.  

Zhou et al. (2009) presented the structure of the hierarchical travel choice model (see 
Figure 1 in their paper), the demand of each step is the multiplication of the demand in the last 
step and the corresponding conditional probability. Hence, the path flow pattern can be 
concluded as follows 

Trsek =NrPt|rPs|rPe|rsPk|rse, ∀r, s, e, k. (51) 

where Trsek is the travel demand taking path k from origin r to destination s on mode e; Nr is the 
potential number of travelers in origin r; Pt|r is the probability of making a trip given Nr; Ps|r is 
the probability of choosing destination s from origin r; Pe|rs is the probability of choosing mode 
e between O-D (r, s); Pk|rse is the probability of choosing path k of O-D (r, s) on mode e. Note 
that the right-hand side of Eq. (51) is a function with respect to path flows Trsek, and thus Eq. 
(51) is actually a fixed-point problem. Further, as the conditional probability is monotone with 
respect to the utility (Sheffi, 1985; Zhou et al., 2009), the proposed algorithm in Section 4 can 
be adapted to solve this model. 
6.3. Dynamic stochastic user equilibrium (DSUE) models 

The aforementioned traffic assignment models all belong to the category of static traffic 
assignment (STA). Compared to STA models, dynamic traffic assignment (DTA) models are 
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able to deal with time-varying flows and capture traffic flow dynamics more realistically 
(Jayakrishnan et al., 1995; Peeta and Ziliaskopoulos, 2001; Huang and Lam, 2002). Among the 
DTA models, the DSUE model relaxes the assumption of traveler’s perfect perception about 
network conditions and are considered to be more realistic than the deterministic counterparts 
(Han, 2003; Lim and Heydecker, 2005; Long et al., 2015). The DSUE equilibrium state can be 
stated as, no traveler can improve the perceived travel cost by unilaterally change the departure 
time and path combination (Long et al., 2015). 

The combination of departure time and path choices can be described using a hierarchical 
structure discussed in Section 6.2 (i.e., combine the departure time choice and the path choice 
in a hierarchical structure). Hence, the combined departure time and path choice model is 
presented as follows: 

The time period of interest is discretized into a finite set of time intervals, U = {u: u = 1, 
2, …, |U|} where |U| is the maximum number of intervals. Without loss of generality, we here 
take the MNL model as an example. Given an O-D pair, the probability of a traveler departing 
at interval u is obtained by 

 P (u)=
exp(-θtc�(u))

∑ exp(-θtc�(v))v∈U
 (52) 

where c�(u) denotes the expected perceived cost for travelers departing at interval u, and θt is 
a dispersion parameter associated with the departure time choice. On the other hand, given an 
O-D pair and interval u, the probability of a traveler choosing path k can be obtained by 

 Pk (u)=
exp(-θck(u))

∑ exp(-θcl(u))l∈K
 (53) 

where ck(u) denotes the actual travel cost for travelers choosing path k departing at interval u; 
K is the feasible path set; θ is a dispersion parameter associated with the path choice, and 
θ ≥ θt (Lim and Heydecker, 2005). For the MNL model, traveler’s expected perceived cost is 
given as follows (Lim and Heydecker, 2005; Long et al., 2015) 

c�(u) =E[ min
k∈K

{ck(u)} ]= − 1
θr

ln ∑ exp(-θrcl(u))l∈K . (54) 

Combine Eqs. (52)-(54), we obtain the combined departure time and path choice model as 
follows 

 fk (u) = qP (u) Pk (u) = q
exp( θt

θ ln ∑ exp(-θcl(u))l∈K )

∑ exp( θt
θ ln ∑ exp(-θcl(u))l∈K )v∈U

exp(-θck(u))
∑ exp(-θcl(u))l∈K

 (55) 

where fk (u) denotes the number of trips on path k departing at interval u, and q is the demand. 
Note that Eq. (55) is a fixed-point problem and our proposed algorithm can be applied. However, 
the monotonicity of the path cost with respect to path flow may not be established for various 
dynamic network loading (DNL) models. The DNL models depict how traffic flow propagates 
in a transportation network and are performed to obtain the travel times on all paths with a given 
path inflow profile. Given the travel time pattern, the combined departure time and path choice 
model guides how to adjust path inflows. Readers can refer to Peeta and Ziliaskopoulos (2001), 
Nie and Zhang (2005), Mun (2007), and Bliemer et al. (2017) for more details about the DNL 
models. Consequently, Proposition 1 in Section 4 may not always hold for the DSUE model. 
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Hence, before applying the proposed algorithm, one should check whether the monotonicity of 
the path cost holds. If it holds, the proposed algorithm can be directly adopted to solve the 
DSUE model; otherwise, the BB method may fail and can only be used as a heuristic method. 
In this case, to ensure the positivity of path flows, one can design some practical approaches 
like setting lower and upper boundaries for the BB step size sequence.  

7. Concluding Remarks 
The Barzilai-Borwein (BB) step size is a special step size determination scheme incorporated 
into the gradient method by using the solution information from the last two consecutive 
iterations to enhance its computational efficiency without the need to explicitly compute the 
second-order derivative, i.e., the Hessian. The BB step size has been found to significantly 
outperform the gradient method at nearly no extra cost. In this paper, we explored the BB step 
size to develop an efficient and robust path-based traffic assignment algorithm for solving the 
stochastic user equilibrium (SUE) problem, which often involves a large dimension of decision 
variables (i.e., path flows) and complex objective function (i.e., link integral and path entropy 
terms).  

To examine the computational efficiency and robustness of the BB scheme implemented 
in a path-based traffic assignment problem, we solved two well-known SUE models (i.e., the 
multinomial logit (MNL) and cross-nested logit (CNL) SUE models) on two real transportation 
networks (i.e., the Winnipeg and Chicago Sketch networks) and compared the performance 
with two popular step size schemes (i.e., the Armijo scheme and the self-regulated averaging 
(SRA) scheme). The numerical results indicated that the two versions of the BB scheme 
significantly outperformed the Armijo and SRA schemes in terms of both computational 
efficiency and robustness with respect to congestion and dispersion levels. In addition, the BB 
scheme does not require any parameter setting, which is required in the Armijo and SRA 
schemes. All these good features make the BB step size rather attractive for implementing path-
based traffic assignment algorithms. Note that the above conclusions were based on solving the 
MNL SUE and CNL SUE models on the Winnipeg and Chicago Sketch networks. In the future, 
more tests should be conducted to further examine the performance of the BB step size scheme 
on various network configurations, other SUE models (e.g., the weibit-based SUE models of 
Kitthamkesorn & Chen, 2013; Kitthamkesorn & Chen, 2014; Xu et al., 2015), combined travel 
demand models with multi-dimensional travel choices (e.g., Xu et al., 2008; Zhou et al., 2009; 
Yao et al., 2014; Kitthamkesorn et al., 2016; Ryu et al., 2017), and DSUE models (e.g., Han, 
2003; Lim and Heydecker, 2005; Long et al., 2015). 
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