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Abstract

Feature selection is an important preprocessing and interpretable method in the fields where big data plays

an essential role. In this paper, we first reformulate and analyze some representative information theoretic

feature selection methods from the perspective of approximations of feature inner correlations, and indicate

that many of these methods cannot guarantee any theoretical bounds of feature inner correlations. We thus

introduce two lower bounds that have very simple forms for feature redundancy and complementarity, and

verify that they are closer to the optima than the existing lower bounds applied by some state-of-the-art

information theoretic methods. A simple and effective feature selection method based on the proposed

lower bounds is then proposed and empirically verified with a wide scope of real-world datasets. The

experimental results show that the proposed method achieves promising improvement on feature selection,

indicating the effectiveness of the feature criterion consisting of the proposed lower bounds of redundancy

and complementarity.
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1. Introduction

Big data have become common with the ongoing developments in information technology in recent

years. Analyzing big data is a key task in data mining and machine learning techniques in the fields of

business intelligence (e.g., Maldonado et al., 2015, 2017; López and Maldonado, 2019), causal discovery

and inference (e.g., Ling et al., 2020; Yu et al., 2020), information retrieval (e.g., Yu et al., 2003), image

processing (e.g., Chang et al., 2014), and bioinformatics (e.g., Antonov et al., 2004; Chen and Chen, 2009),

among others. However, the substantial noise in big data has formed barriers for the learning algorithms to

effectively and efficiently discriminate different classes. Feature selection, one of the typical dimensionality

reduction techniques that selects representative features with good enough discriminative power for data

representation and modeling, has been widely considered to be an essential preprocessing approach because

it can effectively reduce the data acquisition and storage demands, increase learning speeds, and improve

generalization performance (Boln-Canedo and Alonso-Betanzos, 2019; Das et al., 2020). It is also deemed

as useful in finding the direct causes and effects for data-driven causal discovery (Ling et al., 2020) and in

enhancing model interpretation (Chen et al., 2018).

Generally speaking, feature selection methods can be divided into three types: wrappers, embedded

methods, and filters. Wrappers utilize the results of a specific learning algorithm to select features. The

performance of the wrapper method is affected by the learning algorithm it used. Also, wrapper method

tends to overfit on small training sets (Brown et al., 2012). For embedded methods, feature selection is

integrated into classification process (Ghaddar and Naoum-Sawaya, 2018), therefore they are also overly

specific to the classifier used. Filters apply the classifier-irrelevant metrics like Fisher score (Furey et al.,

2000), χ2-test (Qu et al., 2005), mutual information (MI) (Bennasar et al., 2013, 2015) to estimate the

discriminative power of features. Thus the computational cost of them are often lower than wrappers and

embedded methods. In addition to its generality, filters is an appropriate choice when dealing with high

dimensional data. Typical filters include information theoretic feature selection methods, e.g., the methods

using mutual information maximization (MIM) criterion (Lewis, 1992) and using minimum redundancy and

maximum relevance(mRMR) criterion (Peng et al., 2005), have been widely used in many fields because of

their excellent performance.

Despite the aforementioned information theoretic feature selection methods, there is another stream of

research using optimization techniques to handle feature selection, wherein typical examples are those with

maximum class separation distance criterion (Antonov et al., 2004), generalized Benders decomposition

(Aytug, 2015), greedy randomized adaptive search procedure (Bertolazzi et al., 2016), convex semi-infinite

programming (Won et al., 2020), and sparse representation (Bertsimas et al., 2020). Optimization technique-

based methods features the novelty of formulating feature selection as an analytically solvable optimization

task. However, solving some of the goal functions, e.g., those consisting of the ℓp-norm (0 ≤ p < 1) regular-
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izer and those consisting of the discrete optimization styles, are proved to be NP-hard (Chen et al., 2010).

Although there exist several heuristic proxies, e.g., ℓ1-norm (namely, LASSO; Tibshirani, 1996) or other

convex approximations, matrix computation still incurs excessive execution time and space cost, causing

hindrance to the implementation of such methods on large-scale datasets. In addition, optimization-based

feature selection does not explicitly handle feature correlations, and thus makes it less interpretable and

feasible to precisely determine whether or not sufficient efforts have been undertaken to handle feature cor-

relations (Zhang et al., 2019). In contrast, information theoretic methods explicitly decompose the objective

of feature selection into multiple sub-objectives (e.g., maximizing class-relevance and minimizing redundan-

cy), and then apply flexible searching strategies for those sub-objectives to finally obtain “satisfactory”

solutions. It is thus deemed as the method that can obtain efficient and interpretable results (i.e., facilitat-

ing a better understanding for the learning model or data) (Chen et al., 2018). Furthermore, MI features the

following advantages: (a) it is related to the lower bound of the Bayes prediction error (Fano, 1961), and (b)

it can be estimated highly efficiently (Zhang et al., 2019). As such, in this study, we focus on information

theoretic feature selection.

The existing information theoretic feature selection methods focus not only on class-relevance (i.e., rele-

vance between the feature and the class) but also on feature inner correlations (hereafter inner correlations

refer to the correlations among the features, and outer correlation refers to the class-relevance) to explicitly

eliminate redundancy (Bennasar et al., 2015; Liu et al., 2015; Gao et al., 2020). For instance, methods based

on the mRMR criterion (Peng et al., 2005; Ding and Peng, 2003) and fast correlation-based feature selec-

tion algorithm (Yu and Liu, 2004; Song et al., 2013) are the most representative methods for redundancy

elimination. Although redundancy is extensively considered by the above methods, another feature inner

correlation, called complementarity which can improve the classification accuracy, does not receive much

explicit attention in the literature. The conditional mutual information maximization (CMIM) criterion

(Fleuret, 2004) actually considers the complementarity implicitly using the conditional mutual information

(CMI). Other typical criteria, such as those proposed by Zhang et al. (2014) and Wang et al. (2017), are also

built based on CMI. Complementarity can also be implicitly identified using joint mutual information (JMI)

(Yang and Moody, 1999; Guo and Nixon, 2009; Bennasar et al., 2015), which is actually the MI between the

feature group (the existing works focus primarily on pairs of features) and the class. Several studies, e.g.,

Brown et al. (2012) and Wang et al. (2017), consciously expand JMI into three dimensions, namely, class-

relevance, redundancy, and conditional redundancy, and explicitly handle redundancy and complementarity

using the latter two terms.

Although these feature selection methods aim to select salient features according to no more than the

three aforementioned dimensions of feature correlations, most of them apply hand-designed heuristic criteria

with pairwise approximations and cannot guarantee theoretical bounds for the higher-order inner correla-

tions of features. Departing from the linear span of possible information theoretic feature selection criteria
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proposed by Brown et al. (2012), this paper focuses on the nonlinear one, and attempts to select features via

the lower bounds of redundancy and complementarity within the nonlinear span. The main contributions

of this paper are as below:

(i) The representative information theoretic feature selection methods are reformulated and analyzed in

the context of the three dimensions of feature correlations, i.e., the class-relevance, redundancy, and

the complementarity.

(ii) The weighted pairwise redundancy and complementarity are deemed as the approximations of their

higher-order forms.

(iii) The linear span of the information theoretic feature selection criteria regarding the three dimensions

is extended to the nonlinear one.

(iv) A criterion with loose lower bounds from the nonlinear span for redundancy and complementarity is

proposed and empirically verified to be effective in feature selection.

The remainder of this paper is organized as follows. Section 2 presents the information theoretic metrics

and the theoretical foundation of applying MI for feature selection. Section 3 reformulates and analyzes

the existing representative methods as well as the potential ones within a unified framework, and discusses

the extension of the linear span of the information theoretic feature selection criteria regarding the class-

relevance, redundancy, and the complementarity. Section 4 proposes two loose lower bounds with very simple

forms from the nonlinear span for redundancy and complementarity, respectively, and verifies that they are

closer to the optima compared with the existing bounds utilized by the state-of-the-art information theoretic

methods. A simple and effective feature selection method based on the proposed bounds is then proposed.

Section 5 empirically verifies the effectiveness of the proposed method via a wide scope of real-world datasets.

Section 6 thereafter concludes this study and proposes possible further work.

2. Preliminaries

Some essential metrics in information theory will be briefly introduced in this section. Three dimensions

of feature correlations, i.e., class-relevance, redundancy, and complementarity, will then be introduced and

analyzed. Finally, the representative information theoretic feature selection methods will be reformulated

and analyzed from the perspective of the bounds of feature inner correlations.

2.1. Information theoretic metrics

MI and CMI are the most frequently used metrics in feature selection methods (Brown et al., 2012). The

MI between two random variable sets X = {X1, ..., Xk} and Y = {Y1, ..., Yl} can be expressed as follows

(Cover and Thomas, 1991):

I(X;Y) =
∑
x∈X

∑
y∈Y

p(xy) log
p(xy)

p(x)p(y)
,
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where x ∈ X and y ∈ Y are the possible value assignments of X and Y, respectively. MI can be considered

as the amount of information shared by two variable sets. In the field of feature selection, MI is one of

the most widely used metrics for measuring the correlation intensity of two features. MI is a symmetrical

metric, i.e., I(X;Y) = I(Y;X). I(X;Y) = 0 indicates independence betweenX andY, while I(X;Y) >> 0

indicates strong dependence.

CMI, an extension of MI for measuring the conditional dependence between two variable sets given a

third set, is defined as (Cover and Thomas, 1991)

I(X;Y|Z) =
∑
z∈Z

p(z)
∑
x∈X

∑
y∈Y

p(xy|z) log p(xy|z)
p(x|z)p(y|z)

.

I(X;Y|Z) can be interpreted as the information shared between X and Y given the value of a third

variable set Z. Note that CMI is also symmetrical, i.e., I(X;Y|Z) = I(Y;X|Z).

2.2. Bayes error rate and mutual information

The optimal salient condition of features often means the minimal classification error in the context

of supervised learning. In the classifier-independent situation, minimal error generally requires maximal

statistical dependence of the class C on the data distribution in the subspace Rm. This scheme is called

maximal dependence (Peng et al., 2005). In the context of information theory, the maximal dependence is

generally characterized in terms of MI. Fano’s inequality reveals that the Bayes error rate of predicting C

from a feature set S is lower bounded by the following expression dependent on the MI (Fano, 1961):

H(C)− I(S;C)− 1

log(|C|)
≤ P (g(F) ̸= C), (1)

where F denotes the feature set and S ⊂ F, g denotes a given learning method, and the maximal I(S;C)

corresponds to the minimal bound that enables finding a well-performing classifier of which the predicting

error reaches the bound. This is the theoretical foundation of I(S;C) as the goal function of feature selection.

The feature selection task is therefore to find a feature subset S that jointly has maximal dependence on

class C. However, it is difficult to find the optimal feature subset satisfying I(S;C) because of NP-hardness

(Albrecht, 2006). In addition, it is intractable to obtain an accurate estimation for multivariate distribution

P (F1, ..., F|S|) due to sample insufficiency and considerable computational cost (this is so-called the curse of

dimensionality). Heuristics such as the incremental greedy search is thus applied by most of the commonly

used information theoretic feature selection methods to obtain near-optimal solutions, i.e., to find feature

sequences of which the top-ranked features are salient for data representation (Vinh et al., 2016).
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3. Dimensionality of feature correlations and the heuristics

Suppose Si−1 (i ≥ 2) is the feature subset obtained at the i− 1-th step, then max I(Si;C) can be easily

implemented using the following expansion (Cover and Thomas, 1991)

I(Si;C) = I(Fi;C) + I(Si−1;C)− I(Si−1;Fi) + I(Si−1;Fi|C), (2)

where Si = Si−1 ∪ {Fi} and Fi ∈ F \ Si−1. Since Fi satisfying max I(Si;C) is irrelevant to I(Si−1;C), Eq.

(2) can be reformulated as

I(Fi;C|Si−1) = I(Si;C)− I(Si−1;C)

= I(Fi;C)︸ ︷︷ ︸
class-relevance

− I(Si−1;Fi)︸ ︷︷ ︸
redundancy

+ I(Si−1;Fi|C)︸ ︷︷ ︸
complementarity

, (3)

Eq. (3) implies equivalence of max I(Si;C) and max I(Fi;C|Si−1) when using an incremental greedy search

strategy. It dissects the intrinsic structure of CMI and decomposes it explicitly into three meta correlations,

i.e., class-relevance (I(Fi;C)), redundancy (I(Si−1;Fi)), and complementarity (I(Si−1;Fi|C); also called

the feature correlation within classes (Brown et al., 2012)). The de-composition of CMI is necessary because

it distinguishes feature inner correlations into “harmful” and “useful” ones whereas the latter is often over-

looked in the extant feature selection literature. This is in accordance with the observations of Guyon et al.

(2006) and Brown et al. (2012), who observed that “correlation does not imply redundancy”. We note here

that those meta correlations are of potential value as they link to the basic effects in the statistical models:

(a) redundancy in essence captures multi-collinearity among variables as it implies variable correlation that

impairs the effectiveness of the model; and (b) complementarity is essentially associated with the interaction

effects and the “V”-structure in causal analysis and inference, as such effects and structure are necessary

for accurate and interpretable modeling. Thus, the meta criteria shown in Eq. (3) are expected to select

not only discriminative but also interpretable features.

However, measuring the meta correlations of redundancy and complementarity succeeds the estimation

of multivariate distribution P (F1, ..., F|Sk−1|), which is practically intractable due to the sample insufficiency

and the considerable computational cost. To address this issue, pairwise correlations (as the approximation

of the original correlations) are examined intuitively in almost all the popular information theoretic methods

(Zhang et al., 2019). To further investigate the relationship between the pairwise approximation and the

primal meta correlations, we show another expansion of I(Si;C) consisting of pairwise feature correlations

and a metric named interaction information (Brown, 2009), as follows:

I(Si;C) =
∑
F∈Si

I(F ;C)−
∑

F1,F2∈Si
F1 ̸=F2

I(F1;F2) +
∑

F1,F2∈Si
F1 ̸=F2

I(F1;F2|C) + I≥3, (4)
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where I≥3 denotes the higher-order interaction information among more than three features and can take

negative values 1. Similar to Eq. (3), the following equations can be obtained from Eq. (4):

I(Fi;C|Si−1) = I(Si;C)− I(Si−1;C)

=


1

−1

1

1



T

·



∆
∑

F∈Si−1∪{Fi}

I(F ;C)

∆
∑

F1,F2∈Si−1∪{Fi}
F1 ̸=F2

I(F1;F2)

∆
∑

F1,F2∈Si−1∪{Fi}
F1 ̸=F2

I(F1;F2|C)

∆ I≥3



=


1

−1

1

1



T

·


I(Fi;C)∑

F∈Si−1
I(Fi;F )∑

F∈Si−1
I(Fi;F |C)

∆ I≥3

 . (5)

With Eqs.(3) and (5), we obtain:
1

−1

1

1



T

·


I(Fi;C)∑

F∈Si−1
I(Fi;F )∑

F∈Si−1
I(Fi;F |C)

∆ I≥3

 =


1

−1

1

0



T

·


I(Fi;C)

I(Fi;Si−1)

I(Fi;Si−1|C)

0

 , (6)

Note that both ∆ I≥3 ≥ 0 and ∆ I≥3 < 0 may hold true depending on specific features (Brown, 2009). Eq.

(6) indicates that, the second and third entries of MI vector on the left-hand side of the equation can be

viewed as the pairwise approximations of the meta correlations, i.e., redundancy and complementarity, on

the right-hand side of the equation. Thus ∆ I≥3 can be illustrated as the error term, carrying information

loss (when ∆ I≥3 > 0) or information overload (when ∆ I≥3 < 0). A space of potential criteria that relate

to numerous existing relevance-redundancy heuristics can be derived from such a perspective by adjusting

the weights of the summation of the pairwise MI terms, in such a way as to (hopefully) get close to the meta

correlations, i.e.,

Jlinearity(Fi) =


1

α

β


T

·


I(Fi;C)

−
∑

F∈Sk−1
I(Fi;F )∑

F∈Sk−1
I(Fi;F |C)

 ≃


1

1

1


T

·


I(Fi;C)

−I(Fi;Si−1)

I(Fi;Si−1|C)

 (7)

where (1, α, β)T (denoted as δ) are the weighted vectors for linear combinations of the pairwise MI terms

corresponding to the meta correlations, and Jlinearity(·) denotes the feature criterion. Since the confus-

ing error term ∆ I≥3 is no longer accounted for in Eq. (7), introduction of δ can also be interpreted as

1For the detailed form of interaction information, please refer to Brown (2009).
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compensation for discarding ∆ I≥3. Detailed information of the existing relevance-redundancy criteria that

belong to this linear span (corresponding to all possible parameter combinations) are given in Tab. 1. Note

that although these criteria aim to obtain approximate solutions, many of them are complete heuristics in

that they cannot guarantee theoretical bound(s) of the meta correlations. We use the following theorem to

formally illustrate this:

Theorem 1. There always exist random variables X,Y, Z(X ̸= Y,X ̸= Z, Y ̸= Z) and X ′, Y ′, Z ′(X ′ ̸=

Y ′, X ′ ̸= Z ′, Y ′ ̸= Z ′) that satisfy the following relationships:

(i) I(X;Z) + I(Y ;Z) ≥ I(X,Y ;Z)

(ii) I(X ′;Z ′) + I(Y ′;Z ′) < I(X ′, Y ′;Z ′)

Proof of Theorem 1 is straightforward in terms of Eq. (2) and the fact that I(X;Y |Z) ≥ I(X;Y ) and

I(X;Y |Z) < I(X;Y ) may both hold true under different conditions (see Appendix A in Brown (2009)).

Therefore, there is no unequal relationship between α
∑

F∈Sk−1
I(Fi;F ) and I(Sk−1;F ) and that between

β
∑

F∈Sk−1
I(Fi;F |C) and I(Sk−1;F |C) if α and β are predefined constant values. Those criteria may some-

times cause unexpected effects, for example, FOU (and MIFS) apply the (weighted) summation of pairwise

MI as the approximations of the meta correlations, thus allowing redundancy and complementarity to swamp

relevance when the size of selected feature set S grows. Other criteria like JMI (Yang and Moody, 1999),

the second order approximation (SOA) (Guo and Nixon, 2009) and mRMR (Peng et al., 2005) (partially)

guarantee loose lower bounds of the meta correlations, because they all employ the average pairwise form

(i.e., 1/|S|
∑

F∈S I(Fi;F ) and 1/|S|
∑

F∈S I(Fi;F |C)) (which will be explained in the next section). This

can be seen as the theoretical support to the observations in the literature that JMI and mRMR (especially

JMI) often perform most effectively and can achieve best overall trade-off for accuracy/stability among the

state-of-the-arts (Brown et al., 2012; Zhang et al., 2019). It inspired us to search for other potential tighter

lower (or upper) bounds of the meta correlations.

However, known in the literature, the average pairwise form seems to be the only one bound within

the linear span (Eq. (7)). A natural direction is to extend the linear span to the nonlinear one and find

more possible bounds within it. Intuitively, the criteria with maximization or minimization operators, such

as CMIM (Fleuret, 2004) and the joint mutual information maximization (JMIM, Bennasar et al., 2015),

seem to be the typical points within the nonlinear span. In the next section, we will indicate that the

maximization operator can guarantee tighter lower bounds than the average operator, and will then propose

an effective information theoretic feature selection method based on such lower bounds.
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Table 1: Some representative information theoretic feature selection criteria and their corresponding parameter vectors.

Criterion J(F ) δ Bounds Source

MIM I(F ;C) (1, 0, 0) No Lewis (1992)

mRMR I(F ;C)−
1

|S|
∑
F ′∈S

I(F ;F ′)

(
1,

1

|S|
, 0

)
Partial Peng et al. (2005)

MIFS I(F ;C)− β
∑
F ′∈S

I(F ;F ′), β ∈ (0, 1] (1, β, 0) No Battiti (1994)

JMI

(SOA)

∑
F ′∈S

I(F, F ′;C)

(
1,

1

|S|
,
1

|S|

)
Yes

Yang and Moody (1999)

Guo and Nixon (2009)

FOU I(F ;C)−
∑
F ′∈S

I(F ;F ′) +
∑
F ′∈S

I(F ;F ′|C) (1, 1, 1) No
Meyer et al. (2008)

Brown et al. (2012)

MRI †
∑
F ′∈S

[
I(F ;C|F ′) + I(F ′;C|F )

] (
1,

2

1 + |S|
,

2

1 + |S|

)
No Wang et al. (2017)

† Intermediate steps for the re-written form of MRI are given in Appendix A.1.

4. Feature selection with lower bounds of feature inner correlations

4.1. Lower bounds of inner correlations of features

Before introducing the lower bounds, we first show the monotonicity of MI with respect to the scale of

the feature set in Property 1.

Property 1. Given a feature set S and a feature F (F /∈ S), for ∀S̃ ⊆ S, the following relationship holds:

I(F ; S̃) ≤ I(F ;S).

Property 1 can be easily proved by applying the chain rule of MI. It shows that the MI between a feature

and a feature set will increase when the size of the set increases. We can hereby deduce that the criteria of

some well-performed methods, e.g., mRMR, contain the lower bound of redundancy, and others, e.g., JMI

and SOA, contain the lower bounds of redundancy and complementarity. We show this in Proposition 1.

Proposition 1. Let F be the full set of features of dataset D, S ⊆ F, and C be the set of class labels of

D. Denote the meta correlations I(F ;S) as OPTR and I(F ;S|C) as OPTC . Then, for ∀F ∈ F \ S, the

following relationships hold:

(i)
1

|S|
∑
FS∈S

I(F ;FS) ≤ OPTR,

(ii)
1

|S|
∑
FS∈S

I(F ;FS|C) ≤ OPTC .

Proposition 1 is straightforward given Property 1. Proposition 1 indicates that all the criteria that include

1
|S|
∑

FS∈S I(F ;FS) ( 1
|S|
∑

FS∈S I(F ;FS|C)) can guarantee the lower bound(s) of redundancy (complemen-

tarity). Recall that some of the criteria, such as MIFS, FOU, and MRI, cannot guarantee any bounds of
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redundancy or complementarity because there is no relationship between their pairwise approximate terms

and the corresponding meta correlations.

In addition, the following question still remains: are there any closer bounds of redundancy and comple-

mentarity? We find better lower bounds with surprisingly simple forms from the nonlinear span that can be

obtained even faster than the average pairwise forms shown in Proposition 1. We show them in Proposition

2.

Proposition 2. Let F be the feature set of dataset D, S ⊆ F, and C be the set of class labels of D. Denote

the meta correlations I(F ;S) as OPTR and I(F ;S|C) as OPTC . Then, for ∀F ∈ F \ S, the following

relationships hold:

(i)
1

|S|
∑
FS∈S

I(F ;FS) ≤ max
FS∈S

I(F ;FS) ≤ OPTR,

(ii)
1

|S|
∑
FS∈S

I(F ;FS|C) ≤ max
FS∈S

I(F ;FS|C) ≤ OPTC .

Proposition 2 indicates that, the maximal pairwise forms are also the lower bounds of the meta corre-

lations (hereafter max-bounds). More importantly, they are closer to OPTR and OPTC than the average

pairwise forms (hereafter avg-bounds), respectively. Given the current selected feature set S, the proposed

feature evaluation criterion called the lower bounds of redundancy and complementarity (LBRC) can be

presented as

JLBRC(F ) = I(F ;C)− max
FS∈S

I(F ;FS) + max
FS∈S

I(F ;FS|C) (8)

The proposed lower bounds aim at reducing the gaps between the global redundancy/complementarity (i.e.,

the meta correlations) and their pairwise approximations, respectively. When F ′ = argmax JLBRC(F ) is

added into S, it is expected that max I(S;C) (equivalent to max I(F ;C|S \ {F}) in terms of the chain rule

of MI) can be obtained. With Eq. (6), the gap between the global redundancy and complementarity and

the corresponding pairwise approximations, i.e., ∆I≥3 , can be derived as

∆I≥3 =

(
I(F ;S)−

∑
FS∈S

I(FS;F )

)
︸ ︷︷ ︸

redundancy gap

+

(∑
FS∈S

I(FS;F |C)− I(F ;S|C)

)
.︸ ︷︷ ︸

complementarity gap

(9)

From this perspective, using the proposed max-bounds will get a smaller redundancy gap and a smaller com-

plementarity gap than the avg-bounds, and thus can not only be expected to achieve a small ∆I≥3, but also

guarantee more accurate results where some of the meta-correlations play an important role, e.g., V-structure

identification in causal structure discovery (Judea, 2000; Ling et al., 2020) where the complementarity term

I(F ;S|C) may serve as the critical criterion.
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4.2. Correlations with JMIM and CMIM

Recall that two successful criteria, namely, JMIM and CMIM, apply minimization operator as nonlinear

combinations of pairwise MI terms. The original forms of JMIM and CMIM are

JJMIM (F ) = min
FS∈S

I(F, FS;C)

JCMIM (F ) = min
FS∈S

I(F ;C|FS) (10)

Both can be seen as the approximations of I(F,S;C) and I(F ;C|S), respectively, from a pessimistic per-

spective. Brown et al. (2012) show that CMIM can be expanded to

JCMIM (F ) = I(F ;C) + min
FS∈S

[−I(F, FS) + I(F, FS|C)] (11)

Similarly, the expansion of JMIM is given as (see Appendix A.2)

JJMIM (F ) = I(F ;C) + min
FS∈S

[I(FS;C)− I(F, FS) + I(F, FS|C)] (12)

Although both expansions above contain the pairwise approximation terms of the meta correlations, they

measure redundancy and complementarity in aggregate rather than individually. As a result, they do slightly

obscure the strong link to our framework. In addition, both the original and the expanded versions of JMIM

and CMIM seem unable to guarantee any theoretical bounds of either the meta correlations or their original

goal functions. We find that the only difference in the expanded versions of JMIM and CMIM is that JMIM

contains an additional term I(FS;C). In this regard, JMIM is more robust than CMIM, as it not only

considers the redundancy-complementarity term (i.e., the term −I(F, FS) + I(F, FS|C) that CMIM focuses

on), but also uses I(FS;C) to confirm that F ∈ S is an intrinsically “pessimistic” representative of the

currently selected feature set S. However, the strategy of JMIM is not always preferable since a small value

of I(FS;C) will enhance the likelihood of encountering a false positive FS ∈ S. In addition, it is noted that

LBRC is more suitable for distributed parallel computing than CMIM and JMIM, because each of the terms

in Eq. (8) can be conducted completely and independently. This facilitates LBRC a capable criterion for

the feature selection tasks in the context of big data.

4.3. The proposed algorithm

The proposed criterion LBRC shown in Eq. (8) is straightforward to implement. We present in this

section a fast implementation of LBRC shown in Algorithm 1.

In Algorithm 1, Rel(F ) records the MI between the candidate F and C (class-relevance), and Rmax(F )

records the maximum MI between the candidate F and FSk−1
selected in the k − 1-th step. Similarly,

Cmax(F ) records the maximum CMI between the candidate F and FSk−1
selected in the k−1-th step given C.

Algorithm 1 works due to the following principle: since the values of max I(F ;FSk−1
) and max I(F ;FSk−1

|C)

for each candidate feature F ∈ F \ S are known at the end of the k-th step, we only need to make a

11



Algorithm 1 A fast implementation of LBRC
1: Input: D /*dataset*/, F /*feature set*/, C /*class*/, δ /*expected # features to be selected*/

2: Output: S /*selected feature subset*/

3: Initialize: S ← ∅, Rel(F ) ← 0 for all F ∈ F, Fnew ← ∅, Rmax(F ) ← 0 for all F ∈ F, Cmax(F ) ← 0 for all F ∈ F,

Score(F )← 0 for all F ∈ F, max Score← 0, k ← 0

4: for all F ∈ F do

5: Rel(F )← I(F ;C)

6: if max Score < Rel(F ) then

7: max Score← Rel(F ), Fnew ← F

8: end if

9: end for

10: S← S ∪ {Fnew}, F← F \ {Fnew}, k ← k + 1

11: repeat

12: max Score← 0

13: for all F ∈ F do

14: if Rmax(F ) < I(F ;Fnew) then

15: Rmax(F )← I(F ;Fnew)

16: end if

17: if Cmax(F ) < I(F ;Fnew|C) then

18: Cmax(F )← I(F ;Fnew|C)

19: end if

20: Score(F )← Rel(F )−Rmax(F ) + Cmax(F )

21: if max Score < Score(F ) then

22: max Score← Score(F ), Fnew ← F

23: end if

24: end for

25: S← S ∪ {Fnew}, F← F− {Fnew}, k ← k + 1

26: until k ≥ δ

27: return S

comparison between max I(F ;FSk−1
) and the MI value associated with the newly-added feature Fk, i.e.,

I(F ;Fk) (and that between max I(F ;FSk−1
|C) and I(F ;Fk|C)), and then choose the greater one as the

value of max I(F ;FSk
) (and max I(F ;FSk

|C)), for each candidate feature F ∈ F \S. This can be formed as

Rk
max(F ) = max

[
Rk−1

max(F ), I(F ;Fk)
]

and

Ck
max(F ) = max

[
Ck−1

max(F ), I(F ;Fk|C)
]

which correspond exactly to lines 14-16 and 17-19 in Algorithm 1. Based on this, the worst-case iteration

complexity of Algorithm 1 is only O(δ · |F|), which is very efficient and competent in the context of big data.

One key problem that remains here as well as in a series of existing feature selection works is to determine

the number of the selected features δ. For most of the existing feature ranking methods, δ serves as a

12



hyperparameter and should be predefined for any specific learning tasks. However, the optimal number

of selected features is often unknown. A larger δ will increase the likelihood of including redundant and

irrelevant features, whereas a smaller δ may leave out relevant and complementary features. An acceptable

approach is to grid search the number of selected features and select the number that corresponds to the

best classification result, but the whole process has low efficiency and is sensitive to the specific classifier.

How to optimally determine δ for a filter remains an open problem (Li et al., 2017).

5. Experimental study

5.1. Methods and datasets

In this section, we will empirically evaluate the performance of the proposed method. The most rep-

resentative and well-performing feature selection methods using avg-bounds, namely, mRMR and JMI, are

selected as the benchmark methods. Besides, the typical methods pointed within the linear span shown in

Eq. (7), namely, MIM and FOU, the representative and relative methods JMIM, CMIM, and one classical

instance-based method called ReliefF (Robnik-Sikonja and Kononenko, 2003), are used for comparison with

the proposed method. Weka (Waikato Environment for Knowledge Analysis) (Witten and Frank, 2000) is

chosen as the experimental platform. Since MIM and ReliefF have already been integrated into Weka, we

directly call them in the data preprocessing panel to select features and generate the corresponding datasets.

FOU, mRMR, JMI, and the proposed LBRC are implemented in Java with Weka interfaces. In our experi-

ments, 5 neighbors and 30 instances are chosen for ReliefF, as suggested by Robnik-Sikonja and Kononenko

(2003). All the experiments are conducted on a personal computer with a 2.60 GHz CPU, 8 GB of RAM

and Windows 7.

To validate the performance of the proposed method, a total of twenty two public datasets with a

wide range of dimensionalities are used in the experiments. We first conduct the comparison on eight UCI

datasets. Then, two groups of well-known datasets, i.e., eight image datasets and six microarray datasets,

are used to extend the experiments. Detailed information of these datasets is presented in Tab. 2. For

the continuous and mixed datasets, a frequently used discretization method based on minimum description

length (MDL) (Fayyad and Irani, 1993) is employed to discretize continuous features before feature selection.

5.2. Experimental procedure

In the experiments, four of the most frequently used classifiers, namely, C4.5 decision tree (Quinlan, 1993),

k-nearest neighbor (kNN) (Aha and Kibler, 1991), näıve Bayes classifier (NBC) (Witten and Frank, 2000),

and support vector machine (SVM) (Cristianini and Shawe-Taylor, 2000), are used to generate classification

results over the datasets preprocessed by different feature selection methods. Following He et al. (2011) and
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Table 2: Description of the selected datasets in our experiments.

Category # Name # samples # features Type # classes CV

UCI

1 dermatology 366 34 mixed 6 10-fold

2 spambase 4601 57 mixed 2 10-fold

3 splice 3190 60 mixed 3 10-fold

4 synthetic 600 60 mixed 6 10-fold

5 optdigits 5620 63 nominal 10 10-fold

6 isolet5 1559 617 mixed 26 10-fold

7 gisette 6000 5000 mixed 2 10-fold

8 nci9 s3 60 9712 nominal 9 Leave-One-Out

Image

9 mfeat-factors 2000 216 nominal 10 10-fold

10 mfeat-karhunen 2000 64 numeric 10 10-fold

11 mfeat-pixel 2000 240 nominal 10 10-fold

12 mfeat-zernike 2000 47 mixed 10 10-fold

13 PIE10P 210 2420 nominal 10 Leave-One-Out

14 AR10P 130 2400 nominal 10 Leave-One-Out

15 PIX10P 100 10000 nominal 10 Leave-One-Out

16 ORL10P 100 10304 nominal 10 Leave-One-Out

Microarray

17 SRBCT 83 2308 mixed 4 Leave-One-Out

18 14 Tumors 308 15009 mixed 26 Leave-One-Out

19 lung cancer – Michigan 96 7129 mixed 2 Leave-One-Out

20 ovarian PBSII 253 15154 mixed 2 Leave-One-Out

21 colon tumor 62 2000 numeric 2 Leave-One-Out

22 lymphoma 66 4026 mixed 3 Leave-One-Out

Kundu and Mitra (2017), we set k = 1 for kNN and apply the radial basis function (RBF) kernel for SVM,

which are also default parameter settings for kNN and SVM in Weka.

First, we show the classification error rate of the four classifiers on the datasets represented with the top δ

selected features for each feature selection method, where δ is the desired number of selected features specified

as δ = [1, 2, ...t]. The maximal acceptable size t is set to be min{60, |F|} for the datasets containing less than

100 features, and it is set to min{200, |F|} for the datasets containing more than 100 features. To obtain

stable results, Cross-Validation (CV) is applied as a trade-off between stability and efficiency. Specifically,

we apply 10-fold CV for all UCI datasets except nci9 s3 and some of image datasets (“mfeat” series), and

apply Leave-One-Out CV for nci9 s3 and the rest of image datasets including PIE10P, AR10P, PIX10P,

and ORL10P, and all microarray datasets to prevent data fragmentation. Given the aim of examining in

detail the effectiveness of the proposed max-bounds in detail, we choose mRMR and JMI which apply avg-

bounds as the comparison methods, and MIM and FOU (which are bound-free but belong to the linear

span as mentioned before) and ReliefF (which is a typical instance-based feature selection method) as the

benchmarks. For a clearer presentation, we do not include the results of JMIM and CMIM in this segment.
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Note that the nature of the learning process of each classifier is different. Since we are interested in the

quality of selected features rather than the performance of any specific classifiers, the average results of

the four classifiers w.r.t. the number of selected features are reported to evaluate the overall quality of the

selected features.

To ensure the robustness of the our evaluation, following Herman et al. (2013) and Wang et al. (2015),

we perform additional experiments by statistically comparing the classification results corresponding to

LBRC and any other method (i.e., mRMR, JMI, MIM, FOU, CMIM, JMIM) except ReliefF 2 with the

same number of the selected features. For the datasets with less than 200 features, the top 10, 20, and 30

features are applied to obtain the classification results; and for the datasets with more than 200 (inclusive)

features, the top 60, 80, and 100 features are applied 3. In this segment, CV is repeated five times with

different random seeds to generate sufficient classification error samples for the statistical test. As suggested

by Demšar (2006), the Wilcoxon rank-sum test with a significance level of 0.05 is applied to determine the

statistical significance of the differences between the results of LBRC and any other selected method.

5.3. Results and discussion

Figs. 1–3 show the average error rates of the four classifiers (C4.5, kNN, NBC, and SVM) w.r.t. the

number of selected features on the selected datasets, where the number of the selected features is depicted

on the X axis and the average classification error rate is presented on the Y axis. The results shown in

Figs. 1–3 illustrate the comparableness and the effectiveness of LBRC on the whole. Specifically, LBRC

significantly outperforms MIM, ReliefF, mRMR, DISR, FOU, and JMI in the majority of cases, particularly

on the UCI datasets like dermatology (Fig. 1(a)), synthetic control (Fig. 1(c)), isolet5 (Fig. 1(f)), and

gisette (Fig. 1(g)), the image datasets like mfeat-zernike (Fig. 2(d)), PIE10P (Fig. 2(e)), and AR10P (Fig.

2(f)), and the microarray datasets like ovarian PBSII (Fig. 3(d)), colon tumor (Fig. 3(e)), 14 tumors (Fig.

3(b)), and SRBCT (Fig. 3(a)).

Tabs. 3–5 summarize the results of kNN4 on the selected UCI, image, and microarray datasets with the

top 10, 20, and 30 (some are 60, 80, and 100) selected features, respectively.

For each dataset, the Wilcoxon rank-sum test is conducted to evaluate the statistical significance of

the difference between two sequences of the samples of classification results, i.e., the sequence of the result

2ReliefF does not belong to the linear span shown in Eq. (7) and performs significantly inferiorly than other selected methods

(see Figs. 1–3) and thus is omitted in statistical tests.
3We note here that in contrast, some of related studies, e.g., Blum and Langley (1997) and Song et al. (2013), choose to

report the highest classification accuracy as well the corresponding number of selected features. This is appropriate for feature

subset selection methods, i.e., the methods that can determine the selected feature subset with a certain number of features,

but is unfair for feature ranking methods which aim to rank features rather than generate an optimal feature subset.
4The statistical results of C4.5, NBC, and SVM are similar to those of kNN and thus are omitted in this paper.
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Table 3: Results of the classification error rate for kNN and the Wilcoxon test on UCI datasets with the top 10, 20, and 30

(some are 60, 80, and 100) selected features.

#

dat.

#

fea.

LBRC MIM mRMR JMI FOU CMIM JMIM

Err Err p-val Err p-val Err p-val Err p-val Err p-val Err p-val

kNN

1

10 4.16 23.09 0.000◦ 15.53 0.000◦ 15.53 0.000◦ 14.82 0.000◦ 5.86 0.006◦ 5.95 0.002◦

20 4.98 5.41 0.513 2.62 0.003• 5.41 0.513 7.34 0.004◦ 4.98 1.000 5.63 0.282

30 4.43 4.16 0.812 4.16 0.812 3.95 0.384 4.98 0.391 4.76 0.630 3.29 0.191

2

10 7.71 8.30 0.040◦ 7.79 0.704 8.06 0.151 10.16 0.000◦ 7.71 1.000 8.09 0.192

20 6.66 7.83 0.000◦ 7.24 0.020◦ 7.47 0.000◦ 9.46 0.000◦ 7.18 0.037◦ 7.94 0.000◦

30 6.40 7.69 0.000◦ 6.56 0.631 7.31 0.000◦ 8.95 0.000◦ 6.98 0.050◦ 6.93 0.029◦

3

10 13.19 12.90 0.447 13.19 1.000 12.90 0.447 14.23 0.017◦ 12.90 0.447 12.51 0.055

20 18.04 18.04 1.000 17.32 0.073 18.04 1.000 20.52 0.000◦ 17.32 0.073 18.04 1.000

30 20.49 22.28 0.000◦ 21.93 0.001◦ 22.28 0.000◦ 23.42 0.000◦ 21.72 0.001◦ 22.28 0.000◦

4

10 5.07 22.97 0.000◦ 15.17 0.000◦ 14.67 0.000◦ 9.83 0.000◦ 5.96 0.255 17.63 0.000◦

20 3.20 18.10 0.000◦ 11.70 0.000◦ 11.60 0.000◦ 8.23 0.000◦ 4.09 0.047 13.77 0.000◦

30 1.27 10.63 0.000◦ 8.53 0.000◦ 5.63 0.000◦ 8.80 0.000◦ 3.12 0.000◦ 8.50 0.000◦

5

10 13.57 16.17 0.000◦ 14.81 0.000◦ 15.00 0.000◦ 16.13 0.000◦ 14.28 0.010◦ 14.69 0.000◦

20 8.38 9.58 0.000◦ 8.75 0.098 9.56 0.000◦ 10.40 0.000◦ 8.25 0.621 8.40 0.764

30 6.20 6.91 0.001◦ 6.56 0.064 6.56 0.064 7.59 0.000◦ 6.62 0.045◦ 6.02 0.451

6

60 26.80 35.84 0.000◦ 28.58 0.008◦ 31.62 0.000◦ 28.42 0.014◦ 26.12 0.061 33.01 0.000◦

80 22.47 31.30 0.000◦ 25.12 0.000◦ 27.22 0.000◦ 26.93 0.000◦ 22.82 0.683 29.61 0.000◦

100 21.53 27.70 0.000◦ 21.55 0.959 22.33 0.198 26.03 0.000◦ 21.92 0.701 25.73 0.000◦

7

60 5.62 7.71 0.000◦ 5.99 0.030◦ 6.47 0.000◦ 7.31 0.000◦ 6.09 0.047◦ 7.47 0.000◦

80 5.02 7.12 0.000◦ 5.51 0.007◦ 6.26 0.000◦ 7.19 0.000◦ 5.69 0.000◦ 6.46 0.000◦

100 5.17 6.12 0.000◦ 5.04 0.516 5.50 0.051 6.98 0.000◦ 5.42 0.223 5.94 0.000◦

8

60 8.33 20.00 0.000◦ 15.00 0.000◦ 16.67 0.000◦ 43.33 0.000◦ 15.00 0.000◦ 11.67 0.002◦

80 8.33 23.33 0.000◦ 13.33 0.000◦ 16.67 0.000◦ 45.00 0.000◦ 11.67 0.002◦ 8.33 1.000

100 11.67 23.33 0.000◦ 15.00 0.008◦ 13.33 0.031◦ 46.67 0.000◦ 16.67 0.000◦ 11.67 1.000

Avg. 9.95 15.69 12.37 12.92 17.20 10.96 12.48

L/W/T 20/0/4 14/1/9 16/0/8 23/0/1 12/0/12 14/0/9

◦ statistical degradation at significance level of 0.05.

• statistical improvement at significance level of 0.05.
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Table 4: Results of the classification error rate for kNN and the Wilcoxon test on image datasets with the top 10, 20, and 30

(some are 60, 80, and 100) selected features.

#

dat.

#

fea.

LBRC MIM mRMR JMI FOU CMIM JMIM

Err Err p-val Err p-val Err p-val Err p-val Err p-val Err p-val

kNN

9

60 5.83 9.40 0.000◦ 6.24 0.063 7.23 0.000◦ 5.98 0.525 4.98 0.010• 5.92 0.510

80 5.73 6.52 0.008◦ 5.10 0.039• 5.80 0.662 5.63 0.612 4.67 0.001• 6.03 0.311

100 5.14 5.73 0.052 4.92 0.598 6.13 0.002◦ 4.72 0.225 4.29 0.005• 5.11 0.961

10

10 13.41 13.37 0.792 13.37 0.792 13.37 0.792 13.71 0.493 13.41 1.000 13.37 0.792

20 8.94 9.22 0.323 8.88 0.989 9.11 0.624 8.34 0.087 9.32 0.208 8.88 0.989

30 7.86 8.06 0.484 8.06 0.484 7.91 0.747 8.46 0.123 8.02 0.371 8.18 0.224

11

60 6.49 44.14 0.000◦ 20.68 0.000◦ 26.01 0.000◦ 26.34 0.000◦ 7.39 0.004◦ 7.74 0.000◦

80 5.39 35.97 0.000◦ 14.26 0.000◦ 18.81 0.000◦ 22.47 0.000◦ 5.17 0.555 6.88 0.000◦

100 5.55 27.86 0.000◦ 13.12 0.000◦ 15.26 0.000◦ 23.47 0.000◦ 5.03 0.115 5.70 0.739

12

10 36.22 43.19 0.000◦ 38.58 0.000◦ 37.89 0.001◦ 36.79 0.163 36.22 1.000 36.78 0.233

20 29.38 36.37 0.000◦ 31.00 0.003◦ 35.08 0.000◦ 35.25 0.000◦ 28.67 0.121 32.03 0.000◦

30 26.49 30.75 0.000◦ 29.82 0.000◦ 30.23 0.000◦ 31.78 0.000◦ 27.09 0.225 29.36 0.000◦

13

60 0.48 3.81 0.000◦ 2.38 0.000◦ 1.90 0.003◦ 0.00 0.025• 0.48 1.000 2.38 0.000◦

80 0.48 2.38 0.000◦ 1.43 0.025◦ 1.90 0.003◦ 0.00 0.025• 0.48 1.000 1.43 0.025◦

100 0.00 1.90 0.000◦ 1.43 0.000◦ 1.90 0.000◦ 0.48 0.025◦ 0.48 0.025◦ 0.95 0.002◦

14

60 3.08 9.23 0.000◦ 4.62 0.149 6.92 0.001◦ 9.23 0.000◦ 4.62 0.149 7.69 0.000◦

80 2.31 7.69 0.000◦ 4.62 0.023◦ 6.92 0.000◦ 8.46 0.000◦ 3.85 0.108 6.15 0.001◦

100 2.31 5.38 0.004◦ 3.08 0.392 4.62 0.023◦ 7.69 0.000◦ 3.08 0.392 6.15 0.001◦

15

60 0.00 0.00 1.000 3.00 0.000◦ 1.00 0.025◦ 7.00 0.000◦ 0.00 1.000 0.00 1.000

80 1.00 3.00 0.024◦ 0.00 0.025• 0.00 0.025• 6.00 0.000◦ 1.00 1.000 0.00 0.025•

100 1.00 3.00 0.024◦ 0.00 0.025• 0.00 0.025• 5.00 0.000◦ 1.00 1.000 0.00 0.025•

16

60 0.00 4.00 0.000◦ 0.00 1.000 0.00 1.000 4.00 0.000◦ 0.00 1.000 0.00 1.000

80 0.00 3.00 0.000◦ 0.00 1.000 0.00 1.000 6.00 0.000◦ 0.00 1.000 0.00 1.000

100 0.00 0.00 1.000 0.00 1.000 0.00 1.000 3.00 0.000◦ 0.00 1.000 0.00 1.000

Avg. 6.96 13.08 8.94 9.91 11.66 7.05 7.95

L/W/T 20/0/4 9/5/10 14/4/6 16/0/8 13/4/7 13/0/11

◦ statistical degradation at significance level of 0.05.

• statistical improvement at significance level of 0.05.
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Table 5: Results of the classification error rate for kNN and the Wilcoxon test on microarray datasets with the top 60, 80, and

100 selected features.

#

dat.

#

fea.

LBRC MIM mRMR JMI FOU CMIM JMIM

Err Err p-val Err p-val Err p-val Err p-val Err p-val Err p-val

kNN

17

60 0.00 0.00 1.000 0.00 1.000 0.00 1.000 0.00 1.000 0.00 1.000 0.00 1.000

2 0.00 0.00 1.000 0.00 1.000 0.00 1.000 1.20 0.025◦ 0.00 1.000 0.00 1.000

3 0.00 0.00 1.000 0.00 1.000 0.00 1.000 0.00 1.000 0.00 1.000 0.00 1.000

18

60 32.79 41.88 0.000◦ 37.99 0.003◦ 38.96 0.000◦ 30.52 0.175 30.84 0.246 39.29 0.000◦

80 27.60 38.64 0.000◦ 37.34 0.000◦ 40.91 0.000◦ 31.17 0.030◦ 23.05 0.004• 38.31 0.000◦

100 24.03 42.21 0.000◦ 32.79 0.000◦ 36.69 0.000◦ 31.49 0.000◦ 24.35 0.833 32.79 0.000◦

19

60 0.00 0.00 1.000 0.00 1.000 0.00 1.000 0.00 1.000 1.04 0.025◦ 0.00 1.000

80 0.00 0.00 1.000 0.00 1.000 0.00 1.000 0.00 1.000 1.04 0.025◦ 0.00 1.000

100 0.00 0.00 1.000 0.00 1.000 0.00 1.000 0.00 1.000 0.00 1.000 0.00 1.000

20

60 0.00 0.00 1.000 0.40 0.025◦ 0.00 1.000 0.40 0.025◦ 0.00 1.000 0.00 1.000

80 0.00 0.40 0.025◦ 0.40 0.025◦ 0.40 0.025◦ 0.79 0.002◦ 0.00 1.000 0.00 1.000

100 0.40 0.79 0.196 0.40 1.000 0.79 0.196 0.79 0.196 0.00 0.025• 0.40 1.000

21

60 12.90 16.13 0.255 12.90 1.000 11.29 0.539 12.90 1.000 11.29 0.539 12.90 1.000

80 16.13 11.29 0.080 12.90 0.255 14.52 0.578 14.52 0.578 12.90 0.255 11.29 0.080

100 14.52 12.90 0.560 12.90 0.560 14.52 1.000 14.52 1.000 16.13 0.578 12.90 0.560

22

60 0.00 1.52 0.025◦ 0.00 1.000 0.00 1.000 9.09 0.000◦ 1.52 0.025◦ 0.00 1.000

80 0.00 0.00 1.000 0.00 1.000 0.00 1.000 9.09 0.000◦ 1.52 0.025◦ 1.52 0.025◦

100 0.00 0.00 1.000 0.00 1.000 0.00 1.000 6.06 0.000◦ 1.52 0.025◦ 0.00 1.000

Avg. 6.86 9.13 8.17 8.65 9.07 7.70 12.86

L/W/T 6/0/12 5/0/13 4/0/14 8/0/10 5/1/12 7/0/11

◦ statistical degradation at significance level of 0.05.

• statistical improvement at significance level of 0.05.
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samples corresponding to LBRC and that corresponding to any other feature selection method. In Tabs. 3–

5, # dat. records the number of datasets, and # fea. shows the number of selected features. Err records the

average classification error rate. p-val records the p-value associated with the Wilcoxon rank-sum test. The

notation •/◦ is used to show that the average error rate corresponding to the current feature selection method

is significantly lower/higher than that corresponding to the proposed method listed in the LBRC column.

The bold value in each row indicates the best result among seven feature selection methods. The average error

rates of all used datasets and the loss/win/tie (which records the times of significant degradation/significant

improvement/no significant difference compared with the proposed method) are given in the last two rows,

respectively. In can be concluded from the tables that LBRC performs significantly best in most of cases.

The results of loss/win/tie consistently imply the superiority of LBRC.

On the basis of the experimental results, we arrive at the following observations:

(i) Necessity of the meta correlations: The inferior performance of MIM and ReliefF illustrates that

neglecting redundancy and complementarity explicitly may lead to severely low quality of the selected

features that may contain a considerable amount of redundancy.

(ii) Necessity of the dynamic weights for the meta correlations: FOU usually performs comparably at the

very beginning, but relatively inferiorly to LBRC, mRMR, JMI, CMIM, and JMIM when the number

of the selected features grows. This is possibly because the weighted vector of FOU, i.e., δ = (1, 1, 1)

which corresponds to cumulative approximations of the meta correlations, gives rise to the situation

where the class-relevance term is overwhelmed by the redundancy and the complementarity terms (i.e.,

overemphasis of redundancy and complementarity). We also notice an intersection point of the results

of FOU and MIM in some cases (e.g., results on mfeat-zernike, ovarian PBSII, lymphoma, and colon

tumor). This demonstrates the necessity of dynamically trading-off the approximations of the meta

correlations, while implying an attractive potential in finding a dynamic balance empirically between

the class-relevance and the feature inner correlations.

(iii) Advantages of the bounded approximations of the meta correlations: LBRC, mRMR, and JMI outper-

form MIM and FOU in general, indicating the effectiveness of the bounded approximations of the meta

correlations. Features that satisfy the lower-bounded evaluation (both for the max-bounds and the

avg-bounds) are expected to be more reliable than those obtained by complete heuristics.

(iv) Limitations of the avg-bounds: Experimental results indicate that there is no significant gap between

the performance of mRMR and JMI, suggesting that the avg-bound of the complementarity has no

significant impact on the quality of the selected features. This is probably because the gap between

the complementarity and its avg-bound may interfere the results in some cases, which makes us believe

that the avg-bound is not always a qualified lower bound.

(v) Advantages of the proposed max-bounds: It is evidenced that LBRC (using the max-bounds of redun-
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dancy and complementarity) significantly outperforms mRMR (using the avg-bound for redundancy

only) and JMI (using the avg-bound for redundancy and complementarity) in most cases (especially

on the datasets of isolet5, ORL10P, 14 tumors, ovarian PBSII, colon tumor, lymphoma, lung cancer –

Michigan). The key difference between LBRC and the benchmark methods (mRMR and JMI) is the

consideration of max-bounds instead of avg-bounds as the approximations of the meta correlations.

Methodologically, the max-bounds are closer to the meta correlations than the avg-bounds; Empiri-

cally, LBRC corresponds to better classification results than mRMR and JMI on the whole, indicating

that tighter bounds of the meta correlations will lead to a better quality of the selected features.

(vi) Effectiveness of separately approximating the meta correlations: Statistical results from Tabs. 3–5

show that the performance of LBRC is superior to those of JMIM and CMIM in general. This is

in consistent with the observations of Brown et al. (2012), implying that approximating the meta

correlations separately rather than comprehensively may give rise to more robust results.

6. Conclusions & future work

Redundancy and complementarity are two important dimensions of feature inner correlations and attract

considerable attention in big data analytics. Many information theoretic feature selection methods select

features with heuristics that cannot guarantee theoretical bounds of those correlations. In this paper,

we reformulate and analyze some representative information theoretic feature selection methods, including

mRMR, JMI, and FOU, from the perspective of the lower bounds of feature inner correlations. Then, we

introduce two lower bounds of the two essential dimensions of feature correlations, namely, redundancy

and complementarity, and we theoretically verify that they are better than those applied in the existing

information theoretic methods such as mRMR and JMI.

To evaluate the effectiveness of the proposed method LBRC, experiments are conducted with four pop-

ular classifiers (C4.5, NBC, kNN, and SVM) on twenty one publicly available real-world datasets. In the

experiments, six representative feature selection methods, namely, MIM, mRMR, JMI, FOU, DISR, and Re-

liefF, are used for comparison with LBRC. The classification results illustrate the superiority of LBRC. To

obtain reliable results, Wilcoxon rank-sum tests are conducted to statistically distinguish the performance of

the selected method. According to the experimental results, LBRC significantly outperforms all compared

feature selection methods on the whole, thus further verifying the superiority of the proposed lower bounds

of feature inner correlations. It is worth noting that, despite the proposed max-bounds guarantee smaller

gaps for the corresponding meta correlations than the avg-bounds, they themselves are not/do not form the

bounds of the goal function of feature selection. For that matter, the proposed feature selection criterion is

still heuristic. However, for some tasks like causal discovery that explicitly focus on individual meta correla-

tions, the proposed lower bounds appear to be of more theoretical importance. For example, Yu et al. (2020)
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utilize the pairwise avg-bound of I(C;S) as the approximation to find the invariant sets of causal features,

which seems less effective than using the max-bound. Possible future work includes using the proposed

bounds for causal structure discovery and model interpretation and integrating the lower-bounded pairwise

approximations into the discrete programming formulation. In addition, involving kernel methods for prob-

ability estimation on continuous features and finding closer bounds for k-wise (k ≥ 3) inner correlations of

features will also be considered in the future.
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Appendix A.

The following deductions make use of the information identity (Brown, 2009)

I(A;B|C)− I(A;B) = I(A;C|B)− I(A;C). (A.1)

Appendix A.1. Intermediate steps for the re-written form of MRI

The max-relevance and max-independence (MRI) criterion (Wang et al., 2017) can be written as

JMRI(Fi) = I(Fi;C) +
∑
F∈S

ICI(C;Fi, F )

= I(Fi;C) +
∑
F∈S

[I(Fi;C|F ) + I(F ;C|Fi)] (A.2)

With Eq. (A.1) we have

I(Fi;C|F ) = I(Fi;C)− I(Fi;F ) + I(Fi;F |C) (A.3)

I(F ;C|Fi) = I(F ;C)− I(Fi;F ) + I(Fi;F |C) (A.4)

Then with Eqs. (A.3) and (A.4), Eq. (A.2) can be re-written as

I(Fi;C) +
∑
F∈S

[I(Fi;C)− I(Fi;F ) + I(Fi;F |C) + I(F ;C)− I(Fi;F ) + I(Fi;F |C)] (A.5)

The term I(F ;C) is constant with respect to the Fi argument that we focused and thus can be omitted.

The criterion then reduces to

JMRI(Fi) = I(Fi;C) +
∑
F∈S

[I(Fi;C)− I(Fi;F ) + I(Fi;F |C)− I(Fi;F ) + I(Fi;F |C)]

= (|S|+ 1)I(Fi;C) + 2
∑
F∈S

[−I(Fi;F ) + I(Fi;F |C)]

∝ I(Fi;C)− 2

|S|+ 1

∑
F∈S

I(Fi;F ) +
2

|S|+ 1

∑
F∈S

I(Fi;F |C). (A.6)

Note that the meta correlations are not bounded by 2
|S|+1

∑
F∈S I(Fi;F ) and 2

|S|+1

∑
F∈S I(Fi;F |C), s-

ince 2
|S|+1

∑
F∈S I(Fi;F ) ≥ I(Fi;S) and

2
|S|+1

∑
F∈S I(Fi;F ) < I(Fi;S) (

2
|S|+1

∑
F∈S I(Fi;F |C) ≥ I(Fi;S|C)

and 2
|S|+1

∑
F∈S I(Fi;F |C) < I(Fi;S|C)) may all hold true under the different conditions.

Appendix A.2. Proof of Eq. (12)

With Eq. (2), the joint mutual information maximization (JMIM) criterion (Bennasar et al., 2015) can

be written as

JJMIM (F ) = min
FS∈S

I(F, FS;C)

= I(F ;C) + min
FS∈S

[I(FS;C)− I(F, FS) + I(F, FS|C)] (A.7)
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Figure 1: Classification error w.r.t. the number of selected features on UCI datasets. The result of ReliefF is inferior and out

of scope and thus is omitted in 1(h).
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Figure 2: Classification error w.r.t. the number of selected features on image datasets.
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Figure 3: Classification error w.r.t. the number of selected features on microarray datasets.
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