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Highlights: 

 A protocol that yields cardinal evaluations out of ordinal information. 

 Admits the presence of ties and non-comparable alternatives. 

 Permits finding endogenously different “divisions” among the alternatives. 

 Can be naturally extended to a multidimensional context 

 Applicable to many different types of problems 
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Abstract 
 
This paper presents an evaluation protocol that transforms a collection of 
rankings, defined over a set of alternatives, into a complete, transitive, and cardinal 
assessment. It combines the ideas of Borda and Condorcet by computing the 
support that each alternative receives on average when confronted with any other. 
The protocol evaluates those alternatives in terms of pairwise comparisons but 
weighs the outcomes differently depending on how each alternative fares with 
respect to the others. The evaluation appears as the stable distribution of an 
iterative process in which each alternative competes randomly with any other, and 
results in a vector of positive numbers that tells us the relative support of the 
different options. We show that this protocol does not require linear orderings and 
can also be applied in the presence of incomplete rankings and when dealing with 
several issues simultaneously.  
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1 Introduction 
 

1.1   The problem 

We consider here the problem of evaluating a series of alternatives that are 

ordered by a group of individuals (group decision making). Formally, this problem is 

similar to that faced by a single decision-maker who has to choose among a series of 

options by applying several criteria simultaneously (multi-criteria decision making). A 

committee having to evaluate a set of candidates for a position in a company is an example 

of the first type. An example of the second type is that of a firm having to decide on where 

to place a new factory depending on aspects such as the price of the land, location relative 

to the main roads, available surface, and nearby facilities. One can even think of the more 

complex case in which a group of individuals has to evaluate different alternatives 

applying several criteria simultaneously (group multi-criteria decision making).  

A general way of formalizing the overall judgment is by recurring to an evaluation 

function (EF for short), that is, a mapping that associates to the individuals' rankings a 

vector of numbers, one for each alternative, so that a higher number means a better 

alternative. An EF is thus a procedure intended to solve those decision problems described 

above, by aggregating the judgment of a group of individuals or different criteria (or both), 

into numbers that permit one value the alternatives. This is a classical family of problems 

that appears in multiple contexts, from social choice theory to applied decision making. 

Our informational inputs are the ranking of alternatives (i.e. ordinal and 

interpersonally non-comparable preferences). An EF can present different degrees of 

informational output. In particular: (A) It can merely pick up the best alternative (e.g., by 

giving value 1 to the best option and 0 to the rest). (B) It can provide a complete ranking of 

the alternatives, i.e., which one occupies the first position, which one the second, and so 

forth. (C) It may permit one to assess not only the ranking but also the "distance" between 

the different alternatives (i.e., a cardinal mapping that conveys information about how 

much better is an alternative than another). Trivially, (C) implies (B) and (B) implies (A).  

The most convenient type of EF depends on the nature of the problem we address. (A) 

might be enough in some situations, whereas (C) might be required in some others.  

We shall focus here on the most demanding case, type (C), which looks for a 

cardinal evaluation that uses ordinal information as inputs. Indeed, the purpose of this 

paper is to present a cardinal evaluation function that combines the ideas of Borda and 

Condorcet by computing the support that each alternative receives on average when 

confronted with any other in a series of tournaments. We shall refer to this rule, not very 

imaginatively, as the Borda-Condorcet rule. 
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1.2   The Borda-Condorcet rule in perspective  

 In 1770 Borda proposed a method to socially rank alternatives assigning each one 

a score based on the place they occupy on the voters’ list (Borda, 1784). In particular, each 

option or candidate was given, for each ballot, a number of points equal to the number of 

alternatives ranked below.  Facing the same question, Condorcet offered a different 

solution, focusing on the support each alternative received vis-à-vis the others (Condorcet, 

1785).  Borda cared mostly for how much support an alternative had and Condorcet for 

how many individuals preferred that alternative when confronted with any other. Despite 

those differences, both procedures share some key features. In particular, they use the 

information of the complete rankings of the individuals to make the evaluation (as 

opposed to plurality voting, say) and take as primary inputs the numbers of individuals 

that prefer one alternative to another (the so-called Condorcet numbers that can also be 

used to determine the Borda scores).  See Young 1994 for a discussion.  

The controversy between Borda and Condorcet methods goes back to the XVIII 

century in the French Royal Academy of Sciences. It has continued ever since, as each 

method gives rise to a family of sensible and appealing procedures: scoring rules and 

Condorcet-consistent rules (see Moulin, 1988).   

Our proposal here is a compromise between the Borda and the Condorcet 

procedures. It takes into account both the "distance" between the alternatives in the 

individuals' preferences and the "number of individuals" who support them. This idea is 

reminiscent of those in Morales (1798, 1805), a Spanish thinker contemporary to Borda 

and Condorcet. He proposed the ranking of alternatives to be related to the "amount of 

opinion" of the citizens in favour of each of them. By that, he meant the sum of the number 

of times an alternative beats any other. Morales defended the Borda rule, but he was 

concerned for the conditions under which this rule declared best the Condorcet winner 

when there was one.  

The evaluation procedure we propose adopts Condorcet's strategy to evaluate 

alternatives in terms of pairwise comparisons, but weighs the outcomes of those 

comparisons differently, depending on how each alternative performs relative to the 

others (a pinch of Borda count). In particular, the value of each alternative is determined 

by the relative frequency with which it beats another one when randomly matched in an 

indefinite iterative process. The evaluation of the alternatives appears as the stable 

distribution of this iterative process. It consists of a vector of positive numbers that tells 

us not only the order but also the relative value of the different alternatives.  The Borda-
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Condorcet rule is thus an evaluation function in which cardinality is generated 

endogenously, depending on the probabilities of each alternative beating some other, 

rather than through an external scoring system. Indeed, this new rule is neither Condorcet 

consistent nor a scoring rule.  

Using stable distributions as a way of evaluating the relevance of different 

alternatives is far from new. We find this type of approach in a diversity of fields, as in the 

study of centrality in networks (e.g., Freeman, 1977, Wasserman & Faust, 1994, Newmann, 

2003), the relevance of the journals in citation analysis  (Pinsky & Narin, 1976, Liebowitz 

& Palmer, 1984, Palacios-Huerta & Volij, 2004, Albarrán et al., 2018), the ranking of teams 

in competitions (Keener, 1993, Slutzski & Volij, 2006, Anderson et al., 2009), or the 

measurement of population health and happiness (Pifarré & Dudel, 2019, Herrero & Villar, 

2020, Ravin-Ripoll et al., 2020). See also Chebotarev & Shamis (1998), Saaty (2003), and 

Herrero & Villar (2018).   

The procedure we propose goes back to Daniels (1969) and Moon & Pullman 

(1970), regarding the ranking of teams in round-robin tournaments, who refer to this type 

of process as the fair-bets protocol. Laslier (1997) provides an interpretation of the fair-

bets protocol through the so-called ping-pong procedure, quite similar to ours. Slutsky & 

Volij (2006) go a step further and provide two axiomatic characterizations of that 

protocol, within the tournaments setting. 

Previous contributions refer to the case where individual rankings are complete, 

linear (there are no ties), there is a single issue under consideration, and there are no 

alternatives fully dominated by others.   

The BC rule proposed here is an evaluation protocol that shares the essence of 

those procedures but differs in some relevant respects. In particular: 

(i) The BC rule allows for the presence of ties and incomplete preferences. Both 

aspects are important and singularize this evaluation protocol. The ability to 

cope with incomplete rankings, in particular, makes this evaluation function 

very general and attractive.  

(ii) The BC rule can identify the presence of subsystems and allows evaluating 

them separately. Subsystems appear when alternatives can be gathered into 

different divisions or leagues. This happens when all individuals rank a subset 

of alternatives below any other. 

(iii) The BC rule can be naturally extended to evaluation problems involving 

several issues simultaneously (group multi-criteria evaluations).   

(iv) The BC rule is derived from the primitives of the model (individual rankings). 

It yields an intuitive evaluation function that involves both the Borda scores 
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and the Condorcet numbers, making explicit how this rule combines the 

evaluation protocols of both thinkers.  

 

Consider the following example that illustrates the relevance of some of those features. 

A new Art Gallery is deciding on how to allocate the available exhibition space between a 

certain number of promising young artists. To make the decision, it asks a series of 

specialists, museum directors, and art collectors to rank those young artists by relevance. 

Then the Art Gallery faces the problem of transforming those rankings into numbers that 

distribute the available space as a function of the artists’ relevance. A type (C) evaluation is 

required. Note that one might reasonably expect the presence of ties and incomplete 

rankings in this context. 

 

 

2.   The BC rule: the reference model 

Let A = {1, 2, …, m} be a finite set of alternatives, with cardinal m, and N = {1, 2, …, 

n} a finite set of individuals. Here individuals can be interpreted as "judges,” decision-

makers, or evaluators (e.g., members of a committee). By twisting the meaning of the 

words, we can also think of those "individuals" as the different criteria by which a single 

decision-maker compares a collection of alternatives. 

Let us assume that, given a set of alternatives, A, each individual ℎ ∈ 𝑁 provides a 

ranking of those alternatives,  𝑅ℎ(𝐴), which is a weak ordering (a complete and transitive 

binary relation).  A profile is a collection of n of those rankings, one for each individual, 

denoted as 𝑅(𝐴) = [𝑅1(𝐴), 𝑅2(𝐴), … , 𝑅𝑛(𝐴)]. Our task is to provide an evaluation of the 

alternatives in A based on the information in 𝑅(𝐴). More precisely, we look for an 

evaluation function F such that, for each possible profile, 𝑅(𝐴), yields a vector 

𝐹[𝑅(𝐴)] ∈ ℝ+
𝑚 such that 𝐹𝑖[𝑅(𝐴)] ≥ 𝐹𝑗[𝑅(𝐴)] implies that alternative i is regarded as 

better than or equal to alternative j. 

We denote by 𝑛𝑖𝑗 the number of individuals who prefer alternative i to alternative 

j, by 𝑛𝑗𝑖 the number of individuals who prefer j to i, and by 𝑒𝑖𝑗 = 𝑒𝑗𝑖 the number of 

individuals who are indifferent between both options. By construction, 𝑛 = 𝑛𝑖𝑗 + 𝑛𝑗𝑖 + 𝑒𝑖𝑗. 

Let now:  

𝑐𝑖𝑗 = 𝑛𝑖𝑗 +
𝑒𝑖𝑗

2
 

denote the number of people who prefer i over j, including one half of those who are 

indifferent. Those 𝑐𝑖𝑗  are the Condorcet numbers, which yield the Condorcet ranking (if it 

exists), and can also be used to obtain the Borda score of each alternative (see Moulin, 
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1988). This is so because the sum over 𝑗 ≠ 𝑖 of all those 𝑐𝑖𝑗  corresponds, precisely, to the 

number of alternatives ranked below i. The Borda score of alternative i is thus given by:  

𝐵(𝑖) = ∑ 𝑐𝑖𝑗

𝑗≠𝑖

 

That is the number of individuals that prefer alternative i to any other, including 

one half of those who are indifferent. 

 

Remark: As we allow for indifferences in our setting, the notions of ranking, Condorcet 

numbers, or Borda scores are reinterpreted in this scenario.  

     

Consider now the following evaluation protocol. For a given problem (A, N) and a 

given profile 𝑅(𝐴), select a pair of alternatives arbitrarily, (𝑖, 𝑗) ∈ 𝐴, and an individual 

ℎ ∈ 𝑁 at random. If this individual prefers i to j, alternative i is declared the winner in this 

pairwise confrontation. Similarly, if j is preferred to i by the individual, the winner is j. 

When the individual is indifferent between both alternatives, we toss a coin, and each 

alternative is declared the winner with equal probability. Both the individual and the 

unchosen alternative go back to the pull before a new round starts (extraction with 

replacement). A new alternative is chosen to compete with the previous winner, according 

to the preferences of a new individual, also randomly selected, and the same protocol is 

implemented. Then, by running this process infinitely many times, we can evaluate each 

alternative by the fraction of times that it keeps the floor as the winning option in the long 

run.  

It is immediate to see that the probability that alternative i beats alternative j in a 

given confrontation, conditional on j keeping the floor in the former one, is given by: 

1

𝑚(𝑛 − 1)
𝑐𝑖𝑗  

That is, the Condorcet number (that measures how many times i beats j) times the 

probability that i be randomly chosen. Similarly, the probability that alternative i keeps 

the floor for one more round is given by: 

1

𝑚(𝑛 − 1)
𝐵(𝑖) 

Let BC denote the Borda-Condorcet matrix, defined as that matrix in which the 

off-diagonal elements correspond to the Condorcet numbers and the diagonal elements to 

the Borda scores. That is, 

𝐁𝐂 = (

𝐵(1)   𝑐12  …   𝑐1𝑚

𝑐21   𝐵(2) …   𝑐2𝑚

…  …  …
𝑐𝑚1   𝑐𝑚2  …    𝐵(𝑚)

) 
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The protocol presented above gives rise to a Markov chain, specified by a (column) 

stochastic matrix M = 
1

𝑚(𝑛−1)
BC. The fraction of time that each alternative keeps the floor, 

𝑤𝑖, is thus given by the stationary state of that dynamic process. Namely, the components 

of the positive eigenvector associated with the dominant eigenvalue of matrix M, 

according to the equation: Mw = w.  The ith component of this vector w is given by:  

                                                                  𝑤𝑖 =
1

1 − 𝐵(𝑖)
 ∑ 𝑐𝑖𝑗𝑤𝑗

𝑗≠𝑖
                                                    [1] 

                                                       

Note that the eigenvectors of matrix M coincide with those of the Borda-Condorcet 

matrix BC so that we can use matrices M and BC interchangeably.  As eigenvectors have 

one degree of freedom, by imposing the condition  ∑ 𝑤𝑖 = 1𝑚
𝑖=1   we can interpret the 

values in equation [1] as the fraction of time that each alternative keeps competing against 

the others in the long run. Those values, therefore, measure the relevance of the 

alternatives in terms of the relative support accrued by the different options, and it is the 

evaluation we propose here. We call this mapping the Borda-Condorcet Evaluation 

Function, or the BC rule, for short.  

It is well known that this dominant eigenvector always exists, and it is non-

negative; besides, when BC is an irreducible matrix, we can ensure its uniqueness and 

strict positiveness (e.g. Berman & Plemmons, 1994).  

The BC rule is an evaluation protocol that always provides a solution to any 

evaluation problem. This solution is unique and strictly positive whenever matrix BC is 

irreducible. Besides, it satisfies many of those properties that are standard in the field of 

social choice theory or multi-criteria decision making. In particular:  

1. Universal domain: The evaluation function is well defined for all types of rankings.   

2. Anonymity and Neutrality: Neither the names of the individuals nor those of the 

alternatives matter; only the rankings do.   

3. Weak Pareto Principle: If all individuals strictly prefer alternative 𝑖 to alternative 𝑗, 

then the rule gives a higher value to the first.  

4. Weak unanimity: If all individuals rank alternative  𝑖 first, then the rule attaches the 

highest value to this alternative.   

5. Independence of fully dominated alternatives: If an alternative is ranked last by all 

individuals, then it receives a value of 0, and removing it from A does not change 

the relative evaluation of the remaining.  

6. Independence of generally unconcerned individuals: If an individual is indifferent 

between all alternatives, it plays no role in the evaluation, and removing him/her 

from N does not change the outcome. 
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7. Monotonicity: If individuals change their preferences by moving one alternative up 

in the ranking, the new evaluation will never attach a smaller value to this 

alternative.  

8. Replication invariance: Replicating all individuals, while keeping their preferences, 

does no change the valuation of the alternatives. 

 
In summary: The Borda-Condorcet rule is a criterion that provides a complete and 

transitive cardinal evaluation of alternatives that combines some of the principles 

informing the Borda and Condorcet choice rules. Mind, though, that the ordering provided 

by the BC rule may disagree with those obtained by either Borda or Condorcet, as it 

implements a different evaluation criterion. Indeed, the BC rule is neither Condorcet 

consistent nor a scoring rule (we discuss this point in the Appendix).   

  

3. Reducible matrices  

The uniqueness and strict positiveness of the eigenvector associated with the 

dominant eigenvalue of matrix BC may fail when the Borda-Condorcet matrix is reducible. 

Note that what a reducible matrix implies in this context is the existence of "subsystems," 

which are globally ranked (that is, one subsystem is better than another). This fact 

appears in the form of zeroes in the dominant eigenvector of matrix BC, which means that 

the group of alternatives with positive entries strictly dominates that with zeroes. Now 

observe that, if we consider the set of dominated alternatives on its own, we can find that 

not all of them are equally worthy. Indeed, that set may, in turn, consists of two or more 

different subsystems.    

In short: whenever the Borda-Condorcet matrix is reducible, we can divide the 

alternatives into different "divisions" in such a way that only the alternatives within the 

same division are comparable. Importantly, those divisions are ranked; that is, anyone in a 

higher division dominates all alternatives in an inferior one (Moon & Pullman 1970 also 

noted this fact).    

Let us illustrate this feature utilizing a real-life example. It refers to the comparison 

of the ten top UK universities in terms of four different criteria.  

 
 
Example 1: Webometrics Ranking of top Universities in the UK 

Since 2004, the Cybermetrics Lab presents a ranking of the performance of 

universities from all around the world. They consider four indicators and rank all 

universities independently in each of them (see https://www.webometrics.info/es/world 

for details). Those indicators are Presence (public knowledge shared in terms of the 
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number of pages in the web), Visibility (impact of the web contents due to the external 

links), Transparency (citations of the top-cited researchers), and Excellence (number of 

papers among the top 10% most cited in each discipline). Each of those four indicators is 

assigned a different weight: 5% for presence, 50% for Visibility, 10% for Transparency, 

and 35% for Excellence.  

We consider here the evaluation of the ten top universities in the UK, according to 

the Webometrics ranking published in January 2020. The web page provides the ranking 

of those Universities in each of the items, which appears in Table 1.  

 

Table 1: Rankings of the top ten UK Universities according to four indicators  

Overall 
ranking 

Universities (I) 
Presence 

(II) 
Impact 

(III) 
Openness 

(IV) 
Excellence 

1 Oxford 1 1 1 1 
2 Cambridge 2 2 2 3 
3 UCL 3 3 3 2 
4 Edinburgh 4 4 7 7 
5 Imperial Co 7 8 4 4 
6 Manchester 5 5 6 6 
7 King’s Co 8 10 5 5 
8 Leeds 10 6 9 9 
9 Warwick 6 7 10 10 

10 Nottingham 9 9 8 8 
 Source https://www.webometrics.info/es/world 

 

As the Webometrics attaches different weights to the different indicators, we 

adopt those weights when building the Borda-Condorcet matrix to compare the ten 

selected universities. To do so, we build the BC matrix as follows: One hundred individuals 

are ranking the top 10 UK universities.  Five of them agree on the ranking corresponding 

to the column (I) in Table 1. Fifty coincide on the ranking described by column (II), ten on 

the ranking of the column (III), and 35 on the ranking of the column (IV). The resulting BC 

matrix appears in Table 2. 

 

Table 2: BC matrix of the top ten UK universities 
 Oxf Cam UCL Edin Im Co Man King’s Leeds War Not 

Oxf 900 100 100 100 100 100 100 100 100 100 
Cam 0 765 65 100 100 100 100 100 100 100 
UCL 0 35 735 100 100 100 100 100 100 100 
Edin 0 0 0 465 55 55 55 100 100 100 

ImCo 0 0 0 45 385 45 100 50 45 100 
Man 0 0 0 45 55 455 55 100 100 100 

King’s 0 0 0 45 0 45 235 50 45 50 
Leeds 0 0 0 0 50 0 50 245 95 50 
War 0 0 0 0 55 0 55 5 170 55 
Not 0 0 0 0 0 0 50 50 45 145 
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The first thing to observe is that the BC matrix is reducible. We obtain the 

following outcomes when normalizing those eigenvalues by setting the highest one to 100: 

  (1) The University of Oxford dominates all other universities, standing alone in the 

first place. The first eigenvector is (100, 0, 0, …, 0), meaning that  Oxford is the first one, 

and, when comparing all ten universities together, there is no distinction among the 

remaining 9. That is, Oxford appears as belonging to a higher "division.”   

(2) When considering the evaluation of all the universities different from Oxford as 

an independent problem, we find again that the resulting BC matrix is reducible. The 

corresponding eigenvector is now (100, 53.85, 0, 0, …, 0), meaning that Cambridge and 

UCL stand above the rest, and, when comparing with these two universities, the remaining 

ones are indistinguishable. Thus, there is a second "division" consisting of the University 

of Cambridge and the University College London. 

(3) Finally, if we now rank the remaining universities as a separate group, the 

resulting eigenvector is: (100, 62.32, 90, 90.15, 16.98, 12.56, 6.20). This group of 

universities conforms to the "third division" among the top ten. 

 

 The case of a reducible matrix illustrates well a key trait of the BC rule: the 

evaluation of each alternative is relative to the alternatives with which it is compared. This 

is obvious from the very beginning, but Example 1 puts it in perspective. Note that 

reducibility not only informs about the existence of different "divisions" within the set of 

alternatives compared but also provides an endogenous way of identifying them. That is a 

relevant aspect of many evaluation problems. This suggests an interesting application of 

the BC rule: shortlisting. That is, finding if there are one or several categories of 

alternatives and identifying them endogenously. This possibility might be especially 

relevant when individuals can evaluate alternatives with precision, but such an evaluation 

is very costly. Think, for instance, of the evaluation of complex research proposals by a 

scientific committee, or the selection of investment plans in a large city. A preliminary 

round in which individuals rank the alternatives based on some key traits may well 

identify the proper shortlist to which a more in-depth evaluation can be applied.   

 

 

4.    Incomplete rankings 

There are cases in which some individuals might be unable to rank all alternatives 

(partial orderings). Let us see how we can introduce this case into our model.  
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Our evaluation protocol starts by selecting two alternatives at random, an 

individual also at random, and declaring the winner of that round that alternative 

preferred by the individual in question. Then, we randomly choose a new alternative to 

compete with the previous winner, based on another individual's preferences, and so on. 

Allowing for incomplete preferences implies that we can find three possible cases within 

each round: (1) the two chosen alternatives are comparable in the selected individual's 

ranking, and one is above the other (which determines that the preferred alternative 

keeps the floor). (2) The two chosen alternatives are comparable in the selected 

individual's ranking and turn out to be indifferent, in which case we toss a coin and luck 

decides the winner. (3) The chosen individual cannot compare the two alternatives; in this 

case, the former winning alternative still keeps the floor, and a new random extraction of 

alternative and individual occurs. If the non-comparability happens in the first round, we 

keep making random extractions of alternatives and individuals until we find two that are 

comparable. 

This simple principle allows us to deal with incomplete rankings by slightly 

modifying the transition matrix. As before, let 𝑛𝑖𝑗 the number of individuals who strictly 

prefer alternative i to alternative j, let 𝑛𝑗𝑖 the number of individuals who strictly prefer j to 

i, let 𝑒𝑖𝑗 = 𝑒𝑗𝑖 the number of individuals who are indifferent between both options, and let 

𝑑𝑖𝑗  the number of individuals who are unable to compare alternatives 𝑖, 𝑗. Now 

𝑛 = 𝑛𝑖𝑗 + 𝑛𝑗𝑖 + 𝑒𝑖𝑗 + 𝑑𝑖𝑗
 
 and, as before, the probability that alternative i beats alternative j 

in a given confrontation, conditional on j keeping the floor in the former one, is 

proportional to the Condorcet number 𝑐𝑖𝑗 = 𝑛𝑖𝑗 + 𝑒𝑖𝑗/2, whereas the probability that 

alternative i keeps the floor for one more round is proportional to the newly defined 

Borda score (which is no longer the sum of the Condorcet numbers): 

𝐵̅(𝑖) = ∑ (𝑐𝑖𝑗 + 𝑑𝑖𝑗)
𝑗≠𝑖

 

                       

Again, to evaluate the overall likelihood that one alternative beats another in the 

long run, we build a matrix  𝐁𝐂̅̅ ̅̅  , where the off-diagonal elements are the Condorcet 

numbers, as before, and the diagonal elements are the newly defined Borda scores. More 

explicitly, 

 

𝐁𝐂̅̅ ̅̅ = (
𝐵̅(1) …    𝑐1𝑗    … 𝑐1𝑚

… … …
𝑐𝑚1 …   𝑐𝑚𝑗    … 𝐵̅(𝑚)

) 

 And we obtain:  
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                                                                  𝑤̅𝑖 =
1

1 − 𝐵̅(𝑖)
∑ 𝑐𝑖𝑗𝑤̅𝑗

𝑗≠𝑖
                                                     [2] 

 

Let us now illustrate how to deal with non-comparable alternatives with another 

real-life example.   

 

Example 2: Ranking cities to pursue university studies 

Think of a student that is considering where to engage in university studies. In 

looking for the right city, there are three aspects relevant to make a decision: the opinion 

of former students, living in a sustainable environment, and studying in a safe city.  

The student relies on the information provided by three different rankings of cities:1 the 

QS Best Student City ranking (education possibilities), the Arcadis Sustainable Cities Index, 

and The Economist Safest cities index.  

To reduce the size of the problem, our student starts by focussing on the 10 top 

cities in the QS Best Student City ranking; then picks among those cities the ones that 

appear in at least one of the other two rankings in the top 20 positions. The result is a 

shortlist of 9 cities: London, New York, Paris, Seoul, Singapore, Sydney, Tokyo, Vienna, and 

Zurich. The ranking of those cities in the three issues appears in Table 4. 

Notice that neither Sydney nor Tokyo appear in the Sustainability ranking, and 

neither Paris nor Vienna appear in the safety ranking. We do not have information on the 

situation of those cities concerning the others in those aspects.  

Assuming that all three issues are equally important, we obtain the Borda-

Condorcet matrix (Table 3) and then the corresponding eigenvector associated to the 

dominant eigenvalue (i.e., the vector that provides with the ranking of cities and their 

relative valuation, given in the column “BC valuation (1)” in Table 4).  

 

Table 3: BC matrix of example 2 
 

 Lon NY Paris Seoul Sing Sydney Tokio Vienna Zurich BC val 

London 20 3 2 2 2 1 1 2 3 39.4 

NY 0 7 1 0 1 0 0 0 1 0.84 

Paris 0 1 16 1 1 1 0 1 1 3.63 

Seoul 1 3 1 12 1 0 0 1 1 4.85 

Sing 1 2 1 2 14 1 0 1 2 7.57 

                                                 
1
 https://www.topuniversities.com/city-rankings/2019; https://www.arcadis.com/en/united-states/our-

perspectives/sustainable-cities-index-2018/united-states/, https://safecities.economist.com/safe-cities-

index-2019/.  
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Sydney 1 2 0 2 1 18 0 1 1 10.9 

Tokio 1 2 1 2 2 2 23 1 2 100 

Vienna 0 2 1 1 1 0 0 16 1 2.63 

Zurich 0 2 1 2 1 1 0 1 12 3.03 

 

As shown in the last column of Table 3, our student would conclude that Tokyo 

stands out of the remaining cities, followed by London and Sydney, then Singapore, Seoul, 

and Paris, then Zurich, Vienna, and New York.  

It is important to note that non-comparability does not imply putting non-

comparable alternatives at the bottom of individual rankings. To show this, we present in 

Table 4 a new BC matrix, assuming that Sydney and Tokyo are indifferent and last in 

Sustainability and, similarly, Paris and Vienna are also placed at the bottom in Safety and 

indifferent between them. Applying the BC rule to those preferences yields a different 

ranking (last column of Table 4) in which London would be the best option, followed by 

Tokyo and Singapore, then Seoul, Sydney, Zurich, Paris, Vienna, and New York. The reason 

for this discrepancy is that non-comparable alternatives have fewer pairwise 

confrontations, rather than losing all of them.  Table 5 presents a summary of the results, 

as well as the order of the cities in the different issues. 

 

Table 4: BC matrix of example 2 treating non-comparabilities as worst options 

 Lon NY Paris Seoul Sin Sydney Tokio Vienna Zurich BC val 

Lon 20 3 3 2 2 2 2 3 3 100 

NY 0 7 2 0 1 1 1 1 1 9.04 

Paris 0 1 8,5 1 1 2 1 1,5 1 12.11 

Seoul 1 3 2 12 1 1 1 2 1 25 

Sing 1 2 2 2 14 2 1 2 2 34.61 

Sydney 1 2 1 2 1 10,5 0,5 2 1 21.15 

Tokio 1 2 2 2 2 2,5 15,5 2 2 44.23 

Vienna 0 2 1,5 1 1 1 1 8,5 1 11.34 

Zurich 0 2 2 2 1 2 1 2 12 19.23 

 

 

 

Table 5: Ranking of the cities according to the issues, BC valuation, and overall 
rankings 

 

 Sustaina
bility 

Safety Education Overall ranking (1) 
(noncomparability) 

Overall ranking (2) 
Noncomparable 

elements are at the 
bottom 
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London 1 5 1 2 1 

New York 6 6 8 9 9 

Paris 7  3 6 7 

Seoul 5 4 6 5 4 

Singapore 2 2 9 4 3 

Sydney  3 5 3 5 

Tokyo  1 2 1 2 

Vienna 3  7 8 8 

Zurich 4 7 4 7 6 

Source: own elaboration and  https://www.topuniversities.com/city-rankings/2019; 

https://www.arcadis.com/en/united-states/our-perspectives/sustainable-cities-index-2018/united-states/, 

https://safecities.economist.com/safe-cities-index-2019/  

  

 Incomplete rankings appear when the individuals are not able to compare all the 

alternatives accurately. It often happens when there are many alternatives to be 

compared, and the individuals divide into several teams, each of which evaluates a subset 

to those options. A case in point is what usually happens when selecting candidates in the 

job market: not all professors interview all the candidates. Then one has to integrate those 

partial evaluations into a single one. The BC rule is a procedure that can cope with this 

situation.    

 

5.   Multi-issue evaluation 

We now consider the case in which a group of individuals has to evaluate a 

collection of alternatives regarding different issues or dimensions simultaneously (group 

multi-criteria decision making). Our protocol can also accommodate this situation.  

Assume, for the time being, that all dimensions are equally important and let us see 

how the BC rule behaves in this context. We start by selecting two alternatives at random, 

an issue at random, and an individual also at random; we declare the winner relative to 

the issue that alternative preferred by the individual. Then, a new alternative is randomly 

chosen to compete with the previous winner, based on another issue, randomly selected, 

according to another individual's ranking in this new issue, and so forth. So now, 

alternatives compete within the corresponding dimensions, and issues are also randomly 

chosen, as alternatives and individuals.   

Let us admit, for the sake of generality, that multidimensional evaluation may also 

involve incomplete rankings. For a given issue, k, let 𝑛𝑖𝑗
𝑘  the number of individuals who 

strictly prefer alternative i to alternative j, regarding issue k. Let 𝑛𝑗𝑖
𝑘  the number of 

individuals who strictly prefer j to i, and let 𝑒𝑖𝑗
𝑘  the number of individuals who are 
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indifferent between both options, and let 𝑑𝑖𝑗
𝑘  the number of individuals who are unable to 

compare alternatives 𝑖, 𝑗 in issue k. Now, if there are K issues, for any k, we have  

𝑛 = 𝑛𝑖𝑗
𝑘 + 𝑛𝑗𝑖

𝑘 + 𝑒𝑖𝑗
𝑘 + 𝑑𝑖𝑗

𝑘 , for each k, and the probability that alternative i beats alternative j 

in a given confrontation, conditional on j keeping the floor in the former one, is 

proportional to the average Condorcet number, 

𝛾𝑖𝑗 =
1

𝐾
∑ 𝑐𝑖𝑗

𝑘

𝑘
 

where 𝑐𝑖𝑗
𝑘  is the Condorcet number corresponding to dimension k (that is, 𝑐𝑖𝑗

𝑘 = 𝑛𝑖𝑗
𝑘 + 𝑒𝑖𝑗

𝑘 /

2).  

 Now, the probability that alternative i keeps the floor for one more round is 

proportional to the average Borda score, that is:  

 

𝛽(𝑖) =
1

𝐾
∑ 𝐵̅𝑘(𝑖)

𝑘
 

where 𝐵̅𝑘(𝑖) = ∑ (𝑛𝑖𝑗
𝑘 + (𝑒𝑖𝑗

𝑘 /2) + 𝑑𝑖𝑗
𝑘 )𝑗≠𝑖   

Again, to evaluate the overall likelihood that one alternative beats another in the 

long run, we build the corresponding Borda-Condorcet matrix BC*, where the (i, j) entry is 

the average Condorcet number, 𝛾𝑖𝑗 , and the diagonal entries are given by the average 

Borda scores, 𝛽(𝑖). It is easy to check that this matrix corresponds to the average of the 

involved single-dimensional matrices:  

                            𝐁𝐂∗ =
1

𝐾
∑ 𝐁𝐂𝑘

𝑘

                                                                [3] 

where 𝐁𝐂𝑘 is the matrix associated with the kth issue, considered in isolation. The 

evaluation function for the multidimensional case is, therefore, a natural and intuitive 

extension of the single-dimensional case. 

 

We have assumed so far that all dimensions are equally important. Hence, they are 

randomly selected with the same probability. When this is not the case, different 

dimensions could be selected with different probabilities, and each dimension will have to 

be weighted by a particular coefficient 𝛼𝑘. That is,  

                        𝐁𝐂∗ = ∑ 𝛼𝑘𝐁𝐂𝑘

𝑘

                                                               [3′] 

with 𝛼1 + 𝛼2 + ⋯ + 𝛼𝐾 = 1.  

 

We now illustrate the multidimensional case with a health example:  
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Example 3: Alternative treatments for Relapsing-remitting Multiple Sclerosis 
(RRMS) 

 On December 2015, a group of six European clinical neurologists confronted the 

traditional drug for treating Multiple Sclerosis, Cladribine (C), with five new drugs:  

Dimethyl fumarate (D), Natalizumab (N), Alemtuzumab (A), Terifunomide (T), and 

Fyngolimod (F). The comparison was based on a model initially constructed by the 

Merck KGaA staff regarding the benefit-safety balance of the different drugs (Vermerch et 

al., 2019).  

 The experts considered seven possible benefits (1: Relapse rate; 2: Reductions in 

T2 lesions; 3: Reductions in T1 Gd lesions; 3: Reductions in EDSS 3 months; 4: Reduction 

in EDSS 6 months; 5: Ease of use; 7: Durability), as well as 11 unfavorable effects (1: AR 

infections; 2: AR GI effects; 3: Liver functions; 4: Malignancy; 5: Autoimmune disease; 6: 

Lymphopenia; 7: AV block; 8: Bradycardia; 9: Serious infection; 10: Herpetic Infections; 

11: PML). They also determined that the relative importance of Benefits with respect to 

Unfavorable effects should be 60/40. Table 6 presents the weights and rankings of the 

drugs for the different effects.  

 

Table 6: Benefits, Adverse effects, weights, and order of the drugs. 

Benefits Weights Best     Worst 

1 9.1 A N C F D T 

2 8.1 A D N F C T 

3 7 D NA C F T  

4 8.6 A N D C T F 

5 10.1 A N C F T D 

6 4 C T D F N A 

7 2.5 AD N CFT    

Safety  Weights Worst     Best 

1 2.8 N A F T D C 

2 3 A T D F C N 

3 2.5 T F D C NA  

4 4 F D CA N T  

5 6 A C DNFT    

6 6.5 A F C D NT  

7 2 F DCANT     

8 1.5 F A C DNT   
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9 7 A C N T D F 

10 5 A F N C T D 

11 10.1 N F D CAT   

Source: Vermerch et al., 2019 

 

Tables 7 and 8 present the BC matrix corresponding to Benefits and 
Adverse effects, respectively. 
 

Table 7: BC matrix of Benefits 
 

 C D N A T F 

C 215.25 41.9 44.15 45.4 38.4 45.4 

D 7.5 171.5 42.9 45.4 30.3 45.4 

N 5.25 6.5 128.15 41.3 25.7 49.4 

A 4 4 8.1 72.1 20.45 35.55 

T 11 19.1 23.7 28.95 116.8 34.05 

F 4 4 0 13.85 15.35 37.2 

 
Table 8: BC Matrix of Adverse effects 

 
 C D N A T F 

C 151.9 27 29.65 32.8 25.05 37.4 

D 23.4 133.9 18.9 39.85 14.35 37.4 

N 20.75 31.5 128.5 35.25 13.5 27.5 

A 17.6 10.55 15.15 71.95 8.55 20.1 

T 25.35 36.05 36.9 41.85 175.05 34.9 

F 13 13 22.9 30.3 15.5 94.7 

 
 

Finally, the BC matrix of this problem, given in Table 9,   is six times the 

benefits matrix plus four times the adverse effects matrix. The last column gives 

the valuation of the drugs, setting 100 for the standard treatment. 

 
Table 9: BC matrix of the drugs problem 

 
 C D N A T F BC valuation 

C 1899.1 359.4 383.5 403.6 330.6 422 100 

D 138,6 1564.6 333 431.8 239.2 422 190.48 

N 114.5 165 1282.9 388.8 208.2 406.4 64.97 

A 94.4 66.2 109.2 720.4 156.9 293.7 29.9 

T 167.4 258.8 289.8 341.1 1401 343.9 87.67 

F 76 76 91.6 204.3 154.1 602 25.21 
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As a consequence, the best drug is Dymethil fumarate. Yet, this does not 

automatically imply that it should substitute Cladribine as a new standard because one has 

to take into account the related costs. The cardinality of the evaluation permits applying 

cost-benefit analysis techniques to make a decision. From those values, it follows that as 

long as the cost of D does not exceed 1.9 times the cost of C, the substitution pays.  

 

 

6. Back to basics: voting   

The BC rule is an evaluation protocol that transforms rankings into cardinal 

evaluations by making use of both the Condorcet numbers and the Borda scores, which 

can be applied under very general circumstances. The cardinality feature makes the BC 

rule close to Borda’s method, even though the BC rule is not a scoring rule. The BC rule 

derives from the application of a Markov chain to a competitive process based on pairwise 

comparisons that are performed forever. From this viewpoint, the procedure is close to 

Condorcet’s idea. The novelty of the BC rule is that it links rather precisely the evaluation 

process to the principles of Borda and Condorcet and that it can be applied to situations 

involving indifferences, incomplete rankings, multiple issues, and different "divisions.”  

One may wonder what the BC-rule implies in terms of voting problems, which was at 

the basis of the initial discussion between those authors. As in the case of Borda and 

Condorcet, this is a voting procedure that uses all the information on the ranking of the 

alternatives and not only on the preferred options (see Dasgupta & Maskin 2020). The use 

of that information was the motivation of Borda and Condorcet to propose alternatives to 

plurality voting. Rank-voting and score-voting are some of those enriched voting 

procedures that are actually implemented, some of them enjoying very good properties, as 

range voting or Kemeny voting (see Kemeny 1959, Maskin 2018). 

From this point of view,  the BC rule is a procedure that: (a) values the candidates 

using all the information of the rankings of the voters; (b) takes into account both how 

much support each candidate obtains (as in Borda); and  (c) also takes into account how 

many individuals support the candidate (as in Condorcet). Indeed, the Borda-Condorcet 

matrix corresponds to the sum of the vote matrix (Young, 1994), a matrix with the 

Condorcet numbers in the off-diagonal elements and zeroes in the diagonal, and a diagonal 

matrix with the Borda scores. The outcome of this voting process gives to each candidate a 

value that is proportional to the probability of beating any other candidates in a random 

matching.   
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A related problem is the allocation of seats in a Parliament to different parties, again 

based on citizens’ preferences.  When individuals can only submit their top option, the 

percentage of votes each party obtains becomes the basis for parties’ representation.  

Using richer scenarios, namely, allowing citizens to submit their preferences in full, would 

allow them to obtain a political representation more in line with the true preferences of 

the citizens. Here, the BC rule offers an interesting solution that always exists.   

  Consider the following example that illustrates how different voting procedures 

allocate parliamentary seats between parties.  

 

Example 4: Allocating parliamentary seats in an election  

There are four parties, A, B, C, and D, competing in an election in which to allocate 135 

parliamentary seats. Table 10 describes the voters’ preferences, ordering parties from top 

to bottom (note that there is no Condorcet winner here).   

Table 10: Voters ranking of four parties 

30% 40% 30% 

A D,C B,A 

B,C B D,C 

D A  

 

 Table 11 shows the results concerning the distribution of the seats for different 

voting procedures: plurality, approval voting (assuming that citizens only approve their 

best-preferred options), Borda, and the BC rule. Apportionment was done using the 

Hamilton method (Young, 1994). The BC matrix appears in Table 12. 

 

Table 11: Allocation of seats in Parliament according to different voting schemes 

 Plurality Approval Borda BC rule 

Party A 61 62 37 39 

Party B 20 31 36 37 

Party C 27 21 36 36 

Party D 27 21 26 23 

 

 
Table 12: BC matrix of Example 3 

 

 A B C D 

A 165 45 60 60 

B 55 160 45 60 
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C 40 55 160 65 

D 40 40 35 115 

 
The interest of the BC rule in this context is twofold. On the one hand, it uses the 

information on the voters’ preferences in full (contrary to plurality or approval voting). On 

the other hand, obtains endogenously the cardinality required to assign the seats (as 

opposed to score voting rules). Notice that no Condorcet consistent rule (as it happens 

with the Kemeny rule) provides with a cardinal valuation of the relative support of the 

parties, coming only from ordinal information on the voters’ preferences. 
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APPENDIX:  
The BC rule is neither Condorcet consistent nor a scoring rule  
 
 

Let A = {a, b, c, d }, and take the profiles R and R' described in Table A.1. Profile R 

involves 21 individuals whose rankings are described by columns, grouping all those 

individuals with identical rankings. Profile R' involves 100 individuals, and their 

valuations are described similarly. 

Table A.1 

Profile R Profile R' 

3 5 7 6 70 25 5 

a a b c a b c 

b c d b b c b 

c b c d c d a 

d d a a d a b 

 

For profile R, the Condorcet ranking is: 𝑐 > 𝑏 > 𝑑 > 𝑎. The Borda ranking is 𝑏 > 𝑐 > 𝑎 

> 𝑑, which in this case coincides with the BC ranking.  

For profile R', alternative a is the Condorcet winner, whereas the Borda count 

yields the ranking: 𝑏 > 𝑎 > 𝑐 > 𝑑. The BC order is 𝑎 > 𝑏 > 𝑐 > 𝑑, which selects as the best 

option the Condorcet winner.    

It might be tempting to think that the BC rule provides an endogenous scoring 

system for the alternatives so that it can be regarded as a member of the family of scoring 

rules that extend the Borda criterion (see Young 1975). This is not the case: the BC 

evaluation function is not a member of the family of scoring rules, as shown in the next 

example.  

Consider a problem involving three alternatives, {a, b, c}, and suppose that there 

exists a scoring system that provides the same order as our procedure. As there are only 

three alternatives, it suffices to consider two scores, 0 ≤ α ≤ β, with β > 0 (the implicit 

assumption is that the third score is equal to 0). Consider the profiles R, R' given in Table 

A.2. 

 

Table A.2 

Profile R  Profile R' 

30 3 27 10 10 1  6 5 6 2 6 3 

a a b b c c  a a b c c c 

b c a c a b  b c c a a b 

c b c a b a  c b a b b a 
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For profile R, the BC order is a > b > c.  To get this order out of some scores, we need 

𝛽 < (
3

2
) 𝛼. The BC order for profile R' is b > a > c. To get this order out of some scores,  

𝛽 > (
3

2
) 𝛼, which contradicts the above requirement. That is, there is no scoring system 

compatible with the evaluation provided by the BC rule. 
 

 

 

 

                  


