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 Mathematical comparison of minmax, lightly robust, and nominal efficient solutions. 

 We prove that the lightly robust efficient solutions are good compromises. 

 We propose a definition for the multiobjective price of robustness. 

 We propose two strategies to support decision making. 
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Abstract

Defining and finding robust efficient solutions to uncertain multiobjective optimization
problems has been an issue of growing interest recently. Different concepts have been
published defining what a “robust efficient” solution is. Each of these concepts leads to
a different set of solutions, but it is difficult to visualize and understand the differences
between these sets. In this paper we develop an approach for comparing such sets of robust
efficient solutions, namely we analyze their outcomes under the nominal scenario and in
the worst case using the upper set-less order from set-valued optimization. Analyzing the
set of nominal efficient solutions, the set of minmax robust efficient solutions and different
sets of lightly robust efficient solutions gives insight into robustness and nominal objective
function values of these sets of solutions. Among others we can formally prove that lightly
robust efficient solutions are good compromises between nominal efficient solutions and
minmax robust efficient solutions. In addition, we also propose a measure to quantify the
price of robustness of a single solution. Based on the measure, we propose two strategies
which can be used to support a decision maker to find solutions to a multiobjective
optimization problem under uncertainty. All our results are illustrated by examples.
Keywords: multiobjective robust optimization, decision making, uncertainty, price of
robustness

1 Introduction

More and more complex optimization problems are being solved in the modern soci-
ety. These problems are characterized by multiple conflicting objectives and they almost
inevitably involve uncertainty due to imprecise data, uncertain future developments, un-
certain consequences of decisions and so on. Multiobjective robust optimization is an
evolving field specifically aiming at finding robust solutions that are sufficiently immune
to uncertainty.

While the topic of robust multiobjective optimization is relatively young, robust opti-
mization for single-objective optimization problems is well researched. For single-objective
optimization problems, the standard book is (Ben-Tal, Ghaoui, & Nemirovski, 2009) with
an extensive collection of results on the classical concept of minmax (or strict) robustness.
In this concept, one looks for a solution which is feasible for all scenarios and has the best
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possible objective function value in the worst case. In other cases, a minmax robust so-
lution does usually not have the best possible objective function value. This is known
as conservativeness of robust optimization and has motivated researchers to quantify the
resulting price of robustness (Bertsimas & Sim, 2004; Chassein & Goerigk, 2016) and
to develop less conservative robustness concepts as in (Ben-Tal, Goryashko, Guslitzer,
& Nemirovski, 2003; Goerigk, Knoth, Müller-Hannemann, Schmidt, & Schöbel, 2011,
2014; Liebchen, Lübbecke, Möhring, & Stiller, 2009; Schöbel, 2014), see also (Goerigk &
Schöbel, 2016) for a survey.

In recent years, various robustness concepts have been developed to take uncertainty
into account also for multiobjective optimization problems, see (Ide & Schöbel, 2016;
Wiecek & Dranichak, 2016) for surveys of the many evolving robustness concepts. The
easiest way to handle uncertainty in the input parameters is to identify the so-called
nominal scenario, which is the most typical, the undisturbed, or the expected scenario,
and to solve the problem only for this case. This means that the uncertainty is ignored
and one receives a standard multiobjective optimization problem. The resulting (Pareto-)
efficient solutions are called nominal efficient. However, nominal efficient solutions are
not robust, i.e., they may be very bad in terms of their objective function values when
the uncertainty realizes differently from the nominal scenario.

In order to take data uncertainty into account, different varieties of minmax robust
efficiency, see e.g., (Ehrgott, Ide, & Schöbel, 2014; Fliege & Werner, 2014; Kuroiwa & Lee,
2012; Bokrantz & Fredriksson, 2017) have been proposed for multiobjective optimization
problems under uncertainty. The idea of minmax robust efficiency is to optimize the ob-
jective functions in the worst case over all scenarios. The resulting solutions are called
minmax robust efficient. The concept has raised attention in the literature: (Kuroiwa &
Lee, 2012) take a set-valued point of view, (Fliege & Werner, 2014) study it in the context
of portfolio selection problems, (Hassanzadeh, Nemati, & Sun, 2013) for Γ-uncertainty in
the linear case and (Hassanzadeh, Nemati, & Sun, 2014) provide an interactive approach.
(Kalantari, Dong, & Davies, 2016) consider the case in which only the constraints are un-
certain, (Ehrgott et al., 2014; Bokrantz & Fredriksson, 2017; Schmidt, Schöbel, & Thom,
2019) provide scalarization approaches, (Raith, Schmidt, Schöbel, & Thom, 2018b) an
approach for cardinality constrained uncertainty, and (Kuhn, Raith, Schmidt, & Schöbel,
2016; Raith, Schmidt, Schöbel, & Thom, 2018a) suggest approaches for shortest path
problems. Recent results on feasible minmax robust solutions are given in (Wei, Chen,
& Li, 2020a, 2020b) and approximation approaches are suggested in (Antczak, Pandey,
Singh, & Mishra, 2020).

Since also in the multiobjective case minmax robust efficient solutions are rather con-
servative other concepts have been developed and analyzed, e.g., highly robust efficiency
in (Georgiev, Luc, & Pardalos, 2013; M. A. Goberna, Jeyakumar, Li, & Vicente-Pérez,
2014; M. Goberna, Jeyakumar, Li, & Vicente-Pérez, 2015; Kuhn et al., 2016; Dranichak
& Wiecek, 2019; M. A. Goberna, Jeyakumar, Li, & Vicente-Pérez, 2018; Rahimi &
Soleimani-Damaneh, 2018, 2020), flimsily (or possibly) robust efficiency in (Bitran, 1980;
Kuhn et al., 2016; Hladik, 2017), lightly robust efficiency in (Ide & Schöbel, 2016; Kuhn
et al., 2016) and regret robustness in (Rivaz & Yaghoobi, 2018; Xidonas, Mavrotas, Hass-
apis, & Zopounidis, 2017; Rivaz, Yaghoobi, & Hlad́ık, 2016). Scenario-based counterparts
are investigated in (Botte & Schöbel, 2019; Engau & Sigler, 2020). In this paper, we focus
on the concepts of minmax robust efficiency and of lightly robust efficiency. In the latter
one looks for a robust solution still satisfying given tolerable nominal objective function
values. For compactness of description, we refer to the nominal objective function values
as the nominal quality.

While the relationships between different types of (robust) efficient solutions have
been analyzed in (Ide & Schöbel, 2016), a comparison between their nominal quality,
i.e., the objective function values in the nominal case, and their robustness has not been
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investigated so far. This is challenging since we are in a multiobjective setting in which
we have to compare sets of robust efficient solutions (similar to Pareto fronts) with each
other and not only single points.

The main contribution of this paper is to use set order relations to analyze the objective
function values of a (robust efficient) solution in the nominal scenario and in the worst
case. I.e., both extremes, the nominal (or most likely) and the most pessimistic view are
taken into account. This approach is useful in two respects:

First, it is a theory-based approach to compare different robustness concepts in mul-
tiobjective optimization. Using minmax robustness and light robustness we demonstrate
that this approach reflects the intuition one has about these concepts. In particular, we
formally prove that minmax robustness is best in the worst case and that light robustness
is a good compromise between nominal quality and robustness.

Second, our approach helps to understand and explain the meaning of robustness
and hence may assist the decision maker. To this end, we extend the single-objective
analysis between nominal quality and robustness of (Chassein & Goerigk, 2016; Schöbel,
2014) to multiobjective problems by defining the price and the gain of robustness for
given solutions. The former specifies how much nominal quality is lost when moving a
non-robust solution into the robust efficient set, the latter specifies how much robustness
is increased in this case. Based on these definitions we sketch two approaches to find
different types of solutions depending on the preferences of the decision maker and hence
provide helpful information to find a balance between nominal quality and robustness.

The remainder of the paper is organized as follows: Section 2 formally introduces nom-
inal efficiency, minmax robust efficiency, and lightly robust efficiency. Section 3 analyzes
the relationships among the three different solution sets, both in the nominal scenario and
in the worst case. Section 4 illustrates the results in some numerical examples, followed
by Section 5 which introduces the price of robustness for a given solution and develops
two strategies to assist decision making. Finally, Section 6 concludes the paper.

2 Nominal efficiency, minmax robust efficiency, and
lightly robust efficiency

Let a feasible set X, an uncertainty set U , and a function f : X× U → IRk be given. We
deal with the following uncertain problem

(PU )




min f(x, ξ) :=




f1(x, ξ)
f2(x, ξ)

...
fk(x, ξ)




s.t. x ∈ X



, ξ ∈ U .

The elements of U are called scenarios. It is not known which scenario ξ ∈ U will occur
making the above problem an uncertain multiobjective optimization problem. For any
fixed choice of ξ ∈ U we have a deterministic multiobjective optimization problem

(P (ξ))




min f(x, ξ) :=




f1(x, ξ)
f2(x, ξ)

...
fk(x, ξ)




s.t. x ∈ X




for which optimal solutions are defined in the sense of (Pareto-)efficiency:
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Notation 1. • Let y, y′ ∈ IRk. In what follows, notation y′ ≤ y and y′ < y are both
meant componentwise, i.e., y′i ≤ yi and y′i < yi, respectively, for all i = 1, . . . , k. We
say that y′ dominates y if y′ ≤ y and there exists some i ∈ {1, . . . , l} with y′i < yi.

• Let x, x′ ∈ X. We say that x′ dominates x if f(x′) dominates f(x). A solution x is
called efficient, if there does not exist a solution x′ which dominates x.

The domination property for the deterministic multiobjective optimization problem
(P (ξ)) says: For every x ∈ X, either x is efficient or there exists an efficient solution
x′ ∈ X which dominates x. It is known (e.g., in (Mordechai, 1986)) that the domination
property holds for (P (ξ)) if X is finite and if X is compact and the objective functions
fi(·, ξ) are continuous in x for all i = 1, . . . , k.

For the results in this paper, let us assume that one of the following conditions is
satisfied:

• X and U are both finite sets,

• U is finite, X is compact and f(·, ξ) : X → IRk is continuous in x for every fixed
ξ ∈ U ,

• X is finite, U is compact and f(x, ·) : U → IRk is continuous in ξ for every fixed
x ∈ X,

• U and X are both compact and f : X× U → IRk is jointly continuous in (x, ξ).

Each of these assumptions guarantees that all minima and maxima exist, i.e., that

• (P (ξ)) has the domination property for all fixed ξ ∈ U .

• maxξ∈U f(x, ξ) exists for every fixed x ∈ X,

The assumptions hold in many problems studied in the literature and in many applica-
tions.

For the uncertain problem, several concepts on how to define robust efficiency have
been proposed. Here, we consider minmax robust efficiency and lightly robust efficiency.
Our goal is to compare minmax robust efficient and lightly robust efficient solutions to
the solutions we would obtain without considering robustness, i.e., the nominal efficient
solutions.

2.1 Nominal efficiency

As usual in robust optimization (e.g., in (Bertsimas & Sim, 2004) and many other refer-

ences) we assume that a nominal scenario ξ̂ ∈ U is known. This is the standard scenario
one would usually take if robustness issues do not play a role. It might be the undisturbed
or the most likely scenario, or it contains the parameters which have been measured with-
out any deviation. We define fnom(x) := f(x, ξ̂) and the nominal problem as

(P nom)




min fnom(x) =




f1(x, ξ̂)

f2(x, ξ̂)
...

fk(x, ξ̂)




s.t. x ∈ X



.

Note that (P nom) is a deterministic multiobjective optimization problem. It is the problem
which is ‘usually’ solved, i.e., when no robustness is taken into account.

Definition 2. We denote the set of efficient solutions to (P nom) by Xnom. Solutions
x ∈ Xnom are called nominal efficient. For x ∈ X, we furthermore call fnom(x) its
nominal quality.

4

                  



Since (P nom) equals (P (ξ̂)), it has the domination property.

Lemma 3. For every x ∈ X there exists x′ ∈ Xnom with fnom(x′) ≤ fnom(x).

2.2 Minmax robust efficiency

Minmax robustness is the most widely used concept in single-objective robust optimization
(see a summary in (Ben-Tal et al., 2009)). Several generalizations to the multiobjective
case have been proposed. Here we use the concept of (point-based) minmax robustness
as proposed in (Fliege & Werner, 2014; Kuroiwa & Lee, 2012). In case of objective-wise
uncertainty (called owu in (Ehrgott et al., 2014)), i.e., if the uncertainty in each of the
objective functions is independent from the uncertainty in the other objective functions,
point-based robustness coincides with set-based robustness (Ehrgott et al., 2014) and with
hull-based robustness (Bokrantz & Fredriksson, 2017).

In order to find minmax robust efficient solutions, we define the worst case objective
function fwc as

fwc(x) :=




maxξ∈U f1(x, ξ)
maxξ∈U f2(x, ξ)

...
maxξ∈U fk(x, ξ)


 .

The resulting optimization problem in the worst case is given as

(Pwc)




min fwc(x) =




maxξ∈U f1(x, ξ)
maxξ∈U f2(x, ξ)

...
maxξ∈U fk(x, ξ)




s.t. x ∈ X



.

The problem (Pwc) is again a deterministic multiobjective optimization problem.

Definition 4. Let Xwc be the set of efficient solutions to (Pwc). Solutions x ∈ Xwc are
called minmax robust efficient. For x ∈ X, we furthermore call fwc(x) its worst case
objective value.

From our general assumptions we can conclude that (Pwc) has the domination prop-
erty.

Lemma 5. For every x ∈ X there exists x′ ∈ Xwc with fwc(x′) ≤ fwc(x).

Proof. If X is finite, it is trivial that the lemma holds. Otherwise, X is compact and we
have to distinguish two cases:

• Either U is finite and f is continuous in x for every fixed ξ. Then, fwc is continuous
as maximum of a finite set of continuous functions.

• Or both, X and U are compact and f is jointly continuous in x and ξ. Then fwc is
continuous due to Berge’s theorem, see, e.g., (Berge, 1963).

In case of objective-wise uncertainty (owu) there exists a worst case scenario ξ ∈ U for
which all objective functions simultaneously take their maxima. In this case, (Pwc) equals
(P (ξ)) and is hence a deterministic problem. This need not hold if the same uncertain
parameter influences more than one of the objective functions.
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2.3 Lightly robust efficiency

Finally, we introduce the concept of lightly robust efficient solutions. The idea comes
from light robustness in single-objective optimization (see (Fischetti & Monaci, 2009;
Schöbel, 2014)) and focuses on finding solutions which are not too bad in the nominal
case. Light robustness was generalized in (Ide & Schöbel, 2016; Kuhn et al., 2016) to the
multiobjective case as follows: one first determines the set of efficient solutions Xnom for
the nominal scenario ξ̂. We allow a lightly robust efficient solution to be a bit worse than
an efficient solution in the nominal scenario. The deviation from the objective values in
the nominal scenario should be bounded by some given ε ∈ IRk, where εi bounds the
deviation in objective function fnom

i . In order to ensure this, we define for each x̂ ∈ Xnom

(P light,ε(x̂))




min fwc(x) =




maxξ∈U f1(x, ξ)
maxξ∈U f2(x, ξ)

...
maxξ∈U fk(x, ξ)




s.t. fnom(x) ≤ fnom(x̂) + ε
x ∈ X



,

i.e., among all solutions which are only a bit worse than x̂ in the nominal scenario we
take the ones which are efficient in the worst case, i.e., which are minmax robust efficient
within the set

F light,ε(x̂) := {x ∈ X : fnom(x) ≤ fnom(x̂) + ε}
of feasible solutions to (P light,ε(x̂)). Note that due to our assumptions, either X is finite
or fnom is continuous. In both cases, F light,ε(x̂) is closed.
In practice, the values of ε can be set by a decision maker. Based on the values of fnom(x̂),
the decision maker can consider how much (s)he is willing to sacrifice. In Lemma 15 later
in the paper, we will relate the choice of ε to the price of robustness.

Definition 6. For x̂ ∈ Xnom, let X light,ε(x̂) be the set of efficient solutions to (P light,ε(x̂)).
Solutions x ∈ X light,ε :=

⋃
x̂∈Xnom X light,ε(x̂) are called lightly robust efficient.

Due to its closedness, the feasible set F light,ε(x̂) is compact if X is compact, and finite
if X is finite. With the same reasoning as for (Pwc) we hence conclude that the domination
property holds for (P light,ε(x̂)).

Lemma 7. For every x ∈ F light,ε(x̂) there exists x′ ∈ X light,ε(x̂) with fwc(x′) ≤ fwc(x).

3 Comparing sets of robust efficient solutions

In (non-robust) multiobjective optimization, the quality of a set of solutions X ⊆ X is
usually evaluated by looking at the image f(X) of the solutions in the objective space.
If X is the set of efficient solutions, their images f(X) are called the efficient front. In
order to compare the sets of nominal efficient solutions Xnom, of minmax robust efficient
solutions Xwc, and of lightly robust efficient solutions X light,ε, we proceed similarly: we
look at the images under the objective function f . However, the objective function values
not only depend on x ∈ X but also on the scenario which occurs; we hence get different
objective function values for each scenario ξ ∈ U and an efficient point in the nominal
scenario need not be an efficient point in other scenarios. To consider properties of a set
X ⊆ X of solutions (specifically for X = Xnom, X = Xwc, or X = X light,ε) we propose to
evaluate X in the following two extreme cases:

• The first evaluation considers the nominal case, i.e.,

fnom(X) = {f(x, ξ̂) : x ∈ X}.
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From a practical point of view such an evaluation makes sense since it shows what
to expect in the most likely (or undisturbed) scenario. Clearly, fnom(Xnom) shows
the efficient front of the problem (P nom).

• The second evaluation takes a robust perspective consideringX under its component-
wise worst case, i.e., we evaluate

fwc(X) := {fwc(x) : x ∈ X} =








maxξ∈U f1(x, ξ)
...

maxξ∈U fk(x, ξ)


 : x ∈ X




.

Note that in contrast to fnom(X) which is always evaluated under the scenario ξ̂ ∈ U ,
the scenarios which are relevant for evaluating fwc(x) depend on the objective function
fi, i = 1, . . . , k and on the point x ∈ X itself.

The intuition is that under the nominal scenario, the set fnom(Xnom) is better than
the set of minmax robust efficient solutions fnom(Xwc) while this result of comparison
changes if we evaluate under the worst case objective function fwc, i.e., fwc(Xwc) is better
than fwc(Xnom). The set of lightly robust efficient solutions is expected to lie somewhere
in between as they are claimed in (Ide & Schöbel, 2016; Kuhn et al., 2016) to be a good
compromise between nominal quality and robustness.

In order to formulate these intuitions mathematically, we use a set-based order to
compare two sets Y1, Y2 ⊆ IRk:

Notation 8.

Y1 ≺upp Y2 if for all y ∈ Y2 there exists y′ ∈ Y1 with y′ ≤ y

Y1 ≺low Y2 if for all y ∈ Y1 there exists y′ ∈ Y2 with y ≤ y′.
Denoting IRk

≥ = {y ∈ IRk : yi ≥ 0 for all i = 1, . . . , k} as the nonnegative ordering
cone, Y1 ≺upp Y2 can equivalently be written as

Y1 ≺upp Y2 if Y1 + IRk
≥ ⊇ Y2

which is known as the upper set less order, see (Khan, Tammer, & Zălinescu, 2015), and
Y1 ≺low Y2 can equivalently be written as

Y1 ≺low Y2 if Y2 − IRk
≥ ⊇ Y1

which is known as the lower set less order, see again (Khan et al., 2015).

We first show that evaluating solutions in the worst case always gives a more pessimistic
point of view than evaluating the same solutions in the nominal case, no matter what we
choose as the set X ⊆ X.

Lemma 9. For every set X ⊆ X we have:

(i) fnom(X) ≺upp fwc(X).

(ii) fnom(X) ≺low fwc(X).

Proof.

(i) : Let y ∈ fwc(X), i.e., y = fwc(x, ξ) for some x ∈ X. and some ξ ∈ U . Define
y′ := fnom(x). Then y′ ∈ fnom(X) and for each component i = 1, . . . , k we have

y′i = fi(x, ξ̂) ≤ max
ξ∈U

fi(x, ξ) = yi,

hence y′ ≤ y.
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(ii) : Let y ∈ fnom(X), i.e., y = fnom(x, ξ) for some x ∈ X and some ξ ∈ U . Define
y′ := fwc(x). Then y′ ∈ fwc(X) and analogously to part (i) it follows y ≤ y′.

It is more interesting to compare the different sets of robust efficient points with each
other. We start by showing that under the upper set less order relation, Xnom is better
than any other set X ⊆ X in the nominal scenario, and Xwc is better than any other set
X ⊆ X under worst case evaluation.

Lemma 10. For every set X ⊆ X we have:

(i) fnom(Xnom) ≺upp fnom(X).

(ii) fwc(Xwc) ≺upp fwc(X).

Proof.

(i) Let y ∈ fnom(X), i.e., y = fnom(x) for some x ∈ X. Due to the domination property
for (P nom) (Lemma 3), there exists x′ ∈ Xnom with fnom(x′) ≤ fnom(x). Setting
y′ := fnom(x′) shows the assertion.

(ii) Now let y ∈ fwc(X), i.e., y = fwc(x) for some x ∈ X. Due to the domination property
for (Pwc) (Lemma 5) there exists x′ ∈ Xwc with y′ := fwc(x′) ≤ fwc(x) = y, and
the proof is complete.

Note that Lemma 10 does not hold under the lower set less order relation, not even if
we only compare the sets Xnom and Xwc with each other in the nominal scenario. This
is shown in the following small example. Note that the problem in this example only
has k = 2 objective functions which are objective-wise independent (see (Ehrgott et al.,
2014) for a formal definition); so the relation does not even hold under this rather special
condition.

Example 1. Let two scenarios U = {ξ̂, ξ̄} be given, consider a feasible set X which
contains only two elements X = {x1, x2} and two objective functions. Let

f(x1, ξ̂) =

(
2
1

)
, f(x2, ξ̂) =

(
0
3

)

f(x1, ξ̄) =

(
5
5

)
, f(x2, ξ̄) =

(
1
4

)
,

see Figure 1 for an illustration. In this example, we receive

Xnom = {x1, x2}

since their objective function values in the nominal scenario do not dominate each other.
For fwc we receive

fwc(x1) =

(
max{2, 5}
max{1, 5}

)
=

(
5
5

)

fwc(x2) =

(
max{0, 1}
max{3, 4}

)
=

(
1
4

)
,

i.e.,
Xwc = {x2}.

Hence,

fnom(Xnom) =

{(
2
1

)
,

(
0
3

)}
and fnom(Xwc) =

{(
0
3

)}
.
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f
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Figure 1: Illustration of Example 1. We compare fnom(Xnom) = {f(x1, ξ̂), f(x2, ξ̂)} and fnom(Xwc) =

{f(x2, ξ̂)}.

As Lemma 10 says, we have

fnom(Xnom) ≺upp fnom(Xwc),

but for the lower set less order this does not hold. We even receive

fnom(Xwc) ≺low fnom(Xnom).

We continue with analyzing the set of lightly robust efficient solutions X light,ε. We
start with a simple observation which follows directly from Definition 6. For this we need
to add the point ε to fnom(Xnom) in the set-wise sense, i.e., for A ⊆ X, ξ ∈ IR we have
fnom(A) + {ε} = {fnom(x) + ε : x ∈ A}.
Lemma 11. For every ε ≥ 0 we have

(i) fnom(X light,ε) ≺low fnom(Xnom) + {ε},
(ii) fnom(X light,ε) ≺upp fnom(Xnom) + {ε},

Proof.

(i) Let y ∈ fnom(X light,ε), i.e., y = fnom(x) for x ∈ X light,ε. Then there exists a solution
x̂ ∈ Xnom such that x is an efficient solution to (P light,ε(x̂)). In particular,

fnom(x) ≤ fnom(x̂) + ε.

We define y′ := fnom(x̂)+ε ∈ fnom(Xnom)+{ε} and receive that y = fnom(x) ≤ y′.
(ii) Let y ∈ fnom(Xnom) + {ε}, i.e., y = fnom(x̂) + ε for some x̂ ∈ Xnom. Due to the

domination property for (P light,ε(x̂)) (Lemma 7) there exists x′ ∈ X light,ε(x̂). In
particular,

fnom(x′) ≤ fnom(x̂) + ε.

With y′ := fnom(x′) we hence receive y′ = fnom(x′) ≤ fnom(x̂) + ε = y.
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Together with Lemma 10 we summarize

fnom(Xnom) ≺upp fnom(X light,ε) ≺upp fnom(Xnom) + {ε},

i.e., for small ε > 0 the evaluation of Xnom and X light,ε under the nominal scenario differs
only slightly. The next lemma analyzes what might happen to lightly robust efficient
solutions in the worst case.

Lemma 12.

(i) fwc(X light,ε) ≺upp fwc(Xnom) for all ε ≥ 0 and

(ii) fwc(X light,ε2) ≺upp fwc(X light,ε1) for all 0 ≤ ε1 ≤ ε2.

Proof.

(i) Let y = fwc(x) for x ∈ Xnom. Then x ∈ F light,ε(x), i.e., it is feasible for (P light,ε(x)).
Due to the domination property for (P light,ε(x)) (Lemma 7) there exists x′ ∈
X light,ε(x) with fwc(x′) ≤ fwc(x). We hence have y′ := fwc(x′) ≤ fwc(x) = y.

(ii) Now let y = fwc(x) for x ∈ X light,ε1 . Then there exists x̂ ∈ Xnom such that
x ∈ F light,ε1(x̂). Since ε2 ≥ ε1 we know that x ∈ F light,ε2(x̂). We again use the
domination property (Lemma 7) for (P light,ε2(x̂)) and receive x′ ∈ X light,ε2 which
satisfies y′ := fwc(x′) ≤ fwc(x) = y.

Note that the statements of Lemma 12 do again not hold for the lower set less order.
They also cannot be transferred to the nominal case, i.e., it is not true in general that

1. fnom(X light,ε) ≺ fnom(Xwc) for ε > 0, and that

2. fnom(X light,ε1) ≺ fnom(X light,ε2) for 0 ≤ ε1 < ε2,

neither for ≺ being the upper set less order nor for the lower set less order. This is
illustrated next.

Example 2. Let two scenarios U = {ξ̂, ξ̄} be given, consider a feasible set X = {x1, x2, x3}
and two objective functions. Let

f(x1, ξ̂) =

(
3
3

)
, f(x2, ξ̂) =

(
3.5
4

)
, f(x3, ξ̂) =

(
5

3.5

)
,

f(x1, ξ̄) =

(
10
10

)
, f(x2, ξ̄) =

(
8
8

)
, f(x3, ξ̄) =

(
6
6

)
.

Then
Xnom = {x1}, X light,1 = {x2}, X light,2 = {x3}, Xwc = {x3}

This example is illustrated in Figure 2.

The next lemma analyzes what happens in the nominal scenario when lightly robust
efficient solutions and minmax efficient solutions are compared.

Lemma 13. Let ε ≥ 0 and x ∈ X light,ε. Then there does not exist x′ ∈ Xwc which is at
least as good as x with respect to fnom and dominates x with respect to fwc.

Proof. Let x′ ∈ Xwc and x ∈ X light,ε. Assume that fnom(x′) ≤ fnom(x). We know that
fnom(x) ≤ fnom(x̂) + ε for some x̂ ∈ Xnom. So fnom(x′) ≤ fnom(x̂) + ε holds. Hence,
x′ ∈ F light,ε(x̂) and due to x′ ∈ Xwc we conclude that x′ ∈ X light,ε(x̂), i.e., both x and
x′ are lightly robust efficient and consequently, do not dominate each other under fwc.
Thus, the lemma holds.
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Figure 2: Illustration of Example 2. Lemma 12 neither holds for ≺low nor can it be mirrored to the
nominal case for ≺upp and ≺low.

What we have learned about lightly robust efficient solutions. We sum-
marize our main findings with respect to lightly robust efficient solutions: First, the set of
lightly robust efficient solutions lies (in the worst case) always between the set of nominal
efficient and the set of worst case efficient solutions (see Lemma 10 and Lemma 12):

fwc(Xwc) ≺upp fwc(X light,ε2) ≺upp fwc(X light,ε1) ≺upp fwc(Xnom) (1)

for ε1 ≤ ε2. Hence, choosing lightly robust efficient solutions might be a good compromise
between nominal and minmax efficient solutions. Second, the larger ε is chosen, the more
robustness we gain.

For the nominal scenario, due to Lemma 10 and Lemma 11 we furthermore know that

fnom(Xnom) ≺upp fnom(X light,ε) ≺ fnom(Xnom) + {ε} (2)

where the second relation holds for both, the upper set less order ≺upp and the lower set
less order ≺low, which means that in the nominal scenario, the set of lightly robust efficient
solutions gets more similar to the set of nominal efficient solutions if ε is decreased.

4 Examples and Illustration

So far, we have analyzed the three different sets of nominal, lightly robust efficient and
minmax robust efficient solutions in the nominal case and in the worst case. In this
section, we illustrate our findings with some examples.

We first look at a simple problem where the uncertain parameter comes from an
interval uncertainty set.
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Figure 3: Evaluation in the nominal
case of Example 3
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Figure 4: Evaluation in the worst
case of Example 3

Example 3. 


min f1(x, ξ) = ξx,
f2(x) = x

s.t. −5 ≤ x ≤ 5



ξ∈[−1,3].

(3)

The nominal scenario in this example is ξ̂ = 1. The nominal efficient solution is Xnom =
{−5}. The minmax robust efficient solutions are Xwc = {x : x ∈ [−5, 0]}. Given ε = 2,
we have X light,2 = {x : x ∈ [−5,−3]}. Evaluating Xnom, X light, and Xwc in fnom, the
images are shown in Figure 3 and evaluating in fwc, the images are shown in Figure 4.

We observe that (1) holds and see that it cannot be strengthened even for linear prob-
lems with interval uncertainty. However, regarding (2) in this simple example, we have
that fnom(Xwc) ≺upp fnom(Xnom) and fnom(Xnom) ≺low fnom(Xwc). But also these
observations are not true in general. They do not even hold for the easiest case of

• a linear problem with a single variable

• whose feasible region is an interval

• and with only a single uncertain parameter in only one objective function

• and an interval as uncertainty set.

We illustrate this in the following counterexample with minor modification of (3):




min f1(x, ξ) = −ξx,
f2(x) = x

s.t. 0 ≤ x ≤ 5



ξ∈[−1,3],

(4)

where the nominal case is ξ̂ = 1. The nominal efficient solutions are Xnom = {x : x ∈
[0, 5]} and the minmax robust efficient solutions are Xwc = {0}. Evaluating them in fnom,
the images are shown in Figure 5. The figure shows that

fnom(Xwc) ≺upp fnom(Xnom) and fnom(Xnom) ≺low fnom(Xwc)

both do not hold.

Then we look at a bi-objective optimization problem given as follows.
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Figure 5: Evaluation in the nominal case of problem (4)

Example 4.




min f1(x, ξ1) = x2
1 + ξ1x

2
2,

f2(x, ξ2) = (ξ2x1 − 5)2 + (x2 − 5)2

s.t. 0 ≤ x1 ≤ 4
0 ≤ x2 ≤ 3,



ξ1∈U1,ξ2∈U2.

(5)

where U1 = {−6,−1, 0.5, 1} and U2 = {−2,−1, 1, 2} and the nominal values for the un-

certain parameters are ξ̂1 = −1 and ξ̂2 = 1. This problem is a variation of the Binh and
Korn function (Binh & Korn, 1997), which minimizes two quadratic functions within the
given ranges of decision variables. In this problem, ξ1 and ξ2 are independent from each
other and there exists a single worst case scenario ξ1 = 1, ξ2 = −2.

Figure 6 shows Xwc, X light,15, X light,10, and Xnom evaluated in the nominal case. We
can see the relationship

fnom(Xnom) ≺upp fnom(X light,10) ≺upp fnom(X light,15) ≺ fnom(Xnom) + 15.

Figure 7 illustrates Xwc, X light,15, X light,10, and Xnom evaluated in the worst case. In
the figure, we observe the results of Lemma 10 and Lemma 12, namely,

fwc(Xwc) ≺upp fwc(X light,15) ≺upp fwc(X light,10) ≺upp fwc(Xnom).

In this specific problem, we have

fnom(X light,10) ≺upp fnom(X light,15) ≺upp fnom(Xwc)

even though it does not hold in general. The example also illustrates that fnom(Xnom) ≺low
fnom(X light,ε) and fnom(Xnom) ≺low fnom(Xwc) need not hold.

We also observe that a solution in Xnom can have very bad objective function values
in the worst case compared to lightly and minmax robust efficient solutions. On the other
hand, gaining minmax robust efficiency comes at a high price: there has to be a great
sacrifice on the nominal quality of the solutions as the minmax robust efficient solutions
are very far from the nominal solutions when evaluated in the nominal case. In this
example, lightly robust solutions are a good compromise.
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Figure 6: Evaluation in the nominal
case of Example 4
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Figure 7: Evaluation in the worst
case of Example 4

The example also illustrates a general property, namely, which of the depicted sets
form “efficient fronts”, i.e., in which cases the depicted points do not dominate each
other. This holds per definition for fnom(Xnom), fwc(Xwc), and fwc(X light,ε), i.e., we
obtain a nominal efficient front for the nominal robust efficient points and a minmax
robust efficient front for the minmax robust efficient and for the different lightly robust
efficient points. In contrast to this, Figures 7 shows that the points in fwc(Xnom) may
dominate each other.

Next, we consider a more interesting example where the worst case depends on the
solution x.

Example 5. 


min f1(x, ξ1) = ξ1x1 + x2,
f2(x, ξ2) = −x1 − ξ2x2

s.t. −2 ≤ x1 ≤ 2
−2 ≤ x2 ≤ 2,



ξ=(ξ1,ξ2)T∈U.

(6)

The uncertainty set U is:

U =

{(
−3
1.5

)
,

(
−1
2

)
,

(
1

2.5

)}
.

The nominal values for the uncertain parameters are ξ̂1 = −1 and ξ̂2 = 2. Finding a
worst case for some given and feasible x in this example can be written as the following
two-objective optimization problem




max f1(x, ξ1) = ξ1x1 + x2,
f2(x, ξ2) = −x1 − ξ2x2

s.t. ξ ∈ U


 . (7)

We see that the worst case depends on the solution x: for −2 ≤ x1 ≤ 0 and 0 ≤ x2 ≤ 2,
the worst case is ξ = (−3, 1.5)T . For −2 ≤ x1 ≤ 0 and −2 ≤ x2 ≤ 0, there does not
exist a single worst case. We observe that no pair of the three scenarios in U dominates
each other, hence the set of non-dominated solutions of the maximization problem (7)
is U itself. Similarly, for 0 ≤ x1 ≤ 2,−2 ≤ x2 ≤ 0, the worst case is ξ = (1, 2.5)T

and for 0 ≤ x1 ≤ 2 and 0 ≤ x2 ≤ 2, the set of worst-case scenarios is again U . Since
we use point-based minmax robust efficiency, we need not worry about the existence of
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Figure 8: Evaluation in the nominal
case of Example 5

Figure 9: Evaluation in the worst
case of Example 5

multiple worst-case scenarios, but compute the worst-case objective function fwc by taking
the componentwise maximum. We hence receive

Xnom = {(2, x2) : −2 ≤ x2 ≤ 2},
X light,1 = {(1, x2) : −2 ≤ x2 ≤ 2} ∪ {(x1, 2) : 1 ≤ x1 ≤ 2},

Xwc = {(0, x2) : −2 ≤ x2 ≤ 2} ∪ {(x1, 2) : 0 ≤ x1 ≤ 2}.

Figure 8 shows Xnom, X light,1 and Xwc in the nominal case and Figure 9 shows the three
sets of solutions in the worst case. As shown in Figure 8, this example is in accordance
with our results of Section 3:

fnom(Xnom) ≺upp fnom(X light,1) ≺upp fnom(Xnom) + 1.

In this example we also receive fnom(X light,1) ≺upp fnom(Xwc) although it does not hold
for general problems. Figure 9 illustrates our results on the worst case evaluation, namely

fwc(Xwc) ≺upp fnom(X light,1) ≺upp fwc(Xnom).

The example has a particularity, namely the solution x = (2, 2)T is a common element
in all three sets of solutions and hence naturally a good choice as a final solution to
gain best possible objective function values in both, the nominal and the worst case. The
solution is indicated with a square in the two figures. We also observe that fnom(Xnom)
is not that far from the minmax robust efficient front in the worst case while the two
sets differ significantly in the nominal case. Hence, in this example, much quality in the
nominal case has to be sacrificed to gain minmax robust efficiency, i.e., the price to gain
robustness is rather high.

The observations on the examples motivate us to further analyze the trade-off between
nominal quality and robustness of the solutions in the next section.

5 Utilizing the price of robustness in decision making

The price of robustness has been popular in single-objective robust optimization since its
introduction in (Bertsimas & Sim, 2004). In this section we propose how to measure the
price of robustness in a multiobjective setting, i.e., how much nominal quality has to be
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sacrificed in order to receive a minmax robust efficient solution. We first define the price of
robustness, and then sketch ideas on how to utilize it to support a decision maker to find
a desired solution which is satisfactory in both respects, nominal quality and robustness.

Definition 14. Let x ∈ X be a feasible solution to PU . We define its price of robustness
as the objective value of the minimization problem

price(x) = inf
x̄∈Xwc

‖fnom(x)− fnom(x̄)‖∞,

where ‖ · ‖∞ denotes the infinity-metric.

price(x) quantifies the loss of nominal quality when moving x to a closest robust
efficient solution x̄ and hence measures the costs of making x robust.

Note that a minimum of the above optimization problem need not always exist, not
even under the assumptions we stated in Section 2. However, a minimum exists for
linear optimization problems and if the objective function fwc is continuous and strictly
quasiconcave (Benson & Sun, 1999). For x ∈ Xnom being efficient in the nominal case,
price(x) tells us how much nominal quality we have to sacrifice in one of the objective
functions if we replace x by its (closest) robust efficient solution. Instead of using ‖·‖∞ we
could also use another norm, e.g., ‖ · ‖1 would give us the average nominal quality over all
objective functions we lose when changing x to a minmax robust efficient solution. While
the norm to be used may depend on the particular application, we suggest the ‖·‖∞ norm
due to its inherent robustness (namely to consider the worst case) and due to its relation
to the definition of light robustness which will be used below. Also, its meaning can be
easily explained to a decision maker. In practice, if ‖ · ‖∞ is used, the objective function
values should be normalized. Clearly, a point x ∈ X is minmax robust efficient if and only
if its price of robustness is zero, i.e.,

x ∈ Xwc ⇐⇒ price(x) = 0.

Geometrically, for computing price(x), we have to project fnom(x) on the set fnom(Xwc),
i.e., the closest minmax robust efficient solution to x is chosen from Xwc with respect to
‖ · ‖∞. The situation is illustrated in Figure 10. In the figure, the nominal efficient solu-
tion x is marked by a bullet and the closest minmax robust efficient solution is marked
by a filled square on the robust efficient front. The big square centered in the nominal
efficient solution shows the unit ball of ‖ · ‖∞. While price(x) is easy to read off from such
a figure in the biobjective case it is hard to compute in a general setting. The approach
may be splitted into two steps: First, compute Xwc and find a suitable representation of
Y := fnom(Xwc), second project y := fnom(x) on Y . Note that in combinatorial opti-
mization problems Xwc is finite and often of moderate size. In this case, price(x) can be
computed by enumeration approaches. Doing this in one common step instead of splitting
the computation into two steps may be possible by using methods to optimize over an
efficient set. Optimization over an efficient set focuses on optimizing a function with the
efficient set of a multiobjective optimization problem as feasible set. The methods are
roughly developed from two directions: one is replacing the efficient set by optimality con-
ditions and the other is to search for the solution in the objective space see e.g., (Benson,
1984; Yamamoto, 2002). Since price(x), ‖ · ‖∞ is nonlinear (but convex), approaches as
in (Thoai, 2000; Yamada, Tanino, & Inuiguchi, 2000, 2001; Benson, 2012; Horst, Thoai,
Yamamoto, & Zenke, 2007) can be used.

We finally describe a special case in which the price of robustness can be computed.
Assume that X = {x ∈ IRn : Ax ≤ b} is a polyhedron with a matrix A ∈ IRm,n, and
that fi(·, ξ) for i = 1, ..., k is linear in x for every fixed ξ and that fi(x, ·) for i = 1, ..., k
is either increasing or decreasing in ξ. Furthermore, let U be an interval uncertainty set
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Figure 10: A nominal efficient solu-
tion and the closest minmax robust
efficient solution
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Figure 11: The gain of robustness of
the two solutions in Figure 10

([ξ, ξ]). Then we can reformulate price(x) to an optimization problem with linear objective
function and both linear and quadratic constraints:

Since fi(x, ·) for i = 1, ..., k are either increasing or decreasing, we know that fwc
i (x)

for i = 1, ..., k is either fi(x, ξ) or fi(x, ξ) for i = 1, ..., k. Due to the linearity for fixed ξ
we can rewrite (Pwc) as

(Pwc
linear) = {min Cx : Ax ≤ b},

where C is the matrix which contains the worst case coefficients of the objective functions.
Note that the price of robustness can be reformulated as:

min α
s.t. x̄ ∈ Xwc

fnom
i (x)− fnom

i (x̄) ≤ α for i = 1, ..., k
−fnom

i (x) + fnom
i (x̄) ≤ α for i = 1, ..., k

(8)

Using the well-known optimality conditions for multiobjective linear optimization (see
e.g., (Ehrgott, 2005)), x ∈ X is efficient to (Pwc

linear) if and only if there exist λ ∈ IRk and
µ ∈ IRm such that ATµ = λTC and λTCx = bTµ. Thus, we can rewrite (8) as:

min α
s.t. Ax̄ ≤ b

ATµ = λTC
λTCx̄ = bTµ
fnom
i (x)− fnom

i (x̄) ≤ α for i = 1, ..., k
−fnom

i (x) + fnom
i (x̄) ≤ α for i = 1, ..., k

µ ≥ 0
λ > 0.

(9)

The relation to lightly robust efficient solutions is analyzed next. In Lemma 31 in (Ide
& Schöbel, 2016) it was shown that there exists ε ≥ 0 such that there exists a solution x to
(P light,ε(x̂)) which is minmax robust efficient, i.e., with price(x) = 0. We strengthen this
result by specifying the size of ε and we extend it to the situation in which all solutions
to (P light,ε(x̂)) are minmax robust efficient.

Lemma 15. Let x̂ ∈ Xnom be given. Then the following hold.
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• ε ≥ price(x̂) if and only if there is a solution x to (P light,ε(x̂)) with price(x) = 0.

• Let ε ≥ supx̄∈Xwc ‖fnom(x̄)−fnom(x̂)‖∞. Then all solutions x to (P light,ε(x̂)) satisfy
price(x) = 0.

Proof. • Let ε ≥ price(x̂), i.e., there exists x̄ ∈ Xwc with ‖fnom(x̂)− fnom(x̄)‖∞ ≤ ε.
Due to x̄ being minmax robust efficient, it is an optimal solution to (P light,ε(x̂))
and satisfies price(x̄) = 0. On the other hand, let x be an optimal solution to
(P light,ε(x̂)) with price(x) = 0, i.e., x ∈ Xwc. Since x ∈ F light,ε(x̂) we furthermore
know ‖fnom

i (x)− fnom
i (x̂)‖∞ ≤ ε for all objectives i = 1, . . . , k. We hence conclude

ε ≥ ‖fnom(x)− fnom(x̂)‖∞ ≥ inf
x̄∈Xwc

‖fnom(x̄)− fnom(x̂)‖∞ = price(x̂).

• Now let ε ≥ supx̄∈Xwc ‖fnom(x̄) − fnom(x̂)‖∞, i.e., all x̄ ∈ Xwc satisfy ‖fnom(x̂) −
fnom(x̄)‖∞ ≤ ε, hence Xwc ⊆ F light,ε(x̂). This implies X light,ε = Xwc. Con-
sequently, every solution x to (P light,ε(x̂)) is minmax robust efficient, and hence
price(x) = 0.

The lemma identifies a relation between the price of robustness and the value of ε to be
chosen in (P light,ε(x̂)). This relation is used in the following two-stage strategy to assist a
decision maker. There is also an interesting relation between the price of robustness and
the maximum regret (as defined in (Rivaz et al., 2016)). Here, given a solution x, the
regret of x is defined as the maximum over all objective functions, uncertain parameters
and feasible solutions,

regret(x) = max{fi(x, ξ)− f(y, ξ) : y ∈ X, ξ ∈ U , i = 1, ..., k}.

The following lemma shows that the regret of a minmax robust efficient solution x̄ is an
upper bound on the price of robustness of all solutions x that dominate x̄ in the nominal
case.

Lemma 16. Let x̄ ∈ Xwc, x ∈ X and fnom(x) ≤ fnom(x̄). Then regret(x̄) ≥ price(x).

Proof. Let x̄ ∈ Xwc, x ∈ X and fnom(x̄) ≥ fnom(x). Then we have:

regret(x̄) = max{fi(x̄, ξ)− fi(y, ξ) : y ∈ X, ξ ∈ U , i = 1, ..., k}
≥ max{|fi(x̄, ξ)− fi(y, ξ)| : y ∈ X, ξ ∈ U , f(x̄, ξ) ≥ f(y, ξ), i = 1, ..., k}
= max{‖f(x̄, ξ)− f(y, ξ)‖∞ : y ∈ X, ξ ∈ U , f(x̄, ξ) ≥ f(y, ξ)}
≥ ‖fnom(x̄)− fnom(x)‖∞ since ξ ∈ U , x ∈ X and fnom(x̄) ≥ fnom(x)

≥ inf
ȳ∈Xwc

‖fnom(ȳ)− fnom(x)‖∞

= price(x).

In practice it is preferable to choose a solution which is good in both respects, i.e., with
respect to fnom and with respect to fwc. To find such a solution, we propose the following
strategies that can be followed by a decision maker. In both strategies, we assume that
the set of nominal efficient solutions Xnom and the set of minmax robust efficient solutions
Xwc are already known.
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A two-stage strategy. In the two-stage strategy, the decision maker may first con-
centrate on the nominal scenario and identify a most interesting nominal efficient solution
x̂ based on her/his preferences. This may be done with an interactive method, see e.g.,
(Branke, Deb, Miettinen, & Slowinski, 2008; Miettinen, 1999; Steuer, 1986). The inter-
active solution process also identifies what kind of values of the objective functions are
desirable according to the preferences of the decision maker. In the second stage, the deci-
sion maker then takes robustness into account as follows: For the identified x̂ we compute
its price of robustness price(x̂) together with its closest minmax robust efficient solution
x̄. If a closest solution does not exist we take x̄ with ‖fnom(x̄) − fnom(x̂)‖∞ ≈ price(x̂).
Since x̄ is the closest solution from Xwc to x̂ it is likely that it is not too far from the
preferences of the decision maker that have been already used in the nominal case. The
price of robustness price(x̂) is the nominal quality the decision maker has to sacrifice for
changing x̂ to this minmax robust efficient solution. This value should be compared with
the gain of robustness which quantifies how much better the robust efficient solution is in
the worst case than the nominal efficient solution.

Definition 17. Let x̂ ∈ Xnom be the solution of the decision maker’s interest and x̄ ∈ Xwc

be a closest solution to x̂ under fnom (i.e., the minmax robust efficient solution found when
computing price(x̂)). We define the gain of robustness of x̄ as the distance between fwc(x̂)
and fwc(x̄)

gain(x̂, x̄) = ‖fwc(x̂)− fwc(x̄)‖∞.

While the gain of robustness can be calculated for any pair of a feasible solution and
a robust efficient solution, our aim here is to compare the nominal efficient solution of the
decision maker’s interest and the nearest minmax robust efficient solution. As an example
to illustrate the gain of robustness, we use again the example depicted in Figure 10. Here
we identified x̂ and x̄ such that fnom(x̄) is the closest point to fnom(x̂) on fnom(Xwc). In
Figure 11 both solutions, x̂ and x̄ are evaluated under fwc. The dotted square illustrates
the ‖ · ‖∞ norm used to determine the distance ‖fwc(x̂) − fwc(x̄)‖∞. Note that in the
figure, the ranges of fwc

1 (Xnom) and fwc
2 (Xnom) are different which causes the dotted

square looking like a dotted rectangle.
Being presented the values of price(x̂) and of gain(x̂, x̄), the decision maker can then

decide if it is worth to change the nominal solution from x̂ to x̄.

• If price(x̂) is large or if gain(x̂, x̄) is small, the decision maker should keep the
nominal efficient solution x̂.

• It is preferable to change to x̄ if the decision maker is very risk-averse, i.e., the
decision maker wants to be prepared for the worst case, or if price(x̂) is small, or if
gain(x̂, x̄) is large compared to price(x̂).

• If the decision maker does not want to sacrifice that much nominal quality but still
wants to increase the robustness of the solution x̂, (s)he can specify a maximum
tolerable loss ε on the nominal quality by defining εi ≤ price(x̂), and solve (P light,ε)
to find a lightly robust efficient solution x which

– is still close to x̂, i.e., it keeps the preferences of the decision maker in the
nominal scenario,

– has loss of nominal quality of at most ε,

– and is the most robust solution among all solutions in (P light,ε), i.e. probably
more reliable than x̂.

Lexicographic strategies. If the decision maker has no specific preferences but is
either mainly interested in the nominal quality or mainly interested in minimizing the
risk, it might be appropriate to choose the nominal efficient solution x̂ ∈ Xnom which
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has the smallest price of robustness (in the first case) or to compute the robust efficient
solution x̄ ∈ Xwc which is closest to the set of nominal efficient solutions Xnom (in the
second case). In mathematical terms we solve

min
x̂∈Xnom

min
x̄∈Xwc

‖fnom(x̂)− fnom(x̄)‖∞

and receive a pair of closest points x̂ and x̄. A risk-averse decision maker (without specific
preferences otherwise) might then choose x̄ while a decision maker mainly interested
in nominal quality, again without specific preferences, can choose x̂. The optimization
problem can be geometrically solved when the sets Xwc and Xnom are known, but is
otherwise hard to compute.

Illustration of the strategies

Example 6. We continue Example 5 to illustrate the two-stage strategy.
We selected three different nominal efficient solutions (which might reflect the indi-

vidual preferences for three different decision makers): x1 is the lexicographic solution
with respect to fnom

1 , x2 is some solution in which the decision maker wants to have a
good value of fnom

2 but a not too bad value of fnom
1 and x3 is the lexicographic solution

with respect to fnom
2 . We computed the price of robustness price(xl), l = 1, 2, 3 as illus-

trated in Figure 12. The figure shows the closest minmax robust efficient solutions for
each of the three selected nominal efficient solutions. In this example, their price-values
are: price(x1) = 2, price(x2) = 1.5, and price(x3) = 0 and the corresponding gains are
gain(x1, x̄1) = 2, gain(x2, x̄2) = 1, and gain(x3, x̄3) = 0. Based on the values above,
the decision maker can then make the choices described in the strategy. In our case,
the decision maker with x3 as her or his most preferred nominal efficient solution might
be extremely satisfied because the nominal efficient solution is a minmax robust efficient
solution. On the other hand, the decision makers having preferences for x̂1 and x̂2 ob-
serve that gain(x̂i, x̄i) is rather low compared to what they would have to pay. If not
over-conservative they probably keep the nominal efficient solutions found or they solve a
light-robust problem with smaller values of ε.

This could be the case for the decision maker who first identified x̂1 as the most inter-
esting solution. He chooses ε < price(x̂1), e.g., ε = 1. We solve (P light,1(x̂1)) to find the
lightly robust efficient solutions. In this problem, we have only one lightly robust efficient
solution as illustrated in Figure 13. In the figure, the chosen nominal efficient solution is
marked with a black circle and the resulting lightly robust efficient solution is marked with
a blue square. The two dotted black lines represent the region fnom(x̂1) + {1}.

We finally illustrate the lexicographic strategy. The closest pair of points on the
two fronts is depicted in Figure 12 as well. In this case, both sets have a common point,
i.e., their distance is zero. We see that x3 is the nominal efficient solution with the lowest
price of robustness (a good choice for a decision maker who mainly cares for nominal
quality) while it is also the minmax robust efficient solution which is closest to the set of
nominal efficient solutions, i.e., a good choice for a risk-averse decision maker.

6 Conclusion

In this paper, we formally analyzed nominal efficient solutions, minmax robust efficient
solutions, and lightly robust efficient solutions to multiobjective optimization problems
with uncertain parameters in the objective functions. We evaluated and compared the
three different sets of solutions under the nominal scenario and in the worst case. We found
that in the worst case, the set of minmax robust efficient solutions upper dominates the sets
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Figure 12: Nominal efficient solutions
and their closest minmax robust effi-
cient solutions.
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Figure 13: Chosen nominal efficient
solution and the lightly robust effi-
cient solution.

of nominal and lightly robust efficient solutions. We also found that in the nominal case,
the set of nominal efficient solution upper dominates the set of lightly robust solutions
and the set of lightly robust efficient solutions upper and lower dominates the shifted
(with respect to ε) outcomes of the lightly robust efficient solutions. We illustrated their
relationships with different examples.

In order to further analyze the trade-off between nominal quality and robustness, we
proposed a measure for the price of robustness. We also analyzed its relationship to lightly
robust efficient solutions. For supporting the decision maker to find a solution which is
satisfactory in both nominal quality and robustness, we developed two strategies based
on the price of robustness. We illustrated the utilization of the strategies in an example.

The two strategies rely on the measure price of robustness which can be computed if the
set of minmax robust efficient solutions is known and small. Research on the computation
of Xwc is ongoing and has been sketched in the introduction. Future research directions
are iterative methods and approximations of Xwc. Computing the price of robustness
opens other lines of research. Both, two-step procedures using projection techniques as
well as optimizing over the efficient set are possible approaches. Efficient algorithms for
finding the pair of a nominal efficient solution and a minmax robust efficient solution of
smallest distance is also a topic for future research.

Our current measure price of robustness depends on a fixed nominal efficient solution.
Another interesting future research direction is to quantify the price of robustness of
the whole set of nominal efficient solutions. It is also interesting to investigate a relative
version of the price of robustness, i.e., how much percent of the nominal objective function
value has to be sacrificed. Finally, note that light robustness and the price of robustness
is only one way of dealing with the trade-off between robustness and nominal quality.
Other possibilities include regret robustness (Rivaz et al., 2016) or to use multi-attribute
utility functions, see e.g., (Keeney & Raiffa, 1993) to decide on the robustness level of the
solution to be chosen. The relation to the trade-off specified in this paper seems to be an
interesting topic, maybe starting with the single-objective case.
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cations. In R. K. Ahuja, R. Möhring, & C. Zaroliagis (Eds.), Robust and
online large-scale optimization (p. 1-27). Springer.

Miettinen, K. (1999). Nonlinear multiobjective optimization. Kluwer Academic
Publishers.

Mordechai, I. H. (1986). The domination property in multicriteria optimization.
Journal of Mathematical Analysis and Applications, 114 (1), 7-16.

Rahimi, M., & Soleimani-Damaneh, M. (2018). Robustness in deterministic vector
optimization. Journal of Optimization Theory and Applications, 179 (1),
137–162.

Rahimi, M., & Soleimani-Damaneh, M. (2020). Characterization of the norm-
based robust solutions in vector optimization. to appear. Journal of Opti-
mization Theory and Applications.
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