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Abstract

Consider a large credit portfolio of defaultable obligors in a turbulent market. Accord-

ingly, the credit quality process of each obligor is described by a stochastic differential equa-

tion consisting of a drift term reflecting the trend, an individual volatility term reflecting the

idiosyncratic risk, and a common volatility term reflecting the systematic risk. Moreover, for

each obligor a market beta is used to measure its loading on the systematic risk. The obligor

defaults at the first passage time of the credit quality process. We approximate the portfolio

loss as the portfolio size becomes large. For the usual case where the individual defaults

do not become rare, we establish a limit theorem for the portfolio loss, while for the other

case where the individual defaults become rare, which is due to portfolio effect, we establish

an asymptotic estimate for its tail probability. Both results show that the portfolio loss is

driven by the systematic risk, while this driving force is amplified by the market beta. As

an application, we derive asymptotic estimates for the value at risk and expected shortfall

of the portfolio loss. Moreover, we implement intensive numerical studies to examine the

accuracy of the obtained approximations and conduct some sensitivity analysis.

Keywords: OR in banking, credit quality process, systematic risk, market beta, contin-

uous Ocone martingale

1 Introduction

Default risk is manifested by losses arising from obligors’ failure to fulfill their contractual

obligations, where the general term obligor represents a person or an entity with contractual

obligations or a defaultable asset. The severe and far-reaching impacts of the collapse of the

financial system during the financial crisis of 2007–2009 have stimulated the need to effectively

∗Corresponding author: Zhiwei Tong
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quantify and manage portfolio losses due to defaults. A precursor to a financial crisis is usually

that markets become turbulent, generating large and random fluctuations. Kritzman and Li

(2010) and Aghion et al. (2017) conduct empirical studies of turbulence in financial downturns.

In this paper, we consider a large credit portfolio of defaultable obligors in a turbulent mar-

ket. In the current global economic environment, interest rates remain record low while in sharp

contrast markets exhibit high volatilities. To address these new challenges, when introducing a

credit quality process for each individual obligor, we focus primarily on the volatility process.

Accordingly, the credit quality process of each obligor is described by a stochastic differential

equation (SDE) consisting of a drift term reflecting the trend, an individual volatility term

reflecting the idiosyncratic risk that affects this specific obligor only, and a common volatility

term reflecting the systematic risk that is inherent in the entire market and not subject to di-

versification. Hence, the credit portfolio overall is dominated by the systematic risk. Moreover,

a market beta is used to measure each individual obligor’s loading on the systematic risk.

We describe the default of each obligor through the first passage time of its credit quality

process, which is consistent with a majority of works in the credit risk literature; see e.g. Hilscher

and Wilson (2017). The obligor’s expected loss is determined by the exposure at default (EAD),

the loss given default (LGD) as the percentage of the EAD, and the probability of default (PD).

We are concerned with the total amount of losses from defaults of a large credit portfolio

of defaultable obligors, and we conduct an asymptotic study as the portfolio size tends to

infinity. In the real world, large financial institutions like banks and credit card companies

can easily have a portfolio consisting of tens of thousands of obligors. Assume that individual

default thresholds are negative, determined by a negative deterministic function (called the

representing default threshold) subject to individual variations. We consider two cases. In the

first case, the representing default threshold does not vary with the portfolio size, which is to

describe that the individual defaults, though still with different probabilities, do not become

rare as the portfolio expands. In the second case, the representing default threshold diverges,

which is to describe that the individual defaults become rare as the portfolio expands. While

the former is often a standard assumption in the study of portfolio losses, the latter is more

relevant for a large portfolio in which the rarity of defaults results from the portfolio effect,

namely the decrease in overall risk due to the increase in the portfolio size. See Bassamboo

et al. (2008) and Tang et al. (2019) for related discussions and see also Appendix B for two

motivating examples illustrating that individual defaults can become rare under portfolio effect.

As our main results, for the former case we establish a limit theorem for the portfolio loss
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showing that the average loss converges weakly to a random variable expressed as a conditional

expectation given the systematic risk, while for the latter case we establish an asymptotic

estimate for the tail probability of the portfolio loss expressed as the tail of the systematic

risk variable. Then we apply this asymptotic estimate to approximate the value at risk (VaR)

and expected shortfall (ES) of the portfolio loss. Moreover, we implement intensive numerical

studies to demonstrate that the approximations obtained by our results fit well in the tail area

of the portfolio loss, and to test the sensitivity of the portfolio loss through its VaR and ES

with respect to certain risk parameters.

The asymptotic study of portfolio losses has an immediate implication for economic capi-

tal assessment, in particular under prudent regulatory frameworks in the current catastrophic

economic environment. For example, the Basel Committee on Banking Supervision (2019) stip-

ulates that banks’ default risk capital requirement must be based on a VaR model computed

weekly in a one-year horizon at a 99.9% confidence level, and that banks’ market risk capital re-

quirement must be based on an ES model computed on a daily basis at a 97.5% confidence level

according to the internal models approach. See Glasserman et al. (2007) for related discussions.

The topic of large portfolio losses has become increasingly interesting in the credit risk

literature in recent years. So far the study of this topic has been developed along directions of

both structural models and reduced-form models, and in each direction a great deal of attention

has been paid to common factors (including in particular the systematic risk) among all obligors.

Since the seminal work of Vasicek (1991), many researchers have carried out the study under

static structural settings; see Lucas et al. (2001), Gordy (2003), Dembo et al. (2004), Schloegl

and O’Kane (2005), Glasserman et al. (2007), Bassamboo et al. (2008), and Tang et al. (2019),

among others. In parallel, there is also a large number of works under continuous-time settings.

For example, Bush et al. (2011) consider a continuous-time structural model for a large portfolio

of credit risky assets with emphasis on the correlation with a market factor, and investigate the

large portfolio limit of this system through a stochastic partial differential equation. The work

is further extended by Bujok and Reisinger (2012) who introduce a jump part to the asset value

process. Since the establishment of a reduced-form model by Jarrow and Turnbull (1995), in the

study of large portfolio losses, numerous variants of this model have been proposed to capture

new features such as contagion, interaction, and self-excitation; see Giesecke and Weber (2004,

2006), Giesecke et al. (2013, 2015), Dai Pra et al. (2009), Dai Pra and Tolotti (2009), Hambly

and Søjmark (2019), and Hambly and Kolliopoulos (2020), among others.

Methodologically, most of the above-mentioned works employ classical limit theorems in-
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cluding the law of large numbers (LLN), the central limit theorem (CLT), and the large deviation

principle (LDP) to derive approximations for large portfolio losses. Computationally, as large

portfolio losses are rare and, hence, difficult to observe under the naive Monte Carlo method,

importance sampling becomes a commonly used alternative to increase the efficiency of simula-

tion. See Glasserman and Li (2005), Glasserman et al. (2008), Bassamboo et al. (2008), Chan

and Kroese (2010), Liu (2015), and Sirignano and Giesecke (2018), among others.

Our contribution to this literature is threefold. First, in terms of modeling, to reflect the

turbulent market condition we model the credit quality process of each individual obligor by a

SDE consisting of a drift term, an individual volatility term, and a common volatility term. We

also allow for obligor-specific loadings on the systematic risk by using market betas. Second,

methodologically, as we consider a large portfolio, those obligor-specific variables are randomized

to a sequence of independent and identically distributed (i.i.d.) vectors. In other words, this

randomization procedure identifies a continuum, which is well justified by the LLN, to underlie

the large number of obligors of different risk types. Hence, the credit portfolio under our

investigation can potentially be heterogeneous; see a detailed discussion in Subsection 2.2.

Third, our main results are approximations to the portfolio loss, showing that the large portfolio

loss is driven by the systematic risk while this driving force is amplified by the market beta.

This aligns with an observation of Acharya et al. (2017) on the financial crisis of 2007–2009

that “financial institutions had levered up on similar large portfolios of securities and loans that

faced little idiosyncratic risk, but large amounts of systematic risk.”

The rest of the paper consists of five sections. Section 2 depicts a continuous-time structural

model for the credit quality processes; Section 3 presents our main results; Section 4 implements

intensive numerical studies; Section 5 concludes the paper with some remarks; finally, the

Appendix collects the proofs of the three main results and constructs two motivating examples.

2 The credit risk model

2.1 Credit quality processes

Throughout the paper, we use
(

Ω,F , {Ft}t≥0 , P
)

to denote a filtered probability space that

accommodates all sources of randomness. The filtration {Ft}t≥0, which represents the informa-

tion available in the market, satisfies usual hypotheses, i.e., F0 contains all P null sets of F and

{Ft}t≥0 is right-continuous.

Consider a credit portfolio of n defaultable obligors. For each obligor i, i = 1, ..., n, its credit
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quality process is described by a stochastic process {Xi,t}t≥0, which starts with Xi,0 = 0 and

evolves according to the SDE

dXi,t = µi,tdt+ σi,tdWi,t + βiσ0,tdW0,t, t ≥ 0, (2.1)

where {µi,t}t≥0 is a real-valued drift process, {Wi,t}t≥0 and {W0,t}t≥0 are standard Brownian

motions, {σi,t}t≥0 and {σ0,t}t≥0 are nonnegative square-integrable volatility processes, all as-

sumed to be {Ft}t≥0 adapted, and finally βi is a nonnegative random variable, interpreted as

market beta. Written in the form of stochastic integrals, the credit quality process defined by

the SDE (2.1) equals

Xi,t =

∫ t

0
µi,sds+

∫ t

0
σi,sdWi,s + βi

∫ t

0
σ0,sdW0,s := Mi,t + Ii,t + βiSt. (2.2)

As (2.2) shows, the volatility of each credit quality process consists of two parts, namely an

individual part {Ii,t}t≥0 reflecting the idiosyncratic risk that affects obligor i only and a common

part {St}t≥0 reflecting the systematic risk that is inherent in the entire market. The use of a

market beta βi allows each obligor i to be exposed to the systematic risk to a different extent.

We will focus on the systematic part {St}t≥0, which is a culprit behind the turbulent market. In

particular, in our second main result we will assume ξT in (3.1), which integrates the systematic

variance process, to be heavy tailed. In the current global economic environment, interest rate

levels remain record low while in sharp contrast the markets exhibit high volatilities.

Our model (2.1) for a credit quality process slightly generalizes the one used by Hilscher and

Wilson (2017) for the logarithms of unlevered asset values. See also Packham et al. (2013) and

Cantia and Tunaru (2017), who model credit quality processes as similar stochastic integrals in

the study of credit gap risk associated with many credit derivatives. All such models descend

from the seminal structural model of default by Merton (1974). To see this clearly, like Hilscher

and Wilson (2017) we may interpret {Xi,t}t≥0 in (2.2) as the logarithm of an unlevered asset

value. Broadly speaking, such continuous-time structural models incorporating various betas

have been widely applied under the capital asset pricing model (CAPM) framework and the

issue of model calibration has been extensively discussed; see e.g. Campbell et al. (2001) for

an empirical study of the volatilities of common stocks at the market, industry, and firm levels.

Similarly to Tang et al. (2019), we assume that the individual default threshold of obligor i

takes the form `ifn for i = 1, . . . , n, where fn is a negative deterministic function, identical across

the portfolio, representing the scale of the default thresholds, while each `i is a nonnegative

random variable capturing an individual variation from the representing default threshold fn.

Alternatively, one may directly work on the individual default probabilities by assuming them
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to be exogenously given and then determining corresponding individual default thresholds. The

two approaches are actually equivalent, but for our study of the portfolio loss under n →

∞, it is more convenient to work on the representing default threshold fn. Also note that

the credit quality processes will be made identically distributed, and for this reason we must

include individual variation factors `i in default thresholds to allow different individual default

probabilities. We make the representing default threshold fn depend on n so that the individual

default probabilities also vary with the portfolio size n.

Then each obligor i defaults during a fixed time horizon [0, T ] for some T > 0 if the event

Di,T =

(
inf

0≤t≤T
Xi,t ≤ `ifn

)
happens. In this way, obligor i’s default indicator (DI) is 1Di,T and PD is equal to P (Di,T ). Note

that these individual PDs are allowed to be different thanks to the use of individual variations.

2.2 The portfolio loss

Recall the credit portfolio of n defaultable obligors described above. For each obligor i, denote

by θi its LGD, which can be decomposed into θi = ϑi(1−Ri) with ϑi denoting its EAD and Ri

its recovery rate (RR). Collectively, the portfolio loss due to defaults by time T is given by

Ln =

n∑
i=1

θi1Di,T . (2.3)

Our research target is the limiting behavior of Ln as the portfolio size n tends to ∞.

We make standing assumptions below:

Assumption 2.1 Recall our model (2.1) for the credit quality processes:

(a) The obligor-specific vectors ({Mi,t, Ii,t}0≤t≤T , θi, βi, `i), i = 1, . . . , n, form a sequence of

i.i.d. versions of a generic vector ({Mt, It}0≤t≤T , θ, β, `);

(b) The common part {St}0≤t≤T is independent of the obligor-specific vectors;

(c) The three generic variables θ, β, and ` are nonnegative, but other than this they are

completely general.

Some remarks follow. In Assumption 2.1(a), the generic obligor-specific vector process

{Mt, It}0≤t≤T consists of two stochastic integrals, Mt =
∫ t

0 µsds and It =
∫ t

0 σsdWs, t ≥ 0,

which are independent of the systematic process St =
∫ t

0 σ0,sdW0,s, t ≥ 0. By Assumption

2.1(a,b), the credit quality processes {Xi,t}0≤t≤T , i = 1, . . . , n, conditional on {St}0≤t≤T are
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i.i.d., so that our model falls into the category of conditionally independent structural models,

which is prevailing in credit risk modeling.

Assumption 2.1(a) ensures the homogeneity of the portfolio. Nevertheless, the general struc-

ture of the generic vector ({Mt, It}0≤t≤T , θ, β, `) represents a continuum to underlie different

obligors and, hence, it potentially allows for heterogeneity of the credit portfolio. We illustrate

this in the following example; similar discussions can be found in Section 2 of Glasserman et al.

(2007), Section 3 of Bassamboo et al. (2008), and Section 2 of Tang et al. (2019).

Example 2.1 Consider a finite partition of the index set as {1, . . . , n} =
⋃k
j=1Nj for a fixed

finite positive integer k. Assume that each sub-portfolio approximately occupies a positive

proportion of the whole portfolio; precisely,

lim
n→∞

|Nj |
n

= qj ∈ (0, 1), j = 1, . . . , k, (2.4)

where each |Nj | denotes the cardinality of the set Nj and the limits satisfy
∑k

j=1 qj = 1.

Further assume that within each sub-portfolio the triplets (θi, βi, `i), i ∈ Nj , are identical to

a deterministic triplet, say, (θ∗j , β
∗
j , `
∗
j ). In this way, the portfolio is composed of a finitely

many homogenous sub-portfolios but overall is heterogenous. On the other hand, (2.4) actually

introduces a joint discrete distribution for (θ, β, `),

P
(
(θ, β, `) = (θ∗j , β

∗
j , `
∗
j )
)

= qj , j = 1, . . . , k,

which stands for a continuum for the n obligors. In other words, as n becomes large, upon a

randomization procedure, the whole portfolio may be thought of as composed of obligors with

(θi, βi, `i), i = 1, . . . , n, identical in distribution to (θ, β, `) introduced above. This reduces to

our situation under Assumption 2.1(a).

In the literature, for tractability both EAD and RR are often assumed to be independent

random variables or even deterministic; see Glasserman et al. (2007), Liu (2015), and Cantia

and Tunaru (2017), among many others. However, there is strong empirical evidence that EAD,

LGD, and DI are dependent on each other. Actually, along this direction numerous models have

been proposed to capture the interdependence between them; see e.g. Altman (2005), Frye and

Jacobs (2012), and Jankowitsch et al. (2014). Our model well accommodates this feature by

allowing complete flexibility for the interdependence between EAD, LGD, and DI. Furthermore,

as in Assumption 2.1(c), we treat the LGD θ, the market beta β, and the variation factor ` as

three general random variables of an arbitrary dependence structure.
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The RR is the ratio of the recovery value to the EAD. Some works evaluate the EAD as

the face value of the asset at default and the recovery value as the market value of the asset

soon after default, while others evaluate the EAD as the outstanding value at default and the

recovery value as the discounted value of all cash flows recovered. Based on the evaluation

approaches to employ, there are mainly two types of RR: the market RR and the workout (also

called ultimate) RR; see e.g. Calabrese and Zenga (2010) for a comprehensive review. RR

can be larger than 100% due to differences in coupon rates (high) and prevailing interest rates

(low), as pointed out by Schuermann (2004) and Mora (2012), or less than 0 if the sum of the

discounted outgoing payments is higher than that of the incoming payments, as observed by

Grunert and Weber (2009). Our work can be extended to allow RR to go above 100% or below

0 but this will make the presentation longer, which we skip here.

In this paper, we study the limiting behavior of the portfolio loss Ln in two cases. The first

is a usual case in which the individual defaults do not become rare as the portfolio expands,

which we realize by letting the representing default threshold fn invariant with n. Our focus

is on the second case in which the individual defaults become rare as the portfolio expands,

which we realize by assuming fn ↓ −∞ as n → ∞. As our main contributions, for the first

case we establish a limit theorem for Ln, and for the second case we establish an asymptotic

estimate for the tail probability of Ln. Both results show that the portfolio loss Ln is driven by

the systematic volatility process and amplified by the market beta.

We end this section with a remark. Our model (2.3) for the portfolio loss ignores the time

effect of defaults. To address this, we need to define individual default times. For each obligor i,

its default time is the first passage time τi(fn) = inf{t ≥ 0|Xi,t ≤ `ifn}. Then we can consider

the present value of the portfolio loss

L̃n =
n∑
i=1

exp

{
−
∫ τi(fn)

0
rtdt

}
θi1(τi(fn)≤T ),

where {rt}t≥0 is a risk-free interest rate process. The method developed in this paper does not

help much on the study of the limit behavior of L̃n except for numerical solutions.

3 Main results

We study the limiting behavior of the portfolio loss (2.3) over a fixed time horizon [0, T ] for

some T > 0. The integral

ξT =

∫ T

0
σ2

0,sds, (3.1)
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which is finite almost surely, integrates the systematic variance process. We simply call ξT the

systematic risk variable.

3.1 When the individual defaults do not become rare

In our first main result below, we consider a usual case in which the individual defaults, though

still with different probabilities, do not become rare as the portfolio expands, which we realize

by letting fn ≡ f < 0.

Theorem 3.1 Consider the credit risk model introduced in Section 2 in which the representing

default threshold fn ≡ f < 0 is fixed. If 0 < E[θ] <∞, then we have the following convergence

in distribution:

Ln
n

d→ E
[
θ1(inf0≤t≤T (Mt+It+βSt)≤`f)

∣∣∣FST ] := zS , n→∞. (3.2)

The random variable zS above is a functional of {St}0≤t≤T . The obtained convergence in

distribution means that, for any fixed level b ∈ R (or, more precisely, for 0 < b < E[θ]) at which

zS is continuously distributed,1 we have

lim
n→∞

P

(
Ln
n
≤ b
)

= P
(
zS ≤ b

)
. (3.3)

We learn from Theorem 3.1 that the limiting behavior of the portfolio loss is driven by the

systematic volatility process {σ0,t}t≥0 via St =
∫ t

0 σ0,sdW0,s for 0 ≤ t ≤ T while this driving

force is amplified by the market beta β.

3.2 When the individual defaults become rare

Now we extend the study to a more important case in which the individual defaults become

rare as the portfolio expands. As we target a large credit portfolio, the portfolio effect, namely

the decrease in overall risk due to the portfolio size increase, may becomes considerable. To

capture this, we follow Bassamboo et al. (2008) and Tang et al. (2019) to assume that the

individual PD tends to 0 as n→∞, which we realize by assuming fn ↓ −∞. In Appendix B we

construct two motivating examples to illustrate that individual defaults can become rare under

portfolio effect.

1Although we believe that for most practical cases this functional zS should be continuously distributed over

the range [0, Eθ], unfortunately we have not been able to establish a general result to ensure this. Nevertheless,

the convergence in distribution is often sufficient for applications.
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To state our second main result, Theorem 3.2 below, we need to prepare some preliminaries.

First, a positive measurable function h on R+ is said to be regularly varying at ∞ with index

α ∈ R, written as h ∈ RVα, if

lim
x→∞

h(xy)

h(x)
= yα, y > 0.

When α = 0, this defines a slowly varying function at ∞. See Bingham et al. (1987) and

Resnick (1987) for textbook treatments of regular variation.

In condition (a) of Theorem 3.2, we assume that F ξT ∈ RV−α for some α > 0, which means

that ξT has a power-like tail as

F ξT (x) = x−αl(x), x ≥ 0,

for some slowly varying function l. Popular distributions with a power-like tail include Pareto,

Student’s t, Burr, Benktander Type I and II, Loggamma, and α–stable with 0 < α < 2; see

Embrechts et al. (1997). This assumption describes the situation that the systematic risk

inherent in the market becomes dominating and drives the credit quality of individual obligors

to deteriorate, causing turbulence to the market. Such an assumption has been used by e.g.

Mikosch and Rezapour (2013), who study a heavy-tailed stochastic volatility model and discover

implications of a regularly varying stochastic volatility for exhibiting extremal clustering. See

also Wang et al. (2011) for an empirical study of a heavy-tailed stochastic volatility model.

Next, Theorem 3.2 involves an auxiliary function

ψ(x) = E
[
θ1(βx≥`)

]
, x ≥ 0. (3.4)

Due to the nonnegativity of (θ, β, `) in Assumption 2.1(c), the function ψ(x) is non-decreasing in

x over R+ with its infimum ψ∗ := infx≥0 ψ(x) = E
[
θ1(`=0)

]
and supremum ψ∗ := supx≥0 ψ(x) =

E
[
θ1(β>0)∪(β=`=0)

]
. If both β and ` are strictly positive, then the range (ψ∗, ψ

∗) will be identical

to (0, E[θ]). Introduce the set

∆ψ = {x ∈ R+ : ψ∗ < ψ(x) < ψ∗} , (3.5)

which may be empty if, for example, both β and ` are degenerate. To exclude such trivialities,

assume that the set ∆ψ is non-empty; subsequently, it must be a proper finite or infinite interval.

The closure of the set ∆ψ, denoted by cl (∆ψ), forms the effective domain of the function ψ.

In condition (d) of Theorem 3.2, the function ψ is required to be continuous and strictly

increasing over cl (∆ψ). This is to ensure that for any b ∈ (ψ∗, ψ
∗) the ordinary inverse ψ←(b)

exists and falls into ∆ψ. We remark that condition (d) is easily verifiable in concrete cases.
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In particular, a sufficient condition is that the conditional distribution of β
` given (` > 0) is

continuous and strictly increasing over its range.

Theorem 3.2 Consider the credit risk model introduced in Section 2 in which the representing

default threshold fn varies such that fn ↓ −∞ as n→∞. In addition to Assumption 2.1, assume

that the systematic volatility process {σ0,t}t≥0 is independent of the corresponding Brownian

motion {W0,t}t≥0.2 Further assume the following:

(a) F ξT ∈ RV−α for some α > 0;

(b) 0 < E
[
θ2
]
<∞;

(c) nF ξT
(
f2
n

)
→∞ as n→∞;

(d) the set ∆ψ defined in (3.5) is non-empty and the function ψ defined in (3.4) is continuous

and strictly increasing over cl (∆ψ).

Then it holds for any fixed level b ∈ (ψ∗, ψ
∗) ⊂ (0, E[θ]) that

lim
n→∞

P (Ln > nb)

F ξT (f2
n)

= E
[
|ε|2α

]
(ψ←(b))−2α , (3.6)

where ε is an independent standard normal random variable.

Theorem 3.2 gives an asymptotic estimate for the tail probability P (Ln > nb), which lends

us the same insight as Theorem 3.1. Precisely, the tail behavior of the portfolio loss Ln is

driven by the systematic volatility process {σ0,t}t≥0 via ξT =
∫ T

0 σ2
0,sds while this driving force

is amplified by the market beta β.

3.3 Approximations for the VaR and ES risk measures

We apply Theorem 3.2 to derive asymptotic estimates for the VaR and ES risk measures of

the portfolio loss. These are two of the most important tail risk measures, widely used in the

insurance and financial industries. Formally, for a general risk variable L its VaR and ES at

level 0 < q < 1 are given by, respectively,

VaRq(L) = inf{x ∈ R|FL(x) ≥ q} and ESq(L) =
1

1− q

∫ 1

q
VaRp(L)dp.

Note that ESq(L), as the arithmetic average of VaRp(L) over q < p < 1, is greater (hence,

more conservative) than VaRp(L). In the literature, the ES risk measure has different names

subject to some subtleties, such as tail value at risk (TVaR), conditional value at risk (CVaR),

2This is to ensure that the stochastic integral process St =
∫ t
0
σ0,sdW0,s, t ≥ 0, is a continuous Ocone

martingale, which is required in the proof.
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conditional tail expectation (CTE), and tail conditional expectation (TCE). See Chapter 2 of

McNeil et al. (2015) for more discussions on the two risk measures.

Consider the case with a representing default threshold varying with the portfolio size as

specified in Theorem 3.2. In this case, to be consistent with the current prudent regulatory

frameworks, we choose a high confidence level qn. Precisely, assume that

lim
n→∞

1− qn
F ξT (f2

n)
= cE

[
|ε|2α

]
(3.7)

for some constant c > 0, which makes Theorem 3.2 immediately applicable.

Theorem 3.3 Under the conditions of Theorem 3.2, choose a confidence level qn ∈ (0, 1) sat-

isfying (3.7) for some constant c > 0. Then we have

lim
n→∞

1

n
VaRqn (Ln) = ψ

(
c−

1
2α

)
(3.8)

and

lim
n→∞

1

n
ESqn (Ln) =

∫ 1

0
ψ
(

(cx)−
1
2α

)
dx, (3.9)

where the function ψ is defined in (3.4).

4 Numerical studies

4.1 Model specifications

This subsection describes model setups for our numerical studies. Since the pioneering work of

Barndorff-Nielsen and Shephard (2001), it has become popular to use a Lévy-driven Ornstein–

Uhlenbeck (OU) process or one of its numerous extensions to model volatility changes underlying

a financial asset. See Benth (2011), Muhle-Karbe et al. (2012), and Barndorff-Nielsen and

Stelzer (2013), among others, who apply OU processes to model the continuous-time volatilities

of financial asset values and point out that the OU-type models are capable of reproducing most

of stylized features of volatilities observed from empirical studies such as jumps, clustering, and

heavy tails. In particular, Packham et al. (2013) apply this idea to model the variance process

of a credit quality process. Following this trend of research, in our numerical studies we model

each of the systematic and idiosyncratic variance processes by an OU process.

Recall the SDE (2.1) for the credit quality process of each individual obligor. Denote by

Vi,t = σ2
i,t and V0,t = σ2

0,t, t ≥ 0, the idiosyncratic and systematic variance processes both of

which are modeled by OU processes. We now focus on the systematic variance process. Assume

12



that it starts with V0,0 = v0,0 > 0 and evolves according to

dV0,t = −γV0,tdt+ dJt, t ≥ 0, (4.1)

where γ > 0 is a constant, and {Jt}t≥0 is a compound Poisson process of the standard form

Jt =

Λt∑
i=1

Yi

with {Λt}t≥0 a Poisson process with intensity λ > 0, and {Y1, Y2, . . .} a sequence of i.i.d.

nonnegative random variables with a generic version Y independent of {Λt}t≥0. This model

is adopted from (26) of Barndorff-Nielsen and Shephard (2001) with the background driving

Lévy process specified to be a compound Poisson process. The SDE (4.1) gives a closed-form

expression for V0,t as

V0,t = v0,0e
−γt + e−γt

∫ t

0
eγsdJs, t ≥ 0,

which is thus a positive process. From now on, the time horizon is restricted to [0, 1]. In this

way, the systematic risk variable ξ = ξ1 defined in (3.1) assumes a closed-form expression

ξ =

∫ 1

0
V0,tdt

=
v0,0

γ

(
1− e−γ

)
+

1

γ

∫ 1

0

(
1− e−γ(1−t)

)
dJt

=
v0,0

γ

(
1− e−γ

)
+

1

γ

∞∑
i=1

Yi

(
1− e−γ(1−Ai)

)
1(Ai≤1), (4.2)

where each Ai is the ith arrival time of the Poisson process {Λt}t≥0.

Assume that Y has a regularly varying tail, i.e. F Y ∈ RV−α for some α > 0. By the

one-dimensional version of Theorem 2.1 of Resnick and Willekens (1991), we have

lim
x→∞

F ξ(x)

F Y (x)
=

1

γα

∞∑
i=1

E
[(

1− e−γ(1−Ai)
)α

1(Ai≤1)

]
=

1

γα

∫ 1

0

(
1− e−γ(1−t)

)α ∞∑
i=1

P (Ai ∈ dt)

=
λ

γα

∫ 1

0

(
1− e−γ(1−t)

)α
dt

=
λ

γα

∫ 1

0

(
1− e−γt

)α
dt, (4.3)

where the third step is due to
∑∞

i=1 P (Ai ≤ t) = E[Λt] = λt. This leads to F ξ ∈ RV−α and

thus Theorem 3.2 becomes applicable. By the way, the discussion above can be easily extended

to the case that {Jt}t≥0 is a subordinator with a regularly varying Lévy measure; actually,

Corollary 2.1 of Hao and Tang (2012) readily gives a result regarding this.
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Under the assumption that the systematic variance process V0,t = σ2
0,t for t ≥ 0 follows an

OU process of form (4.1), we can simulate the systematic risk variable ξ based on its closed-form

expression in (4.2). Indeed, a sample size Nξ = 2×107 of ξ only takes a few seconds to generate,

and thus, the estimate of the tail probability of the portfolio loss given by Theorem 3.2 can be

obtained in the blink of an eye. We assume that the idiosyncratic variance processes Vi,t = σ2
i,t

for t ≥ 0, i = 1, . . . , n, are also OU of form (4.1) and independent of the systematic counterpart.

We adopt the well-known Vasicek model, which still falls into the OU family, to describe the

individual drift processes. For each obligor i, we assume that its drift process {µi,t}t≥0 satisfies

the SDE

dµi,t = a(µ̄− µi,t)dt+ σ(µ)dW
(µ)
i,t , t ≥ 0,

where a is the speed of reversion, µ̄ captures the long term mean, σ(µ) measures the instanta-

neous volatility, and
{
W

(µ)
i,t

}
t≥0

is an independent standard Brownian motion. Given an initial

value µi,0 = µ0, the process has an explicit expression as

µi,t = µ0e
−at + µ̄

(
1− e−at

)
+ σ(µ)e−at

∫ t

0
easdW

(µ)
i,s , t ≥ 0.

To generate samples of large portfolio losses, we need to simulate paths of dependent credit

quality processes. This is done by applying the Euler–Maruyama method with a partition of

the interval [0, 1] into 103 equal subintervals. Direct simulation of the paths is time-consuming,

while the asymptotic estimates obtained by Theorems 3.1–3.3 all allow a significant reduction

in computation time, which demonstrates one of the strengths of our results.

We summarize the model specifications and simulation sizes in Table 4.1.

Table 4.1 is here.

4.2 Convergence in distribution and sensitivity analysis with respect to µ0

Recall Theorem 3.1. Now assume that the LGD θ is independent of the systematic part FST
and the other idiosyncratic parts ({Mt, It}0≤t≤T , β, `). In Table 4.1, we set both the LGD θ and

the market beta β to be exponentially distributed with mean 1 and set the individual variation

factor ` = 1. Then the convergence in (3.2) becomes

Ln
n

d→ P

(
inf

0≤t≤1
(Mt + It + βSt) ≤ f

∣∣∣∣FS1 ) . (4.4)

In this subsection, we examine the convergence of (4.4) by drawing Q-Q plots of its both sides.
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Individual drift processes

dµi,t = a(µ̄− µi,t) + σ(µ)dW
(µ)
i,t µ̄ = µ0 ∈ [0, 0.05], a = 0.15, σ(µ) = 0.015

Idiosyncratic variance processes

dVi,t = −γiVi,tdt+ dJi,t vi,0 = 0.02, γi = 2

Systematic variance process

dV0,t = −γV0,tdt+ dJt v0,0 = 0.02, γ = 2

Jump parts

{Ji,t}t≥0 compound Poisson λi = 1, F Y (y) =
(

1
100y+1

)αi
for y ≥ 0, αi = 4

{Jt}t≥0 compound Poisson λ = 4, F Y (y) =
(

1
100y+1

)α
for y ≥ 0, α = 1

Other parameters

LGD θ exponential with mean 1

Time horizon T = 1

Market beta β exponential with mean 1

Individual variation ` 1

Simulation sizes

Portfolio loss Ln NL = 105 or 5× 106

Systematic risk variable ξ Nξ = 2× 107

The probability in (4.4) NE = 2× 103

Table 4.1: This table specifies the parameters of the credit quality processes (including the drift

processes, the idiosyncratic and systematic volatility processes, the LGD, the market beta, and

the individual variation factor), as well as the simulation sizes throughout the numerical studies.
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For the left-hand side of (4.4), we use a double-layer Monte-Carlo simulation to draw a

sample of size NL from the portfolio loss Ln. In detail, we first generate a sample path of

{St}0≤t≤1 and then generate a sample of size n from ({Mt, It}0≤t≤1, θ, β). These paths are

jointly used to generate n credit quality processes, producing a portfolio of size n. Based on

(2.3), we obtain a simulated value of Ln. By repeating this procedure NL times, we obtain a

desired sample from Ln.

To simulate the right-hand side of (4.4), we first generate a sample path of {St}0≤t≤1 and

then for this path we generate a sample of size NE from ({Mt, It}0≤t≤1, θ, β). These paths are

jointly used to generate NE credit quality processes, some of which lead to defaults. Then by

calculating the percentage of this sample causing defaults we obtain an estimate of the right-

hand side of (4.4). Note that the sample size NE used in this step can be much smaller than the

portfolio size n, showing that the computational cost for a large portfolio can be much reduced

by the approximation. Also repeating NL times, we end up with a sample of size NL from the

approximation.

In order to identify scenarios with reasonable PDs, we simulate the individual PD for various

values of the threshold f and the initial value µ0 of the drift processes. Table 4.2 shows that

the individual PD drops to around 1% when the default threshold decreases to −1.6. Different

values of µ0 only cause small changes to the PD, especially when f is small. This is intuitively

clear as in Table 4.2 the values of µ0 are negligible compared to the values of f .

Table 4.2 is here.

@
@
@
@@

µ0

f
−0.4 −0.6 −0.8 −1.0 −1.2 −1.4 −1.6 −1.8 −2.0

0 0.1150 0.0630 0.0390 0.0260 0.0184 0.0137 0.0104 0.0081 0.0065

0.01 0.1125 0.0619 0.0384 0.0257 0.0181 0.0135 0.0103 0.0081 0.0064

0.02 0.1096 0.0607 0.0377 0.0252 0.0179 0.0131 0.0100 0.0079 0.0063

0.03 0.1068 0.0595 0.0371 0.0249 0.0177 0.0130 0.0099 0.0078 0.0063

0.04 0.1046 0.0584 0.0366 0.0245 0.0175 0.0128 0.0098 0.0077 0.0062

0.05 0.1020 0.0575 0.0360 0.0242 0.0172 0.0128 0.0097 0.0076 0.0062

Table 4.2: This tabulates the simulated individual PDs for f varying between −0.4 and −2.0

with a stepsize 0.2 and for µ0 varying between 0 and 0.05 with a stepsize 0.01. The simulation

size for Ln is NL = 5× 106.
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From Table 4.2, we pick up four combinations for (f, µ0), which are (−0.6, 0.02), (−1.0, 0.03),

(−1.6, 0), and (−2.0, 0.05), corresponding to the individual PDs between 0.62% and 6.07%. The

portfolio size n is chosen to be 2× 104. Figure 4.1 gives the Q-Q plots corresponding to these

four combinations. These Q-Q plots show that the approximation works nicely in mimicking

the distribution of the portfolio loss.

Figure 4.1 is here.
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(a) Q-Q plot when f = −0.6 and µ0 = 0.02
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(b) Q-Q plot when f = −1.0 and µ0 = 0.03
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(c) Q-Q plot when f = −1.6 and µ0 = 0
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(d) Q-Q plot when f = −2.0 and µ0 = 0.05

Figure 4.1: These Q-Q plots of Ln
n and its approximation are used to examine the convergence

of (4.4), for various combinations of the default threshold f and the initial value µ0 of the drift

processes. The simulation sizes for Ln
n and its approximation are identically set to NL = 105.

The individual PDs are simulated to be 6.07%, 2.49%, 1.04%, and 0.62%, respectively.

Now we conduct a sensitivity analysis of the portfolio loss with respect to µ0. We approxi-

mate the tail probability P (Ln > nb) by simulating the right-hand side of (4.4) with a sample

size NL. While fixing the default threshold f = −1.6, we vary the values of µ0 and b. The

results are summarized in Table 4.3. We see that different values of µ0 only cause small changes

to the tail probability P (Ln > nb), which can be explained in the same way as for Table 4.2.
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Table 4.3 is here.

@
@
@
@@

µ0

b
0.2 0.3 0.4 0.5 0.6

0 (0.0125) (0.0067) (0.0038) (0.0021) (0.0011)

0.025 −3.34% −3.32% −3.49% −4.03% −4.62%

0.05 −4.32% −4.18% −4.30% −4.82% −5.61%

Table 4.3: This tabulates values of the approximated tail probability by (4.4) for µ0 = 0, 0.025,

and 0.05, with b varying from 0.2 to 0.6 with a stepsize 0.1. The values in the parentheses

are the approximated values of the tail probability when µ0 = 0. The values on the rows of

µ0 = 0.025 and 0.05 represent the percentage changes from the values for µ0 = 0. The sample

size for Ln is set to NL = 5× 106.

4.3 An asymptotic estimate for the tail probabilities

Theorem 3.2 obtains an asymptotic estimate for the tail probability P (Ln > nb) given by rela-

tion (3.6), which we now rewrite as

P (Ln > nb) ≈ F ξ(f2
n)E

[
|ε|2α

]
(ψ←(b))−2α . (4.5)

In this subsection, we check the accuracy of this asymptotic estimate. We will show that, for

various values of the level b, the asymptotic estimate improves as the portfolio size n increases,

as it should be.

We start from determining a proper divergence rate for fn. Under the model specifications

in Table 4.1, relation (4.3) shows that F ξ and F Y are asymptotically equivalent and, hence,

F ξ ∈ RV−α with α = 1. The condition nF ξ
(
f2
n

)
→ ∞ roughly means that the divergence

fn ↓ −∞ is of order not higher than n0.5. We choose fn = −0.15n0.25, so that the individual PD

in a portfolio of size n = 104 is around 1%. We consider two representative portfolio sizes n = 104

and 2 × 104, and simulate corresponding individual PDs using a sample of size NL = 5 × 106.

When the initial value µ0 is 0, the individual PDs are 1.16% and 0.81%, respectively; when µ0

is raised to 0.05, the individual PDs are slightly reduced to 1.11% and 0.78%, respectively.

We empirically estimate P (Ln > nb) and F ξ(f
2
n) by a sample of size NL = 5× 106 from Ln

and a sample of size Nξ from ξ, respectively. As specified in Table 4.1, both the LGD θ and the

market beta β follow the exponential distribution with mean 1, and the variation factor ` = 1.
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Then the auxiliary function (3.4) is simplified to

ψ (x) = E
[
θ1(βx≥`)

]
= e−

1
x .

Thus, ψ←(b) = − 1
log b for 0 < b < 1. Finally, we compute the ratio of both sides of (4.5), which

should be close to 1 according to Theorem 3.2.

Figure 4.2(a) visualizes how much the estimated value given by (4.5) deviates from the

simulated value of P (Ln > nb) for a portfolio of size n = 2 × 104 when µ0 = 0. The shaded

region in this subfigure covers values within 1±5% times of the simulated values of P (Ln > nb).

Figure 4.2(b), which plots the ratios of the simulated values to the asymptotically estimated

values of P (Ln > nb), supplements Figure 4.2(a) with ratios for more scenarios. Overall, the

estimates corresponding to the larger portfolio size n = 2 × 104 are more accurate. Figure

4.2(b) also shows that the ratio curves for µ0 = 0.05 are lower than the corresponding ones for

µ0 = 0. The reason is that the raise of µ0 from 0 to 0.05 represents an improvement in the

credit quality, which decreases the simulated value of P (Ln > nb) but does not influence the

asymptotic estimate.

One may observe that, as the level b increases from 0.10 to 0.90, the performance of the

asymptotic estimate first improves and then deteriorates. Our simulation study does not cover

those values of b too close to 0 or E[θ] = 1, for which the performance will become poor due

to the rarity of either (Ln ≤ nb) for b close to 0 or (Ln > nb) for b close to 1. When b is small,

random perturbations in the idiosyncratic processes may have a non-negligible contribution to

the tail probability, causing the asymptotic result to underestimate P (Ln > nb). This effect is

less significant when the portfolio size n is larger. When b = 0.9, the tail probability could be as

low as 10−4. In this case, the observed large fluctuations in the ratios are caused by simulation

errors and can be offset by increasing the sample size NL.

Figure 4.2 is here.

4.4 Asymptotic estimates for the VaR and ES

In this subsection, we check the accuracy of the asymptotic estimates for the VaR and ES of the

portfolio loss obtained by Theorem 3.3. The VaR and ES of the portfolio loss are empirically

estimated by a sample of size NL = 5× 106 from Ln. We adopt the L-estimators introduced in

Section 9.2.6 of McNeil et al. (2015). For a given level q, the L-estimator V̂aRq(Ln) is given by

the qth sample quantile, and the L-estimator ÊSq(Ln) is the average of those sample points not

less than V̂aRq(Ln).
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Figure 4.2: These subfigures show the accuracy of the asymptotic estimate for P (Ln > nb) by

relation (4.5). The level b in both subfigures takes values between 0.1 and 0.9 with a stepsize

of 0.02. The quantities P (Ln > nb) and Fξ(f
2
n) are simulated at the sizes NL = 5 × 106 and

Nξ = 2 × 107, respectively. The first subfigure is plotted for a portfolio of size n = 2 × 104, in

which the drift processes have the same initial value µ0 = 0.
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Now we work on the asymptotic estimates. Set fn = −0.15n0.25 as in Subsection 4.3. For a

level q of practical interest, assume (3.7), that is,

1− q
F ξ(f2

n)
= cE

[
|ε|2α

]
.

Similarly to before, the tail probability F ξ(f
2
n) is estimated by a sample of size Nξ from ξ. The

value of the constant c can thus be properly determined. Then the asymptotic estimates given

by (3.8)–(3.9) are readily obtained numerically.

We consider three typical confidence levels q = 99%, 99.5%, and 99.9% for three portfolio

sizes n = 5 × 103, 104, and 2 × 104. For two initial values µ0 = 0 and 0.05 of the drift

processes, the simulation results are summarized in Tables 4.4–4.5. One can find that the

asymptotic estimates given by Theorem 3.3 are very accurate, even for a smaller portfolio size

like n = 5× 103. In view of this, when conducting the sensitivity analysis of the risk measures

in the next subsection, we directly apply these asymptotic estimates.

Tables 4.4–4.5 are here.

VaR ES

q 99% 99.5% 99.9% 99% 99.5% 99.9%

simulated 0.3192 0.4384 0.6830 0.4777 0.5832 0.7773

n = 5× 103 estimated 0.3132 0.4401 0.6927 0.4797 0.5899 0.7859

ratio 1.0192 0.9962 0.9859 0.9959 0.9887 0.9891

simulated 0.2577 0.3760 0.6406 0.4207 0.5322 0.7458

n = 104 estimated 0.2494 0.3746 0.6446 0.4193 0.5344 0.7503

ratio 1.0329 1.0036 0.9934 1.0034 0.9959 0.9940

simulated 0.1990 0.3126 0.5884 0.3615 0.4752 0.7091

n = 2× 104 estimated 0.1904 0.3095 0.5918 0.3590 0.4762 0.7104

ratio 1.0453 1.0101 0.9943 1.0070 0.9980 0.9981

Table 4.4: This tabulates the simulated values of 1
nVaRq(Ln) and 1

nESq(Ln), their asymptotic

estimates given by relations (3.8)–(3.9), as well as the ratios of the simulated to corresponding

estimated values. We set the default threshold fn = −0.15n0.25, the initial value µ0 = 0, and

the sample size NL = 5× 106 for Ln.
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VaR ES

q 99% 99.5% 99.9% 99% 99.5% 99.9%

simulated 0.3157 0.4356 0.6812 0.4751 0.5818 0.7776

n = 5× 103 estimated 0.3132 0.4401 0.6927 0.4797 0.5899 0.7859

ratio 1.0079 0.9898 0.9833 0.9906 0.9864 0.9894

simulated 0.2541 0.3723 0.6364 0.4170 0.5286 0.7430

n = 104 estimated 0.2494 0.3746 0.6446 0.4193 0.5344 0.7503

ratio 1.0186 0.9939 0.9873 0.9946 0.9892 0.9902

simulated 0.1977 0.3103 0.5833 0.3585 0.4712 0.7027

n = 2× 104 estimated 0.1904 0.3095 0.5918 0.3590 0.4762 0.7104

ratio 1.0383 1.0028 0.9855 0.9987 0.9895 0.9891

Table 4.5: This tabulates the simulated values of 1
nVaRq(Ln) and 1

nESq(Ln), their asymptotic

estimates given by relations (3.8)–(3.9), as well as the ratios of the simulated to corresponding

estimated values. The settings are the same as those for Table 4.4, except that µ0 = 0.05.

4.5 Sensitivity analysis with respect to α, β, and `

Based on the asymptotic estimates by (3.8)–(3.9), we first conduct a sensitivity analysis of the

VaR and ES of the portfolio loss with respect to the regular variation index α of the systematic

risk variable ξ and the market beta β. In the baseline case, we have α = 1 and β exponentially

distributed with mean 1. Then we slightly alter α or the mean of β and monitor how much

the estimated values of the VaR and ES change. As α decreases, the systematic risk variable ξ

becomes more heavy tailed, and the risk measures are expected to increase. As the mean of β

increases, the portfolio becomes more exposed to the systematic risk, and the risk measures are

expected to increase as well. Tables 4.6–4.7 summarize the numerical results for a portfolio of

size n = 2× 104, confirming our intuitive analysis. In addition, the tables show that the higher

the confidence level q is, the more robust the risk measures become against the change in α or

β. Moreover, they also show that the ES is more robust than the VaR. Last, we can see clearly

that the regular variation index α of the systematic risk variable ξ plays a more important role

than the market beta β in the large portfolio losses.

Tables 4.6–4.7 are here.
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Parameter % change
Approximated VaR

99% 99.5% 99.9%

α

+2% −8.37% −6.78% −3.94%

+1% −4.54% −3.63% −2.06%

(α = 1) (0.1904) (0.3095) (0.5918)

−1% +4.66% +3.69% +2.05%

−2% +8.75% +6.94% +3.88%

E[β]

+2% +3.31% +2.33% +1.03%

+1% +1.66% +1.17% +0.52%

(E[β] = 1) (0.1904) (0.3095) (0.5918)

−1% −1.66% −1.18% −0.53%

−2% −3.33% −2.37% −1.06%

Table 4.6: This is a sensitivity test of the VaR based on Theorem 3.3 with respect to the regular

variation index α and the mean of the market beta E[β] changed by 1% or 2%.

A thorough investigation of the relative importance between α and β can be conducted. We

skip it to keep the paper short but would like to refer the reader to a recent work by Rabitti

and Borgonovo (2020).

We end our numerical studies with a sensitivity analysis of the VaR and ES of the portfolio

loss with respect to the percentage of obligors of low credit quality. So far, the variation

factor ` has been set to constant 1. In other words, all obligors in the portfolio have the same

PD. To allow obligors of different credit quality, we may vary the distribution of ` to capture

the heterogeneity. For this purpose, we consider a portfolio of size n = 2 × 104, in which a

proportion ρ of obligors have an identical default threshold −0.075n0.25, while the remaining

obligors have another identical default threshold −0.15n0.25. To reflect this, we consider the

representing default threshold to be −0.15n0.25, meanwhile assume that the variation factor `

follows a two-point distribution,

P (` = 0.5) = ρ, P (` = 1) = 1− ρ.

The auxiliary function ψ defined by (3.4) also changes accordingly. Clearly, the obligors with

` = 0.5 are more likely to default. Thus, one expects that, as ρ varies from 0 to 1, the VaR

and ES of the portfolio loss will both increase. Figure 4.3 plots the asymptotic estimates given

by relations (3.8)–(3.9) with respect to ρ. This figure shows that the VaR and ES increase
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Parameter % change
Approximated ES

99% 99.5% 99.9%

α

+2% −5.66% −4.68% −2.78%

+1% −3.02% −2.47% −1.44%

(α = 1) (0.3590) (0.4762) (0.7104)

−1% +3.05% +2.48% +1.42%

−2% +5.75% +4.68% +2.69%

E[β]

+2% +1.86% +1.38% +0.66%

+1% +0.94% +0.70% +0.33%

(E[β] = 1) (0.3590) (0.4762) (0.7104)

−1% −0.94% −0.70% −0.34%

−2% −1.90% −1.42% −0.68%

Table 4.7: This is a sensitivity test of the ES based on Theorem 3.3 with respect to the regular

variation index α and the mean of the market beta E[β] changed by 1% or 2%.

almost linearly with the proportion ρ of obligors with lower credit quality (or a higher default

probability). It also shows that the more conservative the risk measure is, the less sensitive it

is to a change in ρ.

Figure 4.3 is here.

5 Concluding remarks

We investigate the total amount of losses from defaults of a large credit portfolio in a turbulent

market. The credit quality process of each obligor consists of a drift term reflecting the trend,

an individual volatility term reflecting the idiosyncratic risk, and a common volatility term

reflecting the systematic risk. Market betas are used to describe obligor-specific loadings on

the systematic risk. As the portfolio expends, there are two cases. The first case is that the

individual defaults do not become rare, and for this case we establish a limit theorem for the

portfolio loss. The second case is that the individual defaults become rare, and for this case we

establish an asymptotic estimate for the tail probability of the portfolio loss. Both results show

that the portfolio loss is driven by the systematic risk, while this driving force is amplified by

the market beta.
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Figure 4.3: This figure plots the asymptotic estimates for the VaR and ES risk measures of

Ln
n by relations (3.8)–(3.9). The dashed lines correspond to the VaR and the dotted lines to

the ES, with different colors representing different levels. This portfolio of size n = 2 × 104

consists of obligors with different individual variation factors. For the representing threshold

fn = −0.15n0.25, the obligors with ` = 0.5 form a proportion ρ of the portfolio. The remaining

obligors have ` = 1.

Several extensions of our work are worthy of pursuit in the future. First, as seen from our

numerical studies, the asymptotic estimate obtained by Theorem 3.2 becomes unstable when

the level b is close to either the infimum ψ∗ or the supremum ψ∗ of the function ψ. Extra efforts

need to be taken to deal with such cases. Moreover, when b is above ψ∗, the LLN approach

does not work anymore. In a future work, we will give such challenging cases an in-depth

investigation by employing CLT and LDP approaches instead. Second, our model describes a

high volatility environment and our main discovery is that the portfolio loss is driven by the

systematic risk contained in the volatility process. In doing so, however, the impacts of the

idiosyncratic parts are integrated out or even cancelled out. It would be interesting to analyze

the different roles of the individual drift processes, the idiosyncratic variance processes, and the

systematic variance process in causing large portfolio losses. Third, it is desirable to introduce

a jump component to the credit quality process (2.1) to reflect exogenous shocks to the market.

In this situation, our method relying on a continuous Ocone martingale does not work anymore
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and we need to develop new methods for both theoretical and numerical studies. Finally and

even more interestingly, the study of portfolio losses should be conducted under a chaotic market

condition to better capture radical and irrational changes in the market, namely the butterfly

effect, or more broadly, the systemic risk, of large credit portfolios. See Choi and Douady (2012)

for an observation of chaos during the financial crisis of 2007–2009, and see Barnett and Serletis

(2000) and Barnett et al. (2015) for literature reviews of the study of chaotic financial markets.
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Appendix A Proofs

Recall the credit quality process of each obligor i defined by the SDE (2.1) or its equivalent

stochastic integral form (2.2). Then the portfolio loss (2.3) becomes

Ln =

n∑
i=1

θi1(inf0≤t≤T (Mi,t+Ii,t+βiSt)≤`ifn). (A.1)

This expression serves as the starting point of the proofs of both Theorems 3.1 and 3.2.

Proof of Theorem 3.1

We start from (A.1) with fn ≡ f < 0. Given FST , the σ-field generated by the common part

{St}0≤t≤T , the credit quality processes {Xi,t}t≥0, i = 1, . . . , n, are i.i.d., and so are their running

minima. Conditioning all summands in (A.1) on FST and applying the LLN, we obtain that,

almost surely,

Ln
n
→ E

[
θ1(inf0≤t≤T (Mt+It+βSt)≤`f)

∣∣∣FST ] = zS , n→∞,
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where {Mt}0≤t≤T and {It}0≤t≤T are two generic stochastic integral processes as specified in

Assumption 2.1(a). Thus, for any b ∈ R, any small ε, δ > 0, and all large n, say n ≥ N0, where

N0 is a random variable measurable to FST , it holds that

1(zS≤b−δ) − ε ≤ P
(
Ln
n
≤ b
∣∣∣∣FST) ≤ 1(zS≤b+δ) + ε.

Thus, by Fatou’s lemma,

lim sup
n→∞

P

(
Ln
n
≤ b
)

= lim sup
n→∞

E

[
P

(
Ln
n
≤ b
∣∣∣∣FST)]

≤ E

[
lim sup
n→∞

P

(
Ln
n
≤ b
∣∣∣∣FST)]

≤ P
(
zS ≤ b+ δ

)
+ ε

→ P
(
zS ≤ b

)
, δ, ε ↓ 0.

In the same way,

lim inf
n→∞

P

(
Ln
n
≤ b
)
≥ P

(
zS < b

)
.

Thus, for b ∈ R at which the functional zS is continuously distributed, a combination of the

two results above gives (3.3). This concludes the claimed convergence in distribution.

Proof of Theorem 3.2

We still start from relation (A.1) and first derive an asymptotic lower bound for P (Ln > nb).

Note that

inf
0≤t≤T

(Mi,t + Ii,t + βiSt) ≤ sup
0≤t≤T

(Mi,t + Ii,t) + βi inf
0≤t≤T

St. (A.2)

Denote by Ci the sup term on the right-hand side. For the inf term on the right-hand side,

according to Proposition C.2 of Packham et al. (2013), the stochastic integral

St =

∫ t

0
σ0,sdW0,s, t ≥ 0,

due to the independence between {σ0,t}t≥0 and {W0,t}t≥0, is a continuous Ocone martingale;

that is, it can be expressed as a time-changed Brownian motion

St = B[S,S]t , t ≥ 0, (A.3)

for some Brownian motion {Bt}t≥0 independent of [S, S]t, t ≥ 0, the quadratic variation process

of St. Write

ξt = [S, S]t =

∫ t

0
σ2

0,sds, 0 ≤ t ≤ T,

27



which is consistent with the integral in (3.1). It follows from (A.3) that

inf
0≤t≤T

St
d
= −|ε|

√
ξT , (A.4)

where ε is an independent standard normal random variable. Note that FST is assumed to be

independent of the other sources of randomness in the credit quality process, and so is |ε|
√
ξT .

Thus, by (A.4) we can simply replace inf0≤t≤T St in (A.2) by −|ε|
√
ξT , and then derive from

(A.1) and (A.2) the following:

P (Ln > nb) ≥ P

(
1

n

n∑
i=1

θi1(Ci−βi|ε|
√
ξT≤`ifn) > b

)

=

∫ ∞
0

P

(
1

n

n∑
i=1

θi1(Ci
fn

+βix≥`i
) > b

)
P

(
|ε|
√
ξT

−fn
∈ dx

)
. (A.5)

For x ∈ R+, write

ψn(x) = E

[
1

n

n∑
i=1

θi1(Ci
fn

+βix≥`i
)
]

= E

[
θ1( C

fn
+βx≥`

)]
→ ψ(x), n→∞, (A.6)

where the limiting function ψ is defined in (3.4). By condition (d), ψ is continuous and strictly

increasing over cl (∆ψ), and hence it is continuous, non-decreasing, and bounded over R+.

Subsequently, the convergence in (A.6) is uniform in x ∈ R+. In view of the convergence in

(A.6), the integrand in (A.5) can be approximated by 1(ψ(x)>b), and for this reason we introduce

dn(x) = P

(
1

n

n∑
i=1

θi1(Ci
fn

+βix≥`i
) > b

)
− 1(ψ(x)>b).

In terms of dn(x), we rewrite (A.5) as

P

(
Ln
n
> b

)
≥
∫ ∞

0

(
1(ψ(x)>b) + dn(x)

)
P

(
|ε|
√
ξT

−fn
∈ dx

)
:= K1 +K2. (A.7)

By the condition F ξT ∈ RV−α,

K1 =

∫ ∞
0

1(ψ(x)>b)P

(
|ε|
√
ξT

−fn
∈ dx

)
= P

(
|ε|2ξT

(ψ←(b))2 > f2
n

)
∼ E

[
|ε|2α

]
(ψ←(b))−2α F ξT

(
f2
n

)
, (A.8)

where the last step is due to Breiman’s theorem; see Breiman (1965). For arbitrarily small δ > 0

such that ψ∗ < b− δ < b+ δ < ψ∗, further decompose K2 into three parts as

K2 =

(∫ ψ←(b−δ)

0
+

∫ ∞
ψ←(b+δ)

+

∫ ψ←(b+δ)

ψ←(b−δ)

)
dn(x)P

(
|ε|
√
ξT

−fn
∈ dx

)
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= K21 +K22 +K23. (A.9)

Now we deal with K21. By the uniformity of the convergence in (A.6), it holds for sufficiently

large n, and uniformly for all x ∈ (0, ψ←(b− δ)] that

ψn(x) ≤ ψ(x) +
δ

2
≤ b− δ

2
.

By Chebyshev’s inequality, the integrand dn(x) in K21 satisfies

dn(x) = P

(
1

n

n∑
i=1

θi1(Ci
fn

+βix≥`i
) > b

)

≤ P

(
1

n

n∑
i=1

θi1(Ci
fn

+βix≥`i
) − ψn(x) >

δ

2

)

≤ 4

nδ2
var

(
θ1( C

fn
+βx≥`

))
≤

4E
[
θ2
]

nδ2
. (A.10)

Under the condition that nF ξT
(
f2
n

)
→∞, we have

0 ≤ K21 ≤
4E
[
θ2
]

nδ2
= o(1)F ξT

(
f2
n

)
. (A.11)

A similar treatment can be applied to show that

K22 = o(1)F ξT
(
f2
n

)
. (A.12)

Actually, by the uniformity of the convergence in (A.6) again, it holds for sufficiently large n,

and uniformly for all x ∈ (ψ←(b+ δ),∞) that

ψn(x) ≥ ψ(x)− δ

2
≥ b+

δ

2
.

By Chebyshev’s inequality, the integrand dn(x) in K22 satisfies

|dn(x)| =

∣∣∣∣∣P
(

1

n

n∑
i=1

θi1(Ci
fn

+βix≥`i
) > b

)
− 1

∣∣∣∣∣
≤ P

(
1

n

n∑
i=1

θi1(Ci
fn

+βix≥`i
) − ψn(x) ≤ −δ

2

)

≤ 4

nδ2
var

(
θ1( C

fn
+βx≥`

))
≤

4E
[
θ2
]

nδ2
.

Then (A.12) follows similarly to (A.11). For K23, noticing that |dn(x)| ≤ 1, applying Breiman’s

theorem as in (A.8), we have

lim
δ→0

lim sup
n→∞

|K23|
F ξT (f2

n)
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≤ lim
δ→0

lim sup
n→∞

P
(
ψ←(b− δ) < |ε|

√
ξT

−fn ≤ ψ
←(b+ δ)

)
F ξT (f2

n)

= E
[
|ε|2α

]
lim
δ→0

(
(ψ←(b− δ))−2α − (ψ←(b+ δ))−2α

)
= 0. (A.13)

We conclude from (A.9)–(A.13) that

K2 = o(1)F ξT
(
f2
n

)
. (A.14)

and subsequently conclude from (A.7)–(A.8) and (A.14) that

lim inf
n→∞

P (Ln > nb)

F ξT (f2
n)

≥ E
[
|ε|2α

]
(ψ←(b))−2α .

The corresponding asymptotic upper bound can be derived by going exactly the same lines.

Indeed, this becomes sufficiently clear after noticing that, similarly to (A.2),

inf
0≤t≤T

(Mi,t + Ii,t + βiSt) ≥ inf
0≤t≤T

(Mi,t + Ii,t) + βi inf
0≤t≤T

St. (A.15)

Denote by C̃i the first term on the right-hand side above. Correspondingly, we define

ψ̃n(x) = E

[
1

n

n∑
i=1

θi1( C̃i
fn

+βix≥`i
)
]
, (A.16)

which also converges, uniformly over R+, to the limiting function ψ defined in (3.4).

Proof of Theorem 3.3

To prove relation (3.8), we start with

P (Ln > VaRqn (Ln)) ≤ 1− qn ≤ P (Ln ≥ VaRqn (Ln)) .

Divide each side by F ξT (f2
n), take the limit n→∞, and apply relation (3.7), yielding

lim sup
n→∞

P (Ln > VaRqn (Ln))

F ξT (f2
n)

≤ cE
[
|ε|2α

]
≤ lim inf

n→∞

P (Ln ≥ VaRqn (Ln))

F ξT (f2
n)

. (A.17)

Relation (3.6) with b chosen such that (ψ←(b))−2α = c becomes

lim
n→∞

P (Ln > nb)

F ξT (f2
n)

= cE
[
|ε|2α

]
. (A.18)

Comparing (A.17) with (A.18) and noticing the strict monotonicity of ψ← over (ψ∗, ψ
∗), we

obtain

lim inf
n→∞

1

n
VaRqn (Ln) ≥ b ≥ lim sup

n→∞

1

n
VaRqn (Ln) .
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It follows that

lim
n→∞

1

n
VaRqn (Ln) = b = ψ

(
c−

1
2α

)
,

giving relation (3.8).

To prove relation (3.9), we rewrite ESqn(Ln) as

ESqn(Ln) = VaRqn (Ln) +
1

1− qn

∫ ∞
VaRqn (Ln)

FLn (x) dx; (A.19)

see Proposition 8.13 of McNeil et al. (2015). For any ε > 0, we further split the integral term

above into three parts as

1

1− qn

∫ ∞
VaRqn (Ln)

FLn (x) dx = n

(∫ E[θ]−ε

VaRqn(Lnn )
+

∫ E[θ]+ε

E[θ]−ε
+

∫ ∞
E[θ]+ε

)
P
(
Ln
n > y

)
1− qn

dy

:= n(K1 +K2 +K3). (A.20)

Note that in K1,
P
(
Ln
n > y

)
1− qn

≤
P
(
Ln
n > VaRqn

(
Ln
n

))
1− qn

≤ 1.

Thus, applying the dominated convergence theorem we obtain

lim
n→∞

K1 =

∫ ∞
0

lim
n→∞

P
(
Ln
n > y

)
F ξT (f2

n)
·
F ξT (f2

n)

1− qn
· 1(VaRqn(Lnn )<y≤E[θ]−ε)dy

=
1

c

∫ E[θ]−ε

ψ
(
c−

1
2α

) (ψ←(y))−2α dy, (A.21)

where the second step applies both relations (3.7)–(3.8). For K2, again by Theorem 3.2 and

relation (3.7), we have

K2 ≤
P
(
Ln
n > E[θ]− ε

)
F ξT (f2

n)
·
F ξT (f2

n)

1− qn
· 2ε→ 2ε

c
(ψ← (E[θ]− ε))−2α . (A.22)

As for K3, recall the function ψ̃n (x) defined by (A.16), which clearly satisfies ψ̃n(x) ≤ E[θ].

For y > E[θ] + ε ≥ ψ̃n(x) + ε, we derive from (A.1), (A.4), and (A.15) the following:

P

(
Ln
n
> y

)
≤ P

(
1

n

n∑
i=1

θi1(C̃i−βi|ε|
√
ξT≤`ifn) > y

)

=

∫ ∞
0

P

(
1

n

n∑
i=1

θi1( C̃i
fn

+βix≥`i
) − ψ̃n (x) > y − ψ̃n (x)

)
P

(
|ε|
√
ξT

−fn
∈ dx

)

≤
∫ ∞

0

E
[
θ2
]

n
(
y − ψ̃n (x)

)2P

(
|ε|
√
ξT

−fn
∈ dx

)

≤
E
[
θ2
]

n(y − E[θ])2
,

31



where the third step applies Chebyshev’s inequality as in (A.10). This leads to

K3 ≤
E
[
θ2
]

n (1− qn)

∫ ∞
E[θ]+ε

dy

(y − E[θ])2 → 0, (A.23)

where the last step is due to relation (3.7) and the condition nF ξT (f2
n)→∞. Plugging (A.21)–

(A.23) into (A.20) and letting ε ↓ 0, we obtain

lim
n→∞

1

n (1− qn)

∫ ∞
VaRqn (Ln)

FLn (x) dx =
1

c

∫ E[θ]

ψ
(
c−

1
2α

) (ψ←(y))−2α dy.

Then plugging this and the estimate for VaRqn (Ln) given by (3.8) into (A.19), we finally obtain

lim
n→∞

1

n
ESqn (Ln) = ψ

(
c−

1
2α

)
+

1

c

∫ E[θ]

ψ
(
c−

1
2α

) (ψ←(y))−2α dy =

∫ 1

0
ψ
(

(cx)−
1
2α

)
dx,

giving relation (3.9).

Appendix B Examples to illustrate portfolio effect

We show two self-contained examples to illustrate that individual defaults can become rare

under portfolio effect. The first example looks at portfolio effect from the perspective of issuers,

while the second example from the perspective of investors. These examples may be interesting

in their own right.

Example B.1 Consider a bank who issues n defaultable products (bonds or loans), or an

insurer who sells n insurance policies. For each product i = 1, . . . , n, denote by θi the LGD

representing the loss amount in the event of default, and denote by Zi the default indicator

with P (Zi = 1) = p ∈ (0, 1). Assume that the LGDs θ1, . . . , θn are i.i.d. and independent

of the default indicators Z1, . . . , Zn. Under the Basel Capital Accords, banks are allowed to

follow the internal ratings-based (IRB) approach to calculating regulatory capital requirements.

Suppose that each product is backed by a capital reserve equal to the VaR at a certain high

level q. Specifically, let q satisfy p ∨ (1− p) < q < 1 and be sufficiently close to 1 such that

VaRq(θZ) = VaR q−(1−p)
p

(θ) > E[θ]. (B.1)

If managed independently, the issuer will default on an individual product with probability

P (θZ > VaRq(θZ)) ≤ P (θZ > E[θ]) ,

which does not depend on the portfolio size n. If managed collectively, no individual product

will default unless
∑n

i=1 θiZi > nVaRq(θZ). The latter, which represents the issuer’s default on
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the whole portfolio, occurs with probability

P

(
n∑
i=1

θiZi > nVaRq(θZ)

)
≤ P

(
1

n

n∑
i=1

θi > VaRq(θZ)

)
→ 0, n→∞,

where the last step holds because 1
n

∑n
i=1 θi converges almost surely to E[θ] by LLN while

VaRq(θZ) > E[θ] by (B.1). This means that individual defaults will become rare under the

portfolio effect. It is noteworthy that in this example no restriction is imposed on the dependence

structure among the default indicators Z1, . . . , Zn and therefore we are allowed to incorporate

certain common factors in modeling them.

Example B.2 Suppose a financial market composed of a variety of defaultable primitive assets.

For each asset i = 1, 2, . . ., an investment to it over a fixed time period either yields a return of

rate ri with probability 1 − pi or incurs a loss of 100εi% with probability pi, for some ri > 0,

εi ∈ (0, 1), and pi ∈ (0, 1). The latter corresponds to the default scenario of asset i, with a

recovery rate Ri = 1− εi. We introduce a Bernoulli random variable Zi with P (Zi = 1) = pi to

describe the default indicator. Then one unit invested to asset i will accumulate to

Gi := (1 + ri) 1(Zi=0) + (1− εi) 1(Zi=1) = (1 + ri)− (ri + εi)Zi. (B.2)

For simplicity, assume that these assets yield the same expected accumulation factor larger than

1, that is, identically for all i = 1, 2, . . .,

g := E [Gi] = (1 + ri)− (ri + εi) pi > 1. (B.3)

Consider an investor who invests in n such primitive assets in the market. In view of their

identical expected accumulation factor, the investor naturally decides to minimize the variance

of the investment portfolio. Denote by π
(n)
i the percentage of the capital invested in asset i. By

minimizing the variance of a unitized portfolio, recalling (B.2),

var

(
n∑
i=1

π
(n)
i Gi

)
= var

(
n∑
i=1

π
(n)
i (ri + εi)Zi

)
,

the vector of optimal percentages is deduced to be

π(n)=
Σ−11

1ᵀΣ−11
,

where Σ denotes the covariance matrix of the vector G with its (i, j) entry, by (B.3),

cij = (ri + εi) (rj + εj)Cov(Zi, Zj)
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and Σ is assumed to be invertible. For the case with independent defaults, Σ is simplified to a

diagonal matrix with its (i, i) entry cii = (ri + εi)
2 pi(1− pi), and thus each component of π(n)

is explicated to

π
(n)
i =

1
cii∑n
j=1

1
cjj

, i = 1, . . . , n. (B.4)

For other arguably more practical cases with correlated defaults, a similar analysis can still be

conducted but will be more complicated, which we skip here.

Reasonably, an investor who holds a larger amount of capital will consider to extend his

investment to more assets, for which case we use n → ∞ to capture his increasing market

capacity. We are interested in how much to be invested in those assets with significant default

risk. To this end, for an arbitrarily fixed small number δ > 0, define an index set J
(n)
δ =

{1 ≤ j ≤ n : pj > δ}, which collects such assets with significant default risk. Assume that the

harmonic mean of p1, . . . , pn tends to 0, namely,

Hn(p) =
n∑n
j=1

1
pj

→ 0, n→∞, (B.5)

which is interpreted as that, as the investor expands his investment portfolio, he will be prudent

by considering some high-quality assets. This condition (B.5) is implied by, but is much weaker

than, pn → 0. By (B.3), (ri + εi) (1 − pi) = g + εi − 1, which lies between g − 1 and 2. Thus,

each cii = (ri + εi)
2 pi(1− pi) is bounded from both sides as

(g − 1)2 pj
1− pj

≤ cii ≤ 4
pj

1− pj
. (B.6)

Then by (B.4)–(B.6), the total percentage of the capital invested in those assets indexed by

J
(n)
δ satisfies

∑
j∈J(n)

δ

π
(n)
j =

∑
j∈J(n)

δ

1
cjj∑n

j=1
1
cjj

≤ 4

(g − 1)2

∑
j∈J(n)

δ

1−pj
pj∑n

j=1
1−pj
pj

≤ 4

(g − 1)2

n1−δ
δ∑n

j=1
1
pj
− n
→ 0, as n→∞.

This means that collectively those assets with significant default risk can only occupy a negli-

gible portion of this large investment portfolio, or, equivalently, the portfolio is overwhelmingly

dominated by assets with low default risk.
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