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a b s t r a c t 

In recent years, the development of new algorithms for multiobjective optimization has considerably 

grown. A large number of performance indicators has been introduced to measure the quality of Pareto 

front approximations produced by these algorithms. In this work, we propose a review of a total 

of 63 performance indicators partitioned into four groups according to their properties: cardinality, 

convergence, distribution and spread. Applications of these indicators are presented as well. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Since the eighties, a large number of methods has been devel- 

ped to treat multiobjective optimization problems (e.g Branke, 

eb, Miettinen, & Slowi ́nski, 2008; Collette & Siarry, 2011; Custó- 

io, Emmerich, & Madeira, 2012; Deb, 2001; Slowinski & Teghem, 

990 ). Given that conflicting objectives are provided, the set of 

olutions, the Pareto set , is described as the set of best decision 

ectors corresponding to the best trade-off points in the objective 

pace. Knowledge of the Pareto set enables the decision maker to 

isualize the consequences of his/her choices in terms of perfor- 

ance for a criterion at the expense of one or other criteria, and 

o make appropriate decisions. 

Formally, a feasible vector x 1 is said to (Pareto)-dominate an- 

ther feasible vector x 2 if x 1 is at least as good as x 2 for all the 

bjectives, and strictly better than x 2 for at least one objective. 

he decision vectors in the feasible set that are not dominated 

y any other feasible vector are called Pareto optimal . The set of 

on-dominated points in the feasible set is the set of Pareto so- 

utions , whose images (by the objective functions) constitute the 

areto front . 

In single-objective minimization problems, the quality of a 

iven solution is trivial to quantify: the smaller the corresponding 

bjective function value, the better. However, evaluating the qual- 
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ty of an approximation of a Pareto set is non trivial. The ques- 

ion is important for the comparison of algorithms, the definition 

f stopping criteria, or even the design of multiobjective optimiza- 

ion methods. According to Zitzler, Deb, and Thiele (20 0 0) , a Pareto

et approximation should satisfy the following: 

• The distance between the Pareto front and its representation in 

the objective space should be minimized. 
• A good (according to some metric) distribution of the points of 

the corresponding approximated front in the objective space is 

desirable. 
• The extent of the corresponding approximated front should 

be maximized, i.e., for each objective, a wide range of values 

should be covered by the non-dominated points. 

To answer this question, many metrics called performance indi- 

ators Okabe, Jin, and Sendhoff (2003) ; Zitzler, Knowles, and Thiele 

2008) have been introduced. Performance indicators can be con- 

idered as mappings that assign scores to Pareto front approxima- 

ions. 

Surveys of performance indicators already exist but 

hey focus only on some specific properties. In (Collette & 

iarry, 2011, chapter 7) , the authors list some performance 

ndicators to measure the quality of a Pareto front approximation. 

n Okabe et al. (2003) , an exhaustive survey is conducted on a vast 

umber of performance indicators which are grouped according 

o their properties. Mathematical frameworks to evaluate perfor- 

ance indicators are proposed in Knowles and Corne (2002) and 

itzler, Thiele, Laumanns, Fonseca, and da Fonseca (2003) and 

dditional measures and algorithms are listed in Faulkenberg 

nd Wiecek (2009) . In Cheng, Shi, and Qin (2012) , the authors 

eview some performance indicators and analyze their drawbacks. 
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n Jiang, Ong, Zhang, and Feng (2014) , an empirical study fo- 

uses on the correlations between different indicators with their 

omputational complexity on concave and convex Pareto fronts. 

inally, the usage of indicators proposed by the multiobjective 

volutionary optimization community prior to 2013 is analyzed 

n Riquelme, Lücken, and Baran (2015) . 

Another survey Li and Yao (2019) on the quality evaluation of 

olution sets was recently published. It complements the present 

tudy by categorizing more performance indicators, but presents 

hem at a higher level of description. Most of the indicators in 

he present work are listed in Li and Yao (2019) , but not all of

hem (e.g., the ones proposed in Custódio, Madeira, Vaz, & Vicente, 

011 ). While Li and Yao (2019) is mainly oriented toward the evo- 

utionary algorithms community, the present work addresses the 

hole operational research community, and also addresses some 

ssues in more detail, such as complexity computational costs, as 

ell as data and performance profiles. The reader is invited to con- 

ult their survey as a useful complement. 

The present work is an attempt to propose a survey offering a 

anorama on all important aspects of performance indicators con- 

rary to the previous surveys, addressed to the whole multiobjec- 

ive optimization community. This work systematically analyzes 63 

erformance indicators by partitioning them into these four cat- 

gories: Cardinality, Convergence, Distribution and spread, Conver- 

ence and distribution. The use of performance metrics targets four 

ases: comparison of algorithms, embedding of performance indi- 

ators into multiobjective methods, suggestion of stopping crite- 

ia for multiobjective optimization and identification of promising 

istribution-based performance indicators. Table 1 lists these indi- 

ators and their category, classifies them based on their properties, 

nd indicates the section in which they are discussed. This work is 

rganized as follows. Section 2 introduces the notations and defi- 

itions related to multiobjective optimization and performance in- 

icators. Section 3 is the core of this work, and is devoted to clas-

ification of the indicators according to their specific properties. Fi- 

ally, Section 4 presents some applications. 

. Notations and definitions 

To apprehend performance indicators, the first part of this sec- 

ion describes the main concepts related to multiobjective opti- 

ization. The second part focuses on the theory of Pareto set ap- 

roximations and performance indicators. 

.1. Multiobjective optimization and Pareto dominance 

We consider the following continuous multiobjective optimiza- 

ion problem: 

in 

x ∈X 
F (x ) = [ f 1 (x ) f 2 (x ) . . . f m 

(x ) ] 
� 

here X ⊆ R 

n � = ∅ is called the feasible set , and f i : R 

n → R are m

bjective functions for i = 1 , 2 , . . . , m, with m ≥ 2 . The image of the

easible set Y = { F (x ) ∈ R 

m : x ∈ X } is called the (feasible) objective

et . The sets R 

n and R 

m are respectively denoted as the decision 

pace and the objective space . 

To compare functions objective values, the following cone order 

elation is adopted ( Ehrgott, 2005 ). 

efinition 1 (Dominance relations between objective vec- 

ors Dächert, Klamroth, Lacour, & Vanderpooten, 2017 ) . Given 

wo objective vectors y 1 and y 2 in the objective space R 

m , we 

rite: 

• y 1 � y 2 ( y 1 weakly dominates y 2 ) if and only if y 1 
i 

≤ y 2 
i 

for all

i = 1 , 2 , . . . , m . 
• y 1 ≤ y 2 ( y 1 dominates y 2 ) if and only if y 1 � y 2 and y 1 � = y 2 . 
398 
• y 1 < y 2 ( y 1 strictly dominates y 2 ) if and only if y 1 
i 

< y 2 
i 

for all

i = 1 , 2 , . . . , m . 

In the case when neither y 1 � � y 2 nor y 2 � � y 1 , y 1 and y 2 are said

o be incomparable . 

We can now present the concept of dominance relations for the 

ecision vectors. 

efinition 2 (Dominance relations for decision vectors Audet, 

avard, & Zghal, 2008 ) . Given two decision vectors x 1 and x 2 in

he feasible set X ⊆ R 

n , we write: 

• x 1 � x 2 ( x 1 weakly dominates x 2 ) if and only if F (x 1 ) � F (x 2 ) . 
• x 1 ≺ x 2 ( x 1 dominates x 2 ) if and only if F (x 1 ) ≤ F (x 2 ) . 
• x 1 ≺≺ x 2 ( x 1 strictly dominates x 2 ) if and only if F (x 1 ) < F (x 2 ) . 
• x 1 ‖ x 2 ( x 1 and x 2 are incomparable) if neither x 1 weakly dom-

inates x 2 nor x 2 weakly dominates x 1 . 

With these relations, we now precise the concept of solution in 

he multiobjective optimization framework. 

efinition 3 (Pareto optimality and Pareto solutions Ehrgott, 

005 ) . The vector x ∈ X is a Pareto-optimal solution if there is no

ther vector in X that dominates it. The set of Pareto-optimal so- 

utions is called the Pareto set , denoted X P , and the image of the

areto set is called the Pareto front , denoted Y P . 

In single-objective optimization, the set of optimal solutions 

s often composed of a singleton. In the multiobjective case, the 

areto front usually contains many elements (an infinity in con- 

inuous optimization and an exponential number in discrete op- 

imization Ehrgott, 2005 ). For a problem with m objectives, the 

areto front Y P is at most of dimension m − 1 . For three objectives, 

he Pareto front is a surface, a curve, a point, or combinations of 

urfaces, curves and/or points, or the empty set. For two objec- 

ives, the Pareto front can be a curve or a point or a combination 

f curves and/or points, or the empty set. Also, it is interesting to 

efine some bounds on this set. 

efinition 4 (Ideal and nadir objective vectors) . The ideal objec- 

ive vector y I Ehrgott (2005) is defined as the objective vector 

hose components are the solutions of each single-objective prob- 

em min 

x ∈X 
f i (x ) , i = 1 , 2 , . . . , m . The nadir objective vector y N is de-

ned as the objective vector whose components are the solutions 

f the single-objective problems max 
x ∈X P 

f i (x ) , i = 1 , 2 , . . . , m . 

For computational reasons, the nadir objective vector is often 

pproximated by ̃  y N for which the coordinates are defined the fol- 

owing way: let x k,� be the solution of the single-objective problem 

in 

x ∈X 
f k (x ) for k = 1 , 2 , . . . , m . The i th coordinate of ̃  y N is given by: 

 

 

N 
i = max 

k =1 , 2 , ... ,m 

f i (x k,� ) . 

or a biobjective optimization problem, y N equals ˜ y N . It is not al- 

ays the case when m ≥ 3 . 

An illustration is given in Fig. 1 where the Pareto front is piece- 

ise continuous. To simplify the notation, continuous Pareto and 

iecewise continuous Pareto fronts will be respectively designed 

s continuous and discontinuous Pareto fronts. 

emark. In a multiobjective optimization problem, objectives are 

ot necessarily contradictory, and the set of Pareto solutions may 

e a singleton. In this study, we assume that this is not the case. 

.2. Approximation sets and performance indicators 

Generally, whether in the context of continuous or discrete op- 

imization, it is not possible to find or enumerate all elements 
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Table 1 

A summary of performance indicators. The 9 rightmost columns indicate references where the indicators are presented. 

Category Performance indicators Sect. Cheng et al. 

(2012) 

Collette 

and Siarry 

(2011) 

Knowles 

and Corne 

(2002) 

Zitzler et al. 

(2003) 

Okabe et al. 

(2003) 

Faulkenberg 

and Wiecek 

(2009) 

Jiang et al. 

(2014) 

Riquelme 

et al. (2015) 

Li and Yao 

(2019) 

Cardinality 3.1 C-metric/Two sets Coverage Zitzler and Thiele (1998) 3.1.5 
√ √ √ √ √ √ √ 

Error ratio Van Veldhuizen (1999) 3.1.4 
√ √ √ √ √ √ 

Generational non dominated vector 

generation Van Veldhuizen and Lamont (2000) 

3.1.3 
√ √ √ √ 

Generational non dominated vector generation 

ratio Van Veldhuizen and Lamont (2000) 

3.1.3 
√ √ √ 

Mutual domination rate Martí et al. (2016) 3.1.6 
√ 

Nondominated vector additional Van Veldhuizen and 

Lamont (2000) 

3.1.3 
√ √ √ 

Overall nondominated vector generation Van Veldhuizen 

(1999) 

3.1.1 
√ √ √ √ √ √ √ √ 

Overall nondominated vector generation 

ratio Van Veldhuizen (1999) 

3.1.2 
√ √ √ √ √ √ √ 

Ratio of non-dominated points by the reference 

set Hansen and Jaszkiewicz (1998) 

3.1.5 
√ √ √ 

Ratio of the reference points Hansen and Jaszkiewicz 

(1998) 

3.1.4 
√ √ √ 

Convergence 3.2 Degree of Approximation Dilettoso et al. (2017) 3.2.7 
√ 

ε-family Zitzler et al. (2003) 3.2.6 
√ √ √ √ 

Generational distance Van Veldhuizen (1999) 3.2.1 
√ √ √ √ √ √ √ √ 

γ -metric Deb et al. (2000) 3.2.1 
√ √ √ √ √ 

Maximum Pareto front error Van Veldhuizen (1999) 3.2.4 
√ √ √ √ √ √ √ 

M 

� 
1 -metric Zitzler et al. (2000) 3.2.1 

√ √ √ √ √ √ 

Progression metric Van Veldhuizen (1999) 3.2.5 
√ 

Seven points average distance Schott (1995) 3.2.3 
√ √ √ 

Standard deviation from the Generational 

distance Van Veldhuizen (1999) 

3.2.2 
√ 

Distribution Cluster Wu and Azarm (2000) 3.3.18 
√ √ √ √ √ √ 

and spread 3.3 �-index Deb et al. (2000) 3.3.2 
√ √ √ √ √ 

�′ -index Deb et al. (2000) 3.3.2 
√ √ √ √ 

�� spread metric Zhou et al. (2006) 3.3.2 
√ √ √ √ 

Distribution metric Zheng et al. (2017) 3.3.12 

Diversity comparison indicator Li et al. (2014) 3.3.18 
√ 

Diversity indicator Cai et al. (2018) 3.3.15 
√ 

Entropy metric Farhang-Mehr and Azarm (2004) 3.3.18 
√ √ √ √ √ 

( continued on next page ) 
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Table 1 ( continued ) 

Category Performance indicators Sect. Cheng et al. 

(2012) 

Collette 

and Siarry 

(2011) 

Knowles 

and Corne 

(2002) 

Zitzler et al. 

(2003) 

Okabe et al. 

(2003) 

Faulkenberg 

and Wiecek 

(2009) 

Jiang et al. 

(2014) 

Riquelme 

et al. (2015) 

Li and Yao 

(2019) 

Evenness Messac and Mattson (2004) 3.3.7 
√ √ 

Extension Meng et al. (2005) 3.3.14 
√ √ 

�-metric Custódio et al. (2011) 3.3.3 
√ 

Hole Relative Size Collette and Siarry (2005) 3.3.4 
√ √ √ √ 

Laumanns metric Laumanns et al. (2000) 3.3.17 
√ 

Modified Diversity indicator Asafuddoula et al. (2015) 3.3.18 
√ 

M 

� 
2 -metric Zitzler et al. (2000) 3.3.5 

√ √ √ √ √ √ 

M 

� 
3 -metric Zitzler et al. (2000) 3.3.5 

√ √ √ √ √ √ √ √ 

Number of distinct choices Wu and Azarm (2000) 3.3.18 
√ √ √ √ √ 

Outer diameter Zitzler et al. (2008) 3.3.11 
√ √ 

Overall Pareto Spread Wu and Azarm (2000) 3.3.10 
√ √ √ √ √ √ 

Riesz S-Energy Hardin and Saff (2004) 3.3.16 

Sigma diversity metric Mostaghim and Teich (2005) 3.3.18 
√ √ 

Spacing Schott (1995) 3.3.1 
√ √ √ √ √ √ √ √ 

U-measure Leung and Wang (2003) 3.3.9 
√ √ 

Uniform assessment metric Li et al. (2008) 3.3.13 
√ 

Uniform distribution Tan et al. (2002) 3.3.5 
√ √ √ 

Uniformity Sayın (2000) 3.3.6 
√ √ 

Uniformity Meng et al. (2005) 3.3.8 
√ √ 

Convergence and Averaged Hausdorff distance Schutze et al. (2012) 3.4.2 
√ √ 

distribution 3.4 Cone-based hypervolume Emmerich et al. (2013b) 3.4.7 

Dominance move Li and Yao (2017) 3.4.6 
√ 

D-metric/Difference coverage of two sets Zitzler (1999) 3.4.7 
√ √ √ √ √ √ 

D R -metric Czyzzak and Jaszkiewicz (1998) 3.4.3 
√ √ √ √ √ 

Hyperarea difference Wu and Azarm (2000) 3.4.7 
√ √ √ √ √ 

Hypervolume indicator (or S-metric) Zitzler et al. (2000) 3.4.7 
√ √ √ √ √ √ √ √ √ 

Hypervolume Sharpe-ratio indicator Yevseyeva et al. 

(2014) 

3.4.8 

Inverted generational distance Coello and Cortés (2005) 3.4.1 
√ √ √ √ 

Inverted generation distance with non contributed 

solutions detection Tian et al. (2016) 

3.4.1 
√ 

G-metric Lizarraga-Lizarraga et al. (2008) 3.4.5 
√ 

Logarithmic hypervolume indicator Friedrich et al. (2011) 3.4.7 

Modified inverted generational distance Ishibuchi et al. 

(2015) 

3.4.3 
√ 

Performance comparison indicator Li et al. (2015) 3.4.6 
√ 

p, q -averaged distance Vargas and Bogoya (2018) 3.4.2 
√ 

R-metric Hansen and Jaszkiewicz (1998) 3.4.4 
√ √ √ √ √ √ 

4
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Table 2 

Comparison relations between Pareto front approximations Zitzler et al. (2003) . Note that Y 1 N ≺≺ Y 2 N �⇒ Y 1 N ≺ Y 2 N �⇒ Y 1 N � Y 2 N �⇒ Y 1 N � Y 2 N . 

Relation Objective vectors y 1 and y 2 Pareto front approximations Y 1 N and Y 2 N 

Strictly dominates y 1 < y 2 y 1 is better than y 2 in all objectives Y 1 N ≺≺ Y 2 N Every y 2 ∈ Y 2 N is strictly dominated 

by at least one y 1 ∈ Y 1 N 

Dominates y 1 ≤ y 2 y 1 is not worse than y 2 in all 

objectives and better in at least one 

objective 

Y 1 N ≺ Y 2 N Every y 2 ∈ Y 2 N is dominated by at 

least one y 1 ∈ Y 1 N 

Weakly dominates y 1 � y 2 y 1 is not worse than y 2 in all 

objectives 

Y 1 N � Y 2 N Every y 2 ∈ Y 2 N is weakly dominated 

by at least one y 1 ∈ Y 1 N 

Is better Y 1 N � Y 2 N Every y 2 ∈ Y 2 N is weakly dominated 

by at least one y 1 ∈ Y 1 N and Y 1 N � = Y 2 N 

Is incomparable Neither y 1 weakly dominates y 2 nor 

y 2 weakly dominates y 1 
Y 1 N ‖ Y 2 N Neither Y 1 N weakly dominates Y 2 N 

nor Y 1 N weakly dominates Y 2 N 

Fig. 1. Objective space, Pareto front Y P , ideal objective vector y I and nadir objective 

vector y N (inspired by Ehrgott, 2005 ). 
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C

f the Pareto front. Hence to solve a multiobjective problem, one 

ust look for the best discrete representation of the Pareto front. 

valuating the quality of a Pareto front approximation is not triv- 

al. It itself involves several factors such as the closeness to the 

areto front and the coverage in the objective space. Indicators 

hould capture these factors. To compare multiobjective optimiza- 

ion algorithms, the choice of a good performance indicator is cru- 

ial ( Knowles & Corne, 2002 ). Hansen and Jaszkiewicz (1998) are 

he first to introduce a mathematical framework to evaluate the 

erformance of indicators according to the comparison of meth- 

ds. In their work, they define what can be considered as a good 

easure to evaluate the quality of Pareto front. This work has been 

xtended in Knowles and Corne (2002) , Zitzler et al. (2008 , 2003) .

e next define the notion of an approximation. 

efinition 5 (Pareto set approximation Zitzler et al. (2008) ) . A set 

f decision vectors X N in the feasible set is called a Pareto set ap- 

roximation if no element of this set is weakly dominated by any 

ther. The image of such a set in the objective space is called a 

areto front approximation denoted Y N = F (X N ) ⊆ R 

m . The set of all

areto set approximations is denoted � and the set of all Pareto 

ront approximations is denoted �. 

By definition, the Pareto front approximation corresponding to 

 given Pareto set approximation possesses only distinct elements, 

.e. two different elements of the Pareto set approximation cannot 

ap to the same point in the objective space. Consequently, for all 

 N ∈ �, | X N | = | Y N | . 
emark. We use the terms Pareto set approximation and Pareto 

ront approximation in the remaining of the paper. 

Zitzler et al. (2003) propose an extension of the relation order 

or objective vectors to Pareto front approximations. They are sum- 

arized in Table 2 . 
401 
These relations orders can be naturally extended to Pareto set 

pproximations. 

Measures are defined on Pareto front approximations. They are 

esigned as quality indicators or performance indicators Zitzler 

t al. (2003) . 

efinition 6 (Performance indicator Zitzler et al., 2003 ) . A k-ary 

erformance indicator is a function I : �k → R which assigns to 

ach collection Y 1 N , Y 
2 
N , . . . , Y 

k 
N 

of k Pareto front approximations a 

eal value I(Y 1 
N 

, Y 2 
N 

, . . . , Y k 
N 
) . 

A performance indicator may consider several Pareto front ap- 

roximations. The most common ones are mappings that take only 

ne or two Pareto front approximations as arguments. They are 

nown respectively as unary and binary performance indicators. 

ith such a quality indicator, one can define a relation order be- 

ween different Pareto front approximations. The interesting indi- 

ators are those that capture the Pareto dominance in the objective 

pace. 

efinition 7 (Monotonicity Zitzler et al., 2008 ) . Assuming a greater 

ndicator value is preferable, a performance indicator I : � → R is 

onotonic if and only if 

or all Y 1 N , Y 
2 

N ∈ �, Y 1 N � Y 2 N �⇒ I (Y 1 N ) ≥ I (Y 2 N ) . 

imilarly, assuming a greater indicator value is preferable, a perfor- 

ance indicator I : � → R is strictly monotonic if and only if 

or all Y 1 N , Y 
2 

N ∈ �, Y 1 N � Y 2 N �⇒ I 
(
Y 1 N 

)
> I(Y 2 N ) . 

Once the notion of performance indicator is defined, the defini- 

ion of comparison method can be introduced. 

efinition 8 (Comparison method Zitzler et al., 2003 ) . Let Y 1 N , Y 
2 
N ∈

be two Pareto front approximations, I = ( I 1 , I 2 , . . . , I k ) a combi- 

ation of performance indicators and E : R 

k × R 

k → { true, false }
 Boolean function taking two vectors of size k as arguments. If all 

 i for i = 1 , 2 , . . . , k are unary, the comparison method C I,E (Y 
1 
N 

, Y 2 
N 
) is

efined as a Boolean function by the following formula: 

 I,E (Y 
1 

N , Y 
2 

N ) = E 
(
I (Y 1 N ) , I (Y 2 N ) 

)
here for all Y N ∈ �, I(Y N ) = (I 1 (Y N ) , I 2 (Y N ) , . . . , I k (Y N )) . 

If every I i for i = 1 , 2 , . . . , k is binary, the comparison method

 I,E (Y 
1 
N , Y 

2 
N ) is defined as a Boolean function by 

 I,E (Y 
1 

N , Y 
2 

N ) = E 
(
I(Y 1 N , Y 

2 
N ) , I(Y 

2 
N , Y 

1 
N ) 
)

here for all Y 1 
N 

, Y 2 
N 

∈ �, I(Y 1 
N 

, Y 2 
N 
) = (I 1 (Y 

1 
N 

, Y 2 
N 
) , I 2 (Y 

1 
N 

, Y 2 
N 
) , . . . ,

 k (Y 
1 
N , Y 

2 
N )) . 

If I is composed of a single indicator I 0 , we adopt the notation 

 I 0 ,E 

(
Y 1 

N 
, Y 2 

N 

)
instead of C I,E (Y 

1 
N 

, Y 2 
N 
) . 
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Informally, a comparison method is a true/false answer to: 

“Is a Pareto front approximation better than another one according 

o the combination of performance indicators I?” A simple compari- 

on method is the following: given an unary performance indicator 

and two Pareto front approximations Y 1 N , Y 
2 
N ∈ �, 

if the proposition 

(
C I,E (Y 

1 
N , Y 2 N ) = 

(
I(Y 1 N ) > I(Y 2 N ) 

))
is true, then 

Y 1 
N 

is said to be better than Y 2 
N 

according to the indicator I, as-

suming a greater indicator scalar value is preferable. 

To compare several Pareto front approximations, one can be in- 

erested in defining comparison methods that capture the Pareto 

ominance in the objective space, i.e. given two Pareto front ap- 

roximations Y 1 
N 

, Y 2 
N 

∈ � provided by Algorithms 1 and 2, 

Y 1 N weakly dominates/strictly dominates/is better than Y 2 N ⇒ 

C I,E (Y 
1 
N 

, Y 2 
N 
) is true 

)
. 

More precisely, good comparison methods should always be 

ompliant with the � - relation ( Zitzler et al., 2003 ). On a given

roblem, Algorithm 1 should not be considered as less performant 

han Algorithm 2 if Y 1 
N 

is better than Y 2 
N 

. The following definition 

ummarizes these points: 

efinition 9 (Compatibility and completeness Zitzler et al., 

003 ) . Let R be an arbitrary binary relation on Pareto front 

pproximations (typically, R ∈ {≺, ≺≺, �, � } ). The comparison 

ethod C I,E is denoted as R -compatible if either for any Y 1 N , Y 
2 
N 

areto front approximations, we have: 

 I,E (Y 
1 

N , Y 
2 

N ) ⇒ Y 1 N R Y 2 N 

r for any Y 1 
N 

, Y 2 
N 

Pareto front approximations, we have: 

 I,E (Y 
1 

N , Y 
2 

N ) ⇒ Y 2 N R Y 1 N . 

The comparison method is denoted as R -complete if either for 

ny Y 1 N , Y 
2 
N Pareto front approximations, we have: 

 

1 
N R Y 2 N ⇒ C I,E (Y 

1 
N , Y 

2 
N ) 

r for any Y 1 
N 

, Y 2 
N 

Pareto front approximations, we have: 

 

2 
N R Y 1 N ⇒ C I,E (Y 

1 
N , Y 

2 
N ) . 

For any Pareto front approximations Y 1 N , Y 
2 
N ∈ �, there are no 

ombination I of unary performance indicators such that Y 1 N � 

 

2 
N 

⇔ C I,E (Y 
1 
N 

, Y 2 
N 
) ( Zitzler et al., 2003 ). 

The mathematical properties of the performance indicators 

entioned in this survey are summarized in Tables 3 , 4 and 5 in

he appendices. 

emark. Throughout the rest of the paper, the following nota- 

ions will be used. A discrete representation of the Pareto front is 

enoted by Y P ⊆ Y P , called the Pareto optimal solution set ( Okabe 

t al., 2003 ). 

The Pareto front approximation at iteration k will be denoted by 

 N (k ) . In many cases, the Pareto front is unknown. The user needs

o specify a set of objective vectors in the objective space, called 

 reference set and denoted by Y R ⊆ R 

m . Note that a Pareto front 

approximated or not) contains only feasible objective vectors, i.e. 

ach element of a Pareto front approximation belongs to Y . It im- 

lies that if an algorithm does not find any feasible points then 

 N (k ) is empty. For the following definitions to apply, we impose 

hat the iteration counter k is set to 0 at the iteration where a first

easible point has been found. 
e

402 
. A classification of performance indicators 

We classify performance indicators into the four following 

roups ( Jiang et al., 2014; Okabe et al., 2003; Riquelme et al., 

015 ): 

• Cardinality indicators 3.1 : Quantify the number of non- 

dominated points generated by an algorithm. 
• Convergence indicators 3.2 : Quantify how close a set of non- 

dominated points is from the Pareto front in the objective 

space. 
• Distribution and spread indicators 3.3 : Quantify the distribu- 

tion of a Pareto front approximation. Coverage measures how 

well every region of the objective space is represented. Spread 

focuses on the aspect that points should be far away from 

each other (typically this drives them to the boundary). The 

difference is discussed in Emmerich, Deutz, and Kruisselbrink 

(2013a) and Kidd, Lusby, and Larsen (2020) . Extent refers to 

a more precise property, i.e. if the Pareto front approximation 

contains the extreme points of the Pareto front. Uniformity only 

considers how well the points are equally spaced ( Faulkenberg 

& Wiecek, 20 09; Sayın, 20 0 0 ). Spread and uniformity properties 

constitute the diversity of a Pareto front approximation ( Jiang 

et al., 2014 ). 
• Convergence and distribution indicators 3.4 : Capture both the 

properties of convergence and distribution. 

.1. Cardinality indicators 

These indicators focus on the number of non-dominated points 

enerated by a given algorithm. Some of them require the knowl- 

dge of the Pareto front. 

.1.1. Overall Non-dominated vector generation (ONVG) 

 Van Veldhuizen, 1999 ) 

ONV G returns the number of elements in the Pareto front ap- 

roximation generated by the algorithm: 

or all Y N ∈ �, ONV G (Y N ) = | Y N | . 
his indicator is to be maximized. Nonetheless, this is not a perti- 

ent measure. For example, consider a Pareto front approximation 

 

1 
N 

composed of one million non-dominated points and a Pareto 

ront approximation Y 2 N with only one point, such as this point 

ominates all the other points of Y 1 
N 

. Y 1 
N 

outperforms Y 2 
N 

for this 

ndicator but Y 2 
N 

is clearly better than Y 1 
N 

( Knowles & Corne, 2002 ).

.1.2. Overall Non-dominated vector generation ratio (ONVGR) 

 Van Veldhuizen, 1999 ) 

ONV GR represents the ratio of a number of elements in the 

areto front approximation with respect to a Pareto optimal solu- 

ion set. Formally, 

NV GR (Y N ;Y P ) = 

| Y N | 
| Y P | 

here | Y P | is the cardinality of a Pareto optimal solution set and

 Y N | the number of points of the Pareto front approximation. A 

igher value is considered to be better. Note that this indicator is 

ust ONV G (3.1.1) divided by a scalar. Consequently, it suffers from 

he same drawbacks as the previous indicator. 

.1.3. Generational indicators (GNVG, GNVGR and NVA) 

 Van Veldhuizen, 1999 ) 

GNV G (Y N ; k ) (generational non-dominated vector generation) 

eturns the number of non-dominated points | Y N (k ) | generated at 

teration k for a given iterative algorithm. GNV GR (Y N ;Y P , k ) (gen-

rational non-dominated vector generation ratio) is the ratio of 
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on-dominated points | Y N (k ) | generated at iteration k over the car-

inality of Y P where Y P is a set of points from the Pareto front.

VA (Y N ; k ) (non-dominated vector addition) represents the varia- 

ion of non-dominated points in the objective space generated be- 

ween successive iterations. It is given by: 

VA ( Y N ; k ) = | Y N (k ) | − | Y N (k − 1) | for k > 0 . 

These indicators can be used to follow the evolution of the gen- 

ration of non-dominated points along iterations of a given algo- 

ithm. It seems difficult to use them as a stopping criterion as the 

umber of non-dominated points can evolve drastically between 

wo iterations. 

.1.4. Error ratio ( ER ) ( Van Veldhuizen, 1999 ) 

This indicator considers the number of non-dominated objec- 

ive vectors which belong to the Pareto front. It is given by the 

ollowing formula: 

(Y N ) = 

1 

| Y N | 
∑ 

y ∈ Y N 
1 R m \Y P (y ) 

here for all y ∈ R 

m , 

 R m \Y P (y ) = 

{
0 if y belongs to the Pareto front . 
1 otherwise . 

he lower the indicator value, the better it is considered. 

In Van Veldhuizen (1999) , the author does not mention the 

resence of rounding errors in their indicator. A suggestion should 

e to consider an external accuracy parameter ε, quantifying the 

elonging of an element of the Pareto front approximation to the 

areto front with ε near to correct rounding errors. 

This indicator requires the analytical expression of the Pareto 

ront. Consequently, an user can only use it on analytical bench- 

ark tests. Moreover, this indicator depends mostly on the cardi- 

ality of the Pareto front approximation, which can misguide inter- 

retations. Knowles and Corne (2002) illustrate this drawback with 

he following example. Consider two Pareto front approximations. 

he first one has 100 elements, one in the Pareto front and the 

thers close to it. Its error ratio is equal to 0 . 99 . The second one

as only two elements, one in the Pareto front, the other far from 

t. Its ratio is equal to 0 . 5 . It is obvious that the first Pareto front

pproximation is better, even if its error ratio is bad. However, it is 

traightforward to compute. 

Similarly to the error ratio measure, Hansen and Jaszkiewicz 

1998) defines the C 1 R metric (called also ratio of the reference 

oints ). Given a reference set Y R (chosen by the user) in the objec- 

ive space, it is the ratio of the number of objectives vectors found 

n Y R over the cardinality of the reference set Y R . A higher value is

esirable. 

.1.5. C-metric or coverage of two sets ( C) ( Zitzler, 1999 ) 

Let Y 1 N and Y 2 N be two Pareto front approximations. The C-metric 

aptures the proportion of points in a Pareto front approximation 

 

2 
N 

weakly dominated by the Pareto front approximation Y 1 
N 

. This 

inary performance indicator maps the ordered pair (Y 1 N , Y 
2 
N ) to the 

nterval [0 , 1] and is defined by: 

(Y 1 N , Y 
2 

N ) = 

∣∣{y 2 ∈ Y 2 N , there exists y 1 ∈ Y 1 N such that y 1 � y 2 
}∣∣∣∣Y 2 

N 

∣∣ . 

If C(Y 1 
N 

, Y 2 
N 
) = 1 , all the elements of Y 2 

N 
are dominated by (or

qual to) the elements of Y 1 
N 

. If C(Y 1 
N 

, Y 2 
N 
) = 0 , no element of Y 2 

N 
is

eakly dominated by an element of Y 1 N . Both orderings have to be 

omputed, as C(Y 1 
N 

, Y 2 
N 
) is not always equal to 1 − C(Y 2 

N 
, Y 1 

N 
) . 

Knowles and Corne (2002) point out the limits of this measure. 

f C(Y 1 N , Y 
2 
N ) � = 1 and if C(Y 2 N , Y 

1 
N ) � = 1 , the two sets are incompara-

le. If the distribution of the sets or the cardinality is not the same, 
403 
t gives some unreliable results. Moreover, it does not give an indi- 

ation of “how much” a Pareto front approximation strictly domi- 

ates another. 

Similarly to the C-metric, given a reference set Y R in the ob- 

ective space, the C 2 R metric ( Ratio of non-dominated points by the 

eference set ) introduced in Hansen and Jaszkiewicz (1998) is given 

y: 

 2 R (Y N ;Y R ) = 

| { y ∈ Y N : there does not exist r ∈ Y R such that r ≤ y } | 
| Y N | . 

 higher C 2 R value is considered to be better. This indicator has the 

ame drawbacks as the C-metric. 

.1.6. Mutual domination rate ( MDR ) ( Martí, García, Berlanga, & 

olina, 2016 ) 

The authors of Martí et al. (2016) use this performance indica- 

or in combination with a Kalman filter to monitor the progress 

f evolutionary algorithms along iterations and thus providing 

 stopping criterion. At a given iteration k, MDR captures how 

any non-dominated points at iteration k − 1 are dominated by 

on-dominated points generated at iteration k and reciprocally. 

iven two Pareto front approximations Y 1 
N 

and Y 2 
N 

, the function 

(Y 1 N , Y 2 N ) returns the set of elements of Y 1 N that are dominated

y at least one element of Y 2 
N 

. Formally, 

DR (Y N ; k ) = 

| �( Y N (k − 1) , Y N (k ) ) | 
| Y N (k − 1) | − | �( Y N (k ) , Y N (k − 1) ) | 

| Y N (k ) | 
here Y N (k ) is the Pareto front approximation generated at it- 

ration k . If MDR (Y N ; k ) = 1 , the set of non-dominated points

t iteration k totally dominates its predecessor at iteration k −
 . If MDR (Y N ; k ) = 0 , no significant progress has been observed.

DR (Y N ; k ) = −1 is the worst case, as it results in a total loss of

omination at the current iteration. 

Cardinality indicators have a main drawback. They fail to quan- 

ify how well-distributed the Pareto front approximation is, or to 

uantify how it converges during the course of an algorithm. 

.2. Convergence indicators 

Most of these measures require the knowledge of the Pareto 

ront to be evaluated. They capture the degree of proximity be- 

ween a Pareto front and its approximation. 

.2.1. Generational distance ( GD ) ( Van Veldhuizen, 1999 ) 

The GD indicator captures the average distance between each 

lement of a Pareto front approximation and its closest neighbor 

n a discrete representation of the Pareto front. This indicator is 

iven by the following formula: 

D (Y N ;Y P ) = 

1 

| Y N | 

( ∑ 

y 1 ∈ Y N 
min 

y 2 ∈ Y P 
‖ y 1 − y 2 ‖ 

p 

) 

1 
p 

here | Y N | is the number of points in a Pareto front approxima-

ion and Y P ⊆ Y P a discrete representation of the Pareto front. Gen- 

rally, p = 2 . In this case, it is similar to the M 

� 
1 -measure defined

n Zitzler et al. (20 0 0) . When p = 1 , it is equivalent to the γ -

etric defined in Deb, Agrawal, Pratap, and Meyarivan (20 0 0) . For 

ll these indicators, a lower value is considered to be better. 

GD is straightforward to compute but very sensitive to the 

umber of points found by a given algorithm. In fact, if the algo- 

ithm identifies a single point in the Pareto front, the generational 

istance will equal 0. An algorithm can then miss an entire portion 

f the Pareto front without being penalized by this indicator. This 

easure favors algorithms returning a few non-dominated points 

lose to the Pareto front versus those giving a more distributed 

epresentation of the Pareto front. As suggested by Collette and 
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iarry (2011) , it could be used as a stopping criteria. A slight varia-

ion of the generational distance GD ( Y N (k ) , Y N (k + 1) ) between two 

uccessive iterations, as long as the algorithm is running, could 

ean a convergence towards the Pareto front. It can be applied 

n continuous and discontinuous Pareto front approximations. 

.2.2. Standard deviation from the generational distance ( ST DGD ) 

 Van Veldhuizen, 1999 ) 

It measures the deformation of the Pareto front approxima- 

ion according to a discrete representation of the Pareto front. It 

s given by the following formula: 

T DGD (Y N ;Y P ) = 

1 

| Y N | 
∑ 

y 1 ∈ Y N 

(
min 

y 2 ∈ Y P 
‖ y 1 − y 2 ‖ − GD (Y N ;Y P ) 

)2 

. 

The same critics as with the generational distance apply. 

.2.3. Seven points average distance ( SPAD ) ( Schott, 1995 ) 

As it is not practical to obtain the Pareto front, an alternative is 

o use a reference set Y R in the objective space. The SPAD indicator 

efined for biobjective optimization problems uses a reference set 

omposed of seven points: 

 R = 

{(
h 

3 

max 
x ∈X 

f 1 (x ) , 
l 

3 

max 
x ∈X 

f 2 (x ) 

)
0 ≤h,l≤3 

}
. 

PAD captures the average distance of the elements of the refer- 

nce set Y R to their closest neighbor in the Pareto front approxi- 

ation. Formally, 

PAD (Y N ;Y R ) = 

1 

| Y R | 
∑ 

r∈ Y R 
min 

y ∈ Y N 
‖ y − r‖ . 

 lower value is considered to be better. 

This indicator raises same critics as above. Note that the com- 

utational cost to solve the single-objective problems max x ∈X f i (x ) 

or i = 1 , 2 is not negligible. Also, the points in the reference set

an fail to capture the whole form of the Pareto front. Its limita- 

ion to two objectives is also an inconvenient. Nonetheless, it does 

ot require the knowledge of Pareto front. 

.2.4. Maximum Pareto front error ( MP F E) ( Van Veldhuizen, 1999 ) 

This indicator defined in Van Veldhuizen (1999) is another mea- 

ure that evaluates the distance between a discrete representation 

f the Pareto front and the Pareto front approximation obtained 

y a given algorithm. It corresponds to the largest minimal dis- 

ance between elements of the Pareto front approximation and 

heir closest neighbors belonging to the Pareto front. This indica- 

or is to be minimized. It is expressed with the following formula 

generally, p = 2) : 

P F E(Y N ;Y P ) = max 
y 1 ∈ Y N 

( 

min 

y 2 ∈ Y P 

m ∑ 

i =1 

∣∣y 1 i − y 2 i 

∣∣p ) 

1 
p 

. 

hen Y N ⊆ Y P , the value MP F E(Y N ;Y P ) is zero. The indicator is

ot relevant, as pointed out in Knowles and Corne (2002) . Con- 

ider two Pareto fronts approximations in which the first possesses 

nly one element in the Pareto front and the second has ten ele- 

ents: nine of them belong to the Pareto front and one is at some 

ositive distance from it. As MP F E considers only largest minimal 

istances, it favors the first Pareto front approximation. But the 

econd is clearly better. However, it is straightforward and cheap 

o compute and may be used on continuous and discontinuous 

roblems. 
404 
.2.5. Progress metric ( P g ) ( Van Veldhuizen, 1999 ) 

This indicator introduced in Bäck (1996) measures the progres- 

ion of the Pareto front approximation given by an algorithm to- 

ards the Pareto front in function of the number of iterations for 

 given objective function i . It is defined by: 

 g (Y N ; i, k ) = ln 

√ √ √ √ 

min 

y ∈ Y N (0) 
y i 

min 

y ∈ Y N (k ) 
y i 

. 

n Van Veldhuizen (1999) , the author modifies this metric to take 

nto account whole Pareto front approximations: 

P g (Y N ;Y P , k ) = ln 

√ 

GD (Y N (0) ;Y P ) 

GD (Y N (k ) ;Y P ) 

here GD (Y N (k ) ;Y P ) is the generational distance (3.2.1) of the

areto front approximation Y N at iteration k . 

P g is not always defined, for example when values of 

in y ∈ Y N (0) y i or min y ∈ Y N (k ) y i are negative or null. As GD is always 

ositive, RP g is well defined, but it requires the knowledge of the 

areto front. 

P g , when it exists, provides an estimation of the speed of con- 

ergence of the associated algorithm. RP g captures only the vari- 

tions of the generational distance along the number of itera- 

ions. The drawbacks of the generational distance do not apply in 

his case. Finally, a bad measure of progression does not necessar- 

ly mean that an algorithm performs poorly. Some methods less 

eeply explore the objective space, but reach the Pareto front after 

 more important number of iterations. 

.2.6. ε-indicator (I ε ) ( Zitzler et al., 2003 ) 

An objective vector y 1 ∈ R 

m is ε-dominating, for ε > 0 , an ob- 

ective vector y 2 ∈ R 

m if: 

or all i = 1 , 2 , . . . , m, y 1 i ≤ ε y 2 i . 

he multiplicative ε-indicator for two Pareto front approximations 

 

1 
N 

and Y 2 
N 

is defined as the minimum factor one has to multiply 

 Pareto front approximation to make it weakly dominate another 

ne. It is given by 

I ε× (Y 1 N , Y 
2 

N ) 

= inf 
ε> 0 

{
y 2 ∈ Y 2 N : ∃ y 1 ∈ Y 1 N such that y 1 is ε-dominating y 2 

}
. 

t can be calculated the following way: 

 ε× (Y 1 N , Y 
2 

N ) = max 
y 2 ∈ Y 2 

N 

min 

y 1 ∈ Y 1 
N 

max 
1 ≤i ≤m 

y 1 
i 

y 2 
i 

. 

iven a discrete representation of the Pareto front Y P , the unary 

etric I ε× (Y N ;Y P ) (with a semicolon) is defined as I ε× (Y P , Y N ) . 

Similarly, Zitzler et al. (2003) define an additive ε-indicator 

ased on the following additive ε-domination. It is said that an 

bjective vector y 1 is additively ε-dominating an objective vector 

 

2 for ε > 0 if for all i = 1 , 2 , . . . , m, y 1 
i 

≤ ε + y 2 
i 
. This indicator is

hen calculated by: 

 ε+ (Y 
1 

N , Y 
2 

N ) = max 
y 2 ∈ Y 2 

N 

min 

y 1 ∈ Y 1 
N 

max 
1 ≤i ≤m 

y 1 i − y 2 i . 

 value inferior to 1 (respectively 0) for the binary multiplica- 

ive ε-indicator (respectively additive ε-indicator) indicates that Y 1 N 
eakly dominates Y 2 

N 
. 

Binary additive and multiplicative ε-indicators possess desirable 

roperties. They are Pareto compliant and compatible ( Zitzler et al., 

003 ), do not require the knowledge of the Pareto front, and repre- 

ent natural extensions for approximation schemes in optimization 

heory. However, the main problem with the ε-indicator is that 

ts evaluation value involves only one particular element in each 
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areto front approximation, which can misguide quality compar- 

son between different Pareto front approximations. Furthermore, 

he ε-indicator focuses only on one objective when comparing dif- 

erent objective vectors, as noticed in Li and Yao (2017) . For ex- 

mple, consider y 1 = (0 , 1 , 1) and y 2 = (1 , 0 , 0) in a tri-objective

aximization problem. Although y 1 performs better than y 2 in two 

ifferent objectives, the additive ε-indicators are identical: 

 ε+ 

({ y 1 } , { y 2 } ) = I ε+ 

({ y 2 } , { y 1 } ). 
n the contrary, it is straightforward to compute. It can be used 

or continuous and discontinuous approximations of Pareto fronts. 

.2.7. Degree of approximation ( DOA ) ( Dilettoso, Rizzo, & Salerno, 

017 ) 

By taking into account the dominance relation in the objective 

pace, DOA captures an average degree of proximity from a discrete 

epresentation of the Pareto front to a Pareto front approximation. 

 lower value is considered to be better. This indicator is proved 

o be ≺-complete (see Definition 9 ). It aims to compare algorithms 

hen the Pareto fronts are known. 

Given y 2 an objective vector belonging to Y P , the set D(y 2 , Y N )

n the objective space is defined as the subset of points belonging 

o the Pareto front approximation Y N dominated by the objective 

ector y 2 . The minimum Euclidean distance between y 2 ∈ Y P and 

(y 2 , Y N ) (which may be empty) is computed with 

(y 2 , Y N ) = 

{
min 

y 1 ∈D(y 2 ,Y N ) 
‖ y 2 − y 1 ‖ if |D(y 2 , Y N ) | > 0 

∞ if |D(y 2 , Y N ) | = 0 . 

imilarly, d + 
(
y 2 , Y N \ D(y 2 , Y N ) 

)
is defined for y 2 ∈ Y P by consider- 

ng the set of points of Y N that do not belong to D(y 2 , Y N ) as: 

 

+ (y 2 , Y N \ D(y 2 , Y N ) 
)

= 

{ 

min 

y 1 ∈ Y N \D(y 2 ,Y N ) 
‖ (y 1 − y 2 ) + ‖ if | Y N \ D(y 2 , Y N ) | > 0 

∞ if | Y N \ D(y 2 , Y N ) | = 0 

here (y 1 − y 2 ) + = ( max (0 , y 1 
i 

− y 2 
i 
)) i =1 , 2 , ... ,m 

. 

The DOA indicator is finally given by 

OA (Y N ;Y P ) = 

1 

| Y P | 
∑ 

y 2 ∈ Y P 
min 

{
d(y 2 , Y N ) , d 

+ (y 2 , Y N \ D(y 2 , Y N ) 
)}

. 

he value of DOA does not depend on the number of points of 

 P , i.e. if | Y P | � | Y N | ( Dilettoso et al., 2017 ). In fact, this indica-

or partitions Y N into subsets in which each element is domi- 

ated by a point y ∈ Y P . Its computational cost is quite low (in

(m | Y N | × | Y P | ) ). It can be used for discontinuous and continuous

pproximations of Pareto fronts. 

.3. Distribution and spread indicators 

According to Custódio et al. (2011) , “the spread metrics try to 

easure the extents of the spread achieved in a computed Pareto front 

pproximation”. They are not really useful to evaluate the conver- 

ence of an algorithm, or at comparing algorithms , but rather 

he distribution of the points along Pareto front approximations. 

hey only make sense when the Pareto set is composed of several 

olutions corresponding to distinct objective vectors. 

.3.1. Spacing (SP ) ( Schott, 1995 ) 

The SP indicator captures the variation of the distance between 

lements of a Pareto front approximation. A lower value is consid- 

red to be better. This indicator is computed with 

P (Y N ) = 

√ √ √ √ 

1 

| Y N | − 1 

| Y N | ∑ 

j=1 

(
d̄ − d 1 

(
y j , Y N \ { y j } 

))2 
405 
here d 1 
(
y j , Y N \ { y j } 

)
= min y ∈ Y N \{ y j } ‖ y − y j ‖ 1 is the l 1 distance 

f y j ∈ Y N to the set Y N \ { y j } and d̄ is the mean of all d 1 (y j , Y N \
 y j } ) for j = 1 , 2 , . . . , | Y N | . 

This method cannot account for holes in the Pareto front ap- 

roximation as it takes into account the distance between an ob- 

ective vector and its closest neighbor. The major issue with this 

ndicator is it gives some limited information when points given 

y the algorithm are clearly separated, but spread into multiple 

roups. On the contrary, it is straightforward to compute. 

.3.2. Delta indexes ( �′ , � and �� ) ( Deb et al., 20 0 0; Zhou, Jin, 

hang, Sendhoff, & Tsang, 2006 ) 

Deb et al. (20 0 0) introduce the �′ index for biobjective prob- 

ems, which captures the variation of distance between consecu- 

ive elements of the Pareto front approximation into the biobjec- 

ive space. Formally, 

′ (Y N ) = 

| Y N |−1 ∑ 

j=1 

∣∣d c (y j , Y N \ { y j } )− d̄ c 
∣∣

| Y N | − 1 

here d c 
(
y j , Y N \ { y j } 

)
is the Euclidean distance between consec- 

tive elements of the Pareto front approximation Y N , and d̄ c the 

ean of the d c 
(
y j , Y N \ { y j } 

)
for j = 1 , 2 , . . . , | Y N | − 1 . As this indi-

ator considers Euclidean distances between consecutive objective 

ectors, it can be misleading if the Pareto front approximation is 

iecewise continuous. The �′ index does not generalize to more 

han 2 objectives, as it uses lexicographic order in the biobjective 

bjective space to compute the d c 
(
y j , Y N \ { y j } 

)
. In addition, it does 

ot consider the extent of the Pareto front approximation, i.e. dis- 

ances between extreme points of the Pareto front. 

The � index is an indicator derived from the �′ index to take 

nto account the extent of the Pareto front approximation for biob- 

ective problems: 

(Y N ;Y P )= 

∑ 2 

i =1 
min 

y ∈ Y N 
‖ y i,� − y ‖ + 

∑ | Y N |−1 

j=1 

∣∣d c (y j , Y N \ { y j } )− d̄ c 
∣∣

∑ 2 

k =1 
min 

y ∈ Y N 
‖ y k,� − y ‖ + ( | Y N | − 1 ) ̄d c 

here min y ∈ Y N ‖ y i,� − y ‖ for i = 1 , 2 are the Euclidean distances be-

ween the extreme solutions of the Pareto front (i.e. y i,� = F (x i,� ) ∈
 P where x i,� is solution to the i th single-objective problem) and 

he boundary solutions of the Pareto front approximation. The 

ther notations remain the same as before. This indicator requires 

he resolution of each single-objective optimization problem. This 

ndicator is extended to Pareto fronts with more than two objec- 

ives by Zhou et al. (2006) to the generalized �� -index: 

� (Y N ;Y P ) = 

∑ m 

i =1 
d 2 (y i,� , Y N ) + 

∑ | Y N | 
j=1 

∣∣d 2 (y j , Y N \ { y j } ) − d̄ 2 
∣∣∑ m 

i =1 
d 2 ( y i,� , Y N ) + | Y N | d̄ 2 

here d 2 (y i,� , Y N ) = min y ∈ Y N ‖ y i,� − y ‖ with y i,� = F (x i,� ) ∈ Y P the

xtreme objective vector corresponding to x i,� solution to the i th 

ingle-objective problem and d 2 (y j , Y N \ { y j } ) = min y ∈ Y N \{ y j } ‖ y j −
 ‖ the minimal Euclidean distance between two points of the 

areto front approximation. d̄ 2 is the mean of all d 2 (y j , Y N \ { y j } )
or j = 1 , 2 , . . . , | Y N | . As it considers the shortest distances between

lements of the Pareto front approximation, the �� index suffers 

rom the same drawbacks as the spacing metric. Moreover, it re- 

uires the knowledge of the extreme solutions of the Pareto front. 

For these three indicators, a lower value is considered to be 

etter. 
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Fig. 2. Illustration of the � metric for a biobjective problem (inspired by Custódio et al., 2011 ). 
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.3.3. Two measures proposed by Custódio et al. (2011) ( � and �) 

Given a Pareto set approximation X N = { x 1 , x 2 , . . . , x N } to which

wo additional “extreme” points indexed by 0 and N + 1 are 

dded, for each objective i for i = 1 , 2 , . . . , m, elements x j for j =
 , 1 , . . . , N + 1 of the Pareto set approximation are sorted so that, 

f i (x 0 ) ≤ f i (x 1 ) ≤ f i (x 2 ) ≤ . . . ≤ f i (x N+1 ) . 

ustódio et al. (2011) introduce the following metric � > 0 defined 

y: 

(Y N ) = max 
i ∈{ 1 , 2 , ... ,m } 

max 
j∈{ 0 , 1 , ... ,N} 

δi, j 

here δi, j = f i (x j+1 ) − f i (x j ) and Y N = F (X N ) . When considering a

iobjective problem ( m = 2 ), the metric reduces to consider the 

aximum distance in the infinity norm between two consecutive 

oints in the Pareto front approximation as it is shown in Fig. 2 . 

To take into account the extent of the Pareto front approxima- 

ion, the authors of Custódio et al. (2011) define the following in- 

icator by 

(Y N ) = max 
i ∈{ 1 , 2 , ... ,m } 

{ 

δi, 0 + δi,N + 

∑ N−1 
j=1 

∣∣δi, j − δi 

∣∣
δi, 0 + δi,N + (N − 1) δi 

} 

here δi , for i = 1 , 2 , . . . , m, is the mean of all distances δi, j for j =
 , 2 . . . , N − 1 . 

The � and � indicators do not use the closest distance between 

wo points in the objective space. Consequently, they do not have 

he same drawbacks as the spacing metric. However, the δi, j dis- 

ance captures holes in the Pareto front if this one is piecewise 

iscontinuous. For these two indicators, a lower value is desirable. 

hese two metrics are more adapted to continuous Pareto front ap- 

roximations. 

emark. The authors of Custódio et al. (2011) suggest two ways 

o compute extreme points x 0 and x N+1 . For benchmark tests, the 

areto front is known and extreme points correspond to the ones 

f the Pareto set. Otherwise, the � and � indicators use the ex- 
reme points of the Pareto set approximation X N . 

406 
.3.4. Hole relative size ( HRS) ( Collette & Siarry, 2005 ) 

This indicator identifies the largest hole in a Pareto front ap- 

roximation for a biobjective problem. It is given by 

RS(Y N ) = (1 / d̄ ) max 
j=1 , 2 , ... , | Y N |−1 

d j 

here Y N is a Pareto front approximation whose elements have 

een sorted in ascendant order according to the first objective, 

 

j = ‖ y j − y j+1 ‖ 2 is the l 2 distance between the two adjacent ob-

ective vectors y j ∈ Y N and y j+1 ∈ Y N and d̄ the mean of all d j for

j = 1 , 2 , . . . , | Y N | − 1 . 

A lower indicator value is desirable. As it takes into account 

oles in the objective space, this indicator is more adapted to con- 

inuous Pareto front approximations. 

.3.5. Zitzler’s metrics M 

� 
2 

and M 

� 
3 

( Zitzler et al., 20 0 0 ) 

The M 

� 
2 metric returns a value in the interval [0 ; | Y N | ] where Y N 

s the Pareto front approximation. It reflects the number of sub- 

ets of the Pareto front approximation Y N of a certain radius ( σ ). A 

igher value is considered to be better. Its expression is given by 

 

� 
2 (Y N ;σ ) = 

1 

| Y N | − 1 

∑ 

y 2 ∈ Y N 
|{ y 1 ∈ Y N , ‖ y 2 − y 1 ‖ > σ }| . 

f M 

� 
2 
(Y N ;σ ) = | Y N | , it means that for each objective vector, no

ther objective vector within the distance σ can be found. It is 

traightforward to compute but it can be difficult to interpret. 

The authors of Tan, Lee, and Khor (2002) introduce the Uniform 

istribution indicator, based too on the search of niches of size σ, 

iven by 

D (Y N ;σ ) = 

1 

1 + D nc (Y N , σ ) 

here D nc (Y N , σ ) is the standard deviation of the number of niches

round all the points of the Pareto front approximation Y N defined 

s 

 nc (Y N , σ ) = 

√ √ √ √ √ 

1 

| Y N | − 1 

⎛ ⎝ 

| Y N | ∑ 

j=1 

( 

nc(y j , σ ) − 1 

| Y N | 
| Y N | ∑ 

l=1 

nc(y l , σ ) 

) 2 
⎞⎠
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ith nc(y j , σ ) = 

∣∣{ y ∈ Y N , ‖ y − y j ‖ < σ } ∣∣− 1 . The UD indicator is to 

e minimized. 

Finally, the M 

� 
3 

metric defined by Zitzler et al. (20 0 0) , considers 

he extent of the front: 

 

� 
3 (Y N ) = 

√ 

m ∑ 

i =1 

max 
j∈{ 1 , 2 , ... , | Y N |} 

max 
y ∈ Y N \{ y j } 

‖ y j − y ‖ . 

 higher value is considered to be better. The M 

� 
3 

metric only takes 

nto account the extremal points of the computed Pareto front ap- 

roximation. Consequently, it is sufficient for two different algo- 

ithms to have the same extremal points to be considered as equiv- 

lent according to this metric. It can be used on continuous and 

iscontinuous approximations of Pareto fronts as it only gives in- 

ormation on the extent of the Pareto front. 

.3.6. Uniformity ( δ) ( Sayın, 20 0 0 ) 

This is the minimal distance between two points of the Pareto 

ront approximation. This measure is straightforward to compute 

nd easy to understand. However, it does not really provide perti- 

ent information on the distribution of the points along the Pareto 

ront approximation. 

.3.7. Evenness ( ξ ) ( Messac & Mattson, 2004 ) 

The ξ -evenness indicator captures the uniformity quality of 

 Pareto front approximation by integrating distance values be- 

ween its elements into a coefficient of variation. More specifi- 

ally, two scalar values are associated to each element y ∈ Y N of 

he Pareto front approximation. d l (y, Y N \ { y } ) is the minimum Eu-

lidean distance between objective vector y and its closest neigh- 

or in the objective space. d u (y, Y N \ { y } ) is the maximal Euclidean

istance between an element y ∈ Y N and another element of Y N 
uch that no other point of Y N is within the (hyper)sphere of di- 

meter d u (y, Y N \ { y } ) . ξ is then defined as 

(Y N ) = 

σD ̂ D 

here σD and 

̂ D are respectively the standard deviation and the 

ean of the set of minimum distances d l (y, Y N \ { y } ) and maxi-

um diameters d u (y, Y N \ { y } ) for each element y of Y N . The clos-

st ξ is to 0, the better the uniformity is. 

It can be considered as a coefficient of variation. It is straight- 

orward to compute. In the case of continuous Pareto front, it can 

ccount for holes in the Pareto front approximation. 

Reference Ghosh and Chakraborty (2015) also defines the even- 

ess as 

(Y N ) = 

max 
y 1 ∈ Y N 

min 

y 2 ∈ Y N \{ y 1 } 
‖ y 1 − y 2 ‖ 

min 

y 1 ∈ Y N 
min 

y 2 ∈ Y N \{ y 1 } 
‖ y 1 − y 2 ‖ 

. 

he lower the value, the better the distribution with a lower bound 

(Y N ) = 1 . 

.3.8. Binary uniformity ( SP l ) ( Meng, Zhang, & Liu, 2005 ) 

Contrary to others indicators, this indicator aims to compare 

he uniformity of two Pareto front approximations. This indicator 

s inspired by the wavelet theory. 

Let Y 1 
N 

and Y 2 
N 

be two Pareto front approximations. The algo- 

ithm is decomposed in several steps: 

Set l = 1 . 

1. For each element y 1 ∈ Y 1 N and y 2 ∈ Y 2 N , compute the respec-

tive distances to their closest neighbor d 2 
l 
(y 1 , Y 1 

N 
\ { y 1 } ) and

d 2 
l 
(y 2 , Y 2 

N 
\ { y 2 } ) given by 

d 2 l (y, Y N \ { y } ) = min ‖ y − y v ‖ . 

y v ∈ Y N \{ y } p

407 
2. For both sets, compute the average distances d 2 
l 
(Y 1 

N 
) and 

d 2 
l 
(Y 2 N ) between neighbor points given by 

d 2 
l 
(Y N ) = 

1 

| Y N | 
∑ 

y ∈ Y N 
d 2 l (y, Y N \ { y } ) . 

3. For each set, compute the spacing measures SP l (Y 1 N ) and 

SP l (Y 2 N ) given by 

SP l (Y N ) = 

√ √ √ √ √ 

∑ 

y ∈ Y N 

(
1 − ψ 

(
d 2 

l 
(y, Y N \ { y } ) , d 2 l 

(Y N ) 
))2 

| Y N | − 1 

with ψ(a, b) = 

{ a 
b 

if a > b 

b 
a otherwise. 

4. If SP l (Y 1 N ) < SP l (Y 2 N ) , then Y 1 N has better uniformity 

than Y 2 N and reciprocally. If SP l (Y 1 N ) = SP l (Y 2 N ) and l ≥
min (| Y 1 N | − 1 , | Y 2 N | − 1) then Y 1 N has the same uniformity as 

Y 2 N . Else if SP l (Y 1 N ) = SP l (Y 2 N ) and l < min (| Y 1 N | − 1 , | Y 2 N | − 1) ,

then increment l by 1, and recompute the previous steps 

by removing the smallest distance d 2 
l 
(y 1 , Y 1 

N 
\ { y 1 } ) and

d 2 
l 
(y 2 , Y 2 

N 
\ { y 2 } ) until the end. 

The value of the binary uniformity indicator is difficult to inter- 

ret but can be computed easily. It does not take into account the 

xtreme points of the Pareto front. 

.3.9. U-measure ( U) ( Leung & Wang, 2003 ) 

This indicator measures the uniformity of a Pareto front approx- 

mation based on distance between its elements according to each 

bjective. For each objective vector in the Pareto front approxima- 

ion Y N , Euclidean distance to their nearest neighbors with respect 

o each objective axis is determined, as well as distances of refer- 

nce objectives (objective vectors corresponding to solutions of the 

ingle-objective optimization problems or determined by the user) 

o their nearest neighbors. Let χ be the set of distances between 

earest neighbors and χ̄0 the set of distances between reference 

bjective vectors and their closest neighbor. Small variability in 

he set χ would reflect uniform distribution, and values close to 

 for the set χ̄0 would reflect good coverage properties. For ease 

f computation, each distance in χ̄0 is summed up with the aver- 

ge value of the distances in χ, resulting in the new set χ̄ . The 

-measure captures the discrepancy among the scalar elements of 

he set χ̄ and is given by 

(Y N ) = 

1 

| ̄χ | 
∑ 

d ′ ∈ ̄χ

∣∣∣∣ d ′ 
d ideal 

− 1 

∣∣∣∣
here d ideal = 

1 
| ̄χ | 
∑ 

d ′ ∈ ̄χ d ′ . 
d ′ 

d ideal 
− 1 can be interpreted as the percentage deviation from 

he ideal distance if it is multiplied by 100%. The U-measure is 

hen the mean of this ratio along all elements of the set χ̄ . A small

 indicator value can be interpreted as a better uniformity. 

It attempts to quantify the uniformity of found points along the 

areto front approximation. 

The same problems as for the previous indicators can be raised. 

specially, the formula works only if there are several points. 

oreover, this indicator can take time to compute when comput- 

ng the minimal distances. As for the spacing metric (3.3.1) , this 

ast one does not account for holes in the Pareto front approxima- 

ion as it takes only into account closest neighbors. It is then more 

ertinent on continuous Pareto front approximations. 
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Fig. 3. An example showing the weaknesses of the spacing metric (inspired 

by Zheng et al., 2017 ): the spacing metric ignores the gap drawn in dashed lines. 
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.3.10. Overall Pareto spread ( OS) ( Wu & Azarm, 20 0 0 ) 

This indicator only captures the extent of the front covered by 

he Pareto front approximation. The larger the better it is. It is 

iven by 

S(Y N ) = 

m ∏ 

i =1 

∣∣∣∣max 
y ∈ Y N 

y i − min 

y ∈ Y N 
y i 

∣∣∣∣∣∣˜ y i 
I − ˜ y i 

M 

∣∣
here ˜ y M is an approximation of the maximum objective vector 

objective vector composed of the maxima of each single-objective 

ptimization problem assuming they exist) or the maximum ob- 

ective vector and ̃

 y I an approximation of the ideal objective vector 

r the ideal objective vector. 

This is an indicator for which the values are among the values 0 

nd 1. The maximum and ideal objective vectors need to be com- 

uted for more precise results, resulting in 2 m single-objective 

roblems to solve. The indicator does not take into account the 

istribution of points along the Pareto front approximation. 

.3.11. Outer diameter ( I OD ) ( Zitzler et al., 2008 ) 

Analogously to the overall Pareto spread metric, the outer di- 

meter indicator returns the maximum distance along all objec- 

ive dimensions pondered by weights w ∈ R 

m + chosen by the user. 

 higher indicator value is desirable. It is given by: 

 OD (Y N ) = max 
1 ≤i ≤m 

w i 

(
max 
y ∈ Y N 

y i − min 

y ∈ Y N 
y i 

)
. 

The weights can be used to impose an order on criteria im- 

ortance relatively to the modeling of a specific problem but it 

s not mandatory. Although this indicator is cheap to compute, it 

nly takes into account the extent of the Pareto front approxima- 

ion. By the way, it can result in an information loss of the extent 

f the Pareto front approximation, as it focuses only on the largest 

istance along a single dimension. 

.3.12. Distribution metric ( DM) ( Zheng, Yang, Xu, & Hu, 2017 ) 

This indicator introduced by Zheng et al. (2017) aims to cor- 

ect several drawbacks of the spacing measure ( Schott, 1995 ) and 

dd some information about the extent of the Pareto front. As it is 

entioned, the “spacing metric does not adopt normalized distance, 

hich may result in a bias conclusion, especially when the orders of 

agnitudes of the objectives differ considerably”. Moreover, it cannot 

ccount for holes in the Pareto front, as it considers only closest 

eighbors. An example pointing out the drawbacks of the spacing 

etric (3.3.1) is given in Fig. 3 . 

The DM indicator is given by 

M(Y N ) = 

1 

| Y N | 
m ∑ 

i =1 

(
σi 

μi 

)( ∣∣y I 
i 
− y N 

i 

∣∣
max 
y ∈ Y N 

y i − min 

y ∈ Y N 
y i 

) 
408 
ith σi = 

1 
| Y N | −2 

∑ | Y N | −1 

j=1 

(
d 

j 
i 
− d i 

)2 

, μi = 

1 
| Y N | −1 

∑ | Y N | −1 

j=1 
d 

j 
i 

where 

 Y N | is the number of non-dominated objective vectors, y I and y N 

re respectively the ideal and nadir objective vectors. d 
j 
i 

is the dis- 

ance of the jth interval between two adjacent solutions corre- 

ponding to the i th objective, σi and μi are the standard deviation 

nd mean of the distances relative to the i th objective, and 

σi 
μi 

is 

he coefficient of variance relative to the i th objective. 

A smaller DM indicates better distributed solutions. It takes into 

ccount the extent and distribution of the points along the Pareto 

ront approximation. However, it requires the nadir and ideal ob- 

ective vectors, which may be computationally expensive. As it ac- 

ounts for holes, this indicator is more relevant for continuous 

areto front approximations. 

.3.13. Uniform assessment metric ( I D ) ( Li, Zheng, & Xiao, 2008 ) 

The I D indicator measures the variation of distances between el- 

ments of a Pareto front approximation based on the construction 

f a minimum spanning tree. The indicator value is comprised be- 

ween 0 and 1. The closest to 1, the better. Let Y N be a Pareto front

pproximation such that | Y N | > 2 . The computation of this indica-

or is decomposed into several steps: 

1. A minimum spanning tree T G covering all the elements of 

Y N based on the Euclidean distance in the objective space is 

built. 

2. Each element y ∈ Y N has at least one neighbor in the span- 

ning set, i.e a vertex adjacent to y . Let N T G 
(y ) be the set of

adjacent vertices to y in the spanning tree T G . 

For each y v ∈ N T G 
(y ) , we define a “neighborhood” ( Li et al.,

2008 ) 

N y v (y ) = 

{
y 2 ∈ Y N , ‖ y 2 − y ‖ ≤ ‖ y v − y ‖ 

}
which corresponds to the subset of Y N contained in the 

closed ball of radius ‖ y v − y ‖ and centered in y . Note that

{ y, y v } ∈ N y v (y ) . The neighborhoods that contain only two el-

ements, i.e. y and y v , are not considered. 

3. For all y ∈ Y N and y v ∈ N T G 
(y ) , a distribution relation is de-

fined by 

ψ(y, y v ) = 

⎧ ⎨ ⎩ 

0 if | N y v (y ) | = 2 , ∏ 

y 2 ∈ N y v (y ) \{ y } 

‖ y − y 2 ‖ 

‖ y − y v ‖ 

otherwise. 

4. There are 2 | Y N | − 2 neighborhoods. Among them, N r corre- 

sponds to the number of neighborhoods that only contain 

two elements. The uniform assessment metric is then de- 

fined by 

I D (Y N ) = 

1 

2 | Y N | − N r − 2 

∑ 

y ∈ Y N 

∑ 

y v ∈ N T G (y ) 

ψ(y, y v ) 

which corresponds to the mean of the distribution relation 

for neighborhoods containing more than two elements. 

This indicator does not require external parameters. Due to the 

efinition of the neighborhood, it takes into account holes in the 

areto front. Indeed, contrary to the spacing metric, it does not 

onsider only closest distances between objective vectors. 

.3.14. Extension measure ( EX) ( Meng et al., 2005 ) 

This indicator aims to measure the extent of the Pareto front 

pproximation. It is given by 

X (Y N ;Y P ) = 

1 

m 

√ 

m ∑ 

i =1 

d 2 (y i,� , Y N ) 2 
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here d 2 (y i,� , Y N ) is the minimal Euclidean distance between the 

bjective vector corresponding to the solution to the i th single- 

bjective problem and the set of non-dominated points obtained 

y a given algorithm in the objective space. 

This indicator requires the resolution of m single-objective op- 

imization problems. It penalizes well-distributed Pareto front ap- 

roximations neglecting the extreme values. It is straightforward 

o compute. 

.3.15. Diversity indicator based on reference vectors ( DIR ) ( Cai, Sun, 

 Fan, 2018 ) 

As its name indicates, this indicator uses reference vectors in 

he objective space to measure the diversity of a Pareto front 

pproximation. The lower this indicator is, the better. Let Y R = 

 r 1 , r 2 , . . . , r | Y R | } be a set of uniformly generated reference vec- 

ors in R 

m . For each element of a Pareto front approximation 

 ∈ Y N , the closeness between y and the reference vector r j , for

j = 1 , 2 , . . . , | Y R | , is given by 

ngle (r j , y ) = arccos 
(r j ) T (y − y I ) 

‖ r j ‖‖ y − y I ‖ 

. 

f a reference vector r j is the closest to an element y of Y N rela-

ively to the closeness metric, it is said that y “covers the reference 

ector r j ” ( Cai et al., 2018 ). The coverage vector c of size | Y N | repre-

ents for each y ∈ Y N the number of reference vectors that y covers.

IR is the normalized standard deviation of the coverage vector c, 

efined as 

IR (Y N ;Y R ) = 

√ 

1 

| Y N | 
| Y N | ∑ 

i =1 

(c i − c̄ ) 2 ÷
( | Y R | 

| Y N | 
√ 

| Y N | − 1 

)
here c̄ is the mean of all c i for i = 1 , 2 , . . . , | Y N | . It is intu-

tive to understand and cheap to compute (in O ( m | Y N | × | Y R | )
ai et al., 2018 ). It captures both the distribution and the spread- 

ng. Nonetheless, it requires the knowledge of the ideal point. The 

umber of reference vectors to choose (at least greater than | Y N | 
o be more pertinent) equally plays an important role. It can be 

iased when the Pareto front is piecewise continuous. 

.3.16. The Riesz s-energy indicator ( E s ) ( Falcón-Cardona, Coello, & 

mmerich, 2019; Hardin & Saff, 2004 ) 

The Riesz s-energy indicator ( Hardin & Saff, 2004 ) aims at 

uantifying a good distribution of points in d-dimensional mani- 

olds. Given a Pareto front approximation Y N , this indicator is de- 

ned as: 

 s (Y N ) = 

∑ 

y 1 ∈ Y N 

∑ 

y 2 ∈ Y N \{ y 1 } 

1 

‖ y 1 − y 2 ‖ 

s 

here s > 0 is a fixed external parameter which controls the de- 

ree of uniformity of the elements of Y N . 

An uniformly distributed Pareto front approximation must have 

 minimal Riesz s-energy value. In Hardin and Saff (2005) , it is 

roved that configurations of points in a rectifiable d−dimensional 

anifold that have minimum Riesz s-energy possess asymptoti- 

ally uniformly distribution properties for s ≥ d. Moreover, s does 

ot depend on the shape of the manifold ( Hardin & Saff, 2005 ). 

Use of the Riesz s-energy indicator to assess generation of an 

niformly distributed Pareto front approximation can be found 

n Falcón-Cardona et al. (2019) . 

.3.17. Laumanns metric ( I L ) ( Laumanns, Günter, & Schwefel, 1999; 

aumanns, Zitzler, & Thiele, 20 0 0 ) 

The Laumanns metric measures the normalized volume of the 

bjective space dominated by a Pareto front approximation and 

ounded above by an approximated nadir objective vector. Given 

 vector y in the objective space R 

m , let D(y ) = 

{
y 2 ∈ R 

m , y ≤ y 2 
}

409 
e the set of objective vectors dominated by y . Given a Pareto front 

pproximation Y N , D(Y N ) is designed as the dominated space by 

he set Y N and is defined as 

(Y N ) = 

⋃ 

y ∈ Y N 
D(y ) . 

et y j,� be the jth outer point of the Pareto front approximation Y N 
efined by: for all i = 1 , 2 , . . . , m, 

y j,� 
i 

) = 

{ 

max 
y ∈ Y N 

y i if i � = j, 

min 

y ∈ Y N 
y i otherwise. 

e introduce the hypercube H(Y N ) = { y ∈ R 

m : y = y I +
 m 

i =1 a i (y i,� − y I ) , a i ∈ [0 , 1] } where y I is the ideal point. The

aumanns metric is defined as the ratio of the Lebesgue measure 

f the intersection of D and H, with the Lebesgue measure of H: 

 L (Y N ) = 

λm 

(D(Y N ) ∩ H(Y N ))) 

λm 

( H( Y N )) 

here λm 

(A ) is the m -dimensional Lebesgue measure of the 

ounded set A ⊂ R 

m . The metric returns a value between 0 and 

. The higher the better. An illustration is given in Fig. 4 . 

This indicator is biased in favor of convex and ex- 

ended fronts. Moreover, its computational complexity in 

( | Y N | m 3 poly log | Y N | ) Chan (2013) explodes when the objective 

pace dimension increases: in fact, it is similar to the hypervolume 

ndicator (3.4.7) when the reference point is chosen such as ̃  y N . 

Similarly, the convex hull surface indicator ( Zhao et al., 2018 ) 

easures the volume of the convex hull formed by the Pareto front 

pproximation and a reference point r ∈ R 

m dominated by all the 

lements of the Pareto front approximation. The greater the value 

f this indicator is, the better. Computational cost increases expo- 

entially with the number of objectives. As it only considers points 

n the boundaries of the convex hull, it is more pertinent to use it 

n convex Pareto front approximations. 

.3.18. Other distribution indicators 

Some other indicators are mentioned in this subsection. They 

equire external parameters chosen by the user that can be crucial 

o their performance. The reader can consult the provided refer- 

nces. 

1. Entropy measure ( Farhang-Mehr & Azarm, 2004 ): For each 

element of Y N , an influential function (a Gaussian function 

centered in y for y ∈ Y N ) is defined, which enables the cre- 

ation of a density function considered as the sum of influ- 

ential functions for each element y ∈ Y N . Peaks and valleys 

in the objective space are considered as places where in- 

formation can be measured. A “good” Pareto front approx- 

imation should have an uniform density function in the ob- 

jective space. The subset of the objective space bounded by 
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the nadir and ideal objective vectors is firstly normalized, 

then divided into boxes, whose the number is decided by 

the user. Based on this discretization of the objective space, 

the indicator is computed using the values of the density 

function for each center of each box and the Shannon for- 

mula of entropy ( Shannon, 2001 ). The higher the value, the 

better. 

2. Cluster CL μ and Number of Distinct Choices NDC μ ( Wu & 

Azarm, 20 0 0 ): Given two respective good (ideal objective 

vector) and bad (maximum objective vector assuming it ex- 

ists) objective vectors ˜ y I and 

˜ y M , the objective space (pre- 

liminary normalized) is divided into hyperboxes of size μ
( ∈ (0 ; 1] ). NDC μ is defined as the number of hyperboxes 

containing elements of the Pareto front approximation. For 

this indicator, a higher value is desirable. CL μ is then defined 

as CL μ(Y N ) = 

| Y N | 
NDC μ(Y N ) 

. A higher value of the CLU μ indicator 

is the consequence of a more clustered distribution of the el- 

ements of a Pareto front approximation and so a lower value 

is considered to be better. 

3. Sigma diversity metrics σ and σ ( Mostaghim & Teich, 2005 ): 

The objective space is divided into zones delimited by uni- 

formly distributed reference lines starting from the origin 

whose the number equals | Y N | . The indicator value is the ra-

tio of the number of objective vectors that are sufficiently 

close to the reference lines according to the Euclidean norm 

with a threshold d chosen by the user, over the total number 

of reference lines. The higher the value, the better. 

4. Diversity comparison indicator DCI ( Li, Yang, & Liu, 2014 ): It 

is a k -ary spread indicator. The zone of interest in the objec- 

tive space delimited by lower and upper bounds is divided 

into a number of hyperboxes. For each Pareto front approx- 

imation, a contribution coefficient is computed relatively to 

the hyperboxes where non-dominated points are found. For 

each Pareto front approximation, DCI returns the mean of 

contribution coefficients relatively to all hyperboxes of in- 

terest. A variant is the M –DI indicator ( Asafuddoula, Ray, & 

Singh, 2015 ) (Modified Diversity Indicator) which considers a 

distributed reference set in the objective space instead of the 

set of non-dominated points from the union of the k Pareto 

front approximations. 

A drawback of these indicators is the choice of external parame- 

ers ( d threshold, μ size, number of hyperboxes) that can wrongly 

avor Pareto front approximations over others. σ and CL μ can be 

onsidered as cardinal indicators too and therefore suffer from the 

ame drawbacks as the above cardinal indicators. 

.4. Convergence and distribution indicators 

These indicators are of two types: some enable to compare sev- 

ral Pareto approximations in term of distribution and Pareto dom- 

nance. The others give a value that capture distribution, spreading 

nd convergence at the same time. 

.4.1. Inverted generational distance ( IGD ) ( Coello & Cortés, 2005 ) 

IGD has a quite similar form than GD . It captures the average 

inimal distance from an element of a discrete representation of 

he Pareto front to the closest point in the Pareto front approxima- 

ion. It is given by 

GD (Y N ;Y P ) = 

1 

| Y P | 

( ∑ 

y 2 ∈ Y P 

(
min 

y 1 ∈ Y N 
‖ y 1 − y 2 ‖ 

)p 
) 

1 
p 

. 

enerally, p = 2 . A lower value is considered to be better. Pros and

ons are the same as for the GD indicator (3.2.1) . 
410 
When an element of the Pareto front approximation Y N does 

ot belong to the set of nearest points to the Pareto optimal solu- 

ion set Y P , it is ignored by the IGD indicator. The authors of Tian,

hang, Cheng, and Jin (2016) propose a variant of the IGD indicator, 

amed IGD –NS, which takes into account these non-contributed el- 

ments in an Euclidean distance-based indicator. Let 

 NC = 

{
y ∈ Y N : ∀ y 2 ∈ Y P , ‖ y − y 2 ‖ � = min 

y 1 ∈ Y N 
‖ y 1 − y 2 ‖ 

}
e the set of non-contributed elements of Y N . The IGD –NS indicator 

s defined by 

GD –NS(Y N ;Y P ) = 

∑ 

y 2 ∈ Y P 
min 

y 1 ∈ Y N 
‖ y 1 − y 2 ‖ + 

∑ 

y 2 ∈ Y P 
min 

y 1 ∈ Y NC 

‖ y 1 − y 2 ‖ . 

 lower indicator value is desirable. 

.4.2. Averaged Hausdorff distance (�p ) ( Schutze, Esquivel, Lara, & 

oello, 2012 ) 

In Schutze et al. (2012) , the authors combine GD (3.2.1) and 

GD (3.4.1) into a new indicator, called the averaged Hausdorff dis- 

ance �p defined by 

p (Y N ;Y P ) = max { GD p (Y N ;Y P ) , IGD p (Y N ;Y P ) } 
here GD p and IGD p are slightly modified versions of the GD and 

GD indicators defined as 

D p (Y N ;Y P ) = 

( 

1 

| Y N | 
∑ 

y 1 ∈ Y N 

(
min 

y 2 ∈ Y P 
‖ y 1 − y 2 ‖ 

)p 
) 

1 
p 

nd 

GD p ( Y N ;Y P ) = 

( 

1 

| Y P | 
∑ 

y 2 ∈ Y P 

(
min 

y 1 ∈ Y N 
‖ y 1 − y 2 ‖ 

)p 
) 

1 
p 

. 

his indicator is to be minimized. It is straightforward to compute 

nd to understand. On the contrary, it requires the knowledge of 

he Pareto front. The authors of Schutze et al. (2012) introduce this 

ew indicator to correct the drawbacks of the GD and IGD indi- 

ators. It can be used to compare continuous and discontinuous 

pproximations of Pareto fronts. 

In Vargas and Bogoya (2018) , the authors propose an exten- 

ion of the averaged Hausdorff distance indicator, called the p, q - 

veraged distance �p,q for p, q ∈ R \ { 0 } . Given two finite sets

f objective vectors Y 1 ⊂ R 

m , Y 2 ⊂ R 

m , the generational distance 

D p,q for p, q ∈ R \ { 0 } is defined as 

D p,q (Y 
1 , Y 2 ) = 

⎛ ⎝ 

1 

| Y 1 | 
∑ 

y 1 ∈ Y 1 

( 

1 

| Y 2 | 
∑ 

y 2 ∈ Y 2 
‖ y 1 − y 2 ‖ 

q 

) 

p 
q 

⎞ ⎠ 

1 
p 

. 

hen p < 0 or q < 0 , GD p,q exists if and only if Y 1 
⋂ 

Y 2 = ∅ . Given

 Pareto front approximation Y N and a discrete representation of 

he Pareto front Y P ⊆ Y p , the p, q -averaged distance indicator is de- 

ned as 

p,q (Y N ;Y P ) = max ( GD p,q ( Y N , Y P \ Y N ) , GD p,q ( Y P , Y N \ Y P ) ) . 
s the averaged Hausdorff distance, this indicator is not Pareto 

ompliant ( Vargas & Bogoya, 2018 ). However, once that the values 

f p and q are selected, it is straightforward to compute and to 

nderstand. 

.4.3. Modified inverted generational distance ( IGD 

+ ) ( Ishibuchi, 

asuda, Tanigaki, & Nojima, 2015 ) 

Although the GD (3.2.1) and IGD (3.4.1) indicators are com- 

only used due to their low computational cost ( Riquelme et al., 
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(

015 ), one of their major drawbacks is that they are non mono- 

one ( Ishibuchi et al., 2015 ). The �p indicator (3.4.2) has the same 

roblem ( Schutze et al., 2012 ). 

Also, the authors of Ishibuchi et al. (2015) propose a slightly 

ifferent version of the IGD indicator named IGD 

+ integrating the 

ominance relation computable in O(m | Y N | × | Y P | ) where Y P is a

xed Pareto optimal solution set. It is weakly Pareto compliant, 

.e. : 

or all Y 1 N , Y 
2 
N ∈ � such that Y 1 N � Y 2 N , IGD 

+ (Y 1 N ;Y P ) ≤ IGD 

+ (Y 2 N ;Y P ) . 

he IGD 

+ indicator is defined by 

GD 

+ (Y N ;Y P ) = 

1 

| Y P | 
∑ 

y 2 ∈ Y P 
min 

y 1 ∈ Y N 
‖ (y 1 − y 2 ) + ‖ 

here (y 1 − y 2 ) + = ( max (0 , y 1 
i 

− y 2 
i 
)) i =1 , 2 , ... ,m 

. 

As opposed to the IGD indicator, IGD 

+ takes into account the 

ominance relation between an element of Y P and an element of 

 N when computing their Euclidean distance. A reference set Y R 
an also be used instead of Y P : the authors of Ishibuchi, Masuda, 

anigaki, and Nojima (2014) analyze the choice of such reference 

ets. This indicator can be used with discontinuous and continu- 

us Pareto fronts. 

Similarly to IGD 

+ , given a reference set Y R ⊂ R 

m , 

ist 1 R ( Czyzzak & Jaszkiewicz, 1998 ) is given by 

ist 1 R (Y N ;Y R ) = 

1 

| Y R | 
∑ 

r∈ Y R 
min 

y ∈ Y N 
max 

i =1 , 2 , ... ,m 

{ 0 , w i (y i − r i ) } 

ith w i a relative weight assigned to objective i . For all these indi-

ators, a lower value is desirable. 

.4.4. R 1 and R 2 indicators ( Hansen & Jaszkiewicz, 1998 ) 

Let Y 1 
N 

and Y 2 
N 

be two Pareto front approximations, U a set of 

tility functions u : R 

m → R mapping each point in the objective 

pace into a measure of utility, and p a probability distribution on 

he set U . To each u ∈ U are associated u � (Y 1 N ) = max 
y ∈ Y 1 

N 
u (y ) and

 

� (Y 2 N ) = max 
y ∈ Y 2 

N 
u (y ) . The two indicators measure to which ex-

ent Y 1 
N 

is better than Y 2 
N 

over the set of utility functions U . The R 1 
ndicator is given by 

 1 (Y 
1 

N , Y 
2 

N ;U , p) = 

∫ 
u ∈U 

C(Y 1 N , Y 
2 

N , u ) p(u ) du 

here 

(Y 1 N , Y 
2 

N , u ) = 

{ 

1 if u 

� (Y 1 N ) > u 

� (Y 2 N ) , 
1 / 2 if u 

� (Y 1 N ) = u 

� (Y 2 N ) , 
0 if u 

� (Y 1 N ) < u 

� (Y 2 N ) . 

he R 2 indicator defined as 

R 2 (Y 
1 

N , Y 
2 

N ;U , p) = E 
(
u 

� (Y 1 N ) 
)

− E 
(
u 

� (Y 2 N ) 
)

= 

∫ 
u ∈U 

(
u 

� (Y 1 N ) − u 

� (Y 2 N ) 
)

p(u ) du . 

s the expected difference in the utility of a Pareto front approx- 

mation Y 1 N with another one Y 2 N . In practice, these two indicators 

se a discrete and finite set U of utility functions associated with 

n uniform distribution over U ( Zitzler et al., 2008 ). The two indi- 

ators can then be rewritten as 

 1 (Y 
1 

N , Y 
2 

N ;U ) = 

1 

| U | 
∑ 

u ∈U 
C(Y 1 N , Y 

2 
N , u ) and 

 2 (Y 
1 

N , Y 
2 

N ;U ) = 

1 

| U | 
∑ 

u ∈U 
u 

� 
(
Y 1 N 

)
− u 

� (Y 2 N ) . 

f R 2 (Y 
1 
N , Y 

2 
N ;U ) > 0 , then Y 1 N is considered as better than Y 2 N . Else if

 2 (Y 
1 , Y 2 ;U ) ≥ 0 , Y 1 is considered as not worse than Y 2 . 

N N N N 

411 
The authors of Hansen and Jaszkiewicz (1998) recommend to 

se the utility set U ∞ 

= ( u w 

) w ∈ W 

of weighted Tchebycheff utility 

unctions, with 

 w 

(y ) = − max 
i =1 , 2 , ... ,m 

( w i | y i − r i | ) 
or y ∈ R 

m where r is a reference objective vector chosen so that 

ny objective vector of the feasible objective set does not dominate 

(or as an approximation of the ideal point Brockhoff, Wagner, & 

rautmann, 2012; Brockhoff, Wagner, & Trautmann, 2015; Zitzler 

t al., 2008 ) and w ∈ W a weight vector such that for all w ∈ W 

nd i = 1 , 2 , . . . , m, 

 i ≥ 0 and 

m ∑ 

i =1 

w i = 1 . 

itzler et al. (2008) suggest using the set of augmented weighted 

chebycheff utility functions defined by 

 w 

(y ) = −
( 

max 
i =1 , 2 , ... ,m 

w i | y i − r i | + ρ
m ∑ 

i =1 

| (y i − r i | 
) 

here ρ is a sufficiently small positive real number. 

As given in Brockhoff et al. (2012) , for m = 2 objectives, W can 

e chosen such that: 

1. W = { (0 , 1) , ( 1 
k −1 

, 1 − 1 
k −1 

) , ( 2 
k −1 

, 1 − 2 
k −1 

) , . . . , (1 , 0) } is a

set of k weights uniformly distributed in the space [0 ; 1] 2 . 

2. W = { ( 1 
1+ tan ϕ , 

tan ϕ 
1+ tan ϕ ) , ϕ ∈ �k } where �k = { 0 , π

2(k −1) 
,

2 π
2(k −1) 

, . . . , π2 } is a set of weights uniformly distributed over 

the trigonometric circle. 

The I R 2 indicator ( Brockhoff et al., 2012 ) is an unary indicator 

erived from R 2 defined as (in the case of weighted Tchebycheff

tility functions) 

 R 2 (Y N ;W ) = 

1 

| W | 
∑ 

w ∈ W 

min 

y ∈ Y N 

{ 
max 

i =1 , 2 , ... ,m 

( w i | y i − r i | ) 
} 
. 

he lower this index, the better. 

As Knowles and Corne (2002) remark, “the application of R 2 de- 

ends up on the assumption that it is meaningful to add the val- 

es of different utility functions from the set U . This simply means 

hat each utility function in U must be appropriately scaled with 

espect to the others and its relative importance”. R -indicators are 

nly monotonic, i.e. I(Y 1 
N 
) ≥ I(Y 2 

N 
) in case Y 1 

N 
weakly dominates Y 2 

N 
.

hey do not require important computations as the number of 

bjectives increases. The reference point has to be chosen care- 

ully. Studies concerning the properties of the R 2 indicator can be 

ound in Brockhoff et al. (2012) , Brockhoff et al. (2015) and Wagner, 

rautmann, and Brockhoff (2013) . 

.4.5. G-metric ( Lizarraga-Lizarraga, Hernandez-Aguirre, & 

otello-Rionda, 2008 ) 

This indicator enables to compare k Pareto front approximations 

ased on two criteria: the repartition of their elements and the 

evel of domination in the objective space. It is compliant with the 

eak dominance relation as defined above. Its computation de- 

omposes into several steps: given k Pareto front approximations 

Y 1 
N 

, Y 2 
N 

, . . . , Y k 
N 
) : 

1. Scale the values of the objective vectors corresponding to 

the images of the decision vectors in the k sets, i.e. ex- 

tract the non-dominated objective vectors from the union ⋃ k 

j=1 
Y 

j 
N 
, then normalize all objective vectors according to 

the extreme values of the objective vectors of this set. 
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Fig. 5. Illustration of the hypervolume indicator for a biobjective problem. 
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2. Group the Pareto front approximations according to their de- 

gree of dominance. In level L 1 will be put all Pareto front ap- 

proximations which are not dominated by the union of the 

k Pareto front approximations; remove them from the con- 

sidered Pareto front approximations; then in L 2 , will be put 

the Pareto front approximations which are not dominated by 

the union of the remaining Pareto front approximations, and 

so on. 

3. For each level of dominance L q for q = 1 , 2 , . . . , Q , where Q 

is the number of levels, dominated points belonging in the 

set 
⋃ 

Y N ∈ L q 
Y N are removed. Each objective vector in each set 

of the same level possesses a zone of influence. It is a ball 

of radius ρ centered in this last one. The radius ρ consid- 

ers distances between neighbors objective vectors ( Leung & 

Wang, 2003 ) from the k Pareto front approximations. For 

each Pareto front approximation belonging to the same level 

of dominance, a measure of dispersion is computed. This last 

one takes into account the zone of influence that the union 

of non-dominated elements of the set cover in the objective 

space. The smaller the value, the closer the points are. 

4. The G -metric associated to an Pareto front approximation is 

the summation of the dispersion measure of this set and the 

largest dispersion measure of Pareto front approximations 

of lower dominance degree for each level. The bigger, the 

better. 

The computation cost is quite important (in O(k 3 ×
ax j=1 , 2 , ... ,k | Y j N 

| 2 ) Lizarraga-Lizarraga et al., 2008 ) but the cost 

an be decreased when one considers a small number of Pareto 

ront approximations. Note that this indicator highly depends on 

he computation of the radius ρ when defining zones of influence. 

his indicator can be used for continuous and discontinuous Pareto 

ronts, especially to compare two Pareto front approximations, in 

erms of dominance and distribution in the objective space. 

.4.6. Performance comparison indicator ( P CI) ( Li, Yang, & Liu, 2015 ) 

The Performance Comparison indicator ( Li et al., 2015 ) P CI was 

onceived to rectify the main drawback of the ε-indicator. P CI en- 

bles to compare k Pareto front approximations taking into ac- 

ount their level of dominance and their distribution in the objec- 

ive space. P CI uses a reference set composed of all non-dominated 

oints taken from the union of the k Pareto front approximations. 

sing extreme values of the reference set, all objective vectors of 

he k Pareto front approximations are normalized. Then P CI divides 

he set into different clusters based on a distance threshold σ . P CI

stimates the minimum distance move of the points in the Pareto 

ront approximations to weakly dominate all points in the clusters. 

 lower value reflects better closeness of the Pareto front approxi- 

ation to the reference set. 

This indicator possesses a quadratic computational cost and is 

areto compliant when only two Pareto front approximations are 

onsidered ( Li et al., 2015 ). The authors propose the following 

hoice for the threshold, i.e. 

≈ 1 

m −1 
√ | Y R | (m − 1)! − (m/ 2) 

here | Y R | is the size of the reference set, which enables this indi-

ator to be external-parameter-free. 

The recent binary dominance move indicator ( Li & Yao, 2017 ) 

oM is a generalization of the P CI indicator, as it computes the 

inimum distance move from one Pareto front approximation to 

eakly dominate another. A polynomial algorithm is proposed in Li 

nd Yao (2017) in the biobjective case. To the best of our knowl- 

dge, no extension of the DoM indicator to more objectives has 

een proposed yet. 
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.4.7. Hyperarea/hypervolume metrics ( HV ) ( Zitzler, 1999 ) 

Named also S-metric , the hypervolume indicator is described as 

he volume of the space in the objective space dominated by the 

areto front approximation Y N and delimited from above by a ref- 

rence objective vector r ∈ R 

m such that for all y ∈ Y N , y ≤ r. The

ypervolume indicator is given by 

V (Y N ; r) = λm 

( ⋃ 

y ∈ Y N 
[ y, r] 

) 

here λm 

is the m -dimensional Lebesgue measure. An illustration 

s given in Fig. 5 for the biobjective case ( m = 2 ). This indicator is

o be maximized. 

If the Pareto front is known, the Hyperarea ratio is given by 

R (Y N , Y P ; r) = 

HV (Y N ; r) 

HV (Y P ; r) 
. 

he greater the ratio is (converges toward 1), the better the ap- 

roximation is. 

The hypervolume indicator and some closely related metrics are 

he only known unary indicators to be strictly monotonic ( Falcón- 

ardona, Emmerich, & Coello, 2019; Friedrich, Bringmann, Voß, & 

gel, 2011; Zitzler, Brockhoff, & Thiele, 2007; Zitzler et al., 2008 ), 

.e. if a Pareto front approximation Y 1 
N 

is better than another Pareto 

ront approximation Y 2 
N 

, HV (Y 1 
N 

; r) > HV (Y 2 
N 

; r) assuming that all

lements of the two Pareto front approximations are in the interior 

f the region which dominates the reference point. The best known 

omplexity upper cost is O( | Y N | m 3 poly log | Y N | ) ( Chan, 2013 ). To the 

est of our knowledge, no implementation of this algorithm is 

vailable. Practically, efficient implementations of the exact hyper- 

olume indicator can be found in Beume, Fonseca, Lopez-Ibanez, 

aquete, and Vahrenhold (2009) , Jaszkiewicz (2018) , Lacour, Klam- 

oth, and Fonseca (2017) , Russo and Francisco (2014) , Russo and 

rancisco (2016) and While, Bradstreet, and Barone (2012) . The sec- 

nd drawback is the choice of the reference point, as illustrated in 

ig. 6 . A practical guide to specify the reference point can be found 

n Ishibuchi, Imada, Setoguchi, and Nojima (2018) . 

For the biobjective case, it was shown ( Auger, Bader, Brockhoff, 

 Zitzler, 2009 ) that the optimal distribution of non-dominated 

oints which maximizes the hypervolume indicator depends on 

he slope of the Pareto front. Consequently, if the Pareto front is 

ighly nonlinear, a non-uniform Pareto front approximation may 

ave a higher hypervolume value according to another incompa- 

able Pareto front approximation. Other theoretical results can be 

ound in Bringmann and Friedrich (2010a, 2010b, 2013) . Due to 

ts properties, it is widely used in the evolutionary community in 

he search of potential interesting new points or to compare algo- 

ithms. 

Similarly, Zitzler (1999) introduces the Difference D of two sets 

 

1 
N and Y 2 N . D (Y 1 N , Y 

2 
N ) enables to measure the size of the area dom-

nated by Y 1 but not by Y 2 in the objective space. 

N N 
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Fig. 6. The relative value of the hypervolume metric depends on the chosen reference point r 1 or r 2 (inspired by Knowles & Corne, 2002 ). On the top, two non-dominated 

Y 1 N and Y 2 N sets are shown, with HV (Y 1 N ; r 1 ) > HV (Y 2 N ; r 1 ) . On the bottom, HV (Y 2 N ; r 2 ) > HV (Y 1 N ; r 2 ) . 
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The Hyperarea Difference was suggested by Wu and Azarm 

20 0 0) to compensate the lack of information about the theoret- 

cal Pareto front. Given a good objective vector ̃  y I and a bad objec- 

ive vector ̃  y M , we can approximate the size of the area dominated 

y the Pareto front (or circumvent the objective space by a rect- 

ngle). The Hyperarea Difference is just the normalization of the 

ominated space by the Pareto front approximation in the objec- 

ive space over the given rectangle. 

More recently, a pondered hypervolume by weights indicator 

as introduced by Zitzler et al. (2007) to give a preference of 

n objective according to another. More volume indicators can be 

ound in Wu and Azarm (20 0 0) . Some other authors ( Jiang, Yang,

 Li, 2016 ) (for biobjective optimization problems) suggest to com- 

ute the hypervolume defined by a reference point and the projec- 

ion of the points belonging to the Pareto front approximation on 

he line delimited by the two extreme points. This measure en- 

bles to better estimate the distribution of the points along the 

areto front (in fact, it can be shown that for a linear Pareto front, 

n uniform distribution of points maximizes the hypervolume in- 

icator: see Auger, Bader, and Brockhoff (2010) ; Auger et al. (2009, 

012) ; Shukla, Doll, and Schmeck (2014) for more details about the 

roperties of the hypervolume indicator). A logarithmic version of 

he hypervolume indicator called the logarithmic hypervolume in- 

icator ( Friedrich et al., 2011 ) is defined by 

og HV (Y N ; r) = λm 

( ⋃ 

y ∈ Y N 
[ log y, log r] 

) 

ith the same notations as previously. Note that this indicator can 

nly be used with positive vectors in R 

m . Finally, we can mention a

eneralization of the hypervolume indicator called the cone-based 

ypervolume indicator that was introduced recently by Emmerich, 

eutz, Kruisselbrink, and Shukla (2013b) and an extension of the 

ypervolume indicator to reference point free weighted hyper- 
413 
olume indicators based on set monotonic and desirability func- 

ions ( Emmerich, Deutz, & Yevseyeva, 2014 ). 

.4.8. Hypervolume Sharpe-Ratio indicator I HSR ( Yevseyeva, Guerreiro, 

mmerich, & Fonseca, 2014 ) 

The conception of this indicator proposed by Yevseyeva et al. 

2014) lies on an analogy between the financial Portfolio Selection 

roblem ( Markowitz, 1952 ) and the quality of a Pareto front ap- 

roximation. This analogy interprets the elements of the approxi- 

ation set as assets with expected returns. An investor must al- 

ocate capital to maximize the expected return of the assembled 

ortfolio while minimizing the expected variance (associated to 

isk). 

To solve the financial Portfolio Selection problem, it is com- 

on to look for a strategy which maximizes the financial per- 

ormance index known as reward-to-volatility ratio or Sharpe ra- 

io ( Cornuéjols, Peña, & Tütüncü, 2018 ). Let A = { a 1 , a 2 , . . . , a | A | } be

 non-empty set of assets, let r a ∈ R 

| A | be the expected return of 

hese assets and Q ∈ R 

| A |×| A | the covariance matrix of asset returns. 

he Sharpe-Ratio maximization problem is defined as 

max 
z∈ [0 , 1] | A | 

h 

A (z) = 

( r a ) 
T z − r f √ 

z T Qz 

such that 

| A | ∑ 

i =1 

z i = 1 

here r f ∈ R is the return of a riskless asset. This non-linear 

roblem which may be difficult to solve can be transformed 

see Cornuéjols et al., 2018 for more details) into the following 

onvex problem (under the condition that Q be symmetric posi- 
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min 

w ∈ R + | A | 
g A (w ) = w 

T Qw 

such that 

| A | ∑ 

i =1 

(r a i − r f ) w i = 1 . 

he optimal strategy z � of the first problem is given by z � = 

 

� / 

(∑ | A | 
i =1 

w 

� 
i 

)
where w 

� is the solution of the constrained 

uadratic problem defined above. 

The authors of Yevseyeva et al. (2014) define the Hypervolume 

harpe-Ratio indicator as 

 HSR (Y N ; y l , y u ) = max 
z∈Z sr 

h 

Y N (z) 

here Z 

sr ⊂ [0 , 1] | Y N | is the set of feasible strategies of the Sharpe

atio maximization problem and y l ∈ R 

m and y u ∈ R 

m two refer- 

nce points such that y l < y u . The definition of the covariance ma-

rix and the asset returns inspired by the hypervolume indicator 

re given by 

 

| Y N | 
j 

= 

λm 

(
[ y l , y u ] ∩ [ y j , + ∞ [ 

)
λm 

(
[ y l , y u ] 

) = 

∏ m 

k =1 max 
(
y u 

k 
− max (y j 

k 
, y l 

k 
) , 0 

)
∏ m 

k =1 (y u 
k 

− y l 
k 
) 

nd 

 i, j = 

λm 

(
[ y l , y u ] ∩ [ y i , + ∞ [ ∩ [ y j , + ∞ [ 

)
λm 

(
[ y l , y u ] 

)
= 

∏ m 

k =1 max 
(
y u 

k 
− max (y i 

k 
, y j 

k 
, y l 

k 
) , 0 

)
∏ m 

k =1 (y u 
k 

− y l 
k 
) 

or i, j ∈ { 1 , 2 , . . . , | Y N |} where λm 

is the m -dimensional Lebesgue

easure. The riskless asset value is set to r f = 0 . The greater the

ndicator value is, the better. 

The I HSR indicator has desirable properties: providing that y u � 

 < y l for all y ∈ Y N , the I HSR indicator is proved to be mono-

onic ( Guerreiro & Fonseca, 2016; 2020 ), but not strictly mono- 

onic ( Guerreiro & Fonseca, 2020 ). Other theoretical results can be 

ound in Guerreiro and Fonseca (2016, 2020) . Due to its relation 

ith a financial model, it is interpretative. However, it is sensitive 

o the choice of the reference point y u ( Guerreiro & Fonseca, 2020 ).

ts main drawback is its computational cost, directly linked to the 

esolution of the quadratic formulation of the Sharpe ratio max- 

mization problem. Assuming the associated correlation matrix Q

s symmetric positive, this indicator can be computed in O(| Y N | 3 ) 
perations (for theoretical complexity results, the reader is invited 

o refer to Nesterov and Nemirovskii (1994) ; see also (Nocedal 

 Wright, 2006, chapter 16) ). Practically, existing quadratic con- 

trained solvers can efficiently compute the indicator value for a 

iven Pareto front approximation (see Nocedal & Wright, 2006 , 

hapter 16 for a list of quadratic solvers). 

.5. Quality assessment of Pareto set approximations in decision 

pace 

By definition, performance indicators enable to characterize 

roperties of Pareto front approximations with respect to their di- 

ersity, spread and convergence. Moreover, it is possible to build 

ndicators which assess the quality of Pareto set approximations 

n the decision space, i.e. to design mappings I : � → R . Some 

esearch works explore the design of such indicators. For exam- 

le, Zitzler et al. (20 0 0) propose the M 1 , M 2 and M 3 indicators

o respectively assess convergence, diversity and extension prop- 

rties of Pareto set approximations. In Sayın (20 0 0) , the author 

uggests using a cardinality indicator that returns the number of 

on-dominated points | X N | , coverage indicator or uniformity indi- 

ator in the feasible set. In Ulrich, Bader, and Thiele (2010a) , the 
414 
uthors conceive diversity indicators based on diversity preference 

elations in the feasible set. In Deb and Tiwari (2008) , the authors 

efine diversity crowding-distance indicator in the decision space. 

ndicators to take into account diversity both in the decision space 

nd the objective space can be found in Shir, Preuss, Naujoks, and 

mmerich (2009) and Ulrich, Bader, and Zitzler (2010b) . Finally, 

n Emmerich et al. (2013a) , the authors present some measures to 

ualify approximation sets in level set approximations, which are 

ubsets of the feasible set. 

Sayin Sayın (20 0 0) states that the decision maker is firstly in- 

erested by the quality of the best trade-off solutions found in the 

bjective space as long as corresponding decision variables sat- 

sfy the constraints. Furthermore, the number of objectives is usu- 

lly smaller than the number of variables, which makes the Pareto 

ront approximation easier to study/visualize. 

. Some usages of performance indicators 

This section focuses on four applications of performance indi- 

ators: comparison of algorithms for multiobjective optimization, 

mbedding performance indicators in multiobjective optimization 

lgorithms, definition of stopping criteria, and the use of relevant 

istribution and spread indicators for assessing the diversity char- 

cterization of a Pareto front approximation. 

.1. Comparison of algorithms 

The first use of performance indicators is to evaluate the per- 

ormance of algorithms on a multiobjective problem. In single- 

bjective optimization, the most used graphical tools to compare 

lgorithms include performance profiles ( Dolan & Moré, 2002 ) and 

ata profiles ( Moré & Wild, 2009 ) (see also Beiranvand, Hare, & 

ucet, 2017 for a detailed survey on the tools to compare single- 

ptimization algorithms). More specifically, let S be a set of solvers 

nd P the set of benchmarking problems. Let t p,s > 0 be a perfor- 

ance measure of solver s ∈ S on problem p ∈ P: the lower, the 

etter. Performance and data profiles combine performance mea- 

ures of solvers t p,s to enable a general graphic representation of 

he performance of each solver relatively to each other on the set 

f benchmarking problems P . 

To the best of our knowledge, Custódio et al. (2011) are the first 

o use data and performance profiles for multiobjective optimiza- 

ion. For each problem p ∈ P, they build a Pareto front approxima- 

ion Y 
p 

N 
= 

⋃ 

s ∈S Y 
p,s 

N 
composed of the union of all Pareto front ap- 

roximations Y 
p,s 

N 
generated by each solver s ∈ S for the problem 

p. All dominated points are then removed. Pareto front approxima- 

ions and relative Pareto optimal solution sets are then compared 

sing cardinality and � and � metrics proposed by Custódio et al. 

2011) . 

One of the critics we can make with this approach is the 

se of distribution and cardinality indicators that do not cap- 

ure order relations between two different sets . The choice of 

weakly) monotonic indicators or ( ≺-complete / ≺-compatible) � - 

omplete / � -compatible comparisons methods is more appropri- 

ted in this context ( Hansen & Jaszkiewicz, 1998; Knowles & Corne, 

002; Zitzler et al., 2008; Zitzler et al., 2003 ). Among them, domi- 

ance move (3.4.6) , G-metric (3.4.5) , binary ε-indicator (3.2.6) , Hy- 

ervolume Sharpe-Ratio indicator (3.4.8) and volume-space met- 

ics (3.4.7) have properties corresponding to these criteria. Math- 

matical proofs can be found in Auger et al. (2009) , Brockhoff

t al. (2012, 2015) , Guerreiro and Fonseca (2016, 2020) , Knowles 

nd Corne (2002) , Li and Yao (2017) , Lizarraga-Lizarraga et al. 

2008) and Zitzler et al. (2003) ) and are synthesized in Appendices. 

n example of performance profile using the hypervolume indica- 

or (3.4.7) can be found in Liuzzi, Lucidi, and Rinaldi (2016) . The 

se of performance indicators such as GD (3.2.1) or IGD (3.4.1) as 
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t is done in Al-Dujaili and Suresh (2016) and Brockhoff et al. 

2015) is not a pertinent choice due to their inability to cap- 

ure dominance relation. Instead, we suggest to use their weakly 

onotonic counterpart IGD 

+ (3.4.3) or DOA (3.2.7) , that can be 

heaper to compute than for example the hypervolume indica- 

or when the number of objectives is high. It is equally possible 

o build Pareto-compliant indicators by considering a combination 

f weakly Pareto compliant indicators with at least one strictly 

areto compliant indicator as it is proposed in Falcón-Cardona 

t al. (2019) . 

The attainment function ( da Fonseca, Fonseca, & Hall, 2001 ) 

s another tool for the performance assessment of multiobjective 

stochastic) solvers. Assuming a multiobjective solver has produced 

 Pareto front approximations Y 
j 

N 
for j = 1 , 2 , . . . , k on a given prob-

em, the empirical attainment function α : R 

m → [0 , 1] is defined 

s 

(y ) = 

1 

k 

k ∑ 

j=1 

1 { Y j 
N 

� { y }} . 

or a given y ∈ R 

m , the attainment function estimates the prob- 

bility that the multiobjective solver reaches (in term of domi- 

ance in the objective space) the objective vector y . The interested 

eader can refer to Brockhoff, Auger, Hansen, and Tušar (2017) , 

a Fonseca et al. (2001) , Fonseca, da Fonseca, and Paquete (2005) , 

onseca, Guerreiro, López-Ibáñez, and Paquete (2011) and Zitzler 

t al. (2008) for additional information. 

.2. Embedding performance indicators in multiobjective optimization 

lgorithms 

Performance indicators are able to quantify properties a good 

areto front approximation should possess. It is then logical to in- 

orporate them into multiobjective optimization methods. By op- 

imizing directly the indicator, one can hope to obtain approxi- 

ations of the Pareto front satisfying demanding properties. For 

hese last years, the evolutionary multiobjective community has 

requently adopted this approach. 

For example, performance indicators such as R 2 ( Trautmann, 

agner, & Brockhoff, 2013 ) or HV ( Beume, Naujoks, & Emmerich, 

007 ), I ε ( Zitzler & Künzli, 2004 ), IGD 

+ ( Falcón-Cardona et al.,

019; Lopez & Coello, 2016 ), IGD –NS ( Tian et al., 2016 ) are used in

election mechanisms in evolutionary algorithms. The reader is in- 

ited to consult the recent survey ( Falcón-Cardona & Coello, 2020 ) 

or more information on indicator-based multiobjective evolution- 

ry algorithms. Similarly, the �-indicator ( Custódio et al., 2011 ) en- 

bles to identify holes in the Pareto front approximation around 

hich the algorithm can explore to improve diversity. In global 

tochastic optimization, some methods integrate hypervolume in- 

icator ( Bradford, Schweidtmann, & Lapkin, 2018; Emmerich, Yang, 

eutz, Wang, & Fonseca, 2016; Feliot, Bect, & Vazquez, 2017 ) and 

ts variants ( Feliot, Bect, & Vazquez, 2019 ) or R 2 ( Deutz, Emmerich,

 Yang, 2019 ) to better explore the decision space. In Akhtar and 

hoemaker (2016) , the authors use Radial Basis models and the hy- 

ervolume indicator to identify next promising points to evaluate. 

n Al-Dujaili and Suresh (2018) , the authors propose a multiobjec- 

ive optimistic algorithm using the additive ε-indicator (3.2.6) and 

nalyse its link with the weighted Tchebysheff approach. 

The transformation of a multiobjective optimization problem 

nto a single-objective quality indicator based problem implies a 

oss of information. Indeed, the choice of a specific performance 

ndicator reflects the personal preferences of the decision user. It 

s then important to understand the bias of this choice on the so- 

ution set found. Given a performance indicator, the concept of op- 

imal μ-distribution ( Auger et al., 2009 ) refers to the study of the

ptimal distributions of non-dominated points of size μ which be- 
415 
ong to the Pareto front and maximize (or minimize) the perfor- 

ance indicator for a given multiobjective problem. Their study 

nables to understand bias of considered indicators and analyze 

he behavior of bounded size indicator-based algorithms. The first 

nes were done for the hypervolume indicator and some of its 

ariants in the biobjective case ( Auger et al., 2009; 2012; Em- 

erich et al., 2013b ) then extended to more objectives in Auger, 

ader, and Brockhoff (2010) and Shukla et al. (2014) . Theoretical 

esults for the R 2 indicator ( Brockhoff et al., 2012 ), the �p in- 

icator ( Rudolph, Schütze, Grimme, Domínguez-Medina, & Traut- 

ann, 2016 ) or the Hypervolume Sharpe-Ratio indicator ( Guerreiro 

 Fonseca, 2020 ) for the biobjective case exist too. 

.3. Stopping criteria of multiobjective algorithms 

To generate a Pareto front approximation, two approaches are 

urrently considered. The first category, named as scalarization 

ethods , consists in aggregating the objective functions and to 

olve a series of single-objective problems. Surveys about scalar- 

zation algorithms can be found for example in Wiecek, Ehrgott, 

nd Engau (2016) . The second class, designed as a posteriori ar- 

iculations of preferences ( Custódio et al., 2011 ) methods, aims at 

btaining the whole Pareto front without combining any objective 

unction in a single-objective framework. Evolutionary algorithms, 

ayesian optimization methods ( Emmerich et al., 2016 ) or deter- 

inistic algorithms such as DMS ( Custódio et al., 2011 ) belong to 

his category. 

For scalarization methods, under some assumptions, solutions 

o single-objective problems can be proved to belong to the Pareto 

ront or a local one. So, defining stopping criteria results in choos- 

ng the number of single-objective problems to solve via the choice 

f parameters and a single-objective stopping criterion for each of 

hem. Stopping at a predetermined number of function evaluations 

s often used in the context of blackbox optimization ( Audet et al., 

008 ). The use of performance indicators also is not relevant. 

A posteriori methods consider a set of points in the objective 

pace (a population) that is brought to head for the Pareto front 

long iterations. Basically, a maximum number of evaluations is 

till given as a stopping criterion but it remains crucial to give 

n estimation to how far from a (local) Pareto front the approxi- 

ation set is. For multiobjective Bayesian optimization ( Emmerich 

t al., 2016 ), the goal is to find at next iteration the point that max-

mizes the hyperarea difference between old non-dominated set of 

oints and the new one. The performance indicator is directly em- 

edded into the algorithm and could be used as a stopping crite- 

ion. For evolutionary algorithms, surveys on stopping criteria for 

ultiobjective optimization can be found in Martí et al. (2016) and 

agner, Trautmann, and Martí (2011) . The approach is to measure 

he progression of the current population combining performance 

ndicators (hypervolume, MDR, etc.) and statistic tools (Kalman fil- 

er Martí et al., 2016 , χ2 -variance test Wagner, Trautmann, and 

aujoks (2009) , etc.) These last ones enable to detect a stationary 

tate reached by the evolving population. 

We believe that the use of monotonic performance indicators 

r binary ones that capture the dominance property seems to be 

he most efficient one in the years to come to follow the behavior 

f population-based algorithms along iterations. 

.4. Distribution and spread 

The choice of spread and distribution indicators has only a 

ense when one wants to measure the distribution of points in the 

bjective space, no matter how close from the Pareto front the ap- 

roximated set is. Spread and distribution metrics can put forward 

lobal properties (for example statistics on the distribution of the 

oints or extent of the front) or local properties such as the largest 
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istance between closest non-dominated points that can be used 

o conduct search such as � indicator. Typically, the construction 

f a distribution or spread indicator requires two steps. The first 

onsists in defining a distance between two points in the objec- 

ive space. Many distribution indicators in the literature use min- 

mum Euclidean or Manhattan distance between points such as 

he SP metric (3.3.1) , the � index (3.3.2) , HRS (3.3.4) , and so on.

he DM (3.3.12) and �-metric (3.3.3) indicators use a “sorting dis- 

ance”; I D (3.3.13) a “neighborhood distance” based on a spanning 

ree, and so on. Once this is done, many of the existing distribu- 

ion indicators are built by using statistic tools on this distance: 

ean ( � (3.3.2) , U measure (3.3.9) , DM (3.3.12) for example), mean 

quare ( SP (3.3.1) , D nc (3.3.5) ), and so on. 

To use a distribution or spread indicator, it should satisfy the 

ollowing properties: 

1. The support of scaled functions, which enables to compare 

all objectives in an equivalent way ( DM (3.3.12) , OS (3.3.10) , 

I OD (3.3.11) , � (3.3.3) , � (3.3.3) ). 

2. For piecewise continuous or discontinuous Pareto front ap- 

proximations, a good distribution indicator should not be 

based on the distance between closest neighbors, as it can 

hide some holes ( Zheng et al., 2017 ). Some indicators pos- 

sess this property such as DM (3.3.12) , � (3.3.3) , � (3.3.3) , 

E s (3.3.16) or evenness indicators (3.3.7) . 

3. Distribution and spread performance indicators should not 

be based on external parameters, such as Zitzler’s metric 

M 

� 
2 (3.3.5) , UD (3.3.5) , or entropy measure (3.3.18) . 

4. An easy interpretation: a value returned by an indicator has 

to be “intuitive” to understand. For example, the binary uni- 

formity (3.3.8) is extremely difficult to interpret and should 

not be used. This remark applies for all types of performance 

indicators. 

One could directly include spread control parameters in the 

esign of new algorithms. The Normal Boundary Intersection 

ethod ( Das & Dennis, Jr., 1998 ) controls the spread of a Pareto

ront approximation. This method is also used in the context of 

lackbox optimization ( Audet, Savard, & Zghal, 2010 ). 

. Discussion 

In this work, we give a review of performance indicators for the 

uality of Pareto front approximations in multiobjective optimiza- 

ion, as well as some usages of these indicators. 

The most important application of performance indicators is to 

llow comparison and analysis of results of different algorithms. In 

his optic, among all these indicators, the hypervolume indicator 

nd its binary counterpart, the hyperarea difference can be con- 
416 
idered until now as the most relevant. The hypervolume indica- 

or possesses good mathematical properties, it can capture domi- 

ance properties and distribution and does not require the knowl- 

dge of the Pareto front. Empirical studies ( Jiang et al., 2014; Ok- 

be et al., 2003 ) have confirmed its efficiency compared to other 

erformance indicators. That is why it has been deeply used in 

he evolutionary community ( Riquelme et al., 2015 ). However, it 

as some limitations: the exponential cost as the number of ob- 

ectives increases and the choice of the reference point. To com- 

are algorithms, it can be replaced with other indicators capturing 

ower dominance relation such as dominance move, G-metric, bi- 

ary ε-indicator, Hypervolume Sharpe-Ratio indicator, modified in- 

erted generated distance or degree of approximation whose com- 

utational cost is less important. 

Future research can focus on the discovery of new performance 

ndicators that correct some drawbacks of the hypervolume indi- 

ator but keeps its good properties, and the integration of perfor- 

ance indicators directly into algorithms for multiobjective opti- 

ization. 

cknowledgments 

This research was financed by Le Digabel’s NSERC discov- 

ry grant RGPIN-2018-05286 , and also by the NSERC CRD RD- 

PJ 490744-15 grant and an InnovÉÉ grant, both in collaboration 

ith Hydro-Québec and Rio Tinto. We also would like to thank the 

nonymous reviewers for their suggestions and comments which 

elped to greatly improve this work. 

ppendix A. A summary of performance indicators 

Table 3 draws a summary of all indicators described in 

ection 3 . Most of complexity cost indications for computing in- 

icators are drawn from Jiang et al. (2014) . Y P ⊆ Y P corresponds to 

he Pareto optimal solution set and Y N is a Pareto front approxima- 

ion returned by a given algorithm. The symbol “✗ ” indicates that 

he performance indicator does not satisfy the monotony property. 

he “-” symbol corresponds to binary indicators, for which mono- 

onicity has no meaning. 

ppendix B. Compatibility and completeness 

Tables 4 and 5 summarize compatibility and completeness 

roperties. 

Only the strongest relationships are kept. Some of them are 

rawn from Zitzler et al. (2003) . All spread and distribution indica- 

ors are not compatible with Pareto front approximation relations. 

https://doi.org/10.13039/501100000038
https://doi.org/10.13039/501100000038
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Table 3 

A summary of performance indicators. 

Category Performance indicators Sect. Symbol Parameters Comparison sets Computational complexity Monotone 

Cardinality C-metric/Two sets Coverage Zitzler and Thiele (1998) 3.1.5 C None Binary indicator O(m | Y 1 N | × | Y 2 N | ) - 

3.1 Error ratio Van Veldhuizen (1999) 3.1.4 ER None Pareto front Y P Low ✗ 

Generational non dominated vector 

generation Van Veldhuizen and Lamont (2000) 

3.1.3 GNVG None None Low ✗ 

Generational non dominated vector generation 

ratio Van Veldhuizen and Lamont (2000) 

3.1.3 GNVGR None Pareto front Y P Low ✗ 

Mutual domination rate Martí et al. (2016) 3.1.3 MDR None None Low ✗ 

Nondominated vector additional Van Veldhuizen and 

Lamont (2000) 

3.1.3 NVA None None Low ✗ 

Overall nondominated vector generation Van Veldhuizen 

(1999) 

3.1.1 ONVG None None Low ✗ 

Overall nondominated vector generation 

ratio Van Veldhuizen (1999) 

3.1.2 ONVGR None Pareto front Y P Low ✗ 

Ratio of non-dominated points by the reference 

set Hansen and Jaszkiewicz (1998) 

3.1.5 C 2 R None Reference set Y R O(m | Y N | × | Y R | ) ✗ 

Ratio of the reference points Hansen and Jaszkiewicz 

(1998) 

3.1.4 C 1 R None Reference set Y R O(m | Y N | × | Y R | ) ✗ 

Convergence Degree of Approximation Dilettoso et al. (2017) 3.2.7 DOA None Pareto front Y P O(m | Y N | × | Y P | ) Not 

strictly 

3.2 ε-family Zitzler et al. (2003) 3.2.6 I ε None Pareto front Y P O(m | Y N | × | Y P | ) Not 

strictly 

Generational distance Van Veldhuizen (1999) 3.2.1 GD None Pareto front Y P O(m | Y N | × | Y P | ) ✗ 

γ -metric Deb et al. (2000) 3.2.1 γ None Pareto front Y P O(m | Y N | × | Y P | ) ✗ 

Maximum Pareto front error Van Veldhuizen (1999) 3.2.4 MPF E None Pareto front Y P O(m | Y N | × | Y P | ) ✗ 

M 

� 
1 -metric Zitzler et al. (2000) 3.2.1 M 

� 
1 None Pareto front Y P O(m | Y N | × | Y P | ) ✗ 

Progression metric Van Veldhuizen (1999) 3.2.5 - None None O(m | Y N | ) ✗ 

Seven points average distance Schott (1995) 3.2.3 SPAD None Reference set Y R O(m | Y N | ) ✗ 

Standard deviation from the Generational 

distance Van Veldhuizen (1999) 

3.2.2 ST DGD None Pareto front Y P O(m | Y N | × | Y P | ) ✗ 

Distribution Cluster Wu and Azarm (2000) 3.3.18 CL μ A parameter 

μ

None High ✗ 

and spread �-index Deb et al. (2000) 3.3.2 � None Pareto front Y P O(m | Y N | 2 + m | Y N | × | Y P | ) ✗ 

3.3 �′ -index Deb et al. (2000) 3.3.2 �′ None None O(m | Y N | 2 ) ✗ 

�� spread metric Zhou et al. (2006) 3.3.2 �� None Pareto front Y P O(m | Y N | 2 + m | Y N | × | Y P | ) ✗ 

Distribution metric Zheng et al. (2017) 3.3.12 DM None None O(m | Y N | 2 ) ✗ 

Diversity comparison indicator Li et al. (2014) 3.3.18 DCI A parameter 

di v 
k -ary indicator 

comparing 

Y 1 N , Y 
2 

N , . . . , Y 
k 

N 

non-dominated 

sets 

O 

(
m (k | Y max 

N | ) 2 ) ✗ 

Diversity indicator Cai et al. (2018) 3.3.15 DIR None Reference set Y R O(m | Y N | × | Y R | ) ✗ 

Entropy metric Farhang-Mehr and Azarm (2004) 3.3.18 - A parameter 

grids 

None High ✗ 

Evenness Messac and Mattson (2004) 3.3.7 ξ None None O(m | Y N | 2 ) ✗ 

Extension Meng et al. (2005) 3.3.14 EX None Pareto front Y P O(m | Y N | × | Y P | ) ✗ 

�-metric Custódio et al. (2011) 3.3.3 � None None O(m | Y N | 2 ) ✗ 

Hole Relative Size Collette and Siarry (2005) 3.3.4 HRS None None O(m | Y N | 2 ) ✗ 

Laumanns metric Laumanns et al. (2000) 3.3.17 - None None O(| Y N | m 3 poly log | Y N | ) ✗ 

Modified Diversity indicator Asafuddoula et al. (2015) 3.3.18 M –DI A parameter 

δ

Reference set Y R O(m | Y N | 2 × | Y R | ) 

M 

� 
2 -metric Zitzler et al. (2000) 3.3.5 M 

� 
2 Niche radius 

σ

None O(m | Y N | 2 ) ✗ 

M 

� 
3 -metric Zitzler et al. (2000) 3.3.5 M 

� 
3 None None O(m | Y N | 2 ) ✗ 

Number of distinct choices Wu and Azarm (2000) 3.3.18 NDC μ A parameter 

μ

None High ✗ 

Outer diameter Zitzler et al. (2008) 3.3.11 I OD None None O(m | Y N | ) ✗ 

Overall Pareto Spread Wu and Azarm (2000) 3.3.10 OS None ˜ y I and ˜ y M O(m | Y N | ) ✗ 

Riesz S-energy Hardin and Saff (2004) 3.3.16 E S A parameter 

s 

None O(m | Y N | 2 ) ✗ 

Sigma diversity metric Mostaghim and Teich (2005) 3.3.18 σ A parameter 

lines 

None High ✗ 

Spacing Schott (1995) 3.3.1 SP None None O(m | Y N | 2 ) ✗ 

U-measure Leung and Wang (2003) 3.3.9 U None None O(m | Y N | 2 ) ✗ 

Uniform assessment metric Li et al. (2008) 3.3.13 I D None None O(m | Y N | 2 ) ✗ 

Uniform distribution Tan et al. (2002) 3.3.5 UD Niche radius 

σ

None O(m | Y N | 2 ) ✗ 

Uniformity Sayın (2000) 3.3.6 δ None None O(m | Y N | 2 ) ✗ 

Uniformity Meng et al. (2005) 3.3.8 - None Binary Quadratic ✗ 

( continued on next page ) 
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Table 3 ( continued ) 

Category Performance indicators Sect. Symbol Parameters Comparison sets Computational complexity Monotone 

Convergence 

and 

Averaged Hausdorff distance Schutze et al. (2012) 3.4.2 �q None Pareto front Y P O(m | Y N | × | Y P | ) ✗ 

distribution Cone-based hypervolume Emmerich et al. (2013b) 3.4.7 - Angle γ and 

Reference 

point r

None O(| Y N | m 3 poly log | Y N | ) Strictly 

3.4 Dominance move Li and Yao (2017) 3.4.6 DoM None Binary indicator O(| Y N | log | Y N | ) - 

D-metric/Difference coverage of two sets Zitzler (1999) 3.4.7 - Reference 

point r

Binary indicator O(| Y N | m 3 poly log | Y N | ) - 

D R -metric Czyzzak and Jaszkiewicz (1998) 3.4.3 - None Reference set Y R O(m | Y N | × | Y R | ) Not 

strictly 

Hyperarea difference Wu and Azarm (2000) 3.4.7 HD Reference 

point r

None O(| Y N | m 3 poly log | Y N | ) Strictly 

Hypervolume indicator (or S-metric) Zitzler et al. (2000) 3.4.7 HV Reference 

point r

None O(| Y N | m 3 poly log | Y N | ) Strictly 

Hypervolume Sharpe-ratio indicator Yevseyeva et al. 

(2014) 

3.4.8 I HSR 

Reference points 

y l and y u 

None Polynomial Not 

strictly 

Inverted generational distance Coello and Cortés (2005) 3.4.1 IGD None Pareto front Y P O(m | Y N | × | Y P | ) ✗ 

Inverted generation distance with non contributed 

solutions detection Tian et al. (2016) 

3.4.1 IGD –NS None Pareto front Y P O(m | Y N | × | Y P | ) ✗ 

G-metric Lizarraga-Lizarraga et al. (2008) 3.4.5 - None k -ary indicator 

comparing 

Y 1 N , Y 
2 

N , . . . , Y k N 

non-dominated 

sets 

O(k 3 | Y max 
N | 2 ) Not 

strictly 

Logarithmic hypervolume indicator Friedrich et al. (2011) 3.4.7 log HV Reference 

point r

None O(| Y N | m 3 poly log | Y N | ) Strictly 

Modified inverted generational distance Ishibuchi et al. 

(2015) 

3.4.3 IGD + None Pareto front Y P O(m | Y N | × | Y P | ) Not 

strictly 

Performance comparison indicator Li et al. (2015) 3.4.6 PCI σ distance k -ary indicator 

comparing 

Y 1 N , Y 
2 

N , . . . , Y k N 

non-dominated 

sets 

Quadratic Not 

strictly 

p, q -averaged distance Vargas and Bogoya (2018) 3.4.2 �p,q None Pareto front Y P Quadratic ✗ 

R-metric Hansen and Jaszkiewicz (1998) 3.4.4 Y R A set W of 

weights 

vectors 

Reference set Y R O(m | Y N | × | Y R | × | W | ) Not 

strictly 

Table 4 

Compatibility and completeness of unary performance indicators. 

Category Performance indicators Sect. Symbol Boolean function Compatible Complete 

Cardinality Error ratio Van Veldhuizen (1999) 3.1.4 ER ER (Y 1 N ) < ER (Y 2 N ) ✗ ✗ 

3.1 Generational non dominated vector 

generation Van Veldhuizen and Lamont (2000) 

3.1.3 GNVG - - - 

Generational non dominated vector generation 

ratio Van Veldhuizen and Lamont (2000) 

3.1.3 GNVGR - - - 

Mutual domination rate Martí et al. (2016) 3.1.6 MDR - - - 

Nondominated vector additional Van Veldhuizen 

and Lamont (2000) 

3.1.3 NVA - - - 

Overall nondominated vector 

generation Van Veldhuizen (1999) 

3.1.1 ONVG ONVG (Y 1 N ) > ONVG (Y 2 N ) ✗ ✗ 

Overall nondominated vector generation 

ratio Van Veldhuizen (1999) 

3.1.2 ONVGR ONVGR (Y 1 N ;Y P ) > ONVGR (Y 2 N ;Y P ) ✗ ✗ 

Ratio of non-dominated points by the reference 

set Hansen and Jaszkiewicz (1998) 

3.1.5 C 2 R C 2 R (Y 
1 

N ;Y R ) > C 2 R (Y 
2 

N ;Y R ) ✗ ✗ 

Ratio of the reference points Hansen and 

Jaszkiewicz (1998) 

3.1.4 C 1 R C 1 R (Y 
1 

N ;Y R ) > C 1 R (Y 
2 

N ;Y R ) ✗ ✗ 

Convergence Degree of Approximation Dilettoso et al. (2017) 3.2.7 DOA DOA (Y 1 N ;Y P ) < DOA (Y 2 N ;Y P ) Not better than ≺
3.2 Generational distance Van Veldhuizen (1999) 3.2.1 GD GD (Y 1 N ;Y P ) < GD (Y 2 N ;Y P ) ✗ ✗ 

γ -metric Deb et al. (2000) 3.2.1 γ γ (Y 1 N ;Y P ) < γ (Y 2 N ;Y P ) ✗ ✗ 

Maximum Pareto front error Van Veldhuizen 

(1999) 

3.2.4 MPF E MPF E(Y 1 N ;Y P ) < MPF E(Y 2 N ;Y P ) ✗ ✗ 

M 

� 
1 -metric Zitzler et al. (2000) 3.2.1 M 

� 
1 M 

� 
1 (Y 

1 
N ;Y P ) < M 

� 
1 (Y 

2 
N ;Y P ) ✗ ✗ 

Progression metric Van Veldhuizen (1999) 3.2.5 - - - - 

Seven points average distance Schott (1995) 3.2.3 SPAD SPAD (Y 1 N ;Y P ) < SPAD (Y 2 N ;Y P ) ✗ ✗ 

Standard deviation from the Generational 

distance Van Veldhuizen (1999) 

3.2.2 ST DGD - - - 

Distribution Cluster Wu and Azarm (2000) 3.3.18 CL μ - - - 

and spread �-index Deb et al. (2000) 3.3.2 � �(Y 1 N ;Y P ) < �(Y 2 N ;Y P ) ✗ ✗ 

( continued on next page ) 
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Table 4 ( continued ) 

Category Performance indicators Sect. Symbol Boolean function Compatible Complete 

3.3 �′ -index Deb et al. (2000) 3.3.2 �′ �′ (Y 1 N ) < �′ (Y 2 N ) ✗ ✗ 

�� spread metric Zhou et al. (2006) 3.3.2 �� �� (Y 1 N ;Y P ) < �� (Y 2 N ;Y P ) ✗ ✗ 

Distribution metric Zheng et al. (2017) 3.3.12 DM DM(Y 1 N ) < DM(Y 2 N ) ✗ ✗ 

Diversity indicator Cai et al. (2018) 3.3.15 DIR DIR (Y 1 N ) < DIR (Y 2 N ) ✗ ✗ 

Entropy metric Farhang-Mehr and Azarm (2004) 3.3.18 - - - - 

Evenness Messac and Mattson (2004) 3.3.7 ξ ξ (Y 1 N ) < ξ (Y 2 N ) ✗ ✗ 

Extension Meng et al. (2005) 3.3.14 EX EX(Y 1 N ;Y P ) < EX(Y 2 N ;Y P ) ✗ ✗ 

�-metric Custódio et al. (2011) 3.3.3 � �(Y 1 N ) < �(Y 2 N ) ✗ ✗ 

Hole Relative Size Collette and Siarry (2005) 3.3.4 HRS HRS(Y 1 N ) < HRS(Y 2 N ) ✗ ✗ 

Laumanns metric Laumanns et al. (2000) 3.3.17 - I L (Y 
1 

N ) > I L (Y 
2 
N ) ✗ ✗ 

Modified Diversity indicator Asafuddoula et al. 

(2015) 

3.3.18 M –DI M –DI(Y 1 N ;Y R ) > M –DI(Y 2 N ;Y R ) ✗ ✗ 

M 

� 
2 -metric Zitzler et al. (2000) 3.3.5 M 

� 
2 M 

� 
2 (Y 

1 
N ;σ ) > M 

� 
2 (Y 

2 
N ;σ ) ✗ ✗ 

M 

� 
3 -metric Zitzler et al. (2000) 3.3.5 M 

� 
3 M 

� 
3 (Y 

1 
N ) > M 

� 
3 (Y 

2 
N ) ✗ ✗ 

Number of distinct choices Wu and Azarm (2000) 3.3.18 NDC μ NDC μ(Y 1 N ) > NDC μ(Y 2 N ) ✗ ✗ 

Outer diameter Zitzler et al. (2008) 3.3.11 I OD I OD (Y 
1 

N ) > I OD (Y 
2 

N ) ✗ ✗ 

Overall Pareto Spread Wu and Azarm (2000) 3.3.10 OS OS(Y 1 N ) > OS(Y 2 N ) ✗ ✗ 

Riesz S-energy Hardin and Saff (2004) 3.3.16 E S E S (Y 
1 

N ) < E S (Y 
2 

N ) ✗ ✗ 

Sigma diversity metric Mostaghim and Teich 

(2005) 

3.3.18 σ σ (Y 1 N ; d) > σ (Y 2 N ; d) ✗ ✗ 

Spacing Schott (1995) 3.3.1 SP SP(Y 1 N ) < SP(Y 2 N ) ✗ ✗ 

U-measure Leung and Wang (2003) 3.3.9 U U(Y 1 N ) < U(Y 2 N ) ✗ ✗ 

Uniform assessment metric Li et al. (2008) 3.3.13 I D I D (Y 
1 

N ) > I D (Y 
2 
N ) ✗ ✗ 

Uniform distribution Tan et al. (2002) 3.3.5 UD UD (Y 1 N ;σ ) < UD (Y 2 N ;σ ) ✗ ✗ 

Uniformity Sayın (2000) 3.3.6 δ δ(Y 1 N ) < δ(Y 2 N ) ✗ ✗ 

Convergence Averaged Hausdorff distance Schutze et al. (2012) 3.4.2 �q �q (Y 1 N ;Y P ) < �q (Y 2 N ;Y P ) ✗ ✗ 

and Cone-based hypervolume Emmerich et al. (2013b) 3.4.7 - χ(Y 1 N ) > χ(Y 2 N ) Not better than � 

distribution 3.4 D R -metric Czyzzak and Jaszkiewicz (1998) 3.4.3 - D R (Y 
1 

N ;Y R ) < D R (Y 
2 
N ;Y R ) Not better than ≺≺

Hyperarea difference Wu and Azarm (2000) 3.4.7 HD HD (Y 1 N ) < HD (Y 2 N ) Not better than � 

Hypervolume indicator (or S-metric) Zitzler et al. 

(2000) 

3.4.7 HV HV (Y 1 N ; r) > HV (Y 2 N ; r) Not better than � 

Hypervolume Sharpe-ratio indicator Yevseyeva 

et al. (2014) 

3.4.8 I HSR I HSR (Y 
1 

N ; y l , y u ) > I HSR (Y 
2 

N ; y l , y u ) Not better than ≺

Inverted generational distance Coello and Cortés 

(2005) 

3.4.1 IGD IGD (Y 1 N , P) < IGD (B, P) ✗ ✗ 

Inverted generation distance with non contributed 

solutions detection Tian et al. (2016) 

3.4.1 IGD –NS IGD –NS(Y 1 N ;Y P ) < IGD –NS(Y 2 N ;Y P ) ✗ ✗ 

Logarithmic hypervolume indicator Friedrich 

et al. (2011) 

3.4.7 log HV log HV (Y 1 N ; r) > log HV (Y 2 N ; r) Not better than � 

Modified inverted generational distance Ishibuchi 

et al. (2015) 

3.4.3 IGD + IGD + (Y 1 N ;Y P ) < IGD + (Y 2 N ;Y P ) Not better than �

p, q -averaged distance Vargas and Bogoya (2018) 3.4.2 �p,q �p,q (Y 1 N ;Y P ) < �p,q (Y 1 N ;Y P ) ✗ ✗ 

Table 5 

Compatibility and completeness of binary performance indicators (inspired by Zitzler et al. (2003) ): a - means there is no comparison method which is complete and 

compatible for the given relation, a ✗ that the indicator is not even monotone. 

Category Performance indicators Sect. Symbol Relation 

� � = ‖ 

Cardinality 3.1 C-metric/Two sets Coverage Zitzler and Thiele 

(1998) 

3.1.5 C
C(Y 1 N , Y 

2 
N ) = 1 

C(Y 2 N , Y 
1 

N ) < 1 
C(Y 1 N , Y 

2 
N ) = 1 

C(Y 1 N , Y 
2 

N ) = 1 

C(Y 2 N , Y 
1 

N ) = 1 

C(Y 1 N , Y 
2 

N ) > 1 

C(Y 2 N , Y 
1 

N ) > 1 

Convergence 3.2 Additive ε-indicator Zitzler et al. (2003) 3.2.6 I ε
I ε (Y 1 N , Y 

2 
N ) ≤ 0 

I ε (Y 2 N , Y 
1 

N ) > 0 
I ε (Y 1 N , Y 

2 
N ) ≤ 0 

I ε (Y 1 N , Y 
2 

N ) = 0 

I ε (Y 2 N , Y 
1 

N ) = 0 

I ε (Y 1 N , Y 
2 

N ) > 0 

I ε (Y 2 N , Y 
1 

N ) > 0 

Distribution and 

spread 

Diversity comparison indicator Li et al. (2014) 3.3.18 DCI ✗ ✗ ✗ ✗ 

3.3 Uniformity Meng et al. (2005) 3.3.8 – ✗ ✗ ✗ ✗ 

Convergence and Dominance move Li and Yao (2017) 3.4.6 DoM
DoM(Y 1 N , Y 

2 
N ) = 0 

DoM(Y 2 N , Y 
1 

N ) > 0 

DoM(Y 1 N , Y 
2 

N ) = 0 

DoM(Y 2 N , Y 
1 

N ) ≥ 0 

DoM(Y 1 N , Y 
2 

N ) = 0 

DoM(Y 2 N , Y 
1 

N ) = 0 

DoM(Y 1 N , Y 
2 

N ) > 0 

DoM(Y 1 N , Y 
2 

N ) > 0 

distribution 3.4 D-metric/Difference coverage of two sets Zitzler 

(1999) 

3.4.7 –
D (Y 1 N , Y 

2 
N ) > 0 

D (Y 2 N , Y 
1 

N ) = 0 

D (Y 1 N , Y 
2 

N ) ≥ 0 

D (Y 2 N , Y 
1 

N ) = 0 

D (Y 1 N , Y 
2 

N ) = 0 

D (Y 2 N , Y 
1 

N ) = 0 

D (Y 1 N , Y 
2 

N ) > 0 

D (Y 2 N , Y 
1 

N ) > 0 

G-metric Lizarraga-Lizarraga et al. (2008) 3.4.5 – – – - - 

Performance comparison indicator Li et al. (2015) 3.4.6 PCI – – - - 

R-metric Hansen and Jaszkiewicz (1998) 3.4.4 R – – - - 
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