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Abstract 

Understanding the socially influenced decision-making process that determines voluntary 

vaccination is essential for developing strategies and interventions of vaccine-preventable 

diseases. Both theoretical and experimental studies have suggested that a variety of factors, 

such as safety of vaccines, severity of diseases, information and advice from healthcare 

professionals, influence an individual’s intention to vaccinate. However, limited research has 

been conducted on analysing systematically how individuals’ vaccine acceptance decisions are 

made from their beliefs and judgements on the influential factors. In particular, there is lack of 

quantitative analysis on how individuals’ beliefs and judgements may evolve from the 

spreading of vaccination-related information in a social network, which further affects their 

decision making. In this paper, an integrated model is first proposed to characterise the socially 

influenced vaccination decision-making process, in which each individual’s beliefs and 

subjective judgements on the decision criteria are formulated as belief distributions in the 

framework of multiple criteria decision analysis (MCDA). The spreading of social influence in 

the network environment is further incorporated into the information aggregation process for 

supporting informed vaccination decision analysis. A series of simulation-based analyses on a 

real-world social network is conducted to demonstrate that the overall vaccination coverage is 

determined primarily by individuals’ beliefs and judgements on the decision criteria, and is 

also affected sensitively by the characteristics of influence spreading (including the content 

and amount of vaccination-related information) in the social network.  

Keywords: OR in health services, vaccination decision making, influence spreading, social 

network, evidential reasoning 
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1. Introduction 

Vaccination is widely recognised by health organisations as one of the most effective ways to 

protect people from infectious diseases, such as diphtheria, tetanus, pertussis, polio, measles, 

and influenza. It can increase the probability of herd immunity and reduce the medical burden 

of vaccine-preventable diseases (Plans-Rubió, 2012; WHO, 2019). Since the first smallpox 

vaccine, developed in 1796 by Edward Jenner, widespread vaccination programmes have made 

significant contributions to global health by eradicating or greatly reducing some infectious 

diseases, such as smallpox and polio, which used to cause common infections with severe 

consequences (Greenwood, 2014; WHO, 2019). However, regional outbreaks of some highly 

contagious vaccine-preventable diseases and evidence from vaccination records demonstrated 

that not all vaccination campaigns achieved the desired immunisation coverage. For example, 

the total number of people infected with measles in Europe in 2018 was more than tripled to 

nearly 83,000 from 23,927 cases in 2017 due to the uneven vaccination coverage between and 

within countries (Thornton, 2019). The influenza vaccine uptake for older people (aged 65+) 

in England during the 2019-20 winter season was only 72.4%, which did not attain the 

vaccination coverage of ≥75% recommended by the European Council for all people at high 

risk (Public Health England, 2020). Undoubtedly, it is even more challenging to deliver the 

annual influenza vaccination programme comprehensively for the 2020-21 winter season in 

light of the impact of the novel coronavirus disease (COVID-19) pandemic on public health 

and social care services. 

A series of studies have been conducted to understand the determinants of vaccine hesitancy 

and their potential to impact on vaccination coverage (Larson et al., 2014; MacDonald et al., 

2015; Fournet et al., 2018). Godlee et al. (2011) discussed that the misinformation linking 

measles-mumps-rubella (MMR) vaccine with autism in Wakefield’s fraudulent article 

(Wakefield et al., 1998) caused a profound damage to parents’ trust in the MMR vaccination, 

which led to insufficient vaccination coverage in the UK for a long period. Smith et al. (2011) 

evaluated the association between parents’ beliefs about vaccines and their vaccination 

decisions, and they highlighted that vaccine safety concerns and fewer perceived benefits are 

key reasons for parents to delay or refuse vaccine doses for their children. Kang et al. (2017) 

and Fournet et al. (2018) reviewed respectively that a variety of factors, including vaccine 

efficacy, disease susceptibility and severity, vaccine benefits, concerns regarding vaccine 

safety, vaccine-related adverse effects and even religious reasons, can all potentially affect the 

acceptance or refusal of vaccination by parents or under-vaccinated groups. The SAGE 
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working group on vaccine hesitancy established by World Health Organization in 2012 

categorised the determinants of vaccine hesitancy to three categories, namely complacency, 

convenience and confidence, and they also highlighted that vaccine hesitancy occurs on the 

continuum between full acceptance and outright refusal of vaccines with unsureness 

(MacDonald et al., 2015).   

In addition to the aforementioned factors in literature, social influence has also attracted 

considerable attention in analysing vaccination decisions (Brunson, 2013; De Bekker-Grob, 

2020; Larson et al., 2011; MacDonald et al., 2015; Xia & Liu, 2014). For example, it has been 

widely accepted that the contextual information from health workers, their family and 

communities plays a critical role in influencing individuals’ beliefs, attitudes or motivation for 

vaccination (Akıs et al., 2011; Flood et al., 2010; Hwang et al., 2017). With the use of game-

theoretical models, a number of population-based studies have been performed to analyse the 

effects of social influence on vaccination decisions (Bauch & Earn, 2004; Chapman et al., 2012; 

Molina & Earn, 2015). However, it is often assumed in the game-theoretical analysis of 

vaccination decision that every individual is provided with and uses the same information in 

an entirely rational way, which is not realistic in practice. Besides, several studies have pointed 

out that altruism in a social network also plays an essential role in vaccination decision making 

(Balfour et al., 2010; Shim et al., 2012), which is to some extent contradictory to the basic 

assumption of game theory that individuals act rationally according to their self-interest only 

and make decisions that maximise their own payoffs. 

The primary objective of this research is to analyse the socially influenced vaccination 

decision-making process from the perspectives of individuals so as to better understand its 

intrinsic link with the population-level decision behaviours and vaccination coverage. First of 

all, the vaccination decision-making problem influenced by a spectrum of factors is formulated 

in the framework of multiple criteria decision analysis (MCDA). As its name suggests, MCDA 

is mainly concerned with structuring and solving complex decision problems associated with 

multiple and even conflicting criteria (Belton & Stewart, 2002). In this paper, multiple decision 

criteria associated with vaccination are structured into a hierarchical model, and an individual’s 

belief or subjective judgement on each decision criterion is represented as a belief distribution 

(Yang & Singh, 1994; Yang & Xu, 2002). Secondly, social influence that affects individuals’ 

vaccine hesitancy in a social network is further incorporated into the MCDA model, and it is 

formulated as supporting evidence for individuals to update their beliefs on the corresponding 

decision criteria. For example, a piece of information related to an increasing number of 
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infected cases can potentially raise people's awareness and beliefs on their susceptibility to the 

disease, while any vaccine scandal can deepen their concerns on vaccine safety. Furthermore, 

the evidential reasoning (ER) approach (Yang & Xu, 2002; Xu et al., 2006) is employed to 

aggregate the belief distributions of characterising an individual’s beliefs and judgements on 

all the relevant decision criteria systematically. The ER approach was originally developed 

from the classic Dempster–Shafer (D–S) theory (Shafer, 1976) to solve MCDA problems under 

uncertainties (Yang & Singh, 1994), and its primary strength in this particular vaccination 

decision-making problem lies at the capability of formulating and aggregating individuals’ 

beliefs and subjective judgements coherently with the generalised probabilistic framework of 

belief distributions (Chen et al., 2013; Yang & Xu, 2013). 

The main contributions of this research are twofold: (1) Theoretically, a novel model 

integrating multiple criteria belief modelling with social network analysis is proposed to 

characterise the socially influenced vaccination decision making. To the best of our knowledge, 

there is no previous research that formally incorporates social influence into the information 

aggregation process of MCDA. (2) Practically, the research provides an alternative perspective 

of understanding population-level vaccination coverage from individuals’ vaccination decision 

making in a social network. 

The rest of this paper is organised as follows. A comprehensive literature review on vaccination 

decision making is conducted in Section 2. The decision model integrating multiple criteria 

belief modelling with social network analysis is developed systematically for analysing the 

socially influenced vaccination decision-making process in Section 3. In Section 4, a series of 

simulation-based analyses on a real-world social network is conducted to illustrate the effects 

of individuals’ vaccination decision making on the population vaccination coverage. The main 

conclusions and further research are summarised in the final section. 

2. Literature Review 

2.1 Vaccination decision making 

Vaccination is one of the most effective ways of preventing infectious diseases, including 

smallpox, polio, measles and influenza (Greenwood, 2014; Plans-Rubió, 2012; WHO, 2019). 

It protects people from infections with vaccine-preventable diseases as well as dramatically 

reduces disease, disability, death and inequity worldwide (Andre et al., 2008). In addition to 

reducing the incidence of diseases among those vaccinated effectively, herd immunity can also 



5 
 

be achieved from a sufficiently high vaccination coverage, which indirectly prevents the non-

vaccinated susceptible populations from being infected (Brisson & Edmunds, 2003). However, 

herd immunity is particularly vulnerable to the impact of “anti-vaxxers” and “free riders”, who 

potentially benefit from other individuals' vaccination without bearing the cost of getting 

vaccination for themselves. This long-standing social dilemma of vaccination makes it 

challenging to analyse individuals' behavioural choices. Game theory has been widely used as 

a mathematical tool in combination with various epidemiological models to evaluate the 

evolving process between individuals’ vaccination decisions and population-level vaccination 

behaviours (Bauch & Earn, 2004; Reluga et al., 2006; Chapman et al., 2012; Molina & Earn, 

2015). For example, Reluga et al. (2006) coupled game-theoretical models with an extended 

Susceptible–Infected–Recovered (SIR) epidemic model and demonstrated that the pursuit of 

self-interest could result in stable dynamics as well as oscillations in vaccine uptake over time. 

Chapman et al. (2012) conducted a game-theory experiment to examine the contribution of 

social incentives for young people being vaccinated to protect the elderly under the risk of 

influenza. Although the game-theoretical analysis could well explain certain population-level 

vaccination behaviours, its assumptions, e.g., fully rational self-interest maximisation, have 

been challenged by recent studies. Shim et al. (2012) demonstrated from a psychological survey 

study that altruism would significantly motivate individuals to undergo vaccination in the 

context of influenza vaccination decisions. Mbah et al. (2012) casted doubt on individuals’ full 

rationality in vaccination and investigated the effects of imitation on vaccination decision-

making, among which imitating highly connected neighbours can lead to clustering of 

susceptible individuals.  

Research has also been conducted from the perspective of psychology to understand people’s 

vaccination decision behaviours. Two classic theories of health behaviour, namely health belief 

model (HBM) and theory of planned behaviour (TPB) have been widely applied to predict 

individuals’ vaccination decision making with psychological factors, e.g., attitudes, beliefs and 

intentions (Myers & Goodwin, 2011; Smith et al., 2011). These health behaviour models have 

underpinned numerous studies, but the results of the behavioural analysis are primarily limited 

by the scale of survey or questionnaire-based data, and the impact of social influence is not 

taken into consideration explicitly in modelling individuals’ vaccination decisions.  
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2.2 Factors affecting individuals’ vaccination decision making 

It was well discussed by the SAGE working group on vaccine hesitancy of WHO that the 

acceptance of vaccination involves a complex decision-making process that can be potentially 

influenced by a wide range of factors (MacDonald et al., 2015). A spectrum of empirical or 

survey-based studies have also been carried out to investigate which factors might have 

hindered or promoted individuals’ vaccination decision making. For example, Grant et al. 

(2003) surveyed that the primary concerns against influenza vaccination for parents in Canada 

included ‘their children were not at risk’, ‘immunisation resulted in a flu-like illness’, ‘side 

effects were worse than the illness itself’, and ‘vaccine could weaken the immune system’. 

Flood et al. (2010) concluded that the main drivers for influenza vaccination were prevention 

of influenza, reduction of influenza symptoms, and a physician’s recommendation, while the 

main barriers were perceived low risk of influenza, the misperception that the vaccine caused 

influenza, and the side effects caused by the vaccine. Weston et al. (2017) analysed the flu 

watch data in England during the 2009 H1N1 pandemic and emphasised that vaccine 

efficacy/safety and perceived risk of pandemic influenza were significant predictors for both 

self- and parental vaccination decisions. Larson et al. (2014) conducted a systematic review of 

thousands of peer-reviewed studies published between 2007 and 2012, and they identified a 

comprehensive list of barriers or promoters for childhood vaccination and mapped them onto 

the model of determinants of vaccine hesitancy developed by the WHO SAGE working group 

on vaccine hesitancy. 

In line with the focused literature review, we summarised a collection of ‘positive’ and 

‘negative’ factors that influence individuals’ vaccination decisions in Table 1. Broadly 

speaking, individuals’ primary concerns on vaccination decision making are associated with 

either the disease or the vaccine.  

Table 1. A brief summary of main influential factors associated with individuals’ vaccination 

decision making.  

Main Drivers (Positive) Main Barriers (Negative) 

• Immunisation  

(Grant et al., 2003; Flood et al., 2010; Akıs et 

al., 2011; Bhat-Schelbert et al., 2012; Larson 

et al., 2014; MacDonald et al., 2015; Kang et 

al., 2017; Bukhsh et al., 2018) 

• Susceptibility to disease  

• Side effects  

(Flood et al., 2010; Bults et al., 2011; Larson et al., 

2014; Malosh et al., 2014; MacDonald et al., 2015; 

Hwang et al., 2017; Kang et al., 2017; Weston et 

al., 2017; Bukhsh et al., 2018) 

• Perceived low risk of disease 
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(Bults et al., 2011; Akıs et al., 2011; Larson 

et al., 2014; MacDonald et al., 2015; Weston 

et al., 2017; Kang et al., 2017) 

• Recommendations from health workers, 

family and friends, etc. 

(Grant et al., 2003; Bults et al., 2011; Akıs et 

al., 2011; Bhat-Schelbert et al., 2012; Larson 

et al., 2014; MacDonald et al., 2015; Hwang 

et al., 2017) 

(Flood et al., 2010; Akıs et al., 2011; Larson et al., 

2014; Malosh et al., 2014; MacDonald et al., 2015; 

Bukhsh et al., 2018) 

• Vaccine being unnecessary 

(Bhat-Schelbert et al., 2012; Larson et al., 2014; 

Bukhsh et al., 2018) 

• Difficulty or inconvenience in accessing 

vaccination services 

(Bhat-Schelbert et al., 2012; MacDonald et al., 

2015) 

It is worth noting that individuals can have very different beliefs, attitudes, perceptions or 

judgements on the same factors, which explains the acceptance or refusal of vaccination in 

reality. For example, individuals who perceive higher severity of the same disease and its 

complications seem to be more motivated to vaccinate themselves, and vice versa. 

Given the fact that vaccination decision is often determined by multi-dimensional factors, it 

can be formulated as a typical multiple criteria decision-making problem, which hence can be 

facilitated by MCDA methodologies. In the past decades, MCDA and more broadly 

Operational Research (OR) techniques have received increasing attention in the field of 

healthcare (Rais and Viana, 2011; Adunlin et al., 2015; Enayati & Özaltın, 2020; Silal et al., 

2020). For example, Goetghebeur et al. (2012) constructed a decision-making framework for 

the transparent and systematic appraisal of healthcare interventions through incorporating 

MCDA into health technology assessment (HTA). Ivlev et al. (2015) combined MCDA, 

specifically the analytic hierarchy process (AHP) method with HTA to support hospitals on the 

selection of medical devices under uncertain conditions. The International Society for 

Pharmacoeconomics and Outcomes Research (ISPOR) established an MCDA emerging good 

practices task force in 2014 to facilitate the innovative applications of MCDA in healthcare 

decisions (Thokala et al., 2016). Barocchi et al. (2016) emphasised the necessity of performing 

MCDA to support the prioritisation of vaccine development and deployment. Silal et al. (2020) 

reviewed recently the opportunities for applying OR methods, including MCDA to support and 

improve the management of infectious diseases.  

In addition to the factors associated with the disease or the vaccine, social influence as a 

contextual and external force also plays a significant role in the vaccination decision-making 

process (Larson et al., 2011; 2014; Brunson, 2013; MacDonald et al., 2015). Rao et al. (2007) 

indicated that social exposure to medical information not only raises people’s perceptions of 

the benefits of immunisation but also influences their vaccination decisions positively. Brunson 
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(2013) found that individuals barely make independent decisions on vaccine uptake, and 

instead they tend to seek advice from healthcare professionals or experienced friends. Besides, 

advice from trusted family members and peers also has a significant impact on individuals’ 

vaccination decisions (Bults et al., 2011). MacDonald et al. (2015) reviewed that contextual 

influences from influential leaders and mass media, and individual or group influences, e.g., 

the knowledge and experiences of vaccination shared by healthcare professionals, family and 

community members can affect people’s acceptance and hesitancy around vaccines. These 

influences can often be attributed to the information propagation through peer-to-peer 

interactions in a social community or network (Moussaïd, 2013). Brunson (2013) examined 

how parents are influenced by their people networks and information source networks through 

the application of social network analysis to analyse vaccination decisions. Moussaïd (2013) 

presented a model of opinion formation and dynamics specifically to address risk judgments, 

such as attitudes towards climate change, terrorist threats, or children vaccination. Stahl et al. 

(2016) demonstrated that spreading vaccination-related information commonly happens in 

social networks, which further shapes individuals’ vaccination decision-making behaviours. 

However, the previous research of social network analysis and opinion dynamics on 

vaccination is mainly concerned with the formation of the overall opinions and decision 

behaviours, without fully analysing the aforementioned decision factors from the individuals’ 

perspective. 

3. An Integrated Model for Analysing Socially Influenced Vaccination 

Decision Making 

From the above literature review, it can be concluded firmly that: (1) Individuals’ vaccination 

decision making is determined by multiple factors or so-called decision criteria, which can 

further be broken down into more detailed sub-criteria in the context of MCDA (Larson et al., 

2014; MacDonald et al., 2015). (2) Social influence plays an important role in shaping 

individuals’ decisions on vaccine uptake in social networks (Brunson, 2013; MacDonald et al., 

2015). Thus, in this paper we develop an integrated decision model of multiple criteria belief 

modelling and social network analysis in order to analyse the socially influenced vaccination 

decision-making process systematically. 
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3.1 Multiple criteria vaccination decision modelling 

3.1.1 Formulating the criterion hierarchy for vaccination decision making 

In vaccination decision modelling, it is important to consider the main drivers and barriers 

affecting vaccine uptake as summarised in Table 1 in a systematic way. A decision criterion 

hierarchy can then be built with an overall decision criterion 𝐶 at the top level and 𝐼 main 

criteria 𝐶𝑖 (𝑖 = 1, … , 𝐼) at the lower level. It was discussed previously that people’s beliefs, 

attitudes, perceptions or judgements on vaccination decision making mainly focus on the 

disease itself or the vaccine-related issues, thus two main criteria of ‘Perceived risk of disease’ 

𝐶1 and ‘Vaccine-specific issues’ 𝐶2 are defined at the lower level, which contribute jointly to 

an individual’s vaccination intention (i.e., the overall decision criterion 𝐶). Each main criterion 

𝐶𝑖 can be further decomposed into 𝐽𝑖 sub-criteria 𝐶𝑖,𝑗 (𝑖 = 1, … , 𝐼; 𝑗 = 1,… , 𝐽𝑖) as illustrated in 

Figure 1. Some further explanations are included for each of the sub-criteria 𝐶𝑖,𝑗 below. 

• Susceptibility (to the disease) 𝐶1,1: how an individual perceives their susceptibility to 

the disease. 

• Severity (of the disease) 𝐶1,2: how an individual perceives the severity of the disease if 

infected. 

• Safety (of the vaccine) 𝐶2,1: potential risks and side effects. 

• Effectiveness (of the vaccine) 𝐶2,2: immunisation or reduction of disease symptoms. 

• Convenience (of vaccination) 𝐶2,3 : how accessible to get vaccination in terms of 

physical availability, affordability, etc. 

 

Figure 1. A criterion hierarchy for vaccination decision making 
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In reality, the evaluation of these sub-criteria can be facilitated by even more granular and 

context-specific factors. 

3.1.2 Representing subjective judgements on vaccination with belief distributions 

In most decision-making problems, it is often challenging for decision makers to obtain 

complete knowledge or make precise judgements on all the decision criteria. Particularly in 

vaccination decision making, the WHO/UNICEF joint reporting on immunisation emphasised 

that lack of knowledge, awareness and sureness of vaccination and its importance has been one 

of the key reasons for the delay in acceptance or refusal of vaccination despite the availability 

of vaccination services (Lane et al., 2018). Thus, in this paper, the generalised probabilistic 

scheme of belief distributions is applied to characterise the uncertain decision information 

resulting from incomplete knowledge or subjective judgements on vaccination. The concept of 

belief distribution was originally developed from the Dempster–Shafer (D–S) theory (Shafer, 

1976) to support multiple criteria decision making under uncertainty (Yang & Singh, 1994; 

Yang & Xu, 2002; Chen et al., 2013), and it formulates the degrees of belief, to which the 

decision maker can actually judge a decision criterion to the corresponding evaluation grades 

in a consistent manner. 

Suppose that an individual decision maker’s judgement on the sub-criterion 𝐶𝑖,𝑗  (𝑖 =

1, … , 𝐼; 𝑗 = 1,… , 𝐽𝑖) in the criterion hierarchy in Figure 1 can be formulated by a set of 𝑁 

evaluation grades 𝐻𝑛 (𝑛 = 1,… ,𝑁), and the belief distribution can be profiled as follows, 

𝑆(𝐶𝑖,𝑗) = {(𝐻𝑛, 𝛽𝑛,𝑖,𝑗), 𝑛 = 1,… ,𝑁;  𝑖 = 1, … , 𝐼; 𝑗 = 1,… , 𝐽𝑖} (1) 

where 𝛽𝑛,𝑖,𝑗 represents the degree of belief that the sub-criterion  𝐶𝑖,𝑗  is evaluated to be the 

evaluation grade 𝐻𝑛 . It satisfies the conditions: 0 ≤ 𝛽𝑛,𝑖,𝑗 ≤ 1  and ∑ 𝛽𝑛,𝑖,𝑗
𝑁
𝑛=1 ≤ 1 . The 

distributed judgement 𝑆(𝐶𝑖,𝑗) is complete if ∑ 𝛽𝑛,𝑖,𝑗
𝑁
𝑛=1 = 1; otherwise it is incomplete. The 

framework of belief distributions can well characterise the subjectiveness and/or 

incompleteness of the decision information, which may result from the lack of knowledge or 

the inability of the individual to provide precise judgments in vaccination decision making. It 

is worth noting that a different set of evaluation grades could be defined for each of the decision 

criteria. For example, in the questionnaire designed by Bults et al. (2011), parents were asked 

‘Do you think your child was susceptible to Mexican flu?’. The evaluation grades for parents 

to choose from consisted of ‘not susceptible’, ‘susceptible’, and ‘very susceptible’. Then for 

the sub-criterion 𝐶1,1 ‘Susceptibility’, the set of evaluation grades can be represented as,  
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𝐻 = {𝐻1, 𝐻2, 𝐻3} = {𝑛𝑜𝑡 𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒, 𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒, 𝑣𝑒𝑟𝑦 𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒} (2) 

If an individual perceives the disease susceptibility to have an equal likelihood of ‘susceptible’ 

and ‘very susceptible’ (i.e., 50% degree of belief each), the judgemental information can then 

be described by the following belief distribution, 

    𝑆(𝐶1,1) =  {(𝑛𝑜𝑡 𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒, 0), (𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒, 0.5), (𝑣𝑒𝑟𝑦 𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒, 0.5)} (3) 

In addition, the importance of each criterion in terms of vaccination decision could also differ 

for each of the individual decision makers. For example, Bults et al. (2011) also indicated that 

immigrant parents would consider the severity a few times more worrying than the actual 

susceptibility to a disease. In this case, suppose 𝑤𝑖  is the normalised weight of the main 

criterion 𝐶𝑖 (𝑖 = 1,… , 𝐼) which reflects its relative importance on an individual’s vaccination 

decision making. The normalised weights of all the main criteria satisfy: 

0 ≤ 𝑤𝑖 ≤ 1  𝑓𝑜𝑟 𝑖 = 1,… , 𝐼 𝑎𝑛𝑑 ∑ 𝑤𝑖 = 1𝐼
𝑖=1  (4) 

The same weighting procedure applies to each set of sub-criteria associated with a main 

criterion. In the context of MCDA, the weights of criteria are also of great importance in 

determining the decision outcome, and they can often be specified by experts using their 

domain knowledge or be elicited from individual decision makers using subjective or objective 

weighting methods (Belton and Stewart, 2002; Danielson et al., 2014; Zavadskas & Podvezko, 

2016; Marttunen et al., 2017). 

An illustrative example is developed in Table 2, where an individual’s judgements on the 

vaccination decision criteria are represented as belief distributions. Suppose that the same 

number of evaluation grades 𝐻𝑛 (𝑛 = 1,2,3) is used for assessing each decision criterion, but 

they can be associated with different linguistic terms. For example, the evaluation grades for 

𝐶1,2 ‘Severity’ can be described as ‘not severe’, ‘severe’, and ‘very severe’, while for 𝐶1,1  

‘Susceptibility’ as ‘not susceptible’, ‘susceptible’, and ‘very susceptible’.  

Table 2. An illustrative example of an individual’s belief distributions on vaccination 

decision criteria 

Main criterion 

(𝐶𝑖) 

Weight 

(𝑤𝑖) 

Sub-criterion 

(𝐶𝑖,𝑗) 

Weight 

(𝑤𝑖,𝑗) 
Belief distributions 

Perceived risk of 

disease (𝐶1) 
0.5 (𝑤1) 

Susceptibility (𝐶1,1) 0.4 (𝑤1,1) {(𝐻1, 0), (𝐻2, 0.5), (𝐻3, 0.5)} 

Severity (𝐶1,2) 0.6 (𝑤1,2) {(𝐻1, 0), (𝐻2, 0.8), (𝐻3, 0.2)} 

Vaccine 0.5 (𝑤2) 
Safety (𝐶2,1) 0.7 (𝑤2,1) {(𝐻1, 0.7), (𝐻2, 0.3), (𝐻3, 0)} 

Effectiveness (𝐶2,2) 0.2 (𝑤2,2) {(𝐻1, 0.4), (𝐻2, 0.6), (𝐻3, 0)} 
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-specific issues 

(𝐶2) 
Convenience (𝐶2,3) 0.1 (𝑤2,3) {(𝐻1, 0), (𝐻2, 0.1), (𝐻3, 0.9)} 

Without loss of generality, assume that 𝐻𝑛+1 is preferred to 𝐻𝑛 in supporting vaccination. The 

belief distributions in Table 2 can be interpreted as, for instances, an individual’s judgements 

in terms of their susceptibility to the disease are 50% ‘susceptible’ and 50% ‘very susceptible’, 

while their judgements on the severity are 80% ‘severe’ and 20% ‘very severe’. In addition, 

suppose that the two main criteria (i.e., ‘Perceived risk of disease’ and ‘Vaccine-specific issues’) 

are equally important in determining voluntary vaccination decision, and their weights are set 

to be 0.5 respectively for the purpose of illustration. In reality, the information gathering of 

beliefs, attitudes, perceptions or judgements on the factors affecting vaccination decision 

making can often be done through launching surveys to a representative sample of the whole 

population, like in WHO-led Vaccine Confidence Project (De Figueiredo, et al., 2020). It is 

worth mentioning that individual decision makers may not provide information in the format 

of belief distributions directly, and their judgements on the sub-criteria in Table 2 can simply 

point to one specific evaluation grade. However, the inherent uncertainties on the main criteria 

and the overall vaccination intention with taking into account all the relevant sub-criteria can 

still be modelled by the belief distributions in a more comprehensive way. 

3.2 Analysing individuals’ vaccination decisions with belief aggregation 

3.2.1 Aggregating belief distributions using the ER approach  

On the basis of the above multiple criteria belief modelling, the ER approach is then employed 

to aggregate the judgemental information and generate the combined belief distribution on the 

overall criterion of vaccination intention. According to Eq. (1), the distributed assessments 

based on a common set of 𝑁 evaluation grades 𝐻𝑛 (𝑛 = 1,… ,𝑁) for a set of sub-criteria (e.g., 

𝐶1,1 and 𝐶1,2) can be profiled as, 

{
𝑆(𝐶1,1) = {(𝐻𝑛, 𝛽𝑛,1,1), 𝑛 = 1,… ,𝑁}

𝑆(𝐶1,2) = {(𝐻𝑛, 𝛽𝑛,1,2), 𝑛 = 1,… ,𝑁}
  (5) 

Let 𝑚𝑛,𝑖,𝑗 be the basic probability mass (Shafer, 1976; Yang & Xu, 2002) representing the 

belief assigned to the evaluation grade 𝐻𝑛 on the higher-level criterion 𝐶𝑖 in terms of the sub-

criterion 𝐶𝑖,𝑗. Then 𝑚𝑛,𝑖,𝑗 can be obtained as follows, 

{
𝑚𝑛,𝑖,𝑗 = 𝑤𝑖,𝑗𝛽𝑛,𝑖,𝑗

𝑚𝐻,𝑖,𝑗 = 1 − ∑ 𝑚𝑛,𝑖,𝑗
𝑁
𝑛=1 = 1 − 𝑤𝑖,𝑗 ∑ 𝛽𝑛,𝑖,𝑗

𝑁
𝑛=1

  (6) 
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with 𝑛 = 1, … ,𝑁; 𝑖 = 1,… , 𝐼, and 𝑗 = 1,… , 𝐽𝑖. 𝑚𝐻,𝑖,𝑗 is the remaining probability mass which 

is not committed and cannot be assigned by the sub-criterion 𝐶𝑖,𝑗 alone to any of the evaluation 

grades. It can be further split into two parts 𝑚̅𝐻,𝑖,𝑗 and 𝑚̃𝐻,𝑖,𝑗: the former 𝑚̅𝐻,𝑖,𝑗 = 1 − 𝑤𝑖,𝑗 , 

which is bounded by the relative importance of the sub-criterion 𝐶𝑖,𝑗, while the latter 𝑚̃𝐻,𝑖,𝑗 =

𝑤𝑖,𝑗(1 − ∑ 𝛽𝑛,𝑖,𝑗
𝑁
𝑛=1 ), which is due to the incompleteness of the judgemental information on 

the sub-criterion. 

Next, the recursive ER algorithm (Yang & Xu, 2002) is used to aggregate the basic probability 

assignments on a set of sub-criteria 𝐶𝑖,𝑗(𝑗 = 1,… , 𝐽𝑖)  to the higher-level criterion 𝐶𝑖(𝑖 =

1, … , 𝐼) . Let 𝑚𝑛,𝑖,𝐽(1) = 𝑚𝑛,𝑖,1(𝑛 = 1, … , 𝑁; 𝑖 = 1,… , 𝐼) , 𝑚̅𝐻,𝑖,𝐽(1) = 𝑚̅𝐻,𝑖,1  and 𝑚̃𝐻,𝑖,𝐽(1) =

𝑚̃𝐻,𝑖,1 . The combined probability assignments 𝑚𝑛,𝑖,𝐽(𝐽𝑖)
(𝑛 = 1,… ,𝑁; 𝑖 = 1,… , 𝐼), 𝑚̅𝐻,𝑖,𝐽(𝐽𝑖)

 

and 𝑚̃𝐻,𝑖,𝐽(𝐽𝑖)
 can be generated by aggregating all the basic probability assignments on the set 

of sub-criteria 𝐶𝑖,𝑗(𝑗 = 1,… , 𝐽𝑖) recursively.  

{
 
 

 
 𝑚𝑛,𝑖,𝐽(𝑗+1) = 𝐾𝑖,𝐽(𝑗+1)(𝑚𝑛,𝑖,𝐽(𝑗)𝑚𝑛,𝑖,𝑗+1 +𝑚𝐻,𝑖,𝐽(𝑗)𝑚𝑛,𝑖,𝑗+1 +𝑚𝑛,𝑖,𝐽(𝑗)𝑚𝐻,𝑖,𝑗+1)

𝑚̅𝐻,𝑖,𝐽(𝑗+1) = 𝐾𝑖,𝐽(𝑗+1)(𝑚̅𝐻,𝑖,𝐽(𝑗)𝑚̅𝐻,𝑖,𝑗+1)

𝑚̃𝐻,𝑖,𝐽(𝑗+1) = 𝐾𝑖,𝐽(𝑗+1)(𝑚̃𝐻,𝑖,𝐽(𝑗)𝑚̃𝐻,𝑖,𝑗+1  +  𝑚̅𝐻,𝑖,𝐽(𝑗)𝑚̃𝐻,𝑖,𝑗+1 + 𝑚̃𝐻,𝑖,𝐽(𝑗)𝑚̅𝐻,𝑖,𝑗+1) 

𝑚𝐻,𝑖,𝐽(𝑗) = 𝑚̅𝐻,𝑖,𝐽(𝑗) + 𝑚̃𝐻,𝑖,𝐽(𝑗)

(7) 

where 𝐾𝑖,𝐽(𝑗+1) = [1 − ∑ ∑ 𝑚𝑛,𝑖,𝐽(𝑗)𝑚𝑡,𝑖,𝑗+1
𝑁
𝑡=1,𝑡≠𝑛

𝑁
𝑛=1 ]

−1
, 𝑖 = 1,… , 𝐼 and 𝑗 = 1,… , 𝐽𝑖 − 1. As 

soon as all the 𝐽𝑖 sub-criteria 𝐶𝑖,𝑗(𝑗 = 1,… , 𝐽𝑖) associated with the higher-level criterion 𝐶𝑖 are 

aggregated together, the combined degrees of belief, which are represented as 𝛽𝑛,𝑖(𝑛 =

1, … , 𝑁; 𝑖 = 1,… , 𝐼) can then be calculated by, 

{

𝛽𝑛,𝑖 =
𝑚𝑛,𝑖,𝐽(𝐽𝑖)

1−𝑚̅𝐻,𝑖,𝐽(𝐽𝑖)
,   𝑛 = 1,… ,𝑁

𝛽𝐻,𝑖 =
𝑚̃𝐻,𝑖,𝐽(𝐽𝑖)

1−𝑚̅𝐻,𝑖,𝐽(𝐽𝑖)
= 1 − ∑ 𝛽𝑛,𝑖

𝑁
𝑛=1

   (8) 

where 𝛽𝐻,𝑖 represents the remaining belief degree unassigned to any evaluation grade 𝐻𝑛(𝑛 =

1, … , 𝑁) on the criterion 𝐶𝑖(𝑖 = 1,… ,𝑁). Similarly, the ER approach defined in Eqs. (5)-(8) 

can be applied to aggregate the basic probability assignments on the main criteria 𝐶𝑖(𝑖 =

1, … , 𝐼), and the overall belief distribution on the top-level decision criterion 𝐶 can then be 

profiled as follows, 

 𝑆(𝐶) = {(𝐻𝑛, 𝛽𝑛), 𝑛 = 1,… ,𝑁}    (9) 
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Specifically, Table 3 shows the overall belief distribution aggregated from the illustrative 

example in Table 2. The combined belief distribution can be interpreted that the individual 

has an overall intention level of 28.38% on the evaluation grade of ‘low’, 57.47% on 

‘medium’ and 14.15% on ‘high’, through taking into consideration the individual’s beliefs 

and subjective judgements on all the vaccination decision criteria in Table 2.  

Table 3. The aggregated belief distribution on vaccination from the above illustrative 

example 

Level of intention (𝐻1, 𝛽1) (𝐻2, 𝛽2) (𝐻3, 𝛽3) (𝐻, 𝛽𝐻) 

Belief distribution  𝑆(𝐶) 0.2838 0.5747 0.1415 0 

It is worth mentioning that 𝛽𝑛(𝑛 = 1, … , 𝑁) may not necessarily add up to unity, which is 

strictly required in the Bayesian probabilistic inference (Yang & Xu, 2013). If an individual 

does not have much prior knowledge on some of the decision criteria, especially about a newly-

invented vaccine, the remaining belief degree 𝛽𝐻 = 1 − ∑ 𝛽𝑛
𝑁
𝑛=1 , which cannot be assigned to 

any intention level, is then greater than 0. 

3.2.2 Transforming the aggregated belief distribution to decision making 

The aggregated belief distribution provides a panoramic view about an individual’s vaccination 

intention, and it can then be used to interpret the individual’s vaccination decision making. 

Here, it is assumed that an individual decides to ‘accept’ or ‘reject’ vaccination voluntarily 

based on their aggregated belief distribution on vaccination, and thus the decision outcome, 

e.g., either acceptance or refusal of the influenza vaccine in the annual flu vaccination 

programme, can be considered to be binary. However, if an individual does not have enough 

confidence or prior knowledge to decide for or against vaccination, it can be further assumed 

that they will not make any firm decision for the time being but ‘wait and see’ further 

information (Bhattacharyya & Bauch, 2011; Xia & Liu, 2014; MacDonald et al., 2015). The 

intermediate state of ‘wait and see’ or so-called ‘yet to decide’ is not regarded as a third 

decision outcome in this research, as essentially the calculation of vaccination coverage only 

takes into account whether or not the vaccine is accepted by an individual. However, the belief 

distribution can formulate the undecided state explicitly as a generalised probabilistic 

framework.  The frame of discernment is defined as 𝛩 = {𝑎𝑐𝑐𝑒𝑝𝑡, 𝑟𝑒𝑗𝑒𝑐𝑡}, which includes the 

two mutually exclusive and collectively exhaustive decision outcomes, i.e., ‘accept’ and ‘reject’ 

vaccination, and the power set of 𝛩 is,  
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2𝛩 = {∅, {𝑎𝑐𝑐𝑒𝑝𝑡}, {𝑟𝑒𝑗𝑒𝑐𝑡}, 𝛩}  (10) 

where ∅ is an empty set. 𝛩 can be used to represent the intermediate ‘wait and set’ state, but it 

is expected that the individual’s belief will evolve over time with social influence, and this 

intermediate state will eventually converge to one of the two decision outcomes defined in the 

frame of discernment. As a result, the basic probability mass, which measures the degree of 

belief for the individual to make a decision based on the prior knowledge and currently 

available information, can be represented as, 

{

𝑚: 2𝛩 → [0,1]

𝑚(∅) = 0
𝑚(𝛩) = 1 −𝑚(𝑎𝑐𝑐𝑒𝑝𝑡) − 𝑚(𝑟𝑒𝑗𝑒𝑐𝑡)

 (11) 

where 𝑚(𝑎𝑐𝑐𝑒𝑝𝑡)  and 𝑚(𝑟𝑒𝑗𝑒𝑐𝑡)  represent respectively the degrees of belief on the 

individual’s acceptance or refusal of getting vaccinated, while 𝑚(𝛩) indicates the uncertain 

degree of belief with which the individual currently holds about whether or not to get 

vaccination. The undecided state is labelled as ‘wait’ hereinafter. Further, a linear utility-based 

information transformation method as illustrated in Figure 2 is used to calculate the probability 

masses from the aggregated belief distribution on vaccination intention in Eq. (9). 

 

Figure 2. Utility-based information transformation of the aggregated belief distribution 

Mathematically, the information transformation method can be written as, 

{

𝑚(𝑟𝑒𝑗𝑒𝑐𝑡) = ∑ 𝛽𝑛
𝑁−𝑛

𝑁−1
𝑁
𝑛=1

𝑚(𝑎𝑐𝑐𝑒𝑝𝑡) = ∑ 𝛽𝑛
𝑛−1

𝑁−1
𝑁
𝑛=1

𝑚(𝑤𝑎𝑖𝑡) = 𝛽𝐻

 (12) 

Note that this linear information transformation method can also be customised in accordance 

with the decision maker’s preference or utility function (Belton and Stewart, 2002; Yang & Xu, 

2002). For the aggregated belief distribution in Table 3, the individual’s probability masses on 

vaccination decision can be obtained as 𝑚(𝑟𝑒𝑗𝑒𝑐𝑡) = 0.57 , 𝑚(𝑎𝑐𝑐𝑒𝑝𝑡) = 0.43 

and 𝑚(𝑤𝑎𝑖𝑡) = 0. Obviously, the individual is more likely to reject vaccination based on the 

given belief distributions on all the decision criteria in Table 2. 
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In order to estimate the proportion of individuals getting vaccinated in a social community or 

network, this research further adopts the widely accepted mechanism of integration-to-

boundary (Zhang, 2012; Glickman & Usher, 2019) in psychology which refers to the presence 

of a decision boundary governing the establishment of decisions. In other words, a decision 

will not be made until the accumulated evidence or belief reaches a boundary level. The 

boundary mechanism provides a psychological function to constrain the knowledge and 

evidence needed for rendering a decision as well as a mechanism to determine the termination 

of the decision-making process. 

Suppose an individual 𝑥  has an independent belief boundary 𝜑𝑥(0 ≤ 𝜑𝑥 ≤ 1), which is a 

threshold value representing the individual’s lower bound of belief to make a decision. The 

individual will be assumed to accept the vaccine if the probability mass satisfies 

𝑚𝑥(𝑎𝑐𝑐𝑒𝑝𝑡) ≥ 𝜑𝑥 (13) 

Similarly, the individual will reject the vaccine if 𝑚𝑥(𝑟𝑒𝑗𝑒𝑐𝑡) ≥ 𝜑𝑥. It is noted that the belief 

boundary 𝜑𝑥 can be different for each individual decision maker. Implicitly, the higher the 

belief boundary an individual has, the harder it is to convince the individual to make a decision 

(e.g., take the action of getting vaccinated). In the above illustrative example, if the belief 

boundary is set to be 0.8, which is obviously higher than both 𝑚(𝑎𝑐𝑐𝑒𝑝𝑡) and 𝑚(𝑟𝑒𝑗𝑒𝑐𝑡), the 

individual will delay in either acceptance or refusal of vaccination. 

3.3 Characterising the spread of social influence in social networks  

For those who fail to make a decision based on their prior knowledge or subjective judgements, 

any information and evidence on the disease and vaccine from social neighbours can potentially 

facilitate their decision-making process. In view of the fact that the dynamic decision-making 

process evolves over time from evidence accumulation to belief updating (Usher et al., 2013; 

Schöbel et al., 2016), the spread of social influence is incorporated into the framework of 

MCDA by mapping the effects of influence spreading into the updates of belief distributions 

on the corresponding decision criteria. As a result, the evolving decision-making process under 

social influence could be characterised effectively for voluntary vaccination decision. In the 

context of socially influenced vaccination decision making, a social community can be 

formulated as a directed network 𝐺 =< 𝑉, 𝐸 >, which consists of a set of vertices connected 

with edges. Each individual among a population of 𝑀 people is described as a vertex 𝑉 =

{𝑣1, … , 𝑣𝑀} and each edge 𝐸 = {𝑒𝑥,𝑦|1 ≤ 𝑥, 𝑦 ≤ 𝑀;  𝑥 ≠ 𝑦} indicates the social interaction 
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between two individuals. The weight 𝜏𝑥,𝑦  of edge 𝑒𝑥,𝑦  for any pair of vertices (𝑥, 𝑦) is a 

measurement of the strength of the link between the two individuals, and it can be interpreted 

as an individual’s willingness or openness to accept the influence from his/her social 

neighbours. Obviously, the mutual influence between two individuals is not necessarily 

equivalent in reality, and usually 𝜏𝑥,𝑦 ≠ 𝜏𝑦,𝑥. 

It is illustrated in Figure 3 how information or evidence as the medium of social influence can 

potentially spread between individuals in a social network. 𝐼𝑖,𝑗
𝑥  (𝑥 = 1, … ,𝑀) denotes a piece 

of information received by the individual 𝑣𝑥  at certain time, which is related to the sub-

criterion 𝐶𝑖,𝑗 affecting vaccination decision making. 

  

Figure 3. An illustrative example of social influence spreading in a social network 

It has previously been studied how social influence can facilitate or hinder vaccination from 

different perspectives and on a variety of factors (De Bekker-Grob, 2020; Ling et al., 2019; 

Wheelock, 2013; Xia & Liu, 2014). For example, when being told by a social neighbour about 

the severe side effects after getting vaccinated, an individual will be highly likely to update 

his/her judgements on the safety of vaccine accordingly. However, the judgements on other 

decision factors such as the severity of disease may remain unaffected. In this case, the effects 

of social influence are reflected on the updates of the individual’s degrees of belief on the 

specific criterion in accordance with the information which the individual obtained from his/her 

social neighbours. Here, multiple pieces of information can possibly influence an individual’s 

vaccination decision-making process simultaneously or consecutively. 

Figure 4 illustrates how an individual’s judgements on vaccination are affected due to the 

receipt of new information from social neighbours. Let 𝐼1,1
1  be a piece of information received 

by the individual 𝑣1 relating to the sub-criterion 𝐶1,1 ‘Susceptibility’, e.g., about the increasing 
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number of infected cases. While 𝑣1 aggregates the new piece of information with his/her prior 

belief distribution on the sub-criterion, he/she may also spread the information to his/her social 

neighbours, such as 𝑣2 in Figure 4. As a result, 𝑣2 will update his/her beliefs and judgements 

on the sub-criterion correspondingly. However, the influence of the information passed from 

𝑣1 to 𝑣2will be weighted by 𝜏1,2 which indicates how willing or open 𝑣2 is to be influenced by 

𝑣1. 

 

Figure 4. Illustration of information spreading and belief updating in the framework of 

MCDA 

Assume that the information 𝐼1,1
1  is also profiled as a belief distribution 𝑆(𝐼1,1

1 ) =

{(𝐻𝑛, 𝛼𝑛,1,1
1 ), 𝑛 = 1,… ,𝑁}. The probability masses which 𝑣2 will use to aggregate with his/her 

prior belief distribution on the decision sub-criterion 𝐶1,1 can be calculated by, 

{

𝑚𝑛,1,1
1,2 = 𝜏1,2𝛼𝑛,1,1

1 , 𝑛 = 1,… ,𝑁

𝑚̅𝑛,1,1
1,2 = 1 − 𝜏1,2

𝑚̃𝑛,1,1
1,2 = 𝜏1,2(1 − ∑ 𝛼𝑛,1,1

1𝑁
𝑛=1 )

 (14) 

The aggregation of the newly-arrived evidence represented by the probability mass function in 

Eq. (14) is realised by further applying the ER algorithm in Eqs. (7) - (8) to update the 

individual’s belief distribution. Furthermore, the overall belief distribution on the top-level 

decision criterion 𝐶 in Eq. (9) should be updated again from the lower-level decision criteria 

recursively, before it is transformed to support the decision making defined in Eqs. (12) and 

(13). In the meantime, 𝑣2 can also spread the information to his/her social neighbours, like 𝑣𝑥 

in Figure 3, 𝑣𝑥 will then update his/her beliefs and judgements on the decision criteria in a 
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similar way as discussed above. As a result, the effects of social influence spreading on 

vaccination decision making can be considered in the framework of MCDA in an explicit way. 

4. Simulation-based Analysis  

To demonstrate the effectiveness and practicality of the integrated decision model, a series of 

simulation-based analyses is carried out on a real-world social network, where a group of 

individuals are supposed to interact with each other and need to decide whether to get 

vaccinated. Without loss of generality, it is assumed that all individuals have some prior 

knowledge or are able to express their subjective judgements with the defined evaluation grades 

on vaccine uptake explicitly in terms of the decision criteria hierarchy in Figure 1.  

4.1 Description of the network structure  

The social network data, which records the friendships among 217 residents living at a 

residence hall located at the Australian National University campus, was firstly collected by 

Freeman et al. (1998) to represent the interpersonal interactions in a real-world environment. 

One of the key characterises of the social network data is that the strength of social interactions 

among individuals were surveyed in the social community. The social network is visualised in 

Figure 5 with the nodes denoting individuals and the edges representing social relationships. 

 
(b) Distribution of the friendship levels 

(a) Statistics of the social network 
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Figure 5. Structure and statistics of the social network 

In the social network, the direction of each edge represents where the information is going, 

while the edge weight indicates the strength of the social relationship (i.e., the five friendship 

levels of from 1 to 5). To better reflect the characteristics of the social network, the size of the 

node is calculated proportionally by the number of outgoing links. It looks from Figure 5 that 

a small number of individuals have many more social connections than the others. The 

complementary Figure 5(a) provides summary statistics of the social network, and Figure 5(b) 

shows the frequency of the levels of friendship strength. It can be seen that the strength mainly 

concentrates on the level of ‘3 - friend’, ‘4 - close friend’, and ‘5 - best friend’. The social 

network structure is not highly dense in terms of its relatively small density value, and so it is 

very helpful to analyse the dynamics of the socially influenced vaccination decision-making 

process in the social network. 

4.2 Illustration of socially influenced vaccination decision making   

First of all, we simulate how individuals can possibly update their beliefs on vaccination in the 

context of social influence spreading. The parameters in the integrated decision model, 

including belief distributions and criterion weights for individuals, are initialised randomly by 

the Dirichlet distribution which is commonly used as a multivariate generalisation of the beta 

distribution in probabilistic inference. However, the proportion of the initial belief distributions 

supporting the acceptance of vaccination for simulation can be guided by a specified level of 

historical vaccination coverage. Here we take the overall influenza vaccine uptake of 44.9% 

for people aged 6 months to under 65 years with one or more underlying clinical risk factors 

during the 2019-20 winter season in England (Public Health England, 2020) as a benchmark to 

set the initial vaccination acceptance rate in the following simulation. The individuals’ belief 

boundary is assumed to follow a uniform distribution within an interval [0.5, 1]. 

Here, an illustrative simulation is first carried out, and the characteristics of the information 

(i.e., what the content is about, and when it begins to spread from a source node) are given in 

Table 4. 

Table 4. Characteristics of the information spreading in the social network 

Time (step) Information about which criterion Positive/Negative Source node 

𝑡1 Susceptibility (𝐶1,1) Positive (𝐼1,1
70) 𝑣70 

𝑡2 Severity (𝐶1,2) Negative (𝐼1,2
184) 𝑣184 

https://www.gov.uk/government/organisations/public-health-england
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𝑡3 Safety (𝐶2,1) Positive (𝐼2,1
169) 𝑣169 

𝑡4 Effectiveness (𝐶2,2) Positive (𝐼2,2
120) 𝑣120 

𝑡5 Convenience (𝐶2,3) Negative (𝐼2,3
113) 𝑣113 

Specifically, the individual 𝑣70  receives a new piece of positive information or supportive 

evidence for vaccination on the sub-criterion 𝐶1,1 (i.e., ‘Susceptibility’ to the disease) at time 

𝑡1. While updating his/her own belief distribution on the sub-criterion, he/she will also spread 

this piece of information through his/her social connections. It is assumed that further 

information related to other decision criteria, which can be positive or negative, are to be 

received and spread by other individuals at time 𝑡2 to 𝑡5. Here, it is intuitively clear that a piece 

of positive information or supportive evidence, e.g., successful immunisation after vaccination, 

will facilitate individuals’ vaccination acceptance, and its belief distribution is simply profiled 

as {(𝐻1, 0), (𝐻2, 0), (𝐻3, 1)}. In contrast, a piece of negative information or unsupportive 

evidence will hinder vaccination acceptance, and its belief distribution is represented as {(𝐻1, 

1), (𝐻2, 0), (𝐻3, 0)}. 

The dynamic processes of updating individuals’ beliefs on vaccination under social influence 

spreading in the social network are visualised in Figure 6. In the networks, the three traffic light 

colours of nodes (i.e., green, amber, or red) indicate if an individual has a higher degree of 

belief on ‘accept’, ‘wait’, or ‘reject’, respectively. For example, if the degree of belief on 

accepting vaccination for an individual dominates the degrees of belief on ‘reject’ and ‘wait’, 

node will be coloured as green. The colour scale is determined by the exact value of the 

dominating belief degree. It is obvious from Figure 6(a) that a good proportion of individuals 

opt to accept vaccination at the beginning time 𝑡0, as it was discussed above that the influenza 

vaccination coverage data in England was used to guide the initial parameter settings. 
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(a) Time (t0) 

  

(b) Time (t1) 

  

(c) Time (t2) (d) Time (t3) 
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Figure 6. An example of influence spreading and belief updating in the social network 

At time 𝑡1, the individual 𝑣70 is fed with a piece of positive information about the susceptibility 

to the disease. After revising his/her own degrees of belief, he/she spreads the piece of positive 

information via his/her social connections. Figure 6(b) illustrates the updated degrees of belief 

for all individuals at 𝑡1, which are reflected to some extent by the changed colours of the nodes 

representing 𝑣70 and some of his/her direct social connections. With the aggregation of the 

prior belief distributions and the further arrivals of new information from 𝑡2 to 𝑡5, the dynamics 

of influence spreading and belief updating evolve as shown in Figure 6(c) to Figure 6(f). 

Obviously, the belief updating becomes more complex with an ever-increasing amount of 

information spreading, but the effects of social influence can still be observed from this 

illustrative simulation. For example, a few nodes connected to 𝑣169 turned to be green in Figure 

6(d) from red in Figure 6(c) due to the receipt of the positive information. The negative 

information received by 𝑣113 in Figure 6(f) has resulted in a more mixed effect given that the 

information received earlier still spreads in the social network. 

Correspondingly, Figure 7 shows the changing vaccination coverage from 𝑡0 to 𝑡5 due to the 

continuum of influence spreading and belief updating. The colour of the node indicates whether 

an individual is expected to have accepted vaccination. If the nodes are coloured to be blue, 

like individual 𝑣120  in Figure 7(a),  𝑣70  and 𝑣169 in Figure 7(b), it means that the individuals 

are expected to have taken vaccination since their degrees of belief on ‘accept’ have exceeded 

their independent belief boundary. 

(e) Time (t4) (f) Time (t5) 
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Figure 7. The Dynamics of vaccination coverage with social influence spreading 

It is evident that a higher proportion of positive information or supportive evidence will be 

more or less strengthened in supporting vaccination acceptance through the social influence 

spreading. 

4.3 Simulation-based sensitivity analysis 

A series of simulation-based experiments are further conducted to examine whether individuals’ 

socially influenced vaccination decision making are affected sensitively by two types of 

conditions: (1) the characteristics of influence spreading (including the content and amount of 

vaccine-related information) in the social network, and (2) individuals’ initial beliefs and 

judgements on the decision criteria, which are formulated as weights and belief distributions 

in the integrated decision model. The simulation for each scenario was run 100 times in order 

to obtain reliable experimental results.  

4.3.1 The effects of the characteristics of information spreading 

The characteristics of information spreading, especially the content of the information, 

obviously influence individuals’ decision making in a social environment (MacDonald et al., 

2015;  Xia & Liu, 2014; Schöbel et al., 2016). 

 (1) The content of information 

(a) Time (t0) (b) Time (t5) 
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Here, we first consider four simple scenarios under the settings in Table 5 in terms of the 

content of information, which is either positive (i.e., supportive) or negative (i.e., unsupportive) 

in terms of facilitating vaccination acceptance. In each of the scenarios, a new piece of 

information regarding criterion 𝐶1,1  (‘Susceptibility’) will be spread from one individual 

separately in the network at time steps 𝑡1 and 𝑡2. 

Table 5.  Different settings on the content of information 

 Positive (P) /Negative (N) 

 𝑡1 𝑡2 

𝑠1.1 N N 

𝑠1.2 N P 

𝑠1.3 P N 

𝑠1.4 P P 
 

In the first scenario 𝑠1.1 , a randomly selected individual receives a piece of negative 

information or unsupportive evidence on criterion 𝐶1,1 (i.e., ‘Susceptibility’ to the disease) at 

time 𝑡1, and then another piece of negative information targeting on the same criterion at time 

𝑡2. The other parameters in the integrated decision model are initialised as discussed in Section 

4.2, and they remain consistent for each of the four scenarios. 

It shows in Figure 8 that the estimated vaccination coverage varies considerably across the four 

different scenarios. 

 

Figure 8. Effects of the content of information on vaccination coverage 

It is quite straightforward from comparing the scenarios 𝑠1.1 and 𝑠1.4 that positive information 

motivates significantly individuals’ voluntary vaccination decisions and raise the overall 
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estimated vaccination coverage in the social network. However, it looks from the scenarios 𝑠1.2 

and 𝑠1.3 that the early-arrived positive information can stimulate the intention of accepting 

vaccination initially, although the late arrival of negative information counteracts the positive 

effect and vice versa.  

(2) Increasing amount of positive information  

We can further analyse how the estimated vaccination coverage changes with the increasing 

amount of positive information. The settings for the increasing amount of positive information 

are listed in Table 6. For example, in the scenario 𝑠2.5, a new piece of positive information 

associated with a specific decision criterion will start to spread across the social network at 

each time from 𝑡1 to 𝑡5. In contrast, there is only one piece of positive information spreading 

at 𝑡1 in the scenario 𝑠2.1. 

Table 1. The settings of the increasing amount of positive information 

 Information on which criterion 

 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 

𝑠2.1 𝐶1,1     

𝑠2.2 𝐶1,1 𝐶1,2    

𝑠2.3 𝐶1,1 𝐶1,2 𝐶2,1   

𝑠2.4 𝐶1,1 𝐶1,2 𝐶2,1 𝐶2,2  

𝑠2.5 𝐶1,1 𝐶1,2 𝐶2,1 𝐶2,2 𝐶2,3 

It is evident in Figure 9 that the amount of positive information significantly affects the upward 

trends of the estimated vaccination coverage in the social network. The estimated vaccination 

coverage rates seem to be unsatisfactory without the continuing stimulation of new positive 

information, e.g., in the scenarios 𝑠2.1 and 𝑠2.2. 
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Figure 9. Effects of the increasing amount of positive information on vaccination coverage 

The simulation results in this section demonstrated that it is important to spread positive 

information and share supportive evidence continuously in order to achieve sufficiently high 

vaccination coverage in a social network, although how to effectively manage the 

characteristics of information spreading for vaccination may need to involve health 

organisations, healthcare professionals, decision scientists, social media analysts, etc. 

4.3.2 The sensitivity analysis of the criterion weights 

As discussed previously, not all the criteria are equally important in affecting individuals’ 

vaccination decision making. Some individuals may value the safety of vaccines while others 

may be more concerned about the physical effects caused by infections. In this sense, it is 

important to analyse the effects of criterion weights in the socially influenced vaccination 

decision-making process. Here we mainly investigate the sensitivity of vaccine coverage in 

terms of different combinations of weights for the main criteria and sub-criteria in the decision 

criterion hierarchy.  

 (1) Different weights of the main criteria 

There are two main criteria at the upper level of the criterion hierarchy in Figure 1, i.e., 

‘Perceived risk of disease’ (𝐶1) and ‘Vaccine-specific issues’ (𝐶2). Their normalised weights 

are denoted by 𝑤1  and 𝑤2  respectively. In this section, five scenarios are considered for 

simulation analysis. The first two scenarios 𝑠3.1 and 𝑠3.2 consider the situation that individuals 

are generally more concerned with the disease. Therefore, 𝑤1 is initialised randomly from the 

interval [0.6, 1] or [0.8, 1] respectively whilst the remaining weight is allocated to 𝑤2. The next 
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two scenarios 𝑠3.3 and 𝑠3.4) take into consideration the contrary situation. It is assumed in the 

last scenario 𝑠3.5 that people have an equal preference on the importance of the two main 

criteria. The experimental settings for these five scenarios are listed in Table 7(a) and 7(b). 

Table 7. Different weight settings for the main decision criteria 

(a) Interval of criterion weight 

 𝑤1 𝑤2 

𝑠3.1 [0.6,1] 1 − 𝑤1 

𝑠3.2 [0.8,1] 1 − 𝑤1 

𝑠3.3 1 − 𝑤2 [0.6,1] 

𝑠3.4 1 − 𝑤2 [0.8,1] 

𝑠3.5 0.5 0.5 
 

(b) The content of information 

 Positive information on which sub-

criterion 

 𝑡1 𝑡2 𝑡3 𝑡4 

𝑠3.1-𝑠3.5 𝐶1,1 𝐶1,2 𝐶2,1 𝐶2,2 
 

It can observed in Figure 10 that the estimated vaccination coverage in the network is quite 

sensitive to the weights of the main decision criterion, given the arriving sequence and content 

of information remain the same.  

 

Figure 10. Effects of the weights of the main criteria on the vaccination coverage 

If there is one dominating criterion (i.e., being much weighted by individuals), the influence of 

information spreading on the other main criterion seems to be limited in the social network.  

(2) Different weights of the sub-criteria 

In this experiment, we compare individuals’ preferences on the sub-criteria at the lower level 

in the criterion hierarchy to investigate the sensitivity of weights with respect to vaccination 

coverage. The two sub-criteria selected for analysis are 𝐶1,1 ‘Susceptibility’ and 𝐶1,2 ‘Severity’. 
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The explanations on the settings of the five scenarios are similar to the above-mentioned 

experiment for the main criteria. The weight settings together with the content of information 

are listed in Table 8(a) and 8(b).  

Table 2. Different weight settings for the sub-criteria  

(a) Interval of sub-criterion weight 

 𝑤1,1 𝑤1,2 

𝑠4.1 [0.6,1] 1 − 𝑤1,1 

𝑠4.2 [0.8,1] 1 − 𝑤1,1 

𝑠4.3 0.5 0.5 

𝑠4.4 1 − 𝑤1,2 [0.6,1] 

𝑠4.5 1 − 𝑤1,2 [0.8,1] 
 

(b) The content of information 

 Positive information on which 

sub-criterion 

 𝑡1 𝑡2 𝑡3 𝑡4 

𝑠4.1-𝑠4.3 𝐶1,1 𝐶1,2 𝐶2,1 𝐶2,2 

𝑠4.4-𝑠4.5 𝐶2,1 𝐶2,2 𝐶2,1 𝐶2,2 
 

It can be seen in Figure 11 that the sensitivity of vaccination coverage to the different weight 

settings for the sub-criteria is not as significant as that in the previous experiment for the main 

criteria. 

 

 

Figure 11. Effects of the weights of the sub-criteria on the vaccination coverage 

That is because an individual’s vaccination intention is aggregated recursively from the lower-

level decision criteria to the top-level decision criterion in the integrated decision model, and 

some sub-criteria may only play a limited role in affecting individuals’ vaccination decision 

making. In reality, some individuals in a social community may place great emphasis on certain 

decision criteria, and providing them with the redundant information on other decision criteria 

is less effective to affect their vaccination decision behaviours. 
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5. Conclusions and discussion 

The benefits of vaccination have been emphasised extensively in terms of increasing the 

probability of immunisation as well as reducing the medical burden of infectious diseases. Thus, 

understanding the voluntary vaccination decision-making process in a social environment is 

prominently important for disease control departments to develop effective strategies and 

interventions of vaccine-preventable diseases. 

In this paper, an integrated model exploiting the joint strength of multiple criteria belief 

modelling and social network analysis is developed to characterise socially influenced 

vaccination decision making in an innovative way. In the proposed model, each individual’s 

beliefs and subjective judgements on vaccine uptake are formulated as belief distributions in 

the framework of MCDA, and the spread of influence in the social network is further 

incorporated into the information aggregation process for supporting informed vaccination 

decision analysis.  In order to demonstrate the effectiveness and practicality of the integrated 

decision model, we conducted a series of simulation-based analyses. The results revealed that 

the population-level vaccination decision behaviours and vaccination coverage are determined 

primarily by individuals’ beliefs and judgements on the decision criteria, and are also affected 

sensitively by the characteristics of influence spreading (including the content and amount of 

vaccination-related information) in the social network. Practically, spreading positive 

information and sharing supportive evidence at the right time, preferably continuously can 

improve the vaccination coverage in the social network significantly. Through incorporating 

social network analysis into the MCDA model of voluntary vaccination decisions coherently, 

this exploratory work can be beneficial to better understand population vaccination behaviours 

and vaccination coverage from the perspectives of individuals’ socially influenced vaccination 

decision making, which can further provide actionable insights and decision support on 

infectious disease control and prevention. 

It was evident from the simulation-based analysis that the strength of social interactions among 

individuals has a considerable impact on the information spreading, population-level decision 

behaviours and vaccination coverage. However, in this research the friendship level in the 

social network data was used as a rough proxy of the strength of social influence in the context 

of vaccination decision making. In addition, the social network was relatively small. In our 

future research, real-world and large-scale datasets will be collected in order to obtain a holistic 

view over the biased beliefs of individuals (e.g., preferences on specific decision criteria) as 
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well as the features of social networks (e.g., heterogeneous or homogenous communities, 

different metrics of social influence). 

During the period of finalising this paper, the novel coronavirus disease (Covid-19) is still 

unfolding rather than relieving as spikes are being seen continuously across different countries. 

However, the prospects of putting an end to the pandemic have changed utterly, as several 

vaccines have hit the headlines across the globe with very promising results from clinical trials. 

It is hoped that this exploratory research will shed some light on understanding socially 

influenced vaccination decision-making behaviours, and the analytical findings can be helpful 

to underpin Covid-19 vaccination strategies and facilitate vaccine deployment, such as through 

promoting public confidence in the importance, safety and effectiveness of Covid-19 vaccines 

and making use of social influence on individuals’ vaccination decision making. 
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