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Abstract: 

The Cash-in-Transit (CIT) deals with the transportation of banknotes, coins, and other valuable items. Due to the 
high-value density of these products, incorporating security strategies in the carrier operations is crucial. This 
paper proposes new CIT models involving deterministic and stochastic time-varying traffic congestion. Since risk 
exposure of a vehicle is proportional to the time-dependent travel time, a new formula is introduced to measure 
the risk of traveling. Moreover, this study covers one of the important weaknesses of previous CIT routing models 
by investigating the problem in multigraph networks. Multigraph representation maintains a set of non-dominated 
parallel arcs, which are differentiated by two attributes including travel time and robbery risk. Considering 
maximum allowable time duration together with a risk threshold yields to design a more balanced routing scheme. 

Multi-attribute parallel arcs in a stochastic time-dependent network bring high computational challenges. Herein, 
we introduce efficient algorithms including a novel flexible restricted Dynamic Programming and a self-adaptive 
caching Genetic Algorithm. The proposed algorithms are tested on both a real case study in Isfahan metropolis and 
generated instances. Ultimately, sensitivity analyses are conducted to assess the importance of the use of 
multigraph networks in the CIT and to provide significant managerial insights for administrators and practitioners. 
 
Keywords: Routing, cash-in-transit, multigraph network, time dependency, security risk 

 

 

1. Introduction 

Globally, cash continues to be a widely used payment instrument for transactions. This instrument is the 

ultimate resource for financial transactions, especially for small-value purchases. The recent report of the Federal 

Reserve on payment habits and transactions of the United States population shows that 26% of all transactions, 

and 40% of payments from $10 to $25 in 2019 were in cash (Federal Reserve 2020). In spite of lawmakers’ support 
in utilizing non-cash transactions, cash in circulation (CIC) has a consistent growth (from 4% to 7% per year) in 

the recent five years. Statistics accentuate that CIC remains high in developed countries. For example, in Singapore 

which stands as a mature and developed market in electronic payment mechanisms, CIC is still high and six of ten 

transactions are performed by cash (Capgemini 2019). Referring to Xu et al. (2019), the rate of the CIC in the United 

States has increased by 82.1% between 2007 and 2016. In other countries including China, the amount of cash 

swirling is still high. In the past decade, these countries are faced by CIC growth rate of nearly 124% (Xu et al. 

2019). Meanwhile, CIC grows drastically in countries undergoing severe distress such as Ukraine, Myanmar, and 

Mozambique (Capgemini 2019). The consistent growth of CIC across countries led the related organizations to put 

their efforts on managing the banknote supply chains in an effective way. CIT routing problem is generally studied 

as one of the application areas in the VRPs for transportation of valuable goods including cash and jewelry in 

populated cities and metropolitan areas. 
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In spite of employing better-armored vehicles and technological development (e.g., weapons on board, vehicle 

tracking), providing safe and protected transportation is still a challenging operation for CIT companies. Security 

considerations in route planning of CIT are pivotal in preserving the operation from heists and robberies (Smith et 

al. 2010, Yan et al. 2012). However, security analysis for minimizing the risks and threats may require a high-level 

planning and generally affect the operating costs considerably. Thereby, the safe and efficient routing scheme 

should be executed for the success of CIT operations. To this end, minimizing travel costs along with minimizing 

risks and threats should be considered simultaneously (Talarico et al. 2017a).  

Traffic congestion is a major issue for both commuters and logistics companies in urban environments. This 

growing phenomenon considerably affects travel speeds during the rush hours. To capture the impact of traffic 

congestion, the time-dependent VRP (TDVRP) is introduced in the literature. This problem considers the presence 

of traffic patterns during the day. In this approach, time-varying speed pattern is predicted to determine an average 

traveling speed from one period to another. To the best of our knowledge, none of the previous works on CIT 

problems studied time-dependency of travel times. However, due to the importance of time factor in CIT, ignoring 

the traffic congestion may bring imprecise planning decisions. 

Another deficiency of traditional VRPs is that many researchers consider only one edge between each pair of 

nodes by a simple graph network representation. By this, many feasible solutions may be discarded from the 

solution space. Due to the complexity of urban network, it is more plausible to reach one node from another one 

by multiple parallel links. These links are usually differentiated by multiple inherent attributes (e.g., travel time, 

distance, and risk). According to Garaix et al. (2010) and Ticha et al. (2017), simple graph network is not capable 

of handling routing problems when several attributes are considered on the links. To handle this, multigraph 

network is suggested to maintain all non-dominated available links among each pair of nodes in the network 

(Garaix et al. 2010). In addition, in a time-dependent environment, choosing a suited arc among the nodes of a 

multigraph, not only depends on traveling distance but also on the actual departure time at the origin (Setak et al. 

2015). In the CIT problem, the presence of alternative links among the key-locations is extremely important and 

helps accelerating the operations and accessing better solutions.  

Considering the multigraph network, this research aims to investigate a time-dependent CIT routing problem, 

which is abbreviated as a TD-CITRM. This is the first study that incorporates the effect of congestion for the CIT 

problems. Ignoring the speed variations not only affects logistics costs but also increases the exposure in 

transportation of valuable goods to a robbery in congested arteries and streets. The proposed problem is studied 

under both deterministic and stochastic travel speeds. In what follows, the deterministic version of the problem is 

called TD-CITRM-DT and the stochastic one is called TD-CITRM-ST. Due to the time-dependency, stochasticity, 

nonlinearity, and multigraph structure, it is computationally challenging to solve the TD-CITRM-DT and TD-

CITRM-ST. To do this, we focus on proposing effective strategies to cope with the uncertainty of traffic congestion 

for a non-linear version of TDVRP. Finally, a real case study on cash transportation of an organization in Isfahan 

metropolis in Iran is provided to assess the applicability of the presented models and associated solution 

algorithms. 

The content of this paper is structured as follows. Section 2 is dedicated to the relevant literature. Section 3 

provides the problem description and preliminaries on the TD-CITRM. We formulate both deterministic and 

stochastic versions of the problem in Section 4. In Section 5, the procedures of the proposed algorithms are 

described in detail. Section 6 includes the results of various computational experiments for the models on a 

transportation case in Isfahan and generated instances. This section provides a sensitivity analysis on some 

parameters of the model and presents managerial insights and effective guidance for decision makers. Finally, in 

Section 7, conclusions and future research perspectives are listed. 

2. Literature review 

We now present the literature review in three subsections. Section 2.1  provides a brief review of time-

dependent VRP studies. In Section 2.2, we overview the works that evoke multigraph representation in VRPs. A 
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subsequent subsection 2.3 reviewed the studies that focused on the route planning for CIT operations. Finally, we 

elaborate that how the current study contributes to the literature. 

2.1   Time-dependent routing models 

In the field of VRPs, time-dependent models have attracted a little attention. In majority of studies, the travel 

speed or travel time between various locations are assumed to be a constant during a day. At first, travel time 

variability is incorporated into VRP by Malandraki (1989) and Malandraki and Daskin (1992). They formulated the 

problem by a mixed-integer linear program (MILP) and applied the nearest neighbor algorithm to solve the 

investigated problem. Park (2000) presented a bi-criteria vehicle-scheduling problem in which the travel speeds 

are varied according to passing area and the time of day. One of the major weaknesses of TDVRP studies is that 

many of these studies do not consider the FIFO property satisfaction. Ichoua et al. (2003) involved this intuitive 

property in a time-dependent routing problem. In another work, Donati et al. (2003) employed the Ant Colony 

system to solve the TDVRP efficiently. Later, Haghani and Jung (2005) studied pick-up or delivery VRP with time-

dependent travel times and soft Time Windows (TWs). The authors employed a Genetic Algorithm (GA) to solve 

the problem in relatively short computing times. 

In another study, Figliozzi (2012) proposed an efficient solution algorithm to tackle the TDVRP with hard and 

soft TWs. Later, Taş et al. (2014) investigated stochastic travel times in the TDVRP where the demand nodes have 

soft TWs. The authors provided two metaheuristics including Tabu search (TS) and Adaptive Large Neighborhood 

Search (ALNS) algorithms to solve the problem. TDVRP with simultaneous pickup and delivery is studied by Zhang 

et al. (2014) and the authors have presented a hybrid optimization algorithm based on ant colony and TS 

algorithms. Wen and Eglese (2015) studied a VRP in a time-varying road network, which aimed at minimizing costs 

including traveling costs and congestion charge for different zones.  

Other related studies in the literature focused on pollution-routing in the TDVRP, for example Jabali et al. 

(2012), Qian and Eglese (2016), Alinaghian and Naderipour (2016), Xiao and Konak (2016), Ehmke et al. (2016), 

Çimen and Soysal (2017) and Franceschetti et al. (2017). For a detailed review about time-dependent routing 

models, we refer to the work of Gendreau et al. (2015). 

2.2   Multigraph representation in VRPs 

The main advantage of studying the transportation network as a multigraph is that such network maintains 

alternative non-dominated links between each pair of nodes. Some of the related studies employed multigraph 

network to hold multiple attributes on the arcs based on Garaix et al. (2010), while other publications studied the 

TDVRP in a multigraph structure proposed by Setak et al. (2015). In the TDVRP according to the time that a vehicle 

reaches a node, passing  to subsequent node by the shortest path may require more time due to the high traffic 

congestion, while alternative longer path may need less traveling time. 

Garaix et al. (2010) incorporated alternative paths into VRP and showed that when the arcs in the underlying 

road network have several attributes, simple graph representation is unable to handle the problem and many 

available solutions may be discarded. The authors labeled the arcs of the network with two attributes time and 

cost (distance). Later, Lai et al. (2016) expanded the mentioned model for the heterogeneous VRP under restricted 

route duration limits. The authors developed TS method to tackle the additional complexity induced by the parallel 

arcs. In another study, Reinhardt et al. (2015) considered VRP with TWs in which a fixed charge should be paid for 

accessing a set of arcs. The authors analyzed their problem in both simple and multigraph network. Ticha et al. 

(2017) investigated the VRP with multiple-attribute parallel arcs and incorporated the TW constraint into the 

problem. The authors implemented a branch-and-price algorithm. In a related work, Ticha et al. (2019) provided 

ALNS algorithm for solving larger instances defined in Ticha et al. (2017).  

The TDVRP with FIFO property is studied by Setak et al. (2015). The proposed model not only determines the 

sequence of demand nodes for each vehicle but also selects the proper links among available arcs based on traffic 

congestion. Alinaghian and Naderipour (2016) and Setak et al. (2017) investigated the application of the TDVRP in 
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a multi-alternative graph for reduction of environmental emissions in urban area. Huang et al. (2017) addressed a 

time-dependent VRP with path flexibility. The authors modeled the problem under deterministic and stochastic 

traffic conditions. Behnke and Kirschstein (2017) examined the impact of path selection in the emissions-

minimizing. Later, Androutsopoulos et al. (2017) proposed a bi-criteria model for pollution-routing problem, 

which simultaneously addresses routing and path finding decisions. Similarly, Ehmke et al. (2018) developed a 

model for minimizing total VRP costs in a multigraph road network. The model concerns optimization of fuel 

consumption/emissions, distance, and time-dependent travel time. Tikani and Setak (2019) studied a reliable 

distribution problem in urban environments. The authors considered multi-attribute parallel links in 

transportation networks in disaster response operations. Their investigations showed that multigraph yields a 

faster and more reliable distribution process. 

2.3  Cash-in-transit routing models 

There are numerous studies, which deal with the VRP in different real-life applications; nonetheless, the concept of “security” in transport operations has attracted little attention in spite of its importance. Krarup (1995) 
and Ngueveu et al. (2010) addressed the transportation security by the context of “peripatetic” routing models. In 
detail, the authors forbade employing repetitive road segments where the demand nodes could be served several 
times. Calvo and Cordone (2003) presented an approach to reduce the risk of robberies by constructing 
unpredictable routes. They enforced a time lag between two successive visits for security issues. Yan et al. (2012) 
proposed a cash transportation vehicle routing and scheduling problem as an integer multiple-commodity network 
flow problem. The model strives to reduce invariant vehicle routes and schedules to increase security.  

In another study, Talarico et al. (2015) formulated the CIT routing problem with a pre-specified risk threshold. 
Talarico et al. (2017a) developed a multi-objective mathematical formulation for CIT sector that simultaneously 
increases the security and minimizes the total travel cost of vehicle routes. They proposed an efficient 
metaheuristic to tackle the problem. Talarico et al. (2017b) provided a new metaheuristic to cope with the model 
introduced by Talarico et al. (2015). Moreover, Bozkaya et al. (2017) studied a bi-objective CIT routing model 
including transportation cost and security risk. Radojičić et al. (2018a) proposed a greedy metaheuristic with path 
relinking and fuzzy modification and randomized adaptive search procedure with path relinking. Xu et al. (2019) 
considered different cash denominations in CIT routing problem and provided a hybrid TS algorithm to solve the 
proposed problem.  

Some of the related works studied the security of cash transportation considering TWs for each customer. For 
example, Talarico et al. (2013) proposed a VRP model for the CIT industry with hard TWs. Radojičić et al. (2018b) 
extended the TWs with fuzzy logic approach in cash distribution problem. Ghannadpour and Zandiyeh (2020) 
proposed a distance and risk minimization VRP model in which demand nodes impose hard TW constraints. 
Furthermore, four works in the literature applied time spread constraints (as a modification of TW) in cash 
transport operations which diversify the arrival at each customer over multiple periods. In this regard, we refer 
interested readers to Michallet et al. (2014), Hoogeboom and Dullaert (2019), Tikani et al. (2020a), and Soriano et 
al. (2020) for more details.  

Since distribution of valuable goods cannot be limited to one period. Some of the presented models in the 
literature aim to optimize routing plans in a periodic setting. Such models include features to vary the designated 
routes and control the risk by preventing the reuse of already traversed links. Herein, we can refer to Yan et al. 
(2012), Bozkaya et al. (2017), Tikani et al. (2020a), Ghannadpour and Zandiyeh (2020) for such studies.  Table 1 
summarizes the studies of CIT routing problems and compares the current study to the most related works in the 
literature. 
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Yan et al. (2012) 2012 SGN SO TC ✓       ✓  ✓  
A decomposition/collapsing 

method  

Talarico et al. (2013) 2013 SGN SO TC ✓  ✓ ✓       ✓ Metaheuristic algorithms 

Michallet et al. (2014) 2014 SGN SO TC ✓ ✓         ✓ Local search iterative method 

Talarico et al. (2015) 2015 SGN SO TC ✓  ✓ ✓       ✓ Metaheuristics 

Talarico et al. (2017a) 2017 SGN MO TC, R ✓ ✓ ✓        ✓ A multi-objective metaheuristic 

Bozkaya et al. (2017) 2017 SGN MO TC, R ✓ ✓ ✓ ✓    ✓   ✓ 
Modified adaptive  

randomized bi-objective method 

Talarico et al. (2017b) 2017 SGN SO TC ✓  ✓ ✓       ✓ A hybrid meta-heuristic Radojičić et al. (2018a) 2018 SGN SO TC ✓  ✓ ✓       ✓ A fuzzy meta-heuristic Radojičić et al. (2018b) 2018 SGN SO TC ✓  ✓ ✓     ✓   The commercial solver CPLEX 

Hoogeboom and Dullaert (2019) 2019 SGN SO TC ✓ ✓   ✓   ✓   ✓ An iterated heuristic  

Xu et al. (2019) 2019 SGN SO TC ✓ ✓ ✓ ✓       ✓ Combined hybrid TS 

Soriano et al. (2020) 2020 MGN SO TC ✓ ✓         ✓ A modified ALNS 

Tikani et al. (2020a) 2020 MGN MO CT, R, CS ✓ ✓ ✓  ✓ ✓     ✓ An improved NSGA-II 

Ghannadpour and Zandiyeh 
(2020) 

2020 SGN MO TC, R ✓ ✓ ✓     ✓   ✓ A hybrid GA 

This paper  MGN SO CT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Two-phase dynamic programming 

(DP), 

Two phase flexible restricted DP, 

Hybrid meta-heuristic using self-

adaptive caching GA 

Network: SGN (simple graph network), MGN (multigraph network); Objective (s): SO (Single objective), MO (Multi-objective); Item(s): TC (Transportation Cost/ Path Lengths), R 
(Risk), CT (Completion Time), CS (Customer Satisfaction); Solution algorithm: EX (Exact algorithm), HU (Heuristic algorithm), MH (Meta-heuristic algorithm). 

 



 

 

In summary, we have observed that most of the proposed models in CIT routing problems are not able to reflect 

the real-life concerns properly. For example, CIT providers usually operate in urban regions but none of the models 

captures traffic congestion. The traffic condition is time-dependent and has stochastic nature on each individual 

link. Furthermore, researchers mainly studied the CIT in simple graph networks with multi-attribute arcs including 

cost (distance) and risk. However, according to the Garaix et al. (2010), simple graph networks cannot handle the 

problem when multiple attributes are defined on the links. These defects have motivated us to study the benefits 

of path flexibility for the CIT problem in multigraph networks in both deterministic and stochastic traffic conditions. More specifically, the vehicles’ speeds are considered as stochastic parameters based on the two-stage 

stochastic programming and the scenario generation method. Hereupon, a new risk measuring approach is 

proposed to capture the innovative characteristics of TD-CITRMs. It is defined as a cumulative measure along each 

constructed route and addresses three important vulnerability factors in the risk assessment of cash distribution 

including time-dependent traffic congestion, existence of multi-attribute parallel links in inner-city areas and 

characteristics of the links. In addition,  we involve maximum allowable time duration together with a risk 

threshold in the models to design a more balanced routing scheme. This feature helps to improve the quality of 

achieved solutions from the perspective of both CIT companies and financial organizations.  

 

3. Preliminaries and problem description 

The problem described in this paper deals with the transportation of valuable goods (e.g., money) in urban 

environments. The proposed VRP models determine the best sequence of nodes and the best link between each 

pair of nodes (according to the time of a day). An example for showing the necessity of considering alternative links 

in a CIT routing problem is provided in Figure 1. In this example, there are three options to traverse the distance 

between two specific nodes. The travel time and related traveling risk are illustrated. According to this figure, at 8 AM, the shortest link is 4.6 kilometers with 11 minutes’ travel time, while another longer path with 5.1 kilometers 

is less risky and requires 10 minutes' travel time. On the other hand, in the low-traffic condition the optimum link 

is changed to the shortest link of 4.6 kilometers. Here, the link with 6.6 kilometers is dominated by two other links 

concerning their travel time and traveling risk. 

 

 
Figure 1. Available alternative links between a pair of nodes -Google maps 
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As mentioned earlier, the TD-CITRM-DT is modeled as a time-dependent VRP. The underlying network is 

considered as an oriented multigraph structure 𝐺 = (𝑉, 𝐴). Vertex set 𝑉 contains a central depot and a set of 

demand points 𝑁 =  {1, . . . , 𝑛}. In addition, 𝐴 =  {(𝑖, 𝑗, 𝑚): 𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠  𝑗} shows the set of traffic connections 

among the nodes. Each arc is represented by (𝑖, 𝑗, 𝑚), in which 𝑚 indicates the 𝑚th parallel link from nodes 𝑖 to 𝑗. 
For the convenience of the reader, notations used in the paper are gathered in Table A.1 of Appendix A. 

3.1  The consideration of FIFO property  
The FIFO or the non-passing property ensures that, if vehicle 𝐴 begins to travel the arc (𝑖, 𝑗) earlier than vehicle 

B, then it reaches to its destination 𝑗 before vehicle 𝐵. Earlier works on TDVRP did not satisfy FIFO property (Ichoua 

et al. 2003). In fact, they utilized a discrete function of time to model the travel times. An example of their approach 

is depicted in Figure 2(a). As shown in the figure if a vehicle departs the origin at 1:00, it will reach to its destination 

in 120 kilometers away at 4:00. Nonetheless, if a vehicle departs at 2:00, it will arrive at its destination at 3:43. This 

situation does not fit properly in practice because the result does not conform to the FIFO property. 

Recently, researchers employ continuous travel time functions over the time horizon. Here, we utilized the 
transformation procedure of Setak et al. (2015) to convert a travel speed pattern into a travel time function. The 
inputs of this procedure are T initial time intervals with their speeds for each link, and the outputs are ℎ new time 

intervals 𝑇̅𝑖𝑗𝑚ℎ  and two different coefficients 𝑎𝑖𝑗𝑚ℎ  and 𝑏𝑖𝑗𝑚ℎ . Let 𝑡0 be the departure time of a vehicle which passes 

the 𝑚th link from node 𝑖 to node 𝑗 in interval [𝑇̅𝑖𝑗𝑚ℎ  , 𝑇̅𝑖𝑗𝑚ℎ+1]. Thereby, the travel time can be obtained from  𝑡 = 𝑎𝑖𝑗𝑚ℎ + 𝑏𝑖𝑗𝑚ℎ × 𝑡0. By implementing this method on the travel speeds of Figure 2(a), the corresponding travel time 

function is obtained as depicted in Figure 2(b). 
 
 

 
Figure 2. (a) Example of travel speed function; (b) The corresponding travel time function  

 

3.2 Time dependency in the studied multigraph network 
In traditional time-dependent routing models, the problem is constructed on a simple graph network and the 

travel speed change based on the congestion levels in various time intervals. However, a simple graph is only able 
to handle one link between each pair of nodes and discard the related parallel links. However, a multigraph 
representation allows us to consider alternative paths between two sequential nodes. Therefore, according to the 
time of the day, the link with lowest travel time among the nodes can be changed. Figure 3 illustrates the effects of 
time-dependent travel time on the TD-CITRM in a multigraph configuration. In Figure 3, the links with the lowest 
travel time are presented with continuous lines. This simple example shows that the less time-consuming arcs in 
multigraphs change throughout different time intervals. However, the proper link between a pair of nodes is 
related to both introduced attributes of arcs. 
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Figure 3. Time-dependent multigraph network with multi-attribute arcs (dashed lines: parallel links)  
 

3.3  Risk measurement in multigraph 
Operational risks have been thoroughly studied in the routing of hazardous materials. There are various 

mathematical models in hazmat transportation, which capture different risk aspects in transportation (Kumar et 
al. 2018; Ghaderi and Burdett 2019 and Bula et al. 2019). Generally, risk functions are defined according to the 
road conditions and characteristics of transported dangerous goods. In the CIT, population is not endangered and 
there is not any explosion probability. Instead, the vehicles are under the risk of robbery along their route. 
Moreover, interviews with professional experts in cash logistics indicate that cash transportation is expected to be 
performed in the early hours of the morning to almost before noon. Accordingly, the risk of robbery occurrence 
when the vehicle is stationary at the position of demand nodes during the operation time is relatively constant and 
has no effect on the optimal solution. Thus, this item is not incorporated in our proposed risk formula. 

We define the risk of occurrence of a robbery along an edge (𝑖, 𝑗,𝑚) in a multigraph network by four main 
terms:  

(a) The probability of an attack is proportionate to the travel time of a vehicle on each link. So, if the vehicle 𝑘 

traverses the link (𝑖, 𝑗,𝑚), the travel time on this link is computed by (𝑡𝑗𝑘 − 𝑡𝑖𝑘 − 𝑠𝑗), where 𝑡𝑖𝑘 represents the 

departure time of vehicle 𝑘 at node 𝑖, and 𝑠𝑖  shows the corresponding service time. 
(b) The probability of occurrence of a robbery incidence is 𝑇𝑟𝑖𝑗𝑚 which is defined per unit of time. The value 𝑇𝑟𝑖𝑗𝑚 

is estimated based on several factors, such as the number of available lanes in a link, tunnels, the criminal 
potentials in the region, weather conditions and so on (for more information see Sakip et. al 2019, Musah et 
al. 2020, Davies and Johnson 2015). 

(c) The probability of successful robbery after its occurrence is defined by vulnerability factor 𝑣𝑖𝑗𝑚. Different 

factors such as quality of vehicles, employed weapons, the crew skills, police delays and etc. are involved in 
determining the parameter 𝑣𝑖𝑗𝑚. 

(d) The amount of losses that eventuates by the robbery. It equals to the remaining cash or valuable goods in the 

vehicle 𝑘 after visiting node 𝑖 (represented by 𝐶𝑝𝑖𝑘). 

The risk of a successful robbery occurrence along link (𝑖, 𝑗, 𝑚) is then represented by 𝑟𝑖𝑗𝑚𝑘  =𝑇𝑟𝑖𝑗𝑚. 𝑣𝑖𝑗𝑚. 𝐶𝑝𝑖𝑘 . (𝑡𝑗𝑘 − 𝑡𝑖𝑘 − 𝑠𝑗).  For the sake of simplicity, we neglect the possibility of more than one robbery 

occurring along each route. Moreover, since it is difficult to estimate the vulnerability factor in real situations, a 
constant value is assumed for this parameter. Therefore, we omit 𝑣𝑖𝑗𝑚in the remainder of the paper (same as in 

Talarico et al. 2015). By these assumptions, the risk of route 𝑘 can be described by: 
 𝑅𝑖𝑠𝑘𝑘 = ∑ 𝑇𝑟𝑖𝑗𝑚. (𝑡𝑗𝑘 − 𝑡𝑖𝑘 − 𝑠𝑗).𝐶𝑝𝑖𝑘(𝑖,𝑗,𝑚)∈ 𝑟𝑜𝑢𝑡𝑒 𝑘  

(1) 

 

The variable 𝑅𝑗𝑘 is then introduced to determine the cumulative risk after visiting node 𝑖 along link (𝑖, 𝑗, 𝑚) in 

the route 𝑘. The corresponding equation is given as follows: 
 𝑅𝑗𝑘 = 𝑇𝑟𝑖𝑗𝑚. 𝐶𝑝𝑖𝑘. (𝑡𝑗𝑘 − 𝑡𝑖𝑘 − 𝑠𝑗) + 𝑅𝑖𝑘 (2) 

𝑎 𝑎 

𝑐 
𝑏 𝑑 𝑏 𝑑 

𝑐 
Time Interval #1 Time Interval #2 

$ $ 

Link 1 

Link 2 
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Link 2 

Travel Time 
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In the TD-CITRM, the global risk of a route is controlled by a risk threshold 𝜌. Limiting the global risk helps the 
risk reduction efforts and assures that cash or valuable goods on the vehicles could reach the destinations by 
relatively safe routes. Figure 4 is provided to clarify the risk measuring process. As depicted in Figure 4 (a) a vehicle 
should visit three demand nodes and return to the depot. In the risk constraint VRP, both capacity constraint and 
risk threshold can prevent serving all demand nodes in a single tour. In particular, several solutions can be 
discarded, because these solutions are unable to meet the risk threshold. For instance, in Figure 4(b), the blue route 
cannot be used when 𝜌 = 5 because the cumulative risk index at node 𝐵 is 𝑅𝐵1 =(0.01 × 30 × 4)0 → 𝐴 +(0.015 × 20 × 18)𝐴 → 𝐶 +(0.001 × 5 × 12) = 6.66𝐶 → 𝐵 . An acceptable solution is shown in Figure 4(c).  

 

 

Figure 4. Risk measuring procedure for a vehicle in a multigraph network (dashed lines: parallel links) 

Different criteria are utilized to increase the quality of services in VRPs. One of them is limiting route duration 
or route length (Cordeau et al. 2003). From a CIT company’s perspective, it is more desirable that carrier operations 
be balanced, and the routing plans are accomplished in a certain time. In addition to the CIT companies, economic 
organizations as banks tend to receive their demands earlier to satisfy customers’ withdrawal and increase the 
customer service level. In order to balance the routing plans, we consider a maximum route duration to ensure 
that all vehicle routes should be completed before a special time threshold. 

4. Mathematical formulations 

In this section, we introduce the TD-CITRM-DT as a mixed-integer non-linear programming and the related 

stochastic version TD-CITRM-ST using two-stage stochastic programming method. The following assumptions 

have been made to formulate the problem: (i) Vehicles are arranged to begin their carrier operations at the starting 

points of time intervals; (ii) if the expected operation time or cumulative risk on each route exceeds the given 

threshold values, the solution becomes infeasible; (iii) since the TD-CITRM is studied in urban network, it is 

possible to travel by using one of parallel links (multigraph representation); (iv) the parallel available links are 

characterized based on multiple attributes consisting of time-varying traffic congestions and traveling risk; (v) the demand associated with each location’s node is known. In detail, the related organizations (e.g., banks, ATMs, and 

so on) should exactly specify their demands before route planning, and finally (vi) all of the armored vehicles have 

similar specifications and supposed to only deliver valuable items along their route and finally return to the depot. 

4.1  Deterministic model (TD-CITRM-DT) 

The TD-CITRM-DT determines both sequence of nodes and appropriate arcs between them. It aims at 

minimizing the sum of completion times while the cumulative risk for each route should be equal or less than a 

predefined risk threshold. This threshold value should be determined in a preliminary analytical stage based a 

series of factors such as the amount and type of valuable goods, the characteristic of road networks, and the company’s attitude to risk (Talarico et al. 2015).  It is worthwhile to mention that the set of candidate arcs 𝑀𝑖𝑗 
includes promising arcs among each pair of nodes (𝑖, 𝑗) and is the input parameters of the models which should be 

determined in advance. We now provide the decision variables below. 

15 

0.001 𝐴 0 

𝐶 

𝐵 
5 

10 
𝑇𝑟𝐴𝐵1  
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𝑥𝑖𝑗𝑘  {1,   if the vehicle 𝑘 goes from node 𝑖 to node 𝑗               0,   otherwise ;                                                                          𝑥𝑖𝑗𝑚ℎ𝑘  {1,   if the vehicle 𝑘 moves through the 𝑚th edge from node 𝑖 to node 𝑗 in the ℎth time interval               0,   otherwise ;                                                                                                                                                                     𝑡𝑖𝑘 The departure time of the vehicle 𝑘 from node 𝑖; 𝑅𝑖𝑘 The cumulative risk at node 𝑖 for the vehicle 𝑘 ; 𝐶𝑝𝑖𝑘 The remaining valuable goods at node 𝑖 for the vehicle 𝑘. 

 

Using the variables and the notations of Table A.1, the proposed TD-CITRM-DT can be modeled as a mixed-integer 

non-linear program as follows (𝐸 is a large constant number): Minimize ∑ 𝑡𝑛+1𝑘𝑘∈𝐾  (3) 

Subject to:   ∑ ∑𝑥𝑖𝑗𝑘𝑘∈𝐾𝑖∈({0}∪𝑁),𝑖≠𝑗 = 1              ∀𝑗 ∈ 𝑁 (4) ∑ ∑𝑥𝑖𝑗𝑘𝑘∈𝐾𝑗∈({𝑛+1}∪𝑁),𝑗≠𝑖 = 1         ∀𝑖 ∈ 𝑁 

 

(5) 

∑ 𝑥𝑖𝑗𝑘𝑖∈({0}∪𝑁) = ∑ 𝑥𝑗𝑖𝑘𝑖∈(𝑛+1∪𝑁)          ∀𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾 (6) ∑ ∑ ∑ 𝑥𝑖𝑗𝑚ℎ𝑘ℎ∈𝐻𝑚𝑚∈𝑀𝑖𝑗𝑖∈({0}∪𝑁),𝑖≠𝑗 = ∑ 𝑥𝑖𝑗𝑘𝑖∈({0}∪𝑁),𝑖≠𝑗               ∀𝑗 ∈ (𝑁 ∪ {𝑛 + 1}), ∀𝑘 ∈ 𝐾 (7) ∑∑𝑥0𝑗𝑘𝑘∈𝐾𝑗∈𝑁 ≤ |𝐾| (8) 𝑡𝑗𝑘 − 𝑡𝑖𝑘 ≥ 𝑎𝑖𝑗𝑚ℎ + 𝑏𝑖𝑗𝑚ℎ 𝑡𝑖𝑘 + 𝑠𝑗 + (𝑥𝑖𝑗𝑚ℎ𝑘 − 1)𝐸     ∀ 𝑖 ∈ ({0} ∪ 𝑁), ∀𝑗 ∈ ({𝑛 + 1} ∪ 𝑁), ∀𝑘 ∈ 𝐾, ∀𝑚 ∈ 𝑀𝑖𝑗 , ∀ ℎ∈ 𝐻𝑚, 𝑖 ≠ 𝑗 (9) 𝑡𝑖𝑘 ≥ 𝑇̅𝑖𝑗𝑚ℎ + (1 − 𝑥𝑖𝑗𝑚ℎ𝑘 ) 𝐸     ∀ 𝑖 ∈ ({0} ∪ 𝑁), ∀ 𝑗 ∈ (𝑁 ∪ {𝑛 + 1}), ∀𝑘 ∈ 𝐾, ∀𝑚 ∈ 𝑀𝑖𝑗 , ∀ ℎ ∈ 𝐻𝑚, 𝑖 ≠ 𝑗 (10) 𝑡𝑖𝑘 ≤ 𝐸 ∑ 𝑥𝑖𝑗𝑘𝑗∈(𝑁∪{𝑛+1})                      ∀𝑖 ∈ ({0} ∪ 𝑁), ∀𝑘 ∈ 𝐾 (11) 𝐶𝑝0𝑘 ≤ 𝑄                                 ∀𝑘 ∈ 𝐾   (12) 𝐶𝑝0𝑘  =  ∑𝐷𝑖𝑖 ∈𝑁 ∑ 𝑥𝑖𝑗𝑘𝑗∈({𝑛+1}∪𝑁)                 ∀𝑘 ∈ 𝐾   (13) 𝐶𝑝𝑗𝑘 ≥ 𝐶𝑝𝑖𝑘 − 𝐷𝑗 − (1 − 𝑥𝑖𝑗𝑘 )𝐸                ∀𝑖, 𝑗 ∈ (𝑁 ∪ 𝑃), ∀𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (14) 𝑅0𝑘 = 0                                                                 ∀𝑘 ∈ 𝐾  (15)  𝑅𝑗𝑘 ≥ 𝑇𝑟𝑖𝑗𝑚. 𝐶𝑝𝑖𝑘 . (𝑡𝑗𝑘 − 𝑡𝑖𝑘 − 𝑠𝑗) + 𝑅𝑖𝑘 − (1 − ∑ 𝑥𝑖𝑗𝑚ℎ𝑘ℎ∈𝐻𝑚 ) 𝐸         ∀ 𝑖 ∈ ({0} ∪ 𝑁), ∀ 𝑗 ∈ ({𝑛 + 1} ∪ 𝑁), ∀𝑘∈ 𝐾, ∀𝑚 ∈ 𝑀𝑖𝑗 , 𝑖 ≠ 𝑗 (16) 

0 ≤ 𝑅𝑖𝑘 ≤ 𝜌                                         ∀𝑖 ∈ (𝑁 ∪ 𝑃), ∀𝑘 ∈ 𝐾 (17) 𝑡𝑛+1𝑘 ≤ 𝛿                                               ∀𝑘 ∈ 𝐾  (18) 𝑥𝑖𝑗𝑚ℎ𝑘  , 𝑥𝑖𝑗𝑘 = {0,1}                                ∀𝑖, 𝑗 ∈ (𝑁 ∪ 𝑃),∀𝑚 ∈ 𝑀𝑖𝑗 , ∀ℎ ∈ 𝐻𝑚 , ∀𝑘 ∈ 𝐾 (19) 𝑡𝑖𝑘 , 𝑅𝑖𝑘 , 𝐶𝑝𝑖𝑘 ≥ 0                                  ∀𝑖 ∈ (𝑁 ∪ 𝑃), ∀𝑘 ∈ 𝐾. (20) 
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The sum of completion times is minimized in objective function (3). Constraints (4) and (5) ensure that each 
node is served exactly once. Constraints (6) impose that vehicle 𝑘 should leave a node if it has previously entered to that node’s location. Constraints (7) enforce the vehicle to select only one link for passing node 𝑖 to 𝑗. Constraint 
(8) assures that at most |𝐾| routes are constructed. Constraints (9) are used to determine the departure time of 
vehicle 𝑘 at each demand node. Constraints (10) and (11) are employed for the related time interval, considering 
the vehicle departure time from the origin node. Constraints (12) limit the capacity of vehicles and forces that no 
vehicle is overloaded. Constraints (13)–(14) are employed to compute remaining cash or valuable goods from the 
depot to each node on the route of a vehicle. Constraints (15)–(16) propagate the risk measurement constraints. 
Note that constraints (16) contain nonlinear terms (the travel time is multiplied by the amount of remaining 
valuable goods). Constraints (17) control the cumulative risks to be equal or less than the threshold value 𝜌. 
Constraints (18) enforce that the operation time of each vehicle should not exceed the given threshold 𝛿. Finally, 
constraints (19)–(20) define the variable types. We note that sub-tours are prevented using the remaining demand 

(𝐶𝑝𝑗𝑘), the cumulative risk (𝑅𝑖𝑘), and the departure time (𝑡𝑖𝑘) at each node. 

 

4.2    Stochastic formulation (TD-CITRM-ST) 

To characterize the uncertainty in traffic conditions of available links, the problem is modeled as two-stage 
stochastic programming. In fact, a scenario tree consisting of a finite number of scenarios is employed to 
approximate the stochastic travel speeds in TD-CITRM-ST. To this end, we categorize the decision variables into 
two subsets: (i) scenario-independent variables (first-stage decisions) that are made prior to observing the actual 

realizations of the uncertain parameters.  Here, decisions on the vehicle routing 𝑥𝑖𝑗𝑘  and the cumulative drop-offs 𝐶𝑝𝑗𝑘 represent the first-stage actions. These variables are determined based on the expected traffic patterns using 

statistical analysis. (ii) Scenario-dependent variables (second-stage decisions) that are made after realization of all 
random events. Let us consider a finite set of scenarios  Ω,  where each 𝜔 ∈ Ω is a random scenario. These variables 

are  then likely to change for different realizations of 𝜔 and  include the arc selection decisions 𝑥𝑖𝑗𝑚ℎ𝑘 (𝜔), departure 

time at each node 𝑡𝑖𝑘(𝜔), and cumulative risks for each vehicle 𝑅𝑗𝑘(𝜔). The two-stage stochastic non-linear mixed 

integer program of TD-CITRM-ST can be written as follows: 
Stage one (P1): Minimize    𝐸 𝜉 [ℎ (𝐱 , 𝜉)] (21)

Subject to:  ∑ ∑𝑥𝑖𝑗𝑘𝑘∈𝐾𝑖∈({0}∪𝑁),𝑖≠𝑗 = 1              ∀𝑗 ∈ 𝑁 
(22)

∑ ∑𝑥𝑖𝑗𝑘𝑘∈𝐾𝑗∈({𝑛+1}∪𝑁),𝑖≠𝑗 = 1         ∀𝑖 ∈ 𝑁 
(23)

∑ 𝑥𝑖𝑗𝑘𝑖∈({0}∪𝑁) = ∑ 𝑥𝑗𝑖𝑘𝑖∈({𝑛+1}∪𝑁)          ∀𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾 
(24)

∑∑𝑥0𝑗𝑘𝑘∈𝐾𝑗∈𝑁 ≤ |𝐾| (25)

𝐶𝑝0𝑘 ≤ 𝑄                  ∀𝑘 ∈ 𝐾 (26)𝐶𝑝0𝑘  =  ∑𝐷𝑖𝑖 ∈𝑁 ∑ 𝑥𝑖𝑗𝑘𝑗∈({𝑛+1}∪𝑁)                 ∀𝑘 ∈ 𝐾   (27)

𝐶𝑝𝑗𝑘 ≥ 𝐶𝑝𝑖𝑘 − 𝐷𝑗 − (1 − 𝑥𝑖𝑗𝑘 )𝐸                         ∀𝑖, 𝑗 ∈ (𝑁 ∪ 𝑃), ∀𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (28)𝑥𝑖𝑗𝑘 = {0,1}                        ∀𝑖, 𝑗 ∈ (𝑁 ∪ 𝑃) , ∀𝑘 ∈ 𝐾 (29)𝐶𝑝𝑖𝑘 ≥ 0                             ∀𝑖 ∈ (𝑁 ∪ 𝑃), ∀𝑘 ∈ 𝐾 (30)

Then, for each ω, the second stage problem with the objective function ℎ (𝐱 , 𝜉(𝜔)) can be formulated as: 

Stage two (P2): ℎ (𝐱 , 𝜉(𝜔)) = Min    ∑  𝑡𝑛+1𝑘𝑘∈𝐾 (𝜔) (31) 



12 

 

Subject to:  ∑ ∑ ∑ 𝑥𝑖𝑗𝑚ℎ𝑘ℎ∈𝐻𝑚𝑚∈𝑀𝑖𝑗 (𝜔)𝑖∈({0}∪𝑁),𝑖≠𝑗 = ∑ 𝑥𝑖𝑗𝑘𝑖∈({0}∪𝑁),𝑖≠𝑗              ∀𝑗 ∈ (𝑁 ∪ {𝑛 + 1}), ∀𝑘 ∈ 𝐾 (32) 𝑡𝑗𝑘(𝜔) − 𝑡𝑖𝑘(𝜔) ≥ 𝑎𝑖𝑗𝑚ℎ (𝜔) + 𝑏𝑖𝑗𝑚ℎ (𝜔)𝑡𝑖𝑘(𝜔) + 𝑠𝑗 + (𝑥𝑖𝑗𝑚ℎ𝑘 (𝜔) − 1)𝐸     ∀ 𝑖 ∈ ({0} ∪ 𝑁),∀𝑗 ∈ (𝑁 ∪ {𝑛 + 1}), ∀𝑘 ∈ 𝐾, ∀𝑚 ∈ 𝑀𝑖𝑗 , ∀ℎ ∈ 𝐻𝑚, 𝑖 ≠ 𝑗 (33) 𝑡𝑖𝑘(𝜔) ≥ 𝑇̅𝑖𝑗𝑚ℎ (𝜔) + (1 − 𝑥𝑖𝑗𝑚ℎ𝑘 (𝜔))  𝐸     ∀ 𝑖 ∈ ({0} ∪ 𝑁), ∀ 𝑗 ∈ ({𝑛 + 1} ∪ 𝑁), ∀𝑘 ∈ 𝐾, ∀𝑚 ∈ 𝑀𝑖𝑗 ,∀ℎ ∈ 𝐻𝑚, 𝑖 ≠ 𝑗 (34) 𝑡𝑖𝑘(𝜔) ≤ 𝐸 ∑ 𝑥𝑖𝑗𝑘𝑗∈(𝑁∪{𝑛+1})                         ∀𝑖 ∈ ({0} ∪ 𝑁), ∀𝑘 ∈ 𝐾 (35) 𝑅0𝑘  (𝜔) =  0                                ∀𝑘 ∈ 𝐾 (36) 𝑅𝑗𝑘(𝜔) = 𝑇𝑟𝑖𝑗𝑚. 𝐶𝑝𝑖𝑘 . (𝑡𝑗𝑘(𝜔) − 𝑡𝑖𝑘(𝜔) − 𝑠𝑗) + 𝑅𝑖𝑘(𝜔) − (1 − ∑ 𝑥𝑖𝑗𝑚ℎ𝑘ℎ∈𝐻𝑚 (𝜔) )𝐸     ∀ 𝑖 ∈ ({0} ∪ 𝑁), ∀ 𝑗∈ ({𝑛 + 1} ∪ 𝑁), ∀𝑘 ∈ 𝐾, ∀𝑚 ∈ 𝑀𝑖𝑗 , 𝑖 ≠ 𝑗 (37) 
 

0 ≤ 𝑅𝑖𝑘(𝜔) ≤ 𝜌                                         ∀𝑖 ∈ (𝑁 ∪ 𝑃), ∀𝑘 ∈ 𝐾 (38) 𝑡𝑛+1𝑘 (𝜔) ≤ 𝛿                                               ∀𝑘 ∈ 𝐾 (39) 𝑥𝑖𝑗𝑚ℎ𝑘 (𝜔) = {0,1}                        ∀𝑖, 𝑗 ∈ (𝑁 ∪ 𝑃), ∀𝑚 ∈ 𝑀𝑖𝑗 , ∀ℎ ∈ 𝐻𝑚 , ∀𝑘 ∈ 𝐾 (40) 𝑡𝑖𝑘(𝜔), 𝑅𝑖𝑘(𝜔) ≥ 0                   ∀𝑖 ∈ (𝑁 ∪ 𝑃), ∀𝑘 ∈ 𝐾 (41) 

The constraints (21-30) in the first stage of TD-CITRM-ST are same as the deterministic formulation. While we 
redefined the constraints in the second stage sub-problem based on each scenario. In detail, the first stage of the 
model (P1) is a capacitated VRP with the objective function representing the expected value of the objective 
functions of second stage sub-problems (P2). 

 
 

5. Solution approaches 

Due to the complexity and non-linearity features of the investigated problem, exact commercial solvers cannot 
even handle small-sized instances in reasonable computation times. Previous related papers confirmed the high 
computational challenges of solving the TDVRP in a multigraph. For example, Setak et al. (2015) managed to solve 
a simple and linear TDVRP model in a multigraph with only six nodes in more than 7.5 hours using the CPLEX 
solver. While, the solution methods in the current study are capable to solve the highly constrained routing models 
including TD -CITRM-DT and TD-CITRM-ST in much less computation times. More specifically, the proposed two-
phase DP algorithm in this study finds the exact solution for larger instances (in comparison to Setak et al. 2015) 
in less than five minutes. We note that the proposed solution methods in the literature are not practical for the 
introduced problems because the structure of our models is totally different from previous mathematical models 
due to the existence of time-dependent travel times, multigraph structure, and the defined attributes on the links. 
Thus, in what follows, three different strategies inspired from Tikani and Setak (2019) including exact, heuristic 
and hybrid optimization method are improved to efficiently solve the TD-CITRM-DT.  
 

• Exact method: We develop two-phase DP based algorithm to obtain the optimal solution for the TD-
CITRM-DT.  To handle multiple vehicles in a single route in DP, the giant-tour representation (GTR) is 
applied to the VRP. The first phase of the algorithm specifies the sequencing of demand nodes. Then, in the 
next phase, the exact link selection procedure in a fixed sequence of nodes (LSFSN) is implemented to 
determine the proper links, which satisfy the risk threshold constraint.  

• Heuristic method: In order to save memory usage and to prevent high computation times in previous 
exact algorithm, a new flexible restricted dynamic programming (FRDP) method is utilized in stage 1.  

• Hybrid optimization method: To cope with larger-sized instances, a hybrid multi-phase optimization 
algorithm based on the genetic algorithm (GA) and DP is proposed. Then, the obtained solutions go 
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through LSFSN (in the second phase) to handle additional constraints. This algorithm employs caching 
techniques for fast exploration process and diversifies the population list using prepared internal data 
storage. 

We modified the introduced methods in Section 5.3 to deal with the uncertainties of traffic congestions in TD-
CITRM-ST. We discuss two approaches including bi-level optimization strategy and Route-Path approximation 
method to address this issue. 
 

5.1   Dynamic programming method 

DP method solves the problem by decomposing a complex problem into partial sub-problems (Bellman 1961). 
At the first phase of the proposed exact method, a forward algorithm is employed to minimize the sum of 
completion times over the set of vehicles by determining the sequence of nodes and their assignments to the routes. 
More specifically, the optimization process in the phase one prepares a sorted list of best-found solutions by only 
using the best links among the nodes with less traffic congestion. The cumulative risk of constructed routes is not 
considered in stage one. In the second phase, considering the prior objective function, the LSFSN algorithm finds 
the best arcs for the problem that also satisfies the risk threshold (Garaix et al. 2010). This mechanism can achieve 
the optimum solution because the second phase algorithm finds the best solution (according to the objective 
function) from the prepared sorted list that fulfills the risk threshold (See section 5.1.3). 

Here, we describe a DP formulation for the time-dependent TSP which aims at finding a sequence of nodes with 
minimum total operation time in the generated tour. Assume that V \0 shows a set of vertexes, then a state can be 
defined by (𝛷, 𝑗) where 𝑗 ∈  𝛷 and 𝛷 ⊆ V \{0}. In detail, the state (𝛷, 𝑗) is a partial tour starting from depot 0. It 
also serves all demand nodes in set 𝛷 and ends in node  ∈  𝛷 . Accordingly, 𝐶̅(𝛷, 𝑗) represents the total operation 
time of partial tour (𝛷, 𝑗). Starting from the depot, the earliest possible arrival time at customer 𝑗 in the first-time 
interval is min𝑚 {𝑎01𝑚1 }. Therefore, the costs of the first stages 𝐶̅({𝑗}, 𝑗) are computed by equation (42). In accordance 

with the FIFO property, the costs of middle stages 𝐶̅(𝛷, 𝑗) are computed using equation (43). In addition, the final 

stages 𝐶̂ can be computed by equation (44). 
 

First stage:   𝐶̅({𝑗}, 𝑗) = min𝑚 {𝑎0𝑗𝑚1 }      ∀𝑗 ∈ 𝑉 ∖ {0} (42) 

  Middle stages:   𝐶̅(𝛷, 𝑗) = min𝑖∈𝛷\𝑗{𝐶̅(𝛷\𝑗, 𝑖) +min𝑚 {𝑎𝑖𝑗𝑚ℎ + 𝑏𝑖𝑗𝑚ℎ 𝑡𝑖𝑘 + 𝑠𝑗}}     ∀𝑗 ∈ 𝛷 (43) 

  Final stage:         𝐶̂ = min𝑗∈𝑉\{0}{𝐶̅(𝑉\0,0) +min𝑚 {𝑎𝑗0𝑚ℎ + 𝑏𝑗0𝑚ℎ 𝑡𝑗𝑘}}     ∀𝑗 ∈ 𝛷 (44) 

 
This method generates only one tour and is unable to directly handle VRP. To cope with this issue, a 

transformation should be conducted to convert a VRP solution to a feasible giant tour. Moreover, the capacity of 
vehicles and maximum route duration are controlled by adding extra state dimensions to the generated partial 
tours of DP.  

5.1.1 Giant-tour representation (GTR) 

GTR is a practical approach to address multiple TSP (Funke 2005). In GTR, a transformation is conducted to 
replace the real depot with dummy depots in the same position. Thus, for each vehicle 𝑘 = 1… |𝐾|, one origin node 𝑜𝑘 and one destination node 𝑑𝑘 is assumed. Then, to maintain all routes in a single tour, the route of vehicle 𝑘 starts 
at node 𝑜𝑘 and ends to 𝑑𝑘 and the feasible expansion is 𝑜𝑘+1. It implies that the route of vehicle 𝑘 + 1 is started. To 
this end, the distance from 𝑜𝑘 and 𝑑𝑘 is assumed to be a sufficiently large number. In addition, the distance from 𝑑𝑘 and 𝑜𝑘+1 is assumed to be zero. For simplicity, instead of using start and end dummy nodes for the depot, we 
can merge 𝑑𝑘 with 𝑜𝑘+1 and employ one artificial separator. By this representation, we can achieve some distinct 
routes for the vehicles. 

As mentioned before two additional state dimensions are utilized to specify the remaining capacity and 
remaining allowable travel time for a vehicle. By these states, we prevent the expansion of unfeasible partial tours. 
More specifically, an expansion for the generated partial tour 𝛷 is acceptable only if the two conditions are 
satisfied: (i) there exists enough capacity for the vehicle 𝑘 to satisfy all the demand nodes in the constructed partial 

route (∑ 𝐷𝑖𝑖 ∈Φ ∑ 𝑥𝑖𝑗𝑘𝑗∈Φ ≤ 𝑄), and (ii) since the algorithm employs the best links among available parallel arcs 

according to the travel time at the first phase, by adding node 𝑖 to the route of vehicle 𝑘, the maximum route 
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duration should not exceed the pre-specified threshold (𝑡𝑖𝑘 ≤ 𝛿 where 𝑖 ∈ Φ). It is notable that the cumulative risk 
of each constructed route is evaluated in the second phase using LSFSN method. 

5.1.2 Flexible restricted list with weighted random sampling 

Gromicho et al. (2012) implemented the restricted DP (RDP) on VRPs using GTR. The authors expanded the 
restricted DP of Malandraki and Dial (1996) to accelerate the operation of the algorithm. In this method, only H 
promising states with the lowest costs are selected to be expanded in the next stage. The reason is that low-cost 
states have more chance to reach a better solution compared to high-cost states.  

Soysal and Çimen (2017) utilized weighted random sampling to form the restricted list in the RDP. Their 
algorithm selects H + S partial tours to be expanded in the next stage, where S partial tours are picked out using 
weighted random sampling. Moreover, Tikani and Setak (2019) introduced RDP with a dynamic restricted list. The 
authors expressed that applying restrictions in the initial stages of RDP yields to lose feasible solutions. Because 
most of the nodes are not considered in the states of initial stages. Conversely, by tending to the final stage, most 
of the nodes are added to the states and lower ranks states have less chance to achieve proper solutions. In this 
study, we integrate these two efficient strategies with some modifications and present a new heuristic method 
based on DP with flexible restriction list and weighted random sampling. At each stage of FRDP, the algorithm 
follows the procedure stated in Algorithm 1. The 𝑛 in Algorithm 1 shows the stage number. 

 

Algorithm 1. The steps of the proposed FRDP  

Step #1 Define potential partial tours for the current state, based on the available states from the 
previous stage and non-attended demand nodes. 

Step #2 Calculate the time dependent operation cost 𝐶̅(𝛷, 𝑗) for each constructed partial tour using 
equation (43). For the initial stage use equation (42). 

Step #3 Rank all generated states based on their costs in ascending form. 
Step #4 Calculate the size of restricted list → SRL𝑛 = [1.5 × 𝐻] − [ 𝑛𝑁𝑂 × 𝐻], where 𝑁𝑂 represents 

the total number of stages and 𝐻 shows approximated average width among all stages (𝐻 is 
defined by the decision maker). 

Step #5 Compute the weights of next SRL𝑛 remaining (not selected) states (put them in set 𝜑). For 
each partial tour 𝛷, the corresponding weight can be achieved by:  
 𝑊(𝛷, 𝑗) = ∑ 𝐶̅(𝛷′, 𝑗′)(𝛷′,𝑗′)∈𝜑 − 𝐶̅(𝛷, 𝑗)∑ 𝐶̅(𝛷′, 𝑗′)(𝛷′,𝑗′)∈𝜑 × (SRL𝑛) 

Step #6 Assign the cumulative probabilities of each state in set 𝜑. For this purpose, sort the states 
according to their weights in ascending form { 𝑊(𝛷, 𝑗)1,𝑊(𝛷, 𝑗)2, …  𝑊(𝛷, 𝑗)SRL𝑛}. Then 

determine the cumulative weights (CW) as follows: 
 𝐶𝑊(𝛷, 𝑗)1  = 𝑊1(𝛷, 𝑗)  𝐶𝑊(𝛷, 𝑗)𝑖  = 𝐶𝑊(𝛷, 𝑗)𝑖 + (𝛷, 𝑗)𝑖     𝑖 ∈ 𝜑\{1}  

Step #7 Select 2(𝑁𝑂 − 𝑛) states for expanding in the next stage using weighted random sampling. 
Step #8 Merge the list of SRL𝑛 with 2(𝑁𝑂 − 𝑛) selected partial tours to be expanded in the next 

stage. 
Step #9 If all nodes are attended to the GTR, calculate the total travel cost by equation (44), 

otherwise return to Step #1. 

 

5.1.3 Link selection procedure  

The proposed DP (or FRDP) handles the TD-CITRM without the risk constraint and presents a set of best-found 
solutions Λ = {𝑆1, 𝑆2… , 𝑆𝑈} , which are sorted in ascending form in terms of objective value. The set Λ is the input 
of the second phase LSFSN optimization method that focuses on link selection procedure. The LSFSN investigates 
the risk threshold for the mentioned set by starting from the lowest-cost solution. Herein, Algorithm 2 is presented 
to get the lowest-cost sequence among Λ that fulfills the risk threshold. 

In Algorithm 2, it is obvious that 𝑆1 is the optimal solution if it satisfies the risk threshold, because 𝑆1 has the 
lowest-cost objective function. Otherwise, for (𝑖 > 1), 𝑆𝑖 is not necessarily the optimum solution. Because there 
may exist a better solution in Λ′ = {𝑆1, 𝑆2… , 𝑆𝑖−1} ⊂ Λ which satisfies the risk threshold and has a lower cost by 
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employing alternative links. Therefore, we should compare the 𝑆𝑖 with the feasible solutions that can be generated 
by changing the parallel links in Λ′. To handle this point, LSFSN is devised to select proper arcs in a fix sequence of 
nodes. More precisely, we aim to solve a sub-problem of TD-CITRM-DT, which should be solved for each route 
separately. Let us demonstrate each vehicle route by an acyclic directed multigraph 𝐺𝐹𝑆 = (𝑉𝐹𝑆, 𝐸𝐹𝑆), where 𝑉𝐹𝑆 ={0, 𝑣1, … , 𝑣𝑞}. In 𝐺𝐹𝑆, each node has one specified predecessor and one specified successor.  

 

Algorithm 2. Finding the lowest-cost sequence that fulfills the risk threshold 

1 Input data: Set Λ = {𝑆1, 𝑆2… , 𝑆𝑈}, risk threshold (𝜌) 
2 Initialization: 𝑖 ← 1 

3 While (risk threshold is not satisfied) do 
4  If  (𝑖 ≤ 𝑈)  then 
5   If (the sequence 𝑆i satisfy the risk threshold) then 
6       If  𝑖 = 1 then 
7     𝑆1 is the optimal solution of the problem 

8     Break;                                                            //End the algorithm since an optimal solution is found 

9    Else 

10     𝑆𝑖  is the lowest-cost sequence among Λ that fulfills the risk threshold    
11     Break;                                 //End the algorithm  

12    End If 

13     End If 

14  Else 

15   No feasible solution is found among Λ            //Infeasible solution 

16  End If 

17  𝑖 ← 𝑖 + 1 
18 End While 

19 Return (𝑖, 𝑆𝑖)  

 

Additional decision variables used in the model is listed below. 
 𝑦𝑖𝑚ℎ  {1,   if the 𝑚th link from node 𝑖 to its corresponding successor node is selected in the ℎth time interval               0,   o. w. ;                                                                                                                                                                                       𝑡𝑖 Departure time of the vehicle at node 𝑖; 𝑅𝑖  The cumulative risk at node 𝑖 ; 𝐶𝑝𝑖 The remaining valuable goods at node 𝑖. 

 

Using the notations and variables in Table A.1, the mathematical formulation of LSFSN for one route is given 
as: 

 
 Minimize   𝑡𝑛+1 (45) 

Subject to:  ∑ ∑ 𝑦𝑣𝑖𝑚ℎℎ∈𝐻𝑚𝑣𝑖𝑣𝑖+1𝑚∈𝑀𝑣𝑖𝑣𝑖+1 = 1              ∀𝑣𝑖 ∈ 𝑉𝐹𝑆 
(46) 𝑡𝑣𝑖+1 − 𝑡𝑣𝑖 ≥ 𝑎𝑣𝑖𝑣𝑖+1𝑚ℎ + 𝑏𝑣𝑖𝑣𝑖+1𝑚ℎ 𝑡𝑣𝑖 + 𝑠𝑣𝑖+1 + (𝑦𝑣𝑖𝑚ℎ − 1)𝐸1     ∀ 𝑣𝑖 ∈ 𝑉𝐹𝑆, ∀𝑚 ∈ 𝑀𝑣𝑖𝑣𝑖+1 , ∀ℎ ∈ 𝐻𝑚𝑣𝑖𝑣𝑖+1 (47) 𝑡𝑣𝑖 ≥ 𝑇̅𝑣𝑖𝑣𝑖+1𝑚ℎ + (1 − 𝑦𝑣𝑖𝑚ℎ ) 𝐸                           ∀ 𝑣𝑖 ∈ 𝑉𝐹𝑆, ∀𝑚 ∈ 𝑀𝑣𝑖𝑣𝑖+1 , ∀ℎ ∈ 𝐻𝑚𝑣𝑖𝑣𝑖+1  (48) 𝑡𝑣𝑖 ≤ 𝐸 ∑ ∑ 𝑦𝑣𝑖𝑚ℎℎ∈𝐻𝑚𝑣𝑖𝑣𝑖+1𝑚∈𝑀𝑣𝑖𝑣𝑖+1            ∀ 𝑣𝑖 ∈ 𝑉𝐹𝑆 (49)  𝐶𝑝𝑣𝑖+1 = 𝐶𝑝𝑣𝑖 − 𝐷𝑣𝑖                          ∀ 𝑣𝑖 ∈ 𝑉𝐹𝑆 (50)  𝑅𝑣𝑖+1 ≥ 𝑇𝑟𝑣𝑖𝑣𝑖+1𝑚 . 𝐶𝑝𝑣𝑖𝑘 . (𝑡𝑣𝑖+1 − 𝑡𝑣𝑖 − 𝑠𝑣𝑖+1) + 𝑅𝑣𝑖  − (1 − ∑ 𝑦𝑣𝑖𝑚ℎℎ∈𝐻𝑚𝑣𝑖𝑣𝑖+1  )𝐸       ∀ 𝑣𝑖 ∈ 𝑉𝐹𝑆, ∀𝑚 ∈ 𝑀𝑣𝑖𝑣𝑖+1 
(51) 
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0 ≤ 𝑅𝑣𝑖 ≤ 𝜌                                         ∀ 𝑣𝑖 ∈ 𝑉𝐹𝑆  (52) 𝑡𝑛+1 ≤ 𝛿                                            (53) 𝑦𝑣𝑖𝑚ℎ = {0,1}               ∀ 𝑣𝑖 ∈ 𝑉𝐹𝑆, ∀𝑚 ∈ 𝑀𝑖𝑗 , ∀ℎ ∈ 𝐻𝑚𝑣𝑖𝑣𝑖+1   (54) 𝑡𝑣𝑖 , 𝑅𝑣𝑖 ≥ 0                   ∀ 𝑣𝑖 ∈ 𝑉𝐹𝑆. (55) 

 
 
The objective function (45) minimizes the operation time of one specific route. Constraints (46) ensure that 

only one link is selected to pass from node 𝑣𝑖 to its successor node in one-time interval. Constraints (47) express 
the departure time at each node 𝑣𝑖+1 based on its predecessor 𝑣𝑖. Constraints (48-49) determine the related time 
interval using departure times. Constraints (50) compute remaining load from the depot to each node on the route.  
Constraints (51) calculate the cumulative risk at each node. Constraints (52) impose the threshold value for the 
cumulative risk at each demand node. Constraints (53) control the duration time. Constraints (54-55) define the 
types of decision variables. 

The LSFSN method extends a set of non-dominated labels. Both feasibility checking and utilizing dominance 
rules decrease the cardinality at each stage. The dominance rules that discard non-promising labels in the 
searching process are described here. The expansion 𝑙1dominates 𝑙2 (both partial routes terminate at same node 𝑞) only if the two following conditions are satisfied: (i) 𝑡𝑙1 ≤ 𝑡𝑙2 → It means that visiting all nodes in 𝑙1 takes less 
time than 𝑙2 (it is less time-consuming) and (ii) 𝑅𝑙1 ≤ 𝑅𝑙2   → It means that cumulative risk at node 𝑞 in 𝑙1 is less 
than 𝑙2. 
The procedure of LSFSN labeling algorithm is summarized in Algorithm 3. In this method the main loop is repeated 
for |𝑉𝐹𝑆| iterations and in each iteration 𝑞, a set of labels 𝐿𝑞 (non-dominated) represent the available paths from 

the depot to 𝑣𝑞. 

 

Algorithm 3. LSFSN labeling algorithm 

1 Input data: directed multigraph 𝐺𝐹𝑆 = (𝑉𝐹𝑆, 𝐸𝐹𝑆), input parameters of the model  
2 Initialization 𝑝 ← |𝑉𝐹𝑆| − 1, 𝑡0 ← 0, 𝑅0 ← 0, 𝐶𝑝𝑖 ← ∑ 𝐷𝑖𝑖∈𝑉𝐹𝑆  

3 For: 𝑞 ← 0 𝑡𝑜 𝑝 do 
4  For each: link 𝑚 ∈ 𝑀𝑣𝑞𝑣𝑞+1  from 𝑣𝑞  to its successor do 

5   Find the corresponding time interval ℎ based on 𝑡𝑣𝑞  (using 𝑇̅𝑖𝑗𝑚ℎ )  

6   𝑙: the extension of passing node 𝑣𝑞  to its successor by arc 𝑚 ∈ 𝑀𝑣𝑞𝑣𝑞+1  

7   Calculate the information of extension 𝑙 including  { 𝑡𝑣𝑞+1 , 𝑅𝑣𝑞+1 , 𝐶𝑝𝑣𝑞+1} 
8   If  (extension 𝑙 is infeasible) then 
9    break;                                  // The maximum time duration or risk threshold is violated 

10   Else 

11   Dominated ← false; 
12    For each 𝑙′ ∈ 𝐿𝑣𝑞+1  do 

13     If (𝑙′is dominated by 𝑙) then 
14      Delete 𝑙′ from the set 𝐿𝑞+1 (𝐿𝑞+1: = 𝐿𝑞+1\{𝑙′}) 

15     Else if (𝑙 is dominated by 𝑙′) 
16      Dominated ← true; 
17      break; 
18     End if 
19    End for 
20    If  Dominated =false  then 
21     Add  𝑙 to 𝐿𝑞+1(𝐿𝑞+1: = 𝐿𝑞+1 ∪ 𝑙) 

22    End if 
23  End for 
24 End for 
25 Return the lowest-cost label in 𝐿𝑝  
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5.2     Hybrid optimization method using caching GA and LSFSN 

In this section, a new extension of GA named self-adaptive caching GA (SCGA) is devised to obtain near-optimal 
solutions for the problem. This method is hybridized by the exact LSFSN method and operates in two stages and is 
named as HSCGA. In the first stage, the metaheuristic part (SCGA) optimizes the TD-CITRM-DT without considering 
the risk threshold and determines the sequence of nodes using less time-consuming arcs. The SCGA benefits a self-
adaption operation to employ various genetic operators according to their scores, simultaneously.  

In the second stage, a limited number of stored items (ℬ) in the cache table are selected to go through the 
second phase optimization process LSFSN. In our study, we applied a continuous representation structure for the 
chromosomes because it provides smoother search. The employed crossover operators are one point, two points, 
and uniform. Moreover, instead of using inefficient simple mutations (e.g., swap or insertion), we embed local 
search (LS) strategies including well-known 2-opt, relocation of one node, and exchanging two nodes to manipulate 
the solutions. The algorithm chooses one of the introduced LS methods according to its probability. Then, the 
selected LS examines the 𝑂(𝑛2) neighborhoods and the best solution among the initial parent and its neighbors is 
added to the main population. For more information about local search procedures see Prins (2009). We mention 
that infeasible solutions can be generated, but the resulted violations in these constraints are penalized by related 
positive terms. 
 To take advantages of several mutation and crossover strategies in GA, Zhalechian et al. (2016) introduced an 
approach named self-adaptation mechanism. In detail, in the pre-optimization phase, each introduced operator is 
scored using a specific procedure and then according to the operators’ scores, selection probability metrics are 
assigned to the operators. In the following, in the main optimization process, the roulette wheel selection utilizes 
these probabilities to use one of the operators. In this regard, we employed three strategies for local searches 
including 2-opt, relocation of one node, exchanging two nodes and three crossover methods including one point, 
two point, and in the proposed SCGA. 
 The SCGA benefits caching strategy, which leads to improve the run-time performance and accelerate the 
exploration process by storing repetitive solutions during the optimization process (Tikani et al. 2020b). More 
precisely, once a repetitive genetic code is met, in subsequent generations, the related fitness is evoked from the 
provided cache memory. The existence of repetitive genetic materials on the populations may lead to a premature 
convergence and achieving a sub-optimum solution (Matic et al. 2017).  

5.3  Uncertainty handling in the solution approaches 

This section provides two solution approaches including a bi-level optimization method and Route-Path 
approximation method to cope with the uncertainties of TD-CITRM-ST. 

Since the uncertainty in traffic congestions is represented by a set of finite scenarios, the deterministic 
equivalent problem (DEP) of TD-CITRM-ST can be derived out by expanding the second stage of the model using 
associated probabilities. The DEP version of TD-CITRM-ST is exactly equivalent to the original one, but it is much 
easier to be solved. Here, for solving the TD-CITRM-ST, we proposed a bi-level optimization method (Tikani et al. 
2018).  The basic idea is that we break up the two-stage stochastic program into two problems including route 
construction problem (master problem) and arc selection problems (sub-problem). After constructing each 
routing scheme in the master problem (or partial route in FRDP and DP), the LSFSN is reprocessed for each 
scenario to optimize the arc selection problems based on the sequence of nodes. Then, the expected objective value 
is computed with employed arcs in different scenarios. In particular, the methods are modified according to the 
following explanations: 
DP and FRDP: In these methods, at each stage after constructing a partial tour 𝛷, the LSFSN method is repeated for 

each scenario 𝜔 using 𝛷. Let 𝐶̇(𝛷, 𝑗, 𝜔) be the objective function of the partial tour 𝛷 in scenario 𝜔 and 𝑝(𝜔) 
represents scenario probability. Then, the expected objective value 𝐶̈(𝛷, 𝑗) is computed by the following equation: 𝐶̈(𝛷, 𝑗) = ∑ 𝑝(𝜔)× 𝐶̇(𝛷, 𝑗, 𝜔)𝜔∈Ω      ∀𝑗 ∈ 𝛷 (56) 

In Step 2 of Algorithm 1, the equation (56) should be employed to calculate the cost of each constructed partial 
tour. At the final stage, the best-found solution is given according to the expected costs of constructed complete 
tours. 
Hybrid optimization method (for HSCGA): in this method, the modified GA finds different tours for each vehicle and 
then to take advantage of the optimal solutions; the LSFSN exact method is re-used to obtain the optimal links on 
each scenario. Then, the expected objective value is calculated for each individual based on scenario probabilities. 
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Fitness evaluation with caching mechanism for both TD-CITRM-DT and TD-CITRM-ST is described in 
Algorithm 4. Moreover, the complete procedure of proposed SCGA is given in Algorithm 5. 

 
Algorithm 4. Fitness evaluation by caching mechanism (FECM) 
1 Input (chromosome 𝐶𝐻, parameters of TD-CITRM-DT or TD-CITRM-ST) 
2 Decode the 𝐶𝐻 
3 If (individual 𝐶𝐻 is existed in the cache table) 

4  If (individual 𝐶𝐻 is repetitive in the current population) 

5   Set the fitness value of 𝐶𝐻 to upper bound 𝑈𝑃 

6  Else 

7   Use the cache table to achieve the fitness value of 𝐶𝐻 

8  End if 

9 Else  

10  Calculate the fitness value of 𝐶𝐻 using POF* 
// for TD-CITRM-DT 

11  Update the cache table based on the 𝐶𝐻 and its fitness value 

12  For each scenario 

// for TD-CITRM-ST 

13   For each route of 𝐶𝐻 

14    Run LSFSN and achieve the solution that fulfills the risk threshold 

15   End for 

16  End for 

17  Calculate the fitness value of 𝐶𝐻 using EPOF* 

18  Update the cache table based on the 𝐶𝐻 and its fitness value 

19 Return the achieved fitness value of 𝐶𝐻 
* POF: penalized objective function, EPOF: expected penalized objective function 

 
Algorithm 5:  Proposed hybrid self-adaptive caching genetic algorithm with local search (HSCGA) 

1 Input Parameters: 𝑃𝑜𝑝𝑠𝑖𝑧𝑒, 𝑃𝐶 , 𝑃𝐿𝐶 , coefficients θ and φ 

2 Set 𝑈𝑃 ← ∞, 𝐼𝑡 ← 1 

3 Generate an initial random population 𝑃𝑂𝑃𝐼𝑡  
4 For each chromosome 𝐶𝐻 ∈ 𝑃𝑂𝑃𝐼𝑡  
5  If (𝐶𝐻 is repetitive) 

6   Use cache table to achieve the fitness value 
7  Else 

8   Decode the 𝐶𝐻, calculate the related fitness value and update the cache table 
9   Update the 𝑈𝑃 based on fitness value of 𝐶𝐻 
10  End if 

11 While (termination criteria is not satisfied) do 

12  Choose two parents from 𝑃𝑂𝑃𝐼𝑡  using Tournament Selection 

13  Apply self-adapted crossover to generate offsprings 

14  Evaluate the fitness values of offsprings by FECM 

15  Apply self-adapted local search to generate offsprings with probability 𝑃𝐿𝑆 

16  Evaluate the fitness values of offsprings by FECM 

17  Rank the individuals of the current population and determine new population 

18  If (exist some individuals with fitness value 𝑈𝑃) 

19   Replace these repetitive individuals with some randomly generated individuals   

20  End if 

21  𝐼𝑡 ← 𝐼𝑡 + 1 

22 End while 

23 Return The best individual in the last population // for TD-CITRM-ST  

24 Send The best ten individuals of the last population as sorted list ℬ to the next phase 

// for TD-CITRM-DT 

25 Run Algorithm 2 and find the lowest-cost sequence that fulfills the risk threshold in list ℬ →(𝑖, 𝑆𝑖) 
26 For n: 1 to 𝑖 
27  Run arc selection procedure for 𝑆𝑛 using Algorithm 3 to satisfy the risk threshold 

28 End for 

29 Compare the achieved solutions and return the best solution for the problem 
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Solving stochastic TD-CITRM-ST by proposed bi-level optimization approach may be time-consuming in some 

cases. Accordingly, we modified the Route-first-Path-second approximation method (RPAM) proposed by Huang 
et al. (2017). In this method, first, we solve the TD-CITRM-DT with expected traffic condition. Afterward, a list of 
best-found solutions (provided by SCGA or FRDP) goes through arc selection procedure same as Section 5.1 to give 
the best-obtained solution. 

 

6. Numerical experiments 

We first provide the applicability of TD-CITRM-ST by studying a real-life transportation case. Then, the 
performance of the proposed models and solution algorithms are evaluated using generated instances.  

 

6.1   Real-life transportation case  

Isfahan is located in central part of Iran and is one of the most populated cities of the country. This metropolis 
plays a significant role in terms of tourist attractions and industrial development. In this study, we utilized the data 
from a real-world bank in Isfahan metropolis. In this example, the currency banknotes should be distributed from 
the central branch, which is located in Azadi square to automated teller machines (ATM) dispersed in the city.  

The distribution operation starts at 8:00 AM and each route should be finished before 10:00 AM. Moreover, the 
risk threshold is 𝜌 = 2. We intend to design the routing scheme for the transportation network with 20 nodes 
(including one depot and 19 ATMs) using two vehicles. The waiting time at each demand node is 4 minutes on 
average. Each employed ATM has four cash cassettes in which the capacity of each cassette is two thousand 
banknotes. Generally, the cassettes are filled by banknotes with values of 5,000 and 10,000 Toman (the currency 
of Iran). Therefore, each filled ATM contains 40-80 million Toman.  Accordingly, in this case, the demand of each 
point is assigned within the ranges [30; 80] million Toman. Note that in real-life, the demands are known, and the 
related operators should determine their demands by an available electronic system in advance. 

The weight of each employed banknote is 1.3 gram and the load capacity of the vehicle for both cargo and CIT 
personnel is approximately 6,000 kg. Thus, the maximum vehicle’s capacity is set to 400K banknotes. It equals to 
2-4 billion Toman. Nonetheless, due to some considerations, the maximum amount that a vehicle can carry is 
limited to 600 million Toman. To determine the traveling risk, we applied the statistics on the robbery occurrence 
to categorize the districts of Isfahan. Figure 5 illustrates the location of 15 geographically dispersed districts in 
Isfahan. The districts are colored based on the risk of robbery occurrence. The probability of a robbery happening on the links is estimated based on this categorization and using polls of region’s experts about the road conditions. 

The area is classified into three traffic zones (including light, medium, and heavy) based on their traffic patterns 
in Figure 6. The classification is based on the transportation statistics in Isfahan metropolis. In Figure 6, the zones 
with light traffic zones are distinguished by green color, those related to medium traffic are represented with pink 
color, and the rest which is placed in the center of the region is for heavy traffic zones.  
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Figure 5. Districts of Isfahan and risk of robbery 

occurrence in each district 
Figure 6. Traffic zones with three traffic patterns 

 
Two scenarios 𝑆(1), 𝑆(2), each with different traffic speed are explicitly taken into account. The corresponding 

probabilities are 60%, 40% respectively, where 𝑆(2) has a higher traffic load with a less associated probability. 

Figure 7 shows the speed patterns for each traffic zone and for each scenario. Figure 8(a) illustrates the locations 

of depot and demand nodes in the underlying transportation network. 

By solving the TD-CITRM-ST for the real transportation case, two routes are obtained to deliver the banknotes 

to all demand nodes. Figure 8 (b) represents the fleet of vehicles on each route. In this figure, if the selected link in 

the first and second scenario was different, the second one is depicted by dash lines. In Figure 8, 𝒪ℬ𝒿 expresses the 

objective value. Moreover, in this figure, the completion time and cumulative risk for each route are reported. 

 
 

          (a)Speed changes in 𝑆(1)               (b) Speed changes in 𝑆(2) 

Figure 7. (a) Speed changes at different time intervals (TI) in tree zones; zone#1: heavy traffic, zone#2: 

medium traffic, zone#3: light traffic. 

6.1.1 Results and discussion on the real case 

Assume that transportation from node 𝑖 to node 𝑗 by link 𝑚 in the first scenario and by link 𝑚′ in the second 

scenario is represented by 𝑖 𝑚,𝑚′  →  𝑗 . In the studied model, the cumulative risk that each vehicle may incur in its 
operations is controlled by a threshold 𝜌′. By this, the obtained routes are route 1, 

(1
1,1 → 5

1,1 → 7
1,1 → 18

1,2 → 19
1,1 → 9

1,1 → 11
1,1 → 12

1,1 → 10
1,1 → 4

1,1 → 2
1,1 → 1) and route 2, (1

1,1 → 13
1,1 → 15

1,1 → 14
1,1 → 16

1,1 → 20
1,1 → 17

1,2 → 8
1,2 → 6

1,1 → 3
1,1 → 1) with the 

cumulative risks of 1.5433 and 0.8051, respectively. Now we change the threshold value to 0.75𝜌′. Clearly, 
decreasing the risk level may eventuate a different optimum solution with higher objective value. As indicated in 
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Figure 8 (c), in this case, two links in the first route are replaced by their parallel link, which caused to satisfy the 

defined threshold value. Therefore, the two changes that occur in the resulting route is 19
1,1 →  9 and 9

1,2 → 11 that bring 
a slight increase in the completion time of route 1. Meanwhile, ignoring the parallel links and using simple graph 
network (including shortest links between each pair of nodes) lead to structural changes in the vehicle-demand 
node assignments (See Figure 8 (d)). In this case, the resulting routes are route 1, 
(1→5→7→19→9→11→12→10→4→2→1) and route 2, (1→13→15→14→16→20→17→18→8→6→3→1). The 

corresponding objective function is 3.3848. More specifically, we observe 
(3.3848−3.2352)3.2352 × 100 ≃ 4.62% saving in 

the sum of completion times by preserving non-dominated parallel links in the solution space with multigraph 
representation.  

  
(a). Depot and demand nodes locations for the transportation case (b). Routing scheme for the transportation case in multigraph 

  
(c). Routing scheme for the transportation case with 0.75𝜌′in multigraph (d). Routing scheme for the transportation case with 0.75𝜌′in simple graph 

Figure 8. The locations of nodes in the transportation case and the resulting routing scheme 
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As discussed earlier, in the proposed models the actual travel time on each transportation link depends on 

starting time at its predecessor node. All previous experiments are conducted based on the assumption that the 

vehicles leave the depot and start their delivering operation at 8:00 AM. Here, we investigate the routing 

completion time and the cumulative travel risk by starting time for the 8:00 AM to 10:00 AM at fifteen minutes 

intervals. In order to achieve feasible solutions, 𝛿 is set to 4 hours. Figure 9 shows the objective function of the 

problem and travel risk of each route in different starting times. The figure indicates that if the vehicles start later 

than 8:00 AM, they are stuck in traffic, which increases the risk of exposure. This situation is getting worse as we 

close to 9:00 AM. Afterward, the traffic condition is gradually getting out of morning peak. Nevertheless, delivering 

the cash to demand points and finishing the operation as soon as possible is more desirable for financial 

organizations like banks. Because the lack of sufficient inventory of banknotes may potentially cause inconvenience 

to users. 

 
Figure 9. Analyzing the impact of starting time on the objective function and risk of traveling 

 
Figure 10 illustrates the relation between the risk threshold 𝜌′ and the total completion time of constructed 

routes in the real case study. In this case, the problem is tested by multiplying 𝜌′ by different values. The sum of 
the cumulative risks for two vehicles’ routes is presented by the bars, while the dashed line shows the objective 
function of the problem. The graph reveals the trade-off between the total travel time and transportation risk. In 
short, decreasing the risk threshold increases the total travel time, as expected. 

It is worth mentioning that although the vulnerability factor is taken constant among the links in the case 
study, the probability of robbery occurrence is different for the links according to their features. Thus, by 
decreasing the risk threshold 𝜌′, the model is forced to choose the best group of links that can respect the 
determined threshold. In this case, as expected, the objective function is increased since the model strives to 
handle a tighter risk constraint, which is then not achievable with employing less-time consuming arcs but 
instead with using the links with less probability of robbery occurrence. In addition, regarding the amount of 
cash carried along a route, a vehicle may spend more time on a route but with less exposure of the transported 
goods to robbery due to putting the customers with higher demands in an earlier position of a route. More 
specifically, in some cases, this prioritization may increase the completion time of a route but can meet a tighter 
risk limit. 
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Figure 10. The relation between total risk levels and total completion times for different risk threshold 

 

6.2   Algorithms compared 

The existing datasets in the literature are not practical for the TD-CITRM-DT and TD-CITRM-ST due to several 
incorporated elements such as traffic congestion, multigraph network, route duration constraint etc. Therefore, 
we used the procedure of Appendix B to generate three sets of instances with variability in time intervals, demands, 
and service time for our problems. In what follows, the generated samples are named TD-CITRM_N_K where N and 
K denote the number of nodes (including depot) and the number of available homogeneous vehicles with capacity 
500, respectively. The algorithms were implemented in MATLAB 2015a software and all experiments have been 
performed on a device with 6 GB RAM and an Intel core i5-3337U. 1.8GHz processor. 

All the results and analysis in the main context of the paper are done by dataset 1 and detailed results for the 
instance of dataset 2 & 3 are provided in Appendix C. Table 2 demonstrates the obtained solutions of the DP (exact 
method) and FRDP heuristic. The objective functions and computation times (in second) for termination of DP are 
presented in Table 2 for both deterministic and stochastic variants of the problem. In this table, the TD-CITRM-ST 
is solved by RPAM strategy.  

We implement the FRDP on the problems with five different restriction settings. Then, for each setting, the FRDP is executed ten times. The column “Best objective” shows the best-found solution among ten executions. Moreover, columns “Avg-time” and “Avg-GAP” give the average computation times and the average of gaps 

between the solutions returned by each run and the best-obtained solution among all proposed methods. The gap 

indicates the quality of solution based on the formulation  𝐺𝐴𝑃 = (Found objective value −The best objective value The best objective value ). If the DP method cannot find the optimum solution for an instance, the 

corresponding column is marked with (−). Moreover, in some cases, the restriction procedure may yield the FRDP 

not to find any feasible solution. Thus, the column (𝐴𝑐𝑐 − 𝑆𝑜𝑙) shows the number of acceptable solutions found by 

the algorithm among ten executions.  

Referring  to the results of Table 2, the FRDP with 𝐻̅ = 10 is unable to solve the examples with more than nine 
customers because this size of restriction is not sufficient to keep any feasible solution in the prepared list. This 
insufficiency also occurred in 𝐻̅ = 50 for some cases. As a rule, by increasing the restriction size of FRDP, the 
algorithm consumes more computation times and reaches better solutions. 

Table 3 reports the results of running the examples by HSCGA and simple GA-LSFSN. In the GAs, the population 
size, maximum iteration, crossover percentage, and local search probability are set to 100, 200, 0.60, and 0.15, 
respectively. Again, the TD-CITRM-ST is solved by RPAM strategy. The best-achieved objective value among 10 
runs are presented in column “Best objective”. The “Avg-time” and “Avg-GAP” represent the average of 
computation times and the average of gaps, respectively. Column “cache” indicates the average percentage of cache 
usage in the HSCGA, while the “𝑒𝑣𝑎𝑙” represents the average number of evaluated fitness functions during the 
search. Table 3 confirms that HSCGA remarkably performs better than simple GA- LSFSN. The HSCGA provides 
31% average savings by exerting cache table instead of recalculations. The results support that both HSCGA and 
FRDP are efficient methods for solving the problems.  
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Table 2.  Performance of FRDP compared to the DP exact method for different examples of dataset 1 
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T
D
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R
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_5

_1
 

82.43 1.55 

𝐻̅=10 82.43 10 1.41 0   𝐻̅=10 72.72 10 1.51 0 𝐻̅=50 82.43 10 1.41 0   𝐻̅=50 72.72 10 1.60 0 𝐻̅=500 82.43 10 1.43 0 72.72 1.74 𝐻̅=500 72.72 10 1.65 0 𝐻̅=1500 82.43 10 1.43 0   𝐻̅=1500 72.72 10 1.65 0 𝐻̅=5000 82.43 10 1.44 0   𝐻̅=5000 72.72 10 1.77 0 

T
D

-C
IT

R
M

 
_7

_1
 

  𝐻̅=10 100.47 10 1.47 0   𝐻̅=10 92.60 10 1.91 0 

  𝐻̅=50 100.47 10 1.53 0   𝐻̅=50 92.60 10 2.21 0 

100.47 1.95 𝐻̅=500 100.47 10 1.81 0 92.60 2.71 𝐻̅=500 92.60 10 2.40 0 

  𝐻̅=1500 100.47 10 1.89 0   𝐻̅=1500 92.60 10 2.60 0 

  𝐻̅=5000 100.47 10 1.91 0   𝐻̅=5000 92.60 10 2.60 0 

T
D

-C
IT

R
M

 
_9

_2
 

  𝐻̅=10 122.14 10 1.81 0.102   𝐻̅=10 105.14 10 1.95 0.027 

  𝐻̅=50 121.75 10 2.03 0.098   𝐻̅=50 105.14 10 2.33 0.022 

110.83 236.27 𝐻̅=500 115.11 10 4.45 0.038 102.82 339.1 𝐻̅=500 102.82 10 4.62 0 

  𝐻̅=1500 115.11 10 8.24 0.038   𝐻̅=1500 102.82 10 8.13 0 

  𝐻̅=5000 115.11 10 16.63 0.038   𝐻̅=5000 102.82 10 18.11 0 

T
D

-C
IT

R
M

 
_1

1
_2

 

  𝐻̅=10 × × × ×   𝐻̅=10 × × × × 

  𝐻̅=50 136.29 8 2.20 0.164   𝐻̅=50 119.25 10 2.51 0.066 

__ __ 𝐻̅=500 132.02 10 7.41 0.126 __ __ 𝐻̅=500 112.96 10 8.16 0.014 

  𝐻̅=1500 128.59 10 15.33 0.101   𝐻̅=1500 112.96 10 16.1 0.009 

  𝐻̅=5000 124.78 10 41.16 0.091   𝐻̅=5000 111.85 10 42.0 0 

T
D

-C
IT

R
M

 
_1

3
_2

 

  𝐻̅=10 × × × ×   𝐻̅=10 × × × × 

  𝐻̅=50 × × × ×   𝐻̅=50 × × × × 

__ __ 𝐻̅=500 148.89 10 11.03 0.182 __ __ 𝐻̅=500 131.75 10 11.94 0.161 

  𝐻̅=1500 142.58 10 26.61 0.158   𝐻̅=1500 131.75 10 28.52 0.156 

  𝐻̅=5000 137.13 10 79.55 0.088   𝐻̅=5000 122.21 10 80.26 0.072 

T
D

-C
IT

R
M

 
_1

5
_2

 

  𝐻̅=10 × × × ×   𝐻̅=10 × × × × 

  𝐻̅=50 153.51 5 3.38 0.005   𝐻̅=50 × × × × 

__ __ 𝐻̅=500 147.62 10 16.19 0.002 __ __ 𝐻̅=500 136.72 10 18.20 0.194 

  𝐻̅=1500 147.34 10 43.37 0.0004   𝐻̅=1500 136.72 10 44.82 0.172 

  𝐻̅=5000 147.28 10 125.0 0.0004   𝐻̅=5000 136.72 10 130.1 0.172 

T
D

-C
IT

R
M

 
_1

7
_3

 

  𝐻̅=10 × × × ×   𝐻̅=10 × × × × 

  𝐻̅=50 136.33 10 8.51 0.012   𝐻̅=50 134.59 10 14.04 0.071 

__ __ 𝐻̅=500 136.33 10 34.72 0.010 __ __ 𝐻̅=500 125.59 10 39.30 0 

  𝐻̅=1500 136.18 10 116.91 0.008   𝐻̅=1500 125.59 10 121.41 0 

  𝐻̅=5000 134.98 10 244.60 0   𝐻̅=5000 125.59 10 250.01 0 

T
D

-C
IT

R
M

 
_1

9
_3

 

  𝐻̅=10 × × × ×   𝐻̅=10 × × × × 

  𝐻̅=50 149.04 6 18.49 0.069   𝐻̅=50 134.52 8 25.19 0.005 

__ __ 𝐻̅=500 146.48 10 58.72 0.031 __ __ 𝐻̅=500 130.52 10 74.54 0.018 

  𝐻̅=1500 146.48 10 132.72 0.031   𝐻̅=1500 130.52 10 146.52 0.015 

  𝐻̅=5000 145.09 10 388.90 0.021   𝐻̅=5000 129.52 10 404.59 0.007 

T
D

-C
IT

R
M

 
_2

1
_3

 

  𝐻̅=10 × × × ×   𝐻̅=10 × × × × 

  𝐻̅=50 155.95 10 69.17 0.066   𝐻̅=50 139.18 6 87.16 0.037 

__ __ 𝐻̅=500 152.99 10 105.08 0.046 __ __ 𝐻̅=500 136.65 10 168.46 0.018 

  𝐻̅=1500 149.92 10 202.71 0.024   𝐻̅=1500 135.42 10 255.86 0.011 

  𝐻̅=5000 146.22 10 579.15 0.018   𝐻̅=5000 135.42 10 588.12 0.009 

T
D

-C
IT

R
M

 
_2

3
_3

 

  𝐻̅=10 × × × ×   𝐻̅=10 × × × × 

  𝐻̅=50 164.29 5 118.3 0.095   𝐻̅=50 144.71 4 268.12 0.041 

__ __ 𝐻̅=500 160.18 10 244.7 0.067 __ __ 𝐻̅=500 141.57 10 604.81 0.022 

  𝐻̅=1500 160.18 10 409.3 0.067   𝐻̅=1500 141.57 10 1009.4 0.018 

  𝐻̅=5000 158.63 10 1098.6 0.057   𝐻̅=5000 140.83 10 1596.2 0.013 

T
D

-C
IT

R
M

 
_2

5
_3

 

  𝐻̅=10 × × × ×   𝐻̅=10 × × × × 

  𝐻̅=50 × × × ×   𝐻̅=50 × × × × 

__ __ 𝐻̅=500 166.23 10 619.6 0.067 __ __ 𝐻̅=500 148.16 10 1195.3 0.035 

  𝐻̅=1500 166.23 10 882.1 0.067   𝐻̅=1500 148.16 10 1926.5 0.035 

  𝐻̅=5000 163.17 10 1980.9 0.048   𝐻̅=5000 144.39 10 2446.7 0.026 

Bold item: best-obtained solution 
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Table 3.  Results obtained solving different examples of dataset 1 by HSCGA and simple GA-LSFSN 

 The deterministic model (TD-CITRM-DT) 

Instance 

HSCGA Simple GA- LSFSN 

Best objective 
Avg-time 

(sec) 
Avg-cache 𝑒𝑣𝑎𝑙 Avg-GAP Best objective 

Avg-time 

(sec) 
Avg-GAP 

TD-CITRM _5_1 82.43 2.68 0.99 24.0 0 82.43 4.04 0 

TD-CITRM _7_1 100.47 3.23 0.95 710.0 0 100.47 9.53 0 

TD-CITRM _9_2 110.83 7.91 0.66 6843.7 0 110.83 11.67 0.022 

TD-CITRM _11_2 118.06 8.86 0.57 8942.0 0.017 118.06 13.36 0.029 

TD-CITRM _13_2 125.96 9.87 0.54 9762.6 0.022 128.32 15.07 0.057 

TD-CITRM _15_2 147.28 13.55 0.50 9397.9 0.015 150.01 18.04 0.119 

TD-CITRM _17_3 136.18 19.87 0.48 9278.1 0.028 148.59 28.45 0.092 

TD-CITRM _19_3 142.06 48.63 0.45 11134.7 0.054 150.01 57.07 0.122 

TD-CITRM _21_3 146.22 183.9 0.40 11027.4 0.043 152.99 202.6 0.158 

TD-CITRM _23_3 150.00 795.1 0.38 12016.4 0.054 150.00 869.2 0.232 

TD-CITRM _25_3 155.71 1118.6 0.31 13108.6 0.062 160.18 1264.1 0.344 

 The two-stage stochastic model (TD-CITRM-ST) 

Instance 

HSCGA (RPAM) Simple GA- LSFSN (RPAM) 

Best objective 
Avg-time 

(sec) 
Avg-cache 𝑒𝑣𝑎𝑙 Avg-GAP Best objective 

Avg-time 

(sec) 
Avg-GAP 

TD-CITRM _5_1 72.72 2.74 0.99 24.0 0 72.72 8.52 0 

TD-CITRM _7_1 92.60 3.41 0.95 701.6 0 92.60 10.02 0 

TD-CITRM _9_2 102.82 8.14 0.66 6370.4 0 102.82 14.02 0.026 

TD-CITRM _11_2 111.85 9.96 0.62 7348.6 0.022 114.06 16.78 0.031 

TD-CITRM _13_2 122.21 10.28 0.52 9551.6 0.059 125.16 19.77 0.089 

TD-CITRM _15_2 116.59 16.40 0.49 10026.1 0.035 143.06 23.96 0.129 

TD-CITRM _17_3 127.41 26.94 0.46 10845.6 0.064 164.18 35.77 0.175 

TD-CITRM _19_3 128.52 94.36 0.43 11004.7 0.082 140.18 112.2 0.159 

TD-CITRM _21_3 134.17 382.46 0.38 12012.1 0.074 141.65 404.19 0.144 

TD-CITRM _23_3 140.69 1015.9 0.34 12720.1 0.078 149.12 1086.9 0.220 

TD-CITRM _25_3 143.19 1799.1 0.30 13514.0 0.088 153.16 1906.1 0.381 

         

Bold item: best-obtained solution 

 
Now, we evaluate the performance of RPAM strategy in comparison to bi-level optimization technique. To do 

this, the samples of dataset 1 are solved by FRDP and HSCGA. The results are reported in Table 4. In Table 4, the column “Diff” indicates the improvement of objective value in percentage induced by bi-level optimization 
technique. As expected,  the computation times are increased significantly such that  the examples with 23 and 25 
nodes cannot be solved by this approach in reasonable times. However, the quality of stochastic solutions is on 
average 6.66% better than RPAM. 

 
Table 4.  Performance of bi-level optimization strategy versus RPAM for the examples of dataset 1 

Instance 

FRDP (Bi-level optimization 

method, 𝐻=500)     

HSCGA (Bi-level 

optimization method)    Best-found solution 

with RPAM strategy 
Diff. (%) 

Best objective 
Avg-time 

(sec) 
Best objective 

Avg-time 

(sec) 

TD-CITRM _5_1 69.73 1.94 69.73 3.512 72.72 4.28 

TD-CITRM _7_1 89.14 5.613 89.14 7.051 92.60 3.88 

TD-CITRM _9_2 96.42 119.87 96.42 179.18 102.82 6.63 

TD-CITRM _11_2 104.30 233.71 101.96 255.16 111.85 9.69 

TD-CITRM _13_2 106.73 564.36 104.88 664.70 122.21 16.52 

TD-CITRM _15_2 115.49 804.53 110.13 980.62 116.59 5.86 

TD-CITRM _17_3 115.82 1235.1 117.35 1404.6 125.59 8.43 

TD-CITRM _19_3 127.48 3639.5 125.71 4112.7 128.52 2.23 

TD-CITRM _21_3 130.96 12382.6 130.96 13074.0 134.17 2.45 

TD-CITRM _23_3 × × × × 140.69 × 

TD-CITRM _25_3 × × × × 143.19 × 

Bold item: best-obtained solution 
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6.2.1 Evaluating the performance of FRDP 

In this section, we evaluate the performance of the proposed FRDP in comparison to the RDP of Gromicho et 
al. (2012) and the RDP-DR of Tikani and Setak (2019). For this purpose, instances of dataset 1 are solved by the 
introduced methods with different restriction sizes as shown in Table 5.  

 
Table 5. A comparison between the proposed FRDP with the classical RDP and RDP-DR for the examples of dataset 1 
(OV: objective value, CT: computational time (in seconds), Inf: infeasible) 
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TD-CITRM 
_5_1 

OV 82.43 82.43 82.43 82.43 82.43 82.43 82.43 82.43 82.43 82.43 82.43 82.43 

CT 1.54 1.48 1.41 1.66 1.50 1.43 1.69 1.54 1.43 1.74 1.58 1.44 

Gap 0 0 0 0 0 0 0 0 0 0 0 0 

TD-CITRM 
_7_1 

OV 100.47 100.47 100.47 100.47 100.47 100.47 100.47 100.47 100.47 100.47 100.47 100.47 

CT 1.72 1.66 1.53 2.09 2.07 1.81 2.14 2.10 1.89 2.22 2.13 1.91 

Gap 0 0 0 0 0 0 0 0 0 0 0 0 

TD-CITRM 
_9_2 

OV 128.61 124.41 121.75 124.41 121.75 115.11 121.75 115.11 115.11 115.11 115.11 115.11 

CT 2.13 2.11 2.03 5.36 4.92 4.45 11.06 11.44 9.24 22.01 18.82 16.63 

Gap 0.160 0.122 0.098 0.122 0.098 0.038 0.098 0.038 0.038 0.076 0.038 0.038 

TD-CITRM 
_11_2 

OV Inf Inf 136.29 135.86 136.29 132.02 139.56 134.92 130.05 132.71 130.04 128.59 

CT × × 2.20 8.31 7.67 7.41 20.05 19.81 15.33 48.70 46.43 41.16 

Gap × × 0.152 0.150 0.152 0.118 0.182 0.142 0.101 0.124 0.101 0.089 

TD-CITRM 
_13_2 

OV Inf Inf Inf 154.7 154.7 148.89 154.7 148.89 142.58 148.89 148.89 137.13 

CT × × × 18.64 16.87 11.03 28.03 25.39 26.61 85.53 76.01 79.55 

Gap × × × 0.228 0.228 0.182 0.228 0.182 0.132 0.182 0.182 0.088 

TD-CITRM 
_15_2 

OV Inf Inf 153.51 153.51 153.51 147.62 147.62 153.51 147.34 147.62 147.62 147.28 

CT × × 3.38 15.21 13.18 16.19 41.16 33.46 43.37 118.54 122.18 125.0 

Gap × × 0.042 0.042 0.042 0.002 0.002 0.042 0.0004 0.002 0.002 0 

TD-CITRM 
_17_3 

OV Inf 141.02 136.33 141.02 141.02 136.33 141.02 136.33 136.18 141.02 136.33 134.98 

CT × 13.80 8.51 60.17 47.41 34.72 169.8 140.21 116.91 360.3 310.31 244.60 

Gap × 0.044 0.01 0.044 0.044 0.01 0.044 0.01 0.008 0.044 0.01 0 

TD-CITRM 
_19_3 

OV 152.17 149.04 149.04 146.48 146.48 146.48 146.48 146.48 146.48 146.32 146.32 145.09 

CT 29.30 27.79 18.49 77.04 85.08 58.71 182.33 173.06 132.72 567.11 538.79 388.90 

Gap 0.071 0.049 0.049 0.031 0.031 0.031 0.031 0.031 0.031 0.030 0.030 0.021 

TD-CITRM 
_21_3 

OV Inf 161.2 155.95 164.9 162.1 152.99 162.1 152.99 149.92 162.1 149.92 146.22 

CT × 81.90 69.17 149.5 130.7 105.08 252.6 210.3 202.71 693.2 661.0 579.15 

Gap × 0.102 0.066 0.127 0.108 0.046 0.108 0.046 0.025 0.108 0.025 0 

TD-CITRM 
_23_3 

OV Inf Inf Inf Inf 169.3 160.18 Inf 169.3 160.18 169.3 164.29 158.63 

CT × × × × 286.5 244.7 × 512.7 409.3 1,751.8 1,410.6 1,098.6 

Gap × × × × 0.128 0.067 × 0.128 0.067 0.128 0.095 0.057 

TD-CITRM 
_25_3 

OV Inf Inf Inf Inf 174.9 166.23 Inf 170.1 166.23 174.9 170.1 163.17 

CT × × × × 658.1 619.6 × 973.4 882.1 3,029.1 2,417.1 1,925.9 

Gap × × × × 0.123 0.067 × 0.092 0.067 0.123 0.092 0.092 

Average 
CT 8.65* 21.45* 13.34* 37.55* 114.0 100.46 78.76* 191.21 167.41 607.29 509.39 409.34 

Gap 0.057* 0.052* 0.056* 0.082* 0.086 0.051 0.077* 0.064 0.042 0.074 0.052 0.035 

The sign (*) in the two last rows shows that the reported average values are calculated based on feasible runs 

 
 

Based on the results obtained in Table 5, we can observe that FRDP provides competitive results in terms of 
solution times. Moreover, the obtained objective values are not much far from the ones provided in other published 
studies.  
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6.3   The advantage of multigraph representation 

The proposed CIT transportation models allowed employing parallel links for designing a safe and efficient 
routing scheme. In addition to traffic congestion, the risk of traveling affects the link selection in the routing plan. 
Let us evaluate the achievement of using multigraph via simple graph by the criteria Improvement(%) = | 𝒪ℬ𝒿𝑀−𝒪ℬ𝒿𝑆 |𝒪ℬ𝒿𝑆 × 100% where 𝒪ℬ𝒿𝑀 and 𝒪ℬ𝒿𝑆 represent the objective function of the problem in the multigraph and 

simple graph, respectively. Here, we investigate the significance of considering parallel arcs between demand 
nodes in different size instances of dataset 1. Similar to Tikani and Setak (2019), we change the multigraph network 
to simple network to obtain the corresponding  𝒪ℬ𝒿𝑆 by randomly selecting one link between each pair of nodes. 
The results of comparing the objective functions of multigraph versus simple graph representations are exhibited 
in Table 6. 

 
Table 6. Comparing the objective function of multigraph and simple graph in TD-CITRM-ST  

Instance Multigraph Simple graph Improvement % 

TD-CITRPM_7_1 100.47 108.28 7.21 
TD-CITRPM_11_2 118.06 133.43 11.5 
TD-CITRPM_15_2 147.28 164.00 10.2 
TD-CITRPM_19_3 142.06 156.28 9.09 
TD-CITRPM_23_3 150.00 171.23 12.3 

Average   10.06 

 
From Tables 6, it comes out that multigraph network can have substantial effects on the quality of solutions in 

the proposed problem. In these examples, using a multigraph helps to decrease the objective function 10.06% in 
average. 
 

6.4   Value of the stochastic TD-CITRM-ST 

To examine the potential benefit of solving the stochastic TD-CITRM-ST over solving the deterministic TD-
CITRM-DT, we evaluated two well-known concepts named EVPI and VSS (Birge and Louveaux 2011). In what 
follows, we define the wait-and-see value and then related formulations of EVPI and VSS are presented. Consider 𝜔 as a random variable whose realizations relate to different scenarios. Let 𝒪ℬ𝒿∗ defined as the optimal value of 
the stochastic programming, and 𝒪ℬ𝒿̅̅ ̅̅ ̅̅ (𝜔) stands for the optimal value of the deterministic version of the problem 
for one specific scenario 𝜔 ∈ Ω. 

Wait-and-see (WS):  this value represents the expected value of the objective function for each scenario 𝜔 ∈Ω, which is computed by 𝑊𝑆 = 𝐸𝜔(𝒪ℬ𝒿̅̅ ̅̅ ̅̅ (𝜔)). 
Expected Value of Perfect Information (EVPI): this concept denotes the maximum amount that should be paid 

by decision makers in return of getting information about the future. The EVPI is obtained by 𝐸𝑉𝑃𝐼 = 𝑊𝑆 − 𝒪ℬ𝒿∗. 
Expected of Expected Value (EEV): To achieve EEV-Solution first the stochastic parameters are replaced by 

their corresponding expected values. Then the deterministic model is solved and evaluated for all scenarios. If 𝑍̅(𝜔̅) presents the optimal decision in the first stage of the deterministic model, the EEV becomes 𝐸𝐸𝑉 =𝐸𝜔(𝒪ℬ𝒿(𝑍̅(𝜔̅), 𝜔)). 
Value of the Stochastic Solution (VSS): The VSS measures that whether modeling and computational solving 

efforts on stochastic programming is worthwhile. It equals the difference between EEV and the optimal value of 
the stochastic programming (𝑉𝑆𝑆 = 𝒪ℬ𝒿∗ − 𝐸𝐸𝑉).  The lower value of VSS implies that applying the expected 
values of random variables as an approximation for uncertain input parameters is a suitable option. Conversely, 
the higher value shows the advantages of employing stochastic programming method (for complete information 
we refer the reader to Birge and Louveaux, 2011). 

We compute the discussed indexes for the TD-CITRM-ST using dataset 1 in Table 7. It contains the relative 𝐸𝑉𝑃𝐼 and 𝑉𝑆𝑆 in percentage. It can be seen from Table 7 that in the studied problems, the range of relative EVPI is 
from 0.94% to 3.61%, while the range of relative VSS is from 2.23% to 8.84%. Moreover, the average relative 
EVPI=2.40% is less than the average relative VSS=5.20%. The results imply that the knowledge about the traffic 
speeds is relatively important; however, having such information in practice is very difficult. The information of 



28 

 

Table 7 about VSS indicates that it is certainly worth to put extra effort in modeling and solving the stochastic 
problem. 

 
 

Table 7. Values of VSS and EVPI for TD-CITRM-ST 

Instance 𝒪ℬ𝒿∗ WS Relative EVPI (%) EEV Relative VSS (%) 

TD-CITRPM_7_1 89.14 88.30 0.94 92.60 3.88 
TD-CITRPM_11_2 101.96 99.42 2.49 111.85 8.84 
TD-CITRPM_15_2 110.13 107.28 2.58 116.59 5.86 
TD-CITRPM_19_3 125.71 121.17 3.61 128.52 2.23 

Average   2.40  5.20 

 

6.5   Managerial insights 

This paper provides important suggestions for practitioners in CIT companies. In this sector, the operations 
are perpetually exposed to the risk of robberies. Herein, we studied new models for cash transportation to consider 
more actual factors in inter-city roads. The following managerial insights can be extracted from this study: 
 

i. Our results indicate that multigraph representation certainly improves the routing plans in CIT sector. The 
reason behind this fact is that multigraph setting keeps all non-dominated links between nodes.  In overall, 
when the links have several attributes (e.g., risk, time), multigraphs should be employed to consider trade-
offs between the defined attributes. In this regard, we observed the average savings in the objectives ranged 
from 4% to 12% in the real case study and other generated instances. 

ii. Discarding the traffic congestion patterns leads to imprecisions in routing decisions of CIT companies. High 
traffic condition not only increases the total operation time but also affects the risk of exposure. In particular, 
time-varying traffic congestion influences both appropriate link between nodes and starting time of carrier 
operation. 

iii. From a CIT company’s perspective, it is favorable to provide balanced carrier operations in which the routing 
plans are accomplished in a certain time. On the other hand, the economic organizations generally tend to 
accelerate the cash carrier operation to gain higher customer service level. To this end, the proposed models 
guarantee that all routes are completed before a given time. This trait not only plays a significant role in CIT 
operations but also helps to provide a sufficient inventory of banknotes for the customers at the right time. 

iv. Planning CIT routes without taking the vehicles’ speed uncertainty into account may result in poor quality 
solutions. Since the traffic conditions are not necessarily known in advance, incorporating variability in the 
speed patterns yields to achieve robust solutions. The comparisons between the stochastic solutions and 
deterministic counterpart justified the use of sophisticated modeling approaches and extra computational 
challenges. 

 

7. Conclusions  

In this paper, we have formulated a risk-constrained time-dependent VRP for the transportation of physical 
currency. This study explicitly strives to fill the gap in the relevant literature by:  

(i) employing multigraph representation in routing plans of CIT sector, 
(ii) investigating the problem under both deterministic and stochastic time-varying traffic congestion. 

Ignoring the concept of traffic congestions in CIT transportation may bring imprecise decisions in such 
problems. 

(iii) introducing a new risk index that captures the existence of parallel links with different traffic 
congestions, 

(iv) designing a more balanced routing scheme by imposing maximum duration time together with a risk 
threshold for each constructed route. 

Multigraph networks keep all efficient parallel links between each pair of nodes. Here, the parallel links are 
distinguished by two attributes including time-varying travel time (which adheres FIFO property) and traveling 
risk. Obviously, both features affect the routing plan. For example, due to the traffic congestion passing an 
alternative longer link can be faster and can save time. In another case, the model may choose a safer link to 
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mitigate the total transportation risk. The computational comparisons showed that multigraph representation 
could improve the objective value by preserving non-dominated parallel links in the solution space. In overall, 
considering flexibility in selecting the links is a significant factor in time-critical logistics in city configurations. 

Presenting efficient solution methods for the proposed models is extremely challenging. Because the 
optimization process not only determines the delivery sequence but also should give the candidate links among 
them. In this respect, we provided efficient methods including dynamic programming (exact method), a flexible 
restricted dynamic programming (heuristic based method), and hybrid self-adaptive caching genetic algorithm 
(metaheuristic method) to solve the problem. The LSFSN algorithm is embedded in each algorithm to explore the 
links and choose proper ones. The LSFSN benefits from dominance mechanism and feasibility rules to decrease the 
cardinality in searching. Afterward, the methods are adapted to handle the uncertain parameters by two strategies: 
bi-level optimization process and Route-Path approximation method. We analyzed the structure of solutions and 
objective values of TD -CITRM-DT and TD -CITRM-ST by the mentioned algorithms. The observations implied that 
the stochastic solutions are better than the deterministic version but solving two-stage stochastic program needs 
extra computational efforts. Finally, to show the applicability of the model, the problem was implemented on a CIT 
company in Isfahan metropolis as a case study. 

Interesting directions for future researches are investigating the trade-off between travel time and risk of 
transportation using multi-objective optimization methods; inspired by Hoogeboom, and Dullaert (2019), 
incorporating the time windows with prohibition of waiting times; considering multi-period planning or 
precedence constraints in the models and presenting more efficient algorithms to solve the stochastic version of 
the problem. 

 
 

Appendix A.  List of notations 

Table A.1. Notation and definitions 

Notation  Description  
First appeared 
section 𝑁 Set of demand nodes 𝑁 = {1,… , 𝑛} 3 𝑃 Depot node and its copy 𝑃 = {0 ∪ 𝑛 + 1} 3 𝑖, 𝑗 Indices to nodes 𝑖, 𝑗 ∈  (𝑁 ∪  𝑃) 3 𝐾 Set of vehicles indexed by 𝑘 ∈  {1, . . . , |𝐾|} 3 𝑀𝑖𝑗  Set of available traffic links from node 𝑖 to node 𝑗, 𝑖 ≠  𝑗 indexed by 𝑚 ∈{1,… , |𝑀𝑖𝑗|} 3 𝐷𝑖  The demand at location 𝑖  3 𝑠𝑖  Service time for serving demand node  𝑖 3 𝑄 Capacity of a vehicle 3 𝜌 

Maximum allowable cumulative risk for each vehicle (risk threshold 
value) 

3 𝛿 Maximum allowable expected en-route time for each vehicle 3 𝑇𝑟𝑖𝑗𝑚  
The probability (threat) of robbery happening in the 𝑚th link from node 𝑖 
to node 𝑗 per unit of time 

3 𝐻𝑚  
Set of time intervals in the 𝑚th edge between two sequential nodes 

indexed by ℎ ∈ {1, … , |𝐻𝑚|} 3.1 𝑎𝑖𝑗𝑚ℎ , 𝑏𝑖𝑗𝑚ℎ  
Coefficients for determining the travel time in the 𝑚th edge from node 𝑖 
to node 𝑗  3.1 𝑇̅𝑖𝑗𝑚ℎ  
The head points of new time intervals in the 𝑚th edge from node 𝑖 to 
node 𝑗 3.1 𝑡𝑖𝑘 Departure time of the vehicle 𝑘 from node 𝑖 3.3 𝑟𝑖𝑗𝑚𝑘  The risk of robbery occurrence on a link (𝑖, 𝑗, 𝑚) passed by the vehicle 𝑘  3.3 𝑣𝑖𝑗𝑚 Vulnerability factor for the 𝑚th edge from node 𝑖 to node 𝑗 3.3 𝐶𝑝𝑖𝑘 The remaining valuable goods at node 𝑖 for the vehicle 𝑘 3.3 𝑅𝑖𝑘 The cumulative risk at node 𝑖 for the vehicle 𝑘 3.3 𝑥𝑖𝑗𝑘  Equal to 1 if the vehicle 𝑘 goes from node 𝑖 to node 𝑗 4.2 
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𝑥𝑖𝑗𝑚ℎ𝑘  
Equal to 1 if the vehicle 𝑘 moves through the 𝑚th edge from node 𝑖 to 
node 𝑗 in the ℎth time interval 

4.2 𝐸 A large constant number 4.2 Ω Set of scenarios 𝜔 ∈ Ω  4.3 𝑦𝑖𝑚ℎ  
Equal to 1 if the 𝑚th link from node 𝑖 to its corresponding successor node 
is selected in the ℎth time interval (for LSFSN) 

5.1.3 𝑡𝑖 Departure time of the vehicle at node 𝑖 (for LSFSN) 5.1.3 𝑅𝑖  The cumulative risk at node 𝑖 (for LSFSN) 5.1.3 𝐶𝑝𝑖 The remaining valuable goods at node 𝑖 (for LSFSN) 5.1.3 

 

Appendix B.  Characteristics of test problems 

To investigate the limitations of the proposed mathematical models in relation to the problem size, we 
produced additional numerical examples in multigraph networks. To do this, three datasets with variability in time 
intervals, demands, and service time are generated where the nodes are connected to each other by multiple 
parallel links. Then, the proposed models are implemented on subsets of each generated dataset by considering 
the first N number of nodes participating in the multigraph.  

Table B.1 represents the information of each demand node on each dataset. The demands of dataset 1 are 
generated by discrete uniform distribution {𝐷𝑈(1, 10) × 10}, and for datasets 2 & 3 the assigned demand to each 
node is multiplied by 2 and 3, respectively. Length of the shorter link (with the higher congestion) between two 
nodes 𝑖 and 𝑗 is a multiple of Euclidean distance ED𝑖𝑗, while, the length of the alternative longer link is generated 

by uniform function 𝑈[1.1 × 𝐸𝐷𝑖𝑗 , 1.5 × 𝐸𝐷𝑖𝑗]. Then the procedure of Section 3.1 is employed to calculate the time-

dependent travel time between the nodes. In this regard, the links are categorized into two groups based on their 
traffic congestions. The first group represents the shorter links with the high-traffic condition while the second 
alternative links are longer than the first one but the speeds are less dependent to the changes of time intervals (it 
represents the low-traffic alternative links). The speeds of TD-CITRM-ST are assigned in the interval of [35, 75] 
and two scenarios are considered with respective probabilities of 60% and 40%. Whereas, for TD-CITRM-DT, the 
average of all traffic speeds according to their respective probabilities is considered as traffic speeds in different 
time-intervals by 𝑣𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 = (0.6 × 𝑣Scenario I) + (0.4 × 𝑣Scenario II). The details of speed patterns for three 
datasets are listed in Table B.2. Furthermore, three states of high/medium/low are considered for the robbery  risk 
per unit of time in the available links. For this purpose, the robbery risk per unit of time is set to 0.01, 0.006, and 0.002, randomly. For dataset 1, the maximum time duration and risk threshold for examples TD-CITRM _5_1 to TD-
CITRM _15_2 are set to 110 and 60, respectively. For the rest of the examples, these values are set to 150 and 90, 
respectively. For dataset 2 & 3 the aforementioned values and the capacity of vehicles are multiplied by 0.5 and 
1.5, respectively. Finally, the duration of service time for datasets 1 and 2 are set to 1, while in the dataset 3, an 
integer service time in {1, 2} was randomly assigned to each demand node. 
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Table B.1. Characteristics of demand nodes in the test problems 
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1 (depot) 100 100 0 0 0 0 0 0 
2 181 172 40 1 80 1 120 1 
3 154 31 90 1 180 1 270 1 
4 123 106 90 1 180 1 270 2 
5 23 137 80 1 160 1 240 1 
6 190 28 10 1 200 1 30 1 
7 8 71 80 1 160 1 240 2 
8 103 130 50 1 100 1 150 1 
9 62 50 60 1 120 1 180 1 

10 89 161 40 1 80 1 120 1 
11 117 91 60 1 120 1 180 1 
12 12 156 60 1 120 1 180 2 
13 88 165 30 1 60 1 90 2 
14 107 125 80 1 160 1 240 1 
15 8 74 60 1 120 1 180 1 
16 105 125 90 1 180 1 270 2 
17 118 192 30 1 60 1 90 1 
18 146 11 10 1 20 1 30 1 
19 93 13 60 1 120 1 180 1 
20 188 125 50 1 100 1 150 2 
21 87 117 10 1 20 1 30 1 
22 123 31 80 1 160 1 240 2 
23 121 189 70 1 140 1 210 1 
24 174 128 10 1 20 1 30 1 
25 197 80 30 1 60 1 90 1 

 
Table B.2. Speed pattern for the test problems 

 Time 
interval 

Scenario I Scenario II Deterministic 
Low traffic High traffic Low traffic High traffic Low traffic High traffic 

Dataset #1 

[0-3] 65 55 60 45 63 51 

[3-6] 60 45 50 40 56 43 

[6-10] 62 50 42 35 45 44 

Dataset #2 

[0-2] 66 59 61 49 64 55 

[2-4] 60 57 55 47 58 53 

[6-8] 58 54 53 44 56 50 

[8-10] 62 56 57 46 60 52 

Dataset #3 
[0-5] 72 65 67 55 70 61 

[5-10] 68 56 58 51 64 54 

 

Appendix C.  Detailed solution values for dataset 2 & 3  
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Tables C.1 and C.2 report the detailed results of HSCGA and simple GA-LSFSN on each subset of 2 and dataset 
3. In addition, the performance of the proposed DP and FRDP for these datasets are listed in Table C.3 and Table 
C.4. For each instance, the best obtained objective value is highlighted in boldface. 

 

Table C.1.  The results of solving different examples by HSCGA and simple GA-LSFSN for dataset 2 

 The deterministic model (TD-CITRM-DT) 

Instance 

HSCGA Simple GA- LSFSN 

Best objective 
Avg-time 

(sec) 
Avg-cache 𝑒𝑣𝑎𝑙 Avg-GAP Best objective 

Avg-time 

(sec) 
Avg-GAP 

TD-CITRM _5_1 75.53 4.50 0.99 25.0 0 75.53 5.92 0 

TD-CITRM _7_1 94.56 6.01 0.95 712.4 0 94.56 7.51 0 

TD-CITRM _9_2 103.37 9.49 0.64 6665.8 0 103.37 10.82 0.027 

TD-CITRM _11_2 109.24 11.72 0.55 8630.5 0.019 109.24 14.67 0.029 

TD-CITRM _13_2 120. 91 14.68 0.54 9764.8 0.023 120. 91 19.04 0.056 

TD-CITRM _15_2 129.69 21.99 0.51 9589.2 0.022 136.43 30.68 0.120 

TD-CITRM _17_3 120.72 33.74 0.47 9089.7 0.030 120.72 48.71 0.123 

TD-CITRM _19_3 123.32 62.23 0.43 10647.3 0.051 123.32 79.05 0.125 

TD-CITRM _21_3 134.14 201.81 0.40 11038.1 0.047 140.17 288.56 0.155 

TD-CITRM _23_3 136.72 849.62 0.35 11091.8 0.057 152.09 1197.03 0.243 

TD-CITRM _25_3 148.15 1309.42 0.30 12770.2 0.069 163.08 1508.41 0.313 

 The two-stage stochastic model (TD-CITRM-ST) 

Instance 

HSCGA (RPAM) Simple GA- LSFSN (RPAM) 

Best objective 
Avg-time 

(sec) 
Avg-cache 𝑒𝑣𝑎𝑙 Avg-GAP Best objective 

Avg-time 

(sec) 
Avg-GAP 

TD-CITRM _5_1 62.50 5.08 0.99 24.0 0 62.50 7.01 0 

TD-CITRM _7_1 84.47 7.27 0.95 710.1 0 84.47 9.52 0 

TD-CITRM _9_2 93.07 10.95 0.65 6783.2 0 93.07 15.2 0.033 

TD-CITRM _11_2 99.47 14.54 0.62 7560.1 0.036 99.47 18.91 0.032 

TD-CITRM _13_2 110.61 17.83 0.51 9706.5 0.061 115.93 26.20 0.077 

TD-CITRM _15_2 113.19 29. 32 0.49 10038.2 0.055 117.06 37.34 0.119 

TD-CITRM _17_3 109. 35 48.25 0.47 10040.0 0.068 114.10 56.85 0.154 

TD-CITRM _19_3 121. 11 102.62 0.44 10857.8 0.078 130.51 154.06 0.163 

TD-CITRM _21_3 119.87 418.76 0.39 11972.5 0.081 137.25 572. 59 0.172 

TD-CITRM _23_3 125.01 1346.83 0.33 11910.4 0.077 140.11 1491. 73 0.262 

TD-CITRM _25_3 135.14 1998.06 0.29 13970.1 0.089 157.23 2152.86 0.376 

 

Table C.2. The results of solving different examples by HSCGA and simple GA-LSFSN for dataset 3 

 The deterministic model (TD-CITRM-DT) 

Instance 

HSCGA Simple GA- LSFSN 

Best objective 
Avg-time 

(sec) 
Avg-cache 𝑒𝑣𝑎𝑙 Avg-GAP Best objective 

Avg-time 

(sec) 
Avg-GAP 

TD-CITRM _5_1 65.31 2.60 0.99 25.0 0 65.31 3.95 0 

TD-CITRM _7_1 83.62 2.77 0.95 712.4 0 83.62 7.51 0 

TD-CITRM _9_2 87.83 6.47 0.63 6687.4 0 87.83 10.03 0.019 

TD-CITRM _11_2 95.65 7.59 0.58 8215.3 0.018 95.65 12.82 0.030 

TD-CITRM _13_2 102.02 8.35 0.55 9509.1 0.020 104.02 15.00 0.047 

TD-CITRM _15_2 112.58 11.62 0.51 9601.8 0.018 117.23 19.85 0.091 

TD-CITRM _17_3 97.72 16.85 0.46 9703.7 0.033 106.12 24.91 0.103 

TD-CITRM _19_3 107.14 40.46 0.44 11017.2 0.046 115.80 48.60 0.116 

TD-CITRM _21_3 114.71 159.13 0.40 11764.7 0.044 132.95 184.31 0.153 

TD-CITRM _23_3 116.86 690.05 0.36 11568.8 0.057 140.12 712.62 0.226 

TD-CITRM _25_3 126.30 964.31 0.29 12543.1 0.063 159.01 1010.71 0.319 

 The two-stage stochastic model (TD-CITRM-ST) 

Instance 

HSCGA (RPAM) Simple GA- LSFSN (RPAM) 

Best objective 
Avg-time 

(sec) 
Avg-cache 𝑒𝑣𝑎𝑙 Avg-GAP Best objective 

Avg-time 

(sec) 
Avg-GAP 

TD-CITRM _5_1 56.13 2.32 0.99 25.0 0 56.13 5.01 0 

TD-CITRM _7_1 75.22 2.09 0.95 710.1 0 75.22 9.43 0 

TD-CITRM _9_2 82.32 6.26 0.65 6783.2 0 82.32 13.20 0.023 

TD-CITRM _11_2 84.12 8.97 0.60 7871.0 0.022 84.12 15.50 0.033 

TD-CITRM _13_2 96.87 9.32 0.53 9671.5 0.031 107.02 18.04 0.064 

TD-CITRM _15_2 101.03 13.58 0.50 9902.9 0.052 113.10 21.14 0.114 

TD-CITRM _17_3 88.50 23.16 0.47 10040.0 0.061 92.49 30.76 0.122 

TD-CITRM _19_3 105.03 79.78 0.44 10962.3 0.069 110.57 90.22 0.133 

TD-CITRM _21_3 108.09 327.46 0.41 11053.4 0.074 119.05 370. 0 0.172 

TD-CITRM _23_3 111.33 886.47 0.34 11521.4 0.087 129.31 897. 63 0.264 
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TD-CITRM _25_3 119.18 1572.64 0.29 13061.1 0.081 137.64 1620.12 0.372 

 

Table C.3. The results of implementing FRDP and the DP exact method for different examples of dataset 2  
In

st
a

n
ce

 

The deterministic model (TD-CITRM-DT) The two-stage stochastic model (TD-CITRM-ST) 
Dynamic 

programming 
(DP) 

Flexible restricted dynamic 
 programming (FRDP) 

 DP (RPAM) FRDP (RPAM) 

O
b

j. 

T
im

e
 (

se
c)

 

S
e

tt
in

g
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S
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𝐴𝑐𝑐−𝑆
𝑜𝑙 

A
v

g
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(s
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) 

G
A

P
 

T
D

-C
IT

R
M

 
_5

_1
 

62.50 1.85 

𝐻̅=10 75.53 10 1.71 0   𝐻̅=10 62.50 10 1.78 0 𝐻̅=50 75.53 10 1.71 0   𝐻̅=50 62.50 10 1.78 0 𝐻̅=500 75.53 10 1.74 0 62.50 1.97 𝐻̅=500 62.50 10 1.78 0 𝐻̅=1500 75.53 10 1.74 0   𝐻̅=1500 62.50 10 1.80 0 𝐻̅=5000 75.53 10 1.78 0   𝐻̅=5000 62.50 10 1.88 0 

T
D

-C
IT

R
M

 
_7

_1
 

  𝐻̅=10 94.56 10 1.69 0   𝐻̅=10 92.60 10 2.57 0 

  𝐻̅=50 94.56 10 1.73 0   𝐻̅=50 92.60 10 2.71 0 

94.56 2.41 𝐻̅=500 94.56 10 1.94 0 84.47 4.03 𝐻̅=500 92.60 10 2.95 0 

  𝐻̅=1500 94.56 10 2.09 0   𝐻̅=1500 92.60 10 3.07 0 

  𝐻̅=5000 94.56 10 2.25 0   𝐻̅=5000 92.60 10 3.91 0 

T
D

-C
IT

R
M

 
_9

_2
 

  𝐻̅=10 113.54 10 3.02 0.098   𝐻̅=10 99.72 10 4.42 0.071 

  𝐻̅=50 108.05 10 4.51 0.045   𝐻̅=50 95.15 10 5.13 0.022 

103.37 275.09 𝐻̅=500 105.17 10 6.75 0.033 93.07 374.5 𝐻̅=500 95.15 10 8.05 0 

  𝐻̅=1500 105.17 10 11.04 0.027   𝐻̅=1500 93.07 10 14.12 0 

  𝐻̅=5000 103.37 10 21.81 0.027   𝐻̅=5000 93.07 10 25.84 0 

T
D

-C
IT

R
M

 
_1

1
_2

 

  𝐻̅=10 × × × ×   𝐻̅=10 × × × × 

  𝐻̅=50 114.95 9 5.64 0.055   𝐻̅=50 105.40 10 6.01 0.059 

__ __ 𝐻̅=500 112.07 10 10.29 0.125 __ __ 𝐻̅=500 101.21 10 12.72 0.025 

  𝐻̅=1500 112.07 10 20.02 0.025   𝐻̅=1500 101.21 10 24.11 0.017 

  𝐻̅=5000 109.24 10 46.23 0   𝐻̅=5000 100.17 10 49.02 0.017 

T
D

-C
IT

R
M

 
_1

3
_2

 

  𝐻̅=10 × × × ×   𝐻̅=10 × × × × 

  𝐻̅=50 × × × ×   𝐻̅=50 × × × × 

__ __ 𝐻̅=500 137.19 10 16.75 0.134 __ __ 𝐻̅=500 114.60 10 19.14 0.036 

  𝐻̅=1500 130.17 10 31.10 0.076   𝐻̅=1500 111.54 10 34.87 0.019 

  𝐻̅=5000 120.91 10 83.05 0.024   𝐻̅=5000 110.61 10 88.60 0.003 

T
D

-C
IT

R
M

 
_1

5
_2

 

  𝐻̅=10 × × × ×   𝐻̅=10 × × × × 

  𝐻̅=50 140.65 6 8.20 0.084   𝐻̅=50 124.08 3 × 0.096 

__ __ 𝐻̅=500 140.65 10 22.54 0.084 __ __ 𝐻̅=500 120.12 10 26.91 0.074 

  𝐻̅=1500 136.50 10 51.19 0.058   𝐻̅=1500 120.12 10 54.12 0.061 

  𝐻̅=5000 136.50 10 142.4 0.052   𝐻̅=5000 120.12 10 150.7 0.061 

T
D

-C
IT

R
M

 
_1

7
_3

 

  𝐻̅=10 × × × ×   𝐻̅=10 × × × × 

  𝐻̅=50 121.29 9 15.22 0.012   𝐻̅=50 118.74 9 24.82 0.085 

__ __ 𝐻̅=500 121.29 10 47.80 0.010 __ __ 𝐻̅=500 110.19 10 53.05 0.007 

  𝐻̅=1500 119.05 10 130.1 0.008   𝐻̅=1500 109.35 10 137.0 0049 

  𝐻̅=5000 119.05 10 274.3 0   𝐻̅=5000 109.35 10 300.2 0 

T
D

-C
IT

R
M

 
_1

9
_3

 

  𝐻̅=10 × × × ×   𝐻̅=10 × × × × 

  𝐻̅=50 130.05 7 28.07 0.054   𝐻̅=50 130.63 7 34.19 0.110 

__ __ 𝐻̅=500 127.68 10 63.24 0.035 __ __ 𝐻̅=500 123.12 10 80.02 0.046 

  𝐻̅=1500 124.25 10 152.8 0.015   𝐻̅=1500 121.11 10 166.5 0.029 

  𝐻̅=5000 123.32 10 397.1 0.007   𝐻̅=5000 117.63 10 415.9 0.011 

T
D

-C
IT

R
M

 
_2

1
_3

 

  𝐻̅=10 × × × ×   𝐻̅=10 × × × × 

  𝐻̅=50 145.95 8 80.41 0.088   𝐻̅=50 130.09 7 97.22 0.085 

__ __ 𝐻̅=500 136.42 10 154.2 0.016 __ __ 𝐻̅=500 126.62 10 206.4 0.056 

  𝐻̅=1500 135.19 10 219.0 0.013   𝐻̅=1500 122.47 10 271.8 0.011 

  𝐻̅=5000 134.14 10 601.1 0.002   𝐻̅=5000 119.87 10 630.7 0.003 

T
D

-C
IT

R
M

 
_2

3
_3

 

  𝐻̅=10 × × × ×   𝐻̅=10 × × × × 

  𝐻̅=50 149.09 5 134.6 0.090   𝐻̅=50 135.05 3 295.0 0.080 

__ __ 𝐻̅=500 140.23 10 304.1 0.063 __ __ 𝐻̅=500 135.05 10 631.4 0.080 

  𝐻̅=1500 140.23 10 431.2 0.063   𝐻̅=1500 128.17 10 1102.5 0.025 

  𝐻̅=5000 136.72 10 1203.5 0.012   𝐻̅=5000 126.44 10 1668.1 0.011 

T
D

-
C

IT
R

M

  𝐻̅=10 × × × ×   𝐻̅=10 × × × × 

  𝐻̅=50 × × × ×   𝐻̅=50 × × × × 

__ __ 𝐻̅=500 158.41 10 702.0 0.069 __ __ 𝐻̅=500 146.75 10 1304.2 0.085 
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  𝐻̅=1500 154.41 10 1012.4 0.047   𝐻̅=1500 142.33 10 2103.1 0.031 

  𝐻̅=5000 149.32 10 2250.1 0.031   𝐻̅=5000 137.25 10 2871.0 0.069 

 

Table C.4. The results of implementing FRDP and the DP exact method for different examples of dataset 3 
In
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a

n
ce

 

The deterministic model (TD-CITRM-DT) The two-stage stochastic model (TD-CITRM-ST) 
Dynamic 

programming 
(DP) 

Flexible restricted dynamic 
 programming (FRDP) 

 DP (RPAM) FRDP (RPAM) 
O
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T
D

-C
IT

R
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_5

_1
 

65.31 1.47 

𝐻̅=10 65.31 10 1.39 0   𝐻̅=10 56.13 10 1.43 0 𝐻̅=50 65.31 10 1.39 0   𝐻̅=50 56.13 10 1.43 0 𝐻̅=500 65.31 10 1.43 0 56.13 1.74 𝐻̅=500 56.13 10 1.45 0 𝐻̅=1500 65.31 10 1.43 0   𝐻̅=1500 56.13 10 1.45 0 𝐻̅=5000 65.31 10 1.45 0   𝐻̅=5000 56.13 10 1.63 0 

T
D

-C
IT

R
M

 
_7

_1
 

  𝐻̅=10 83.62 10 1.45 0   𝐻̅=10 75.22 10 1.75 0 

  𝐻̅=50 83.62 10 1.50 0   𝐻̅=50 75.22 10 2.09 0 

83.62 1.95 𝐻̅=500 83.62 10 1.72 0 75.22 2.71 𝐻̅=500 75.22 10 2.23 0 

  𝐻̅=1500 83.62 10 1.80 0   𝐻̅=1500 75.22 10 2.44 0 

  𝐻̅=5000 83.62 10 1.86 0   𝐻̅=5000 75.22 10 2.44 0 

T
D

-C
IT

R
M

 
_9

_2
 

  𝐻̅=10 100.75 10 1.71 0.147   𝐻̅=10 98.17 10 1.84 0.192 

  𝐻̅=50 100.75 10 1.91 0.147   𝐻̅=50 98.17 10 2.11 0.192 

87.83 236.27 𝐻̅=500 94.19 10 3.85 0.072 82.32 339.1 𝐻̅=500 86.12 10 4.05 0.046 

  𝐻̅=1500 94.19 10 7.19 0.072   𝐻̅=1500 86.12 10 7.53 0.046 

  𝐻̅=5000 87.83 10 14.13 0   𝐻̅=5000 86.12 10 15.19 0.046 

T
D

-C
IT

R
M

 
_1

1
_2

 

  𝐻̅=10 × × × ×   𝐻̅=10 × × × × 

  𝐻̅=50 112.50 7 2.10 0.176   𝐻̅=50 104.80 7 2.38 0.245 

__ __ 𝐻̅=500 112.50 10 6.01 0.176 __ __ 𝐻̅=500 90.32 10 7.20 0.073 

  𝐻̅=1500 103.05 10 13.04 0.077   𝐻̅=1500 87.22 10 15.34 0.036 

  𝐻̅=5000 99.64 10 36.51 0.041   𝐻̅=5000 84.12 10 39.11 0.010 

T
D

-C
IT

R
M

 
_1

3
_2

 

  𝐻̅=10 × × × ×   𝐻̅=10 × × × × 

  𝐻̅=50 × × × ×   𝐻̅=50 × × × × 

__ __ 𝐻̅=500 118.72 10 9.71 0.163 __ __ 𝐻̅=500 105.60 10 10.01 0.090 

  𝐻̅=1500 110.28 10 22.56 0.080   𝐻̅=1500 105.60 10 26.02 0.090 

  𝐻̅=5000 102.02 10 74.01 0.024   𝐻̅=5000 96.87 10 77.90 0.036 

T
D

-C
IT

R
M

 
_1

5
_2

 

  𝐻̅=10 × × × ×   𝐻̅=10 × × × × 

  𝐻̅=50 120.17 6 3.19 0.067   𝐻̅=50 × × × × 

__ __ 𝐻̅=500 117.02 10 14.00 0.039 __ __ 𝐻̅=500 116.21 10 16.91 0.150 

  𝐻̅=1500 117.02 10 36.20 0.039   𝐻̅=1500 116.21 10 38.18 0.150 

  𝐻̅=5000 112.58 10 116.5 0.011   𝐻̅=5000 109.64 10 121.0 0.085 

T
D

-C
IT

R
M

 
_1

7
_3

 

  𝐻̅=10 × × × ×   𝐻̅=10 × × × × 

  𝐻̅=50 104.51 10 6.76 0.069   𝐻̅=50 101.09 10 10.13 0.142 

__ __ 𝐻̅=500 104.51 10 29.02 0.069 __ __ 𝐻̅=500 96.21 10 36.74 0.093 

  𝐻̅=1500 101.20 10 101.13 0.051   𝐻̅=1500 88.50 10 107.40 0.034 

  𝐻̅=5000 101.20 10 227.20 0.035   𝐻̅=5000 88.50 10 235.91 0 

T
D

-C
IT

R
M

 
_1

9
_3

 

  𝐻̅=10 × × × ×   𝐻̅=10 × × × × 

  𝐻̅=50 116.56 8 15. 29 0.087   𝐻̅=50 111.02 6 22.19 0.059 

__ __ 𝐻̅=500 112.21 10 51.70 0.047 __ __ 𝐻̅=500 111.02 10 68.34 0.059 

  𝐻̅=1500 112.21 10 124.51 0.047   𝐻̅=1500 105.03 10 137.01 0.019 

  𝐻̅=5000 108.01 10 361.22 0.033   𝐻̅=5000 104.83 10 381.56 0.001 

T
D

-C
IT

R
M

 
_2

1
_3

 

  𝐻̅=10 × × × ×   𝐻̅=10 × × × × 

  𝐻̅=50 125.70 10 58.74 0.095   𝐻̅=50 121.86 8 77.26 0.127 

__ __ 𝐻̅=500 122.42 10 93.12 0.067 __ __ 𝐻̅=500 121.86 10 128.08 0.127 

  𝐻̅=1500 119.92 10 176.05 0.045   𝐻̅=1500 115.12 10 225.49 0.065 

  𝐻̅=5000 114.71 10 469.15 0.013   𝐻̅=5000 110.30 10 489.03 0.028 

T
D

-C
IT

R
M

 
_2

3
_3

 

  𝐻̅=10 × × × ×   𝐻̅=10 × × × × 

  𝐻̅=50 130.71 4 101.13 0.099   𝐻̅=50 120.60 3 198.12 0.083 

__ __ 𝐻̅=500 125.42 10 210.62 0.055 __ __ 𝐻̅=500 118.07 10 519.81 0.060 

  𝐻̅=1500 125.42 10 371.90 0.055   𝐻̅=1500 118.07 10 881.44 0.060 

  𝐻̅=5000 120.83 10 933.24 0.016   𝐻̅=5000 115.51 10 1077.3 0.037 

T
D

-
C

IT
R

M
 

_2
5

_3

  𝐻̅=10 × × × ×   𝐻̅=10 × × × × 

  𝐻̅=50 × × × ×   𝐻̅=50 × × × × 

__ __ 𝐻̅=500 138.72 10 550.11 0.098 __ __ 𝐻̅=500 128.51 10 904.20 0.078 

  𝐻̅=1500 132.40 10 742.62 0.048   𝐻̅=1500 124.10 10 1529.1 0.063 
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  𝐻̅=5000 132.40 10 1519.0 0.033   𝐻̅=5000 124.10 10 1994.8 0.041 
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