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Abstract

Developing accurate analytical credit scoring models has become a major focus for financial institutions.

For this purpose, numerous classification algorithms have been proposed for credit scoring. However, the

application of deep learning algorithms for classification has been largely ignored in the credit scoring liter-

ature. The main motivation for this research is to consider the appropriateness of deep learning algorithms

for credit scoring. To this end two deep learning architectures are constructed, namely a multilayer per-

ceptron network and a deep belief network, and their performance compared to that of two conventional

methods and two ensemble methods for credit scoring. The models are then evaluated using a range of

credit scoring data sets and performance measures. Furthermore, Bayesian statistical testing procedures are

introduced in the context of credit scoring and compared to frequentist non-parametric testing procedures

which have traditionally been considered best practice in credit scoring. This comparison will highlight the

benefits of Bayesian statistical procedures and secure empirical findings. Two main conclusions emerge

from comparing the different classification algorithms for credit scoring. Firstly, the ensemble method, XG-

Boost, is the best performing method for credit scoring of all the methods considered here. Secondly, deep

neural networks do not outperform their shallower counterparts and are considerably more computationally

expensive to construct. Therefore, deep learning algorithms do not seem to be appropriate models for credit

scoring based on this comparison and XGBoost should be preferred over the other credit scoring methods

considered here when classification performance is the main objective of credit scoring activities.
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1. Introduction

Since the mid 20th century, both researchers and practitioners have put great emphasis on developing empir-

ical models that assist retail lenders in the granting of credit to consumers. Today, commercial banks hold

billions of dollars in consumer loans and the consumer credit sector has become a huge industry that is of

substantial economic importance. The large volume of these loans illustrates that even small improvements

in the accuracy of credit scoring practices can result in considerable financial gains. Developing accurate

credit scoring models has therefore become a major focus for financial institutions in order to optimize prof-

its and effectively manage risk exposures (Thomas et al., 2002; Lessmann et al., 2015; Board of Governors

of the Federal Reserve System, 2019; Baesens et al., 2003; Jiang et al., 2019; Luo et al., 2017). Historically,

managers often evaluated a consumer’s credit based on their intuitive experience. However, with the support

of empirical models, managers can evaluate credit applicants in a faster, more consistent and more accurate

manner. As a consequence, more attention has been paid to empirical credit scoring which has resulted in

the development of several techniques often referred to as “credit scoring models”. The objective of these

models is to classify credit applicants to either a group of good credit applicants, which are likely to repay a

loan, or a group of bad credit applicants, which are likely to default on their loan. Therefore, credit scoring

problems can be positioned within the scope of the more widely discussed classification problems (Baesens

et al., 2016; Verbraken et al., 2014; Saberi et al., 2013; Akkoç, 2012).

Since its origin, various classification techniques have been proposed and used for credit scoring, in-

cluding traditional statistical models (e.g. logistic regression), models that originated in machine learning

(e.g. decision trees) and neural networks (Baesens et al., 2003). The performance of different classification

algorithms for credit scoring has been heavily researched over the past decades and a number of studies

have considered the performance of alternative individual classifiers for credit scoring (e.g. Baesens et al.

(2003); Xiao et al. (2006); Huang et al. (2006); Yeh and Lien (2009)). More recently, research on classifi-

cation algorithms for credit scoring has taken into account the development of ensemble methods that aim

to estimate multiple joint analytical models instead of constructing only one model (Baesens, 2014). Quite

a few studies have examined the performance of different ensemble algorithms for credit scoring (e.g. Zhou

et al. (2010); Yu et al. (2011); Marqués et al. (2012); Lessmann et al. (2015); Chen et al. (2020)). How-

ever, we argue in this work that research on classification algorithms for credit scoring has largely ignored
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another important development in machine learning. That is, the development of so-called “deep learning”

approaches that have been extensively researched and applied in numerous fields with great success (for

a detailed overview of deep learning approaches and applications, see e.g. Schmidhuber (2015); LeCun

et al. (2015); Goodfellow et al. (2016)). The main purpose of this work is therefore to add to the existing

body of research within the credit scoring community by considering novel deep learning algorithms for

credit scoring. By doing so, the following contributions will be made to the credit scoring literature. First,

state-of-the-art deep learning techniques are compared to both conventional methods for credit scoring and

two ensemble methods that have been shown to perform well for credit scoring. Second, this comparison

will be executed over a significant number of real-life credit scoring data sets. Third, the models will be

evaluated and compared over a number of performance measures, including a general profit driven perfor-

mance measure. Finally, Bayesian hypothesis testing will be introduced in the context of credit scoring and

compared to an advanced non-parametric frequentist statistical testing procedure. The latter has tradition-

ally been considered a best practice for comparing a number of classifiers over multiple data sets within the

credit scoring community. However, frequentist statistical testing procedures have come under increased

scrutiny and have fallen out of favor in many fields of science (see e.g. Wasserstein et al. (2016); Benavoli

et al. (2017)). This comparison will therefore shed a light on the differences of the two schools of thought

when it comes to statistical testing procedures and in turn highlight the many benefits of Bayesian statistical

procedures in addition to securing empirical findings.

The remainder of this paper is structured as follows. Section 2 provides an overview of the develop-

ment of quantitative credit scoring and of the relevant literature. Section 3 outlines established conventional

methods and two ensemble methods for credit scoring. Furthermore, a description of the deep learning

architectures considered in this work are provided in this section. Important aspects regarding the exper-

imental design used in this project, such as information on the preprocessing methods and performance

indicators are discussed in Section 4. A discussion on both frequentist and Bayesian hypothesis testing

procedures will also be provided in this section. Section 5 then lists the empirical results and a discussion

on the findings. Finally, the last section provides concluding remarks and opportunities for further work.

2. Credit Scoring

The first use of statistical credit scoring can be credited to Durand (1941) during the mid 20th century. Dur-

ing that period the methods used were statistical discrimination and classification. Today, these methods
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are still by far the most common methods for building credit scorecards. Logistic regression is the most

wide-spread of these methods, though decision or classification trees have also found favour over the last

30 years (Thomas et al., 2002; Lessmann et al., 2015). Numerous other classification techniques have been

adopted for credit scoring since their first use more than 70 years ago. In 2015, Lessmann et al. (2015)

carried out a comprehensive study taking into account a number of advancements in machine learning, e.g.

the development of ensemble models. To this end, 41 classifiers were compared in terms of six performance

measures. It was concluded that a number of classifiers predicted credit risk significantly better than the in-

dustry standard, namely logistic regression. In particular, it was recommended that random forests should be

considered as a benchmark classification technique against which to compare new classification algorithms

instead of logistic regression which has traditionally held that position. Also, it was found that both random

forests and artificial neural networks achieved a large cost reduction when the cost of classification errors

was estimated indicating the benefits of these two classifiers. Lastly, the benchmark study recommended

that future studies should use at least three performance measures to evaluate the prediction performance

of algorithms for credit scoring, that is the area under the receiver operating characteristic (ROC) curve

(AUC), the partial Gini and the Brier Score, since they all capture different aspect of the performance of

a classifier (Lessmann et al., 2015). Since Lessmann et al. (2015) published their benchmark study other

ensemble methods have been proposed in the literature. Most notably, Chen and Guestrin (2016) proposed

XGBoost which utilizes extreme gradient boosting for learning an ensemble of decision trees. This method

has achieved promising results on a number of classification tasks (Xia et al., 2017) including credit scoring

where e.g. Wang et al. (2018b) found the method to outperform random forests in predicting credit risk.

As discussed above, the benchmark study published by Lessmann et al. (2015) found that an artificial

neural network performed well when the cost of classification errors was estimated. The modern era of

research on these networks began with the pioneering work of McCulloch and Pitts (1943) which showed

that such networks could theoretically fit any computable function. With this significant result, it is broadly

agreed that the disciplines of neural networks and artificial intelligence were born. Due to advances in

these fields and improvements in computing performance, the development of large neural networks with

numerous layers of neurons, i.e. deep learning, has been made possible. Deep neural networks have been

the object of extensive research in machine learning and have enjoyed great success in a number of fields

such as computer vision, speech recognition and classification (Haykin, 1994; LeCun et al., 2015; Luo

et al., 2017; Spanoudes and Nguyen, 2017; Deng, 2014). Recently, the application of these models for
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Table 1: Overview of related literature analysing the relative performance of deep learning approaches compared to other classifi-
cation methods for credit scoring. An underscore indicates the best performing classifier per study.

Authors
(Year)

No. of
data sets

DL
architecture

Other
classifiers∗

Performance
indicators∗∗ STH∗∗∗

Van-Sang and Ha-Nam
(2016) 2 MLP IND, ENS TH

Luo et al.
(2017) 1 DBN IND TH, AUC

Addo et al.
(2018) 1 MLP IND, ENS TH, AUC, RMSE

Zhu et al.
(2018) 1 CNN IND, ENS TH, AUC, K-S statistic

Hamori et al.
(2018) 1 MLP ENS TH, AUC

Sun and Vasarhelyi
(2018) 1 MLP IND TH, AUC X

Wang et al.
(2018a) 1 LSTM ENS AUC, K-S statistic

Papouskova and Hajek
(2019) 2 DBN IND, ENS TH, AUC X

Munkhdalai et al.
(2019) 3 MLP IND TH, AUC, H-measure

Mancisidor et al.
(2019) 2 DGM IND TH, AUC, H-measure, Gini

∗ IND: Individual classifier (e.g. logistic regression), ENS: Ensemble method (e.g. random forest)
∗∗ TH: Threshold metric (e.g. accuracy)
∗∗∗ STH: Statistical hypothesis testing

business analytics and operational research has been increasingly investigated. E.g Kraus et al. (2020)

found deep learning to be a feasible and effective method in those fields which can consistently outperform

traditional counterparts in both prediction and operational performance. However, the number of published

research on the application of deep learning in for credit scoring is limited. An overview of previous

studies where the performance of deep learning approaches was compared to the performance of other

classification methods for credit scoring is given in Table 1. As can be seen from the table, different deep

learning architectures have been considered for credit scoring. In Wang et al. (2018a), the authors made

use of online interaction behaviour (e.g. user browse and click events) obtained from event logs in order

to construct a long short-term memory (LSTM) network for credit scoring. In the same year, Zhu et al.

(2018) suggested a hybrid model where credit records for customers were transferred into a pixel matrix

and then used the obtained matrices to construct a convolutional neural network (CNN) in order to predict

default. More recently, Mancisidor et al. (2019) constructed a deep generative model (DGM) with the goal

of improving the classification accuracy of credit scoring models by adding reject applications. However,
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mainly two deep learning architectures have been previously constructed for application scoring using a

standard pre-processing setup, namely a multilayer perceptron network (MLP) and a deep belief network

(DBN). A potential drawback of the papers listed in the table is the use of a small number of data sets when

evaluating the performance of the deep learning architectures, e.g. the majority of the papers only used one

data set in order to construct and compare the considered classifiers. Furthermore, most of the papers do not

take into account important performance considerations such as the correctness of the actual predictions of

the classifier and the profit a company can attain by applying a particular classifier computed by taking into

account both the benefit from correctly classifying a customer that will default and the cost of classifying

a non-defaulting customer as a defaulter. Lastly, only two of the papers make use of statistical hypothesis

testing when comparing the performance of the considered classifiers. It should also be noted here that the

applicability of deep learning for credit scoring remains an open question. Out of the seven papers where

deep learning algorithms were considered for application scoring using a standard pre-processing setup,

four concluded that the deep learning approach considered was the best performing method while three

papers concluded that an ensemble approach should be preferred for credit scoring. In this work, we hence

aim to expand on the current state of art by (i) comparing the performance of state-of-the-art deep learning

architectures to the performance of conventional and ensemble classifiers over an unmatched number of

credit scoring data sets, (ii) evaluating the performance of the classifiers over a number of performance

indicators including a profit driven performance measure and (iii) using novel and suitable statistical testing

procedures to secure empirical findings.

3. Methods for Credit Scoring

As discussed in a previous section, credit scoring methods are developed with the aim of accurately distin-

guishing good credit applicants from bad ones. In order to depict the development of a credit scorecard, let

D = {(x1, y1), . . . , (xn, yn)} be a set of n training examples with xi = (xi
1, . . . , x

i
m) ∈ Rm describing the input

vector of the i-th example, describing m characteristics or “features” of the application (such as information

regarding the applicant, type of loan, and so on)—or simply x as a shorthand to denote an instance with x j

then denoting a single input. Let yi ∈ {−1,+1} be a binary variable that distinguishes good loans (-1) from

bad loans (+1) (or simply y as a shorthand). A credit scorecard is a model that one obtains from applying

a classification algorithm to a data set of past loans. The model estimates the probability ŷ = p(+1|x) that

default will be observed for a given loan. Then, to decide whether a loan applicant should be deemed credit-
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worthy the estimated default probability is compared to a threshold t and the loan is approved if p(+1|x) ≤ t

but rejected otherwise (Lessmann et al., 2015; Thomas et al., 2002; Maldonado et al., 2017). Given our

overview of the state of art above, we conclude that further research on the appropriateness of deep learning

for credit scoring is needed. Based on a review of published articles on deep learning for credit scoring, it is

observed that two deep learning architectures, a multilayer perceptron neural network and a deep belief net-

work, have been previously used in this application setting. Therefore, these are compared to two ensemble

methods that have been shown to perform well for credit scoring, namely random forests and XGBoost, and

two conventional methods for credit scoring, namely logistic regression and decision trees. These methods

are discussed in more detail in what follows.

3.1. Conventional Methods for Credit Scoring

Over the past decades, logistic regression has become the standard method of analysis in various fields where

the outcome variable of interest is a discrete binary variable (Hosmer Jr et al., 2013). Given a training set

logistic regression estimates the probability of default, p(+1|x) for a loan x, as follows:

p(+1|x) =
1

1 + exp{(−(w0 + wt x)}
(1)

where w is the parameter vector and the scalar w0 is the intercept (Baesens et al., 2003).

Decision tree algorithms are classification algorithms which apply a recursive partitioning on a given

data set so as to come up with a tree-like structure representing patterns in underlying data by sorting them

based on values of the variables present in the data. Decision trees aim at partitioning the data set into

groups that are as homogeneous as possible in terms of the variable to be predicted. Many decision tree

algorithms have been suggested in the literature. The C4.5 algorithm is one of the most popular ones and

uses entropy to calculate the homogeneity within a sample to decide upon a partitioning. The algorithm

then greedily favours splits with the largest normalized gain in entropy. The tree is then constructed by

recursively repeating this procedure over the subsets created. This method often yields a complex tree

structure with many internal nodes which can result in a solution that overfits the data, that is the model

starts modelling the noise in the data. To counter this the algorithm prunes the resulting tree after it has been

fully grown by removing nodes that have resulted from noise in the training sample (Baesens et al., 2003;

Baesens, 2014; Sharma et al., 2013; Hssina et al., 2014).
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3.2. Ensemble Methods for Credit Scoring

Ensemble methods estimate multiple models instead of using only one model. Random forests are one

such method suggested by Breiman (2001) which has shown great performance in many areas. Here, a

bag (called the “forest”) of decision trees is created during training. The forest then outputs the class that

the majority of the trees predicted. To avoid overfitting, additional elements of diversity are added in the

process through randomness. One part of the randomness comes from “bootstrapping” each decision tree so

that each tree sees a random sample of the training set. Another part of randomness comes from randomly

selecting the inputs that each tree considers at each partitioning during training. The key to this approach is

the dissimilarity amongst the constructed decision trees and the performance of the individual base models.

Because of this, an ensemble of decision trees is created that is superior in performance compared to the

single models individually (Baesens, 2014; Breiman, 2001). Another, more recent ensemble method called

XGBoost was first proposed by Chen and Guestrin (2016). This method constructs an ensemble of decision

trees by using a gradient boosting algorithm to sequentially build models by fitting additive base learners

to minimize the loss function provided. The loss function measures how well the model fits the data and

the process of boosting and adding base learners continues until the reduction of loss becomes minimal.

Compared to general gradient boosting algorithms, XGBoost performs a second-order Taylor expansion for

the objective function and uses the second-order derivative to accelerate the convergence rate of the model

during training. Furthermore, a penalty term is added to the objective function to control the structure of

the model with the aim of avoiding the overfitting problem discussed above (for more details see e.g. Chen

and Guestrin (2016); He et al. (2018); Xia et al. (2017)).

3.3. Deep Learning for Credit Scoring

Artificial neural networks (ANNs) are networks of simple processing elements called neurons. Neurons are

simple computational units that take an arbitrary number of weighted inputs (optionally including a bias

input) and are able to return a single output through a activation function. The idea of a neuron can be

generalized to a multilayer perceptron (MLP) neural network by adding multiple layers containing multiple

neurons to this network, where each neuron processes its inputs and generates one output value that is

transmitted to all neurons in the following layer. The basic structure of a multilayer perceptron neural

network has one hidden layer and one output layer. In order to compute the output of a hidden neuron i, in
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a network with a single hidden layer, one processes the weighted inputs and the bias term b(1)
i as follows:

hi = f (1)
(
b(1)

i +

m∑
j=1

Wi jx j
)

(2)

where W is the weight matrix and Wi j denotes the weight connecting input j to hidden unit i. Similarly, the

output of the final layer is computed as follows:

y = f (2)
(
b(2) +

mh∑
j=1

v jh j
)

(3)

where mh represents the number of hidden neurons and v is the weight vector, and v j is the weight connecting

a hidden unit j to the output neuron. Lastly, the network is able to model non-linear relationships in the

data using the activation functions f (1) and f (2). Two types of activation functions are most commonly

used in neural networks, namely the sigmoid function and the rectified linear function (Svozil et al., 1997;

Schmidhuber, 2015; Baesens, 2014; Baesens et al., 2003; Spanoudes and Nguyen, 2017). Advances in

research on neural networks and increases in computing performance have led to the inception of large

networks with multiple hidden layers, i.e. deep learning. The effect of this is that the network is able to

propagate weights through the network and can therefore learn complexities in large data sets by the use

of multiple processing layers with complex structures. An example of a deep MLP network is shown in

Figure 1. This network is constructed using multiple layers of connected neurons with simple activation

functions. When dealing with classification problems a softmax function can be used as the activation

function over the neurons situated in the output layer. In order to make predictions, the network uses the

class of the output layer for which neuron returned the highest probability as the predicted class of the

network. The difference between the probability vector returned by the output layer and the true label

vector can then be quantified as an error. The amount of error dictates how the weights will be adjusted

during the training of the network (Spanoudes and Nguyen, 2017; Luo et al., 2017; Van-Sang and Ha-Nam,

2016; Svozil et al., 1997).

The deep belief network (DBN) is another, more intricate neural network based architecture. An exam-

ple of this type of network is given in Figure 2. A deep belief network is constructed by using a number

of layers of restricted Boltzmann machines (RBM) that are trained independent of each other in order to

encode the statistical dependencies of the units located in the previous layer. An RBM is a bipartite graph

where the visible units represent observations which are connected to neurons in the hidden layer. These

hidden neurons learn to represent features using weighted connections. The RBM is restricted in the sense

that there are no visible-to-visible or hidden-to-hidden connections, comparable to the layered MLP setup
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Figure 1: A deep multilayer perceptron neural network. The first layer of the network is the input layer, the last layer is called the
output layer and the layers between are the hidden layers.

shown before (Luo et al., 2017; Mohamed et al., 2012; Lopes and Ribeiro, 2015). An example of an RBM

is shown in Figure 3. The network is learned one layer at a time by using the values of the neurons in one

layer, when they are inferred from the data, as the inputs for training the next layer. The aim of the network

is to maximize the likelihood of the training data. Therefore, the training process starts at the lowest level

RBM where the states of the lowest layer represent the input data vector. Once the weights of the lowest

level RBM have been learned, the vectors of the learned hidden feature activations can be used as data for

learning the second hidden layer, and so on until finally the RBM in the final layer, containing the outputs of

the deep belief network, is trained. By executing this sequence of operations one obtains an unbiased sample

of the kind of vectors of visible values the network believes in (Luo et al., 2017; Hinton and Salakhutdinov,

2006; Mohamed et al., 2011; Lopes and Ribeiro, 2015; Hua et al., 2015).

Figure 2: Deep belief network. The network is gradually
learned by treating the values of the units in one layer as
the input for training the next layer.

Figure 3: Restricted Boltzmann Machine. Visible units
represent observations which are connected to hidden units
which learn a feature representation of their inputs using
weighted connections.

The training process of a deep belief network is unsupervised by nature—as each layer learns the sta-
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tistical dependencies from the given inputs. However, the model can easily be turned into a classification

model (i.e. supervised learning) by adding an additional layer, corresponding to the class labels activation,

to the original deep belief network. Then, the added layer simply tunes the existing feature detectors, that

were discovered by the unsupervised training phase, using backpropagation. The resulting feed forward

network is typically also denoted by the same DBN terminology (for more details on DBNs and RBMs,

see e.g. Mohamed et al. (2011, 2009); Lopes and Ribeiro (2015); Hinton (2012); Goodfellow et al. (2016);

Vinyals and Ravuri (2011); Mohamed et al. (2012)).

4. Experimental Setup

4.1. Constructed Models

Most of the methods discussed in the previous section exhibit hyper-parameters that need to be specified

by the user. To ensure that good estimates of the performance of each classifier are obtained a grid search

was performed for the optimal values of the hyper-parameters for each of the classification algorithms.

Values in the grid search were obtained both from literature recommendations and exploration. The different

algorithms and the tuning grid for their hyper-parameters are given in Table 2. In an attempt to speed up

gradient descent, the MLP networks were trained using the RMSProp optimization algorithm (see e.g.

Tieleman and Hinton (2012)). Also, batch normalization (see e.g. Ioffe and Szegedy (2015)) was included

as a hyper-parameter in the tuning grid used to train the model. Furthermore, in an attempt to counter the

inclination of deep neural networks to overfit the training data both dropout and L2 regularization (see e.g.

Goodfellow et al. (2016)) were considered. Also, deep networks with an increasing number of neurons per

layer are unlikely to generalize well and were therefore not considered. As shown in the table, the number

of models constructed for the neural network based algorithms grows exponentially with the number of

hidden layers used. Constructing a neural network solution often requires a considerable amount of time

and effort where many models with different configuration must be trained to obtain a good solution. This

can be seen as one drawback of these models (Lopes and Ribeiro, 2015).

We evaluate the different classifiers on ten retail credit scoring data sets in order to get a good indication

of the general applicability of the classifiers for credit scoring. Four data sets, Bene1, Bene2, Bene3 and

UK, were obtained from major financial institutions in the Benelux and the UK. The Bene1, Bene2 and UK

data sets have been previously used in Baesens et al. (2003) and Lessmann et al. (2015). The German credit
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Table 2: Classification algorithms included in the experimental setup and their hyper-parameter tuning grid.

Models per
algorithm Hyper-parameters Candidate setting

Conventional methods
Logistic regression - LR 1 - -

Decision tree (C4.5) - DT 36
Confidence threshold for pruning

Min. leaf size
0.01, 0.1, ..., 0.5

3, 4, ..., 8
Ensemble methods

Random forests - RF 30
No. of CART trees

No. of randomly sampled inputs1
100, 250, 500, 750, 1000
√

m[0.1, 0.25, 0.5, 1, 2, 4]

XGBoost - XGB 108

No. of CART trees
Maximum tree depth

Learning rate
Fraction of inputs sampled
Fraction of rows sampled

50, 100, 150
1, 2, 3

0.3, 0.4
0.6, 0.8

0.5, 0.75, 1.00
Multilayer Perceptron Neural Networks - MLP

Shared values
in grids of MLPs

No. of hidden units
Dropout rate

L2
Batch normalization

5, 10, 15, 20
0.00, 0.25, 0.50

0.1, 0.01, 0.001, 0
Yes, No

MLP with one hidden layer
- MLP1 144 Learning rate 1e-2, 1e-3, 1e-4

MLP with three hidden layers
- MLP3 720 Learning rate 1e-2, 1e-3, 1e-4

MLP with five hidden layers
- MLP5 2016 Learning rate 1e-3, 1e-4, 1e-5

Deep Belief Networks - DBN

Shared values
in grids of DBNs

No. of hidden units
Dropout rate - Hidden layer
Dropout rate - Visible layer

CD steps

5, 10, 15, 20
0.00, 0.25, 0.50
0.00, 0.25, 0.50

1, 3, 5
DBN with one hidden layer

- DBN1 324 Learning rate 1.5, 1.0, 0.8

DBN with three hidden layers
- DBN3 1620 Learning rate 1.0, 0.8, 0.5

DBN with five hidden layers
- DBN5 4536 Learning rate 1.0, 0.8, 0.5

1 m = blog2(N) + 1c as recommended in e.g. Baesens (2014)

(GC), Australian credit (AC) and Taiwan credit (TC) data sets are available at the the UCI repository (Dua

and Graff, 2017; Yeh and Lien, 2009). The GMC data set was provided by a financial institution for the

“Give me some credit” Kaggle competition1. Lastly, the TH02 data set was originally used by Thomas et al.

(2002) and the HMEQ data set was obtained from Baesens et al. (2016). Some relevant information on the

characteristics of the data sets are given in Table 3. Before the classifiers were constructed the feature sets

of the data sets were reduced based on the variance inflation factor (VIF) to overcome problems associated

with multicollinearity where a VIF ≤ 10 was deemed acceptable. The prior default rates given in the table

1See: https://www.kaggle.com/c/GiveMeSomeCredit
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show the fraction of bad loans in the data sets. The class imbalance problem has become a great issue

in predictive modelling. This problem occurs where one of the two classes has more cases than the other

class. In such situation many classifiers will be biased towards the majority class and therefore show very

poor classification performance for the minority class which is often the class that is of greater interest,

i.e. default on a loan. However, class balancing methods will not be used here for reasons as argued by

Lessmann et al. (2015). Most importantly, the main objective of this research is to investigate the relative

performance difference of a number of classifiers, not the absolute level of their performance. If class

imbalance equally affects all classifiers it affects the absolute level of their performance. However, if some

of the considered classifiers are less affected by class imbalance than that is a benefit of using that classifier

and should not be ignored in our comparison (Lessmann et al., 2015; Zhang et al., 2014).

Table 3: Information on data sets included in the experimental setup.

Data set Cases Inputs Prior default rate Nx2 cross-validation
AC 690 14 .445 10
GC 1,000 20 .300 10

Th02 1,225 14 .264 10
Bene1 3,123 27 .667 10
Bene3 3,450 8 .016 10
HMEQ 5,960 12 .199 5
Bene2 7,190 26 .300 5

UK 30,000 14 .040 5
TC 30,000 23 .221 5

GMC 150,000 10 .067 5

4.2. Pre-processing

We adopted a standard pre-processing approach where first missing values were imputed using mean/mode

replacement for numeric/nominal inputs respectively. Then, all values of nominal inputs were replaced by

the log of their good:bad odds or the weight of evidence (WOE) for that input (for more information on

WOE see e.g. Baesens (2014); Jiang et al. (2019)). A key decision when evaluating predictive models

concerns specifying what part of the data will be used to measure the performance of the models. Here

Nx2 fold cross validation was used which has been shown to provide more robust results than using a fixed

training and test set especially when working with a small data set. Therefore N was set depending on the

size of the data set used for constructing the classifier as shown in Table 3. Also, as discussed earlier in this

section many of the classifiers constructed here depend on hyper-parameters that need to be specified by the

user. In order to get good estimates of the performance of each classifier a grid search over possible values

for these hyper-parameters was performed. Therefore, additional five-fold cross-valdidation was performed
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within each Nx2 cross-validation loop. The classification model selected at this stage then enters the actual

comparison ensuring that the best model from each of the different classification algorithms is compared in

the outer Nx2 cross-validation loop (Lessmann et al., 2015; Baesens, 2014).

4.3. Performance Indicators

4.3.1. Standard Performance Indicators

As discussed in a previous section, the benchmark study by Lessmann et al. (2015) recommends that future

studies should use at least three performance measures to evaluate credit scoring models, namely the AUC,

the partial Gini and the Brier Score, since these measures are both popular in credit scoring and measure dif-

ferent aspects of the performance of classifiers. The AUC assesses the discriminatory ability of a classifier

by measuring the area under the ROC curve and is equal to the probability that a randomly chosen defaulter

will receive a higher score than a randomly chosen non-defaulter (Lessmann et al., 2015). The AUC gives a

global assessment of the performance of a classifier, since it considers the whole score distribution. There-

fore it assumes that all thresholds are equally likely. This assumption is not fully realistic in credit scoring

since lenders will only accept applications that have a score which is below a defined threshold. Because

of this, the accuracy of the classifier in the lower region of the score distribution is of special importance.

Another performance measure, the partial Gini, concentrates on the discriminative ability of the classifier

in the part of the score distribution that is below the defined threshold p(+1|x) ≤ b. Here b will be chosen

to be equal to 0.4, as suggested by Lessmann et al. (2015). Lastly, the Brier score assesses the accuracy of

the probability prediction by computing the mean-squared error between p(+1|x) and the binary response

variable (Bradley, 1997; Lessmann et al., 2015; Thomas et al., 2002).

4.3.2. Profit-based Classification Measure

Traditional performance measures like the ones discussed in the previous section are often not able to

accurately take into account the business reality of credit scoring. The expected maximum profit measure

(EMP) was developed to be more in line with business concerns, and is a general performance measure

which estimates the profit that a company can achieve by applying a particular classifier (Verbraken et al.,

2014). The average classification profit for each customer achieved by utilizing a classifier for PD modelling

like described above is calculated as follows:

P(t; b1, c0, c∗) = (b1 − c∗)π1F1(t) − (c0 + c∗)π0F0(t). (4)

where b1 is the benefit of correctly classifying a customer that will default, c0 is the cost of classifying a

14



non-defaulting customer as a defaulter and c∗ is the general cost of an action undertaken by a company. The

prior probability of a default (non-default) is π1 (π0) and F1(t) (F0(t)) is the cumulative density function

of a default (non-default) given the threshold t. The estimated average profit is a function of the threshold

t, optimizing this leads to the maximum profit (MP) measure defined as MP = maxP,∀t(t; b1; c0, c∗). Since

the cost and benefit parameters, c0 and b1, can not always be determined upfront exactly, the expected

maximum profit measure is defined as a probabilistic measure as follows:

EMP =

∫
b1

∫
c0

P(T (θ); b1, c0, c∗) · h(b1, c0)dc0db1, (5)

with h(b1, c0) the joint probability density of the classification costs. Hence, EMP is a measure of the profit

a company can achieve by applying a classifier. In fact it has been shown that the EMP is an upper bound

to the profit a company can attain by applying a particular classifier (for more details on the EMP measure,

e.g. with regards to specifying the cost and benefit parameters, see Verbraken et al. (2014)).

4.4. Model Comparison

In the following section a number of methods for credit scoring will be evaluated and compared over ten

retail credit scoring data sets. Historically a number of methods have been suggested in order to statistically

compare the performance of multiple classifiers on a number of data sets. An established approach is to

carry out a Friedman test and tests the null-hypothesis that the performance of the classifiers compared is

equivalent. If the test rejects this null-hypothesis, a post-hoc test can be carried out in order to compare all

classifiers to each other (Demšar, 2006; Garcı́a et al., 2010). Historically, the concept of “statistical signif-

icance” has been used to underpin conclusions of scientific findings and has, typically, been assessed with

an index called the p-value. Although useful, the p-value has commonly been misused and misinterpreted.

This has caused a number of statisticians to discourage their use, e.g. the American Statistical Association

recommended that scientific conclusions should not only be based on whether a p-values passes a specific

threshold. These methods have therefore fallen out of favor in many fields of science (Wasserstein et al.,

2016; Benavoli et al., 2017; Kruschke and Liddell, 2018). In what follows a few fundamental limitations of

frequentist NHST (null-hypothesis statistical testing) methods will be discussed.

In machine learning, researchers often construct a number of methods on a collection of data sets and try

to prove that one method outperforms others. In order to validate the result a frequentist NHST is carried out

and the result is deemed significant at the 95% confidence level (α = 0.05) if the p-value ≤ 0.05. In this case

the hypothesis that we are interested in is the probability that the performance of the considered methods

are different (or equal). We are therefore interested in knowing the viability of the null hypothesis (i.e.
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no difference in mean performance across methods) given the data, p(H0|D). However, frequentist NHST

methods cannot answer this question in a satisfactory manner. In fact, they provide us with the probability

of obtaining our data (i.e. the observed difference in mean performance across methods), given that the

null hypothesis is true, i.e. p(D|H0). We act as if α is equal to the proportion of cases where H0 would be

falsely rejected if we would repeat our experiment. This would be correct if the p-value would give us the

probability of the hypothesis. However, the p-value provides us with the probability of our data, or more

extreme unobserved data, given that our null hypothesis is true. The p-value therefore summarises the data

assuming a specific null hypothesis, but it cannot work backward and make statements about the underlying

reality (Wasserstein et al., 2016; Kruschke and Liddell, 2018; Kruschke et al., 2012; Benavoli et al., 2017;

Nuzzo, 2014). Furthermore, the null hypothesis that the methods test states that the performance of the

classifiers are equal. In reality, this hypothesis is practically always false, since there are no two classifiers

whose performance are perfectly equivalent. If a NHST method rejects our null hypothesis, it indicates that

the hypothesis is unlikely, however this is known before the experiment is carried out. This is a problem

with frequentist null hypothesis testing in general since most factors of interest have some non-zero relation

even if the effect is very small. In machine learning this has the effect that a null hypothesis can be rejected

by testing competing classifiers on enough data since the sample size can be determined by the researcher.

Another consequence of this is that conceivable differences may not result in small p-values if the sample

used is not large enough. In the past decades, p-values have commonly been understood as an indicator of

effect size. However, in reality it is a function of the effect size as well as the sample size and therefore

the same p-values do not imply the same effect sizes. Due to this, the p-value and by extension, statistical

significance, do not measure or indicate the size of an effect or the importance of a result. Therefore,

statistical significance is not equal to practical significance (Kruschke and Liddell, 2018; Benavoli et al.,

2017; Lesaffre and Lawson, 2012; Wasserstein et al., 2016). Lastly, frequentist NHST methods yield no

information about the null hypothesis, therefore when the hypothesis is not rejected no conclusion can be

made. A large p-value suggests that the data is not unusual if the null-hypothesis is correct. In many

cases this merely indicates that the data is not able to discriminate between many competing hypothesis.

Hence, interpreting a non-significant result as evidence to support a null hypothesis (no difference in the

performance between two classifiers, for instance) is wrong since frequentist NHST methods cannot provide

evidence in favour of the null hypothesis (Kruschke, 2011; Kruschke and Liddell, 2018; Greenland et al.,

2016; Benavoli et al., 2017).
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This discussion illustrates some of the drawbacks of frequentist NHST methods. However, it is not

intended to give a complete overview of the limitations of these methods (for further discussion see e.g.

Greenland et al. (2016); Benavoli et al. (2017); Nuzzo (2014)). The motivation for the above discussion

was to highlight a number of fundamental limitations of frequentist NHST methods. At the core of these

limitations is the fact that these methods do not provide us with answers to the questions we are actually

interested in, that is: the probability of our hypothesis given the actual data. However, this is exactly what

is provided by the posterior distribution in Bayesian statistical inference. Therefore, one way to overcome

many of the drawbacks of frequentist NHST is to switch to Bayesian hypothesis testing (Kruschke and

Liddell, 2018; Benavoli et al., 2017; Corani et al., 2017). One such recent method, developed by Benavoli

et al. (2014), can be used to compare classifiers on multiple data sets. This is a Bayesian counterpart of

the frequentist signed-rank test and accounts for the region of practical equivalence (ROPE) which can be

used as a more sophisticated decision rule, compared to α, since it also provides a way of accepting a null

hypothesis, instead of only rejecting it. The method takes as input a vector containing the difference in

performance on a number of data sets. The Bayesian signed-rank test, equipped with the ROPE, is then

able to calculate the posterior probabilities of two classifiers being practically equivalent or significantly

different (Benavoli et al., 2014, 2017; Kruschke et al., 2012; Corani et al., 2017).

5. Results

In this section, the performance of the considered classifiers will be compared. As discussed in the previous

section all considered classifiers were compared on ten retail credit scoring data sets and evaluated using

four performance measures in order to obtain a good indication of the general applicability of the classifiers

for credit scoring. In the following, two statistical testing procedures will be carried out for model compar-

ison. First, the performance of the considered classifiers will be analysed using frequentist methods which

is the convention in credit scoring. Then, Bayesian statistical analysis will be conducted. This comparison

will secure empirical findings and shed a light on the applicability of these statistical testing procedures for

credit scoring.

5.1. Frequentist Model Comparison

The basis for the frequentist statistical analysis are the average ranks of the classifiers as given in Table 4.

Here, the classifiers were ranked across data sets and accuracy indicators, where the best performing clas-

sifier for a given performance measure and data set is given a rank of one and the worst classifier receives a
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rank of ten. Furthermore, the average ranking of each classifier across all performance measures is shown

in the table under the column Avg. The final row of Table 4 shows the test statistics and p-value of a Fried-

man test. This test compares the average ranks of all classifiers for the considered performance measures

and tests the null-hypothesis that the ranks of the classifiers are equal (Lessmann et al., 2015; Garcı́a et al.,

2010; Demšar, 2006). As can be seen from the table, this null hypothesis was rejected for all performance

measures (p < .000). Next, a pairwise comparison was carried out where all classifiers were compared to

the best performing classifier per performance measure where the Rom-procedure was used to compensate

for multiple testing (Demšar, 2006). The obtained p-values resulting from this comparisons are shown in

brackets in Table 4 where an underscore indicates that the null-hypothesis of a classifier performing equally

well as the best classifier was rejected (i.e., p < .05).

Table 4: Average ranking of classifiers across data sets per performance measure. The p-values resulting from a comparison where
all classifiers were compared to the best performing classifier per performance measure are given in brackets. An underscore
indicates that the null-hypothesis of a classifier performing equally well as the best classifier was rejected. The last row of the table
shows the result of a Friedman test where a null-hypothesis of equal ranks of classifier was tested for each performance measure.

AUC BS PG EMP Avg
Conventional methods

Logistic Regression 4.1 (.078) 3.5 (.069) 4.3 (.182) 3.8 (.237) 3.9
Decision Tree 6.7 (.000) 6.3 (.000) 7.0 (.000) 6.3 (.000) 6.6

Ensemble methods
Random Forest 2.9 (.369) 3.6 (.069) 3.2 (.700) 3.1 (.335) 3.2
XGBoost 2.4 (/) 1.8 (/) 3.0 (/) 2.6 (/) 2.5

Multilayer Perceptron Networks
MLP, 1 Hidden Layer 3.1 (.369) 3.0 (.095) 3.1 (.700) 3.3 (.335) 3.1
MLP, 3 Hidden Layers 3.4 (.307) 5.0 (.001) 3.4 (.700) 3.6 (.276) 3.9
MLP, 5 Hidden Layers 5.8 (.000) 4.8 (.001) 4.3 (.182) 5.6 (.001) 5.1

Deep Belief Networks
DBN, 1 Hidden layer 8.6 (.000) 8.6 (.000) 8.8 (.000) 8.6 (.000) 8.7
DBN, 3 Hidden layers 8.9 (.000) 9.0 (.000) 8.8 (.000) 9.0 (.000) 8.9
DBN, 5 Hidden layers 9.1 (.000) 9.4 (.000) 9.1 (.000) 9.1 (.000) 9.2
Friedman χ2

9 70.0 (.000) 72.0 (.000) 67.2 (.000) 66.7 (.000)

Various novel insights can be obtained from this comparison. First, the ensemble method XGBoost has

the best overall ranking of all classifiers considered here. More specifically, the classifier has the best aver-

age ranking across data sets based on all performance measures considered. Second, the two conventional

methods for credit scoring perform worse than the best performing classifier on all performance measures

considered. Decision trees have an average ranking of 6.6 and perform significantly worse than the best

classifier on all performance measures. Logistic regression has a higher ranking on average and no sig-

nificant differences were identified when the classifier was compared to the best performing classifier per

performance measure. As discussed in the previous section, this cannot be interpreted as evidence in sup-
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port of the null hypothesis of equal performance since frequentist NHST methods provide no information

on the null hypothesis. Therefore, no conclusion can be drawn when the hypothesis is not rejected. Third,

an MLP with five hidden layers performs significantly worse than XGBoost based on the AUC, Brier score

and the EMP measures. The same architecture with three hidden layers performs significantly worse than

XGBoost based on Brier score. A shallow MLP network with one hidden layer is the second best perform-

ing classifier based on its overall ranking. More specifically, the network is the second best performing

classifier based on all performance measures considered here except the EMP where a Random Forest is

the second best performing classifier. Lastly, the three worst performing classifiers based on their average

ranking are the DBNs with one, three and five hidden layers, all of which perform significantly worse than

the best classifier for all performance measures considered here.

(a) AUC (b) Brier score

(c) Partial Gini (d) EMP

Figure 4: Pairwise differences in performance of MLP and DBN networks where gray colored boxes represent differences that are
significant at the 95% confidence level.

The main motivation for this research was to investigate the appropriateness of deep learning algorithms

for credit scoring. From the above, one can conclude that the ensemble method XGBoost outperforms

these networks in general indicating that the method should be preferred for credit scoring if classification
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performance or the EMP is the objective of credit scoring activities. It is also of interest to investigate further

how deep networks perform compared to their shallower counterparts. From observing the average ranking

of the classifiers given in Table 4 one can see that deep networks do not seem to improve on the performance

of their shallower counterparts. In fact the performance of the networks seems to gradually decrease as

their complexity increases. To further investigate the performance of the deep networks with multiple

hidden layers compared to their shallower counterparts, pairwise differences between all neural network

type classifiers were explored using the Nemenyi multiple comparison procedure (Hollander et al., 2014).

The result is given in Figure 4 where gray boxes represent differences that are statistically significant. As can

be seen from the figures no deep network performs significantly differently from its shallower counterpart.

5.2. Bayesian Model Comparison

Frequentist analysis like the one carried out above has a number of fundamental drawbacks as described in

Section 4.4. Most notably that it does not provide us with the probability of the hypothesis that we are in fact

interested in testing. Bayesian statistical testing procedures can be implemented to overcome drawbacks of

frequentist NHST methods. The Bayesian signed-rank test is based on the performance differences of the

considered classifiers on a number of data sets. As an example, the performance of the classifiers based

on the AUC on a number of data sets is given in Figure 5. A number of interesting insights can be drawn

from the figure which were not immediately evident from observing the average rankings of the classifiers

as provided in Table 4.

Figure 5: Performance of the different classifier for all considered data sets as measured by AUC.

Firstly, the overall best performing classifier, XGBoost, is the best performing classifier for five out of

the ten data sets considered. Secondly, the three DBNs perform considerably worse than other considered

classifiers on all data sets considered. Furthermore, although the industry standard, logistic regression,
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performs reasonably in general more advanced methods perform considerably better on a number of the

data sets. One example of this is the HMEQ data set where the performance of the ensemble methods and an

MLP with three hidden layers is considerably better than the performance of the logistic regression model.

This could be an indication of non-linear effects and/or interactions which are not captured by the logistic

regression model. The EMP measure provides an economically motivated view on the performance of the

considered classifiers. It measures the incremental profit resulting from using a given classifier compared to

a base scenario where all loans are granted, expressed as a percentage of the total loan amount (Verbraken

et al., 2014). The base scenario used ensures consistency when evaluating a number of credit scoring

models, however the estimated profitability which results from using a credit scoring model depends on the

number defaulters in the data set. Three out of the ten data sets considered here are severely imbalanced,

namely the UK, Bene3 and GMC data sets. This is evident when Figure 6 is observed. As before, XGBoost

is the most frequent best performing classifier. Also, the DBNs are the worst performing classifiers on all

data sets considered. As can be seen, no incremental profit is obtained when the networks are evaluated

on the three severally imbalanced data sets indicating that the DBNs are not able to accurately identify the

defaulters present in those data sets.

Figure 6: Performance of the different classifier for all considered data sets as measured by EMP. The estimated profitability
depends on the number of defaulters in a data set. Therefore, the performance of the classifiers on severely imbalanced data sets is
given on the left.

When a Bayesian analysis is carried out, the experiment is summarized by the posterior distribution.

By querying this distribution it is possible to evaluate the probability of the hypothesis. For instance we

can infer the probability that one classifier performs practically better or worse than another or if they are

practically equivalent. In order to do this the size of the ROPE has to be specified. For our analysis the ROPE

was set to 0.01 when evaluating the results based on the AUC and the partial Gini. The Bayesian statistical

procedure then computes how much of the resulting posterior distribution of the mean difference lies in the
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ROPE, which is the interval (-0.01, 0.01). When evaluating the results based on the Brier score and the EMP,

the ROPE was set to lower values or 0.0025 and 0.001 respectively, which was deemed more appropriate for

these two performance measures. The outcome of a Bayesian statistical procedure can be visualized using

a probability simplex like the one given in Figure 7. In the figure two classifiers (XGBoost and logistic

regression) are compared based on the AUC using Bayesian statistical comparison. The figure shows the

samples from the posteriors (cloud of points) and the three regions of the posterior distribution. The region

at the bottom left represents the case where XGBoost is more probable than both logistic regression and

the ROPE together, the region at the top of the triangle corresponds to the case where the ROPE is more

probable than two classifiers together and lastly, the region on the bottom right represents the case where

logistic regression is more probable than XGBoost and the ROPE together. Based on the figure we can see

that a large proportion of the cases support XGBoost. This can be quantified numerically by computing the

proportion of points that fall in the three regions. When this is done we find that XGBoost is better in 57.8%

of the cases and can therefore conclude with probability of 57.8% that XGBoost performs practically better

than logistic regression. This illustrates the benefits of Bayesian statistical testing procedures constructed

using a posterior distribution equipped with ROPE. These procedures allow us to estimate the posterior

probability of a sensible null hypothesis, i.e. the area within the ROPE, and claim practically meaningful

differences, i.e. the area outside the ROPE (Benavoli et al., 2017).

Figure 7: Example of Bayesian statistical comparison of XGBoost and logistic regression based on the AUC. The figure shows the
samples from the posteriors and their distribution between the three regions of the posterior distribution.

The result of a Bayesian analysis where all classifiers are compared to the best performing classifier

for each performance measure over all data sets is given in Table 5. Each cell in the table contains three
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values indicating the proportion of cases that fell in each of the three regions of the probability simplex: the

lower left value is the posterior probability that the best performing classifier for each performance measure

performs practically better than the classifier mentioned in the leading column, the lower right value is the

posterior probability that the classifier mentioned in the leading column performs practically better than the

best performing classifier, and the upper value is the posterior probability of the ROPE, indicating that the

compared classifiers are practically equivalent. The result obtained using the Bayesian analysis provides

us with the probabilities of the decisions we are actually interested in. Therefore, we are able to make

decisions using these probabilities which can be directly interpreted, contrary to p-values. For instance, we

can decide as a hard rule that a significant result is obtained if one of the three probabilities exceeds the

95% threshold. This is indicated using an underscore in Table 5. It should be noted here that using a hard

rule in order to claim a statistically significant result, although often useful when one wants to carry out

multiple analyses, introduces black and white thinking which has limitations. One way to counter this is to

compute posterior odds when none of the posterior probabilities meet the threshold. For instance, one can

compute the posterior odds of XGBoost performing practically better than logistic regression by computing

o(XG,LR) = p(XG)/p(LR). Computing the odds based on the AUC yields 288 indicating strong evidence

for XGBoost based on the performance measure (Benavoli et al., 2017; Corani et al., 2017).

Using frequentist NHST methods, no significant differences in performance were identified when the in-

dustry standard, logistic regression, was compared to the best performing classifier, XGBoost. As discussed

before, this cannot be interpreted as evidence of no difference since frequentist NHST methods cannot pro-

vide evidence in favour of the null hypothesis. When the outcome of a Bayesian analysis is observed where

the two classifiers are compared we can see that none of the obtained posterior probabilities exceed the

hard rule of 95%. However, as shown in the table a majority of the cases support XGBoost over logistic

regression based on the AUC (57.6%) and the partial Gini (83.8%). If we compute the posterior odds based

on the results for the two performance measure we can conclude that there is strong evidence to suggest

that XGBoost practically outperforms logistic regression based on the AUC (o(XGB, LR) = 288) and posi-

tive evidence to suggest that XGBoost practically outperforms logistic regression based on the partial Gini

(o(XGB, LR) = 7). Like before, decision trees perform significantly worse than XGBoost based on all

performance measures considered with a probability between 97.7-100%. No conclusions could be drawn

when the two ensemble methods were compared using frequentist NHST methods. When the outcome of

the Bayesian analysis is observed it is evident that none of the obtained posterior probabilities exceed the
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Table 5: Comparison of the performance of all classifiers with the best ranking classifier per performance measure. The lower left
value in each cell is the posterior probability that the best performing classifier for that performance measure performs practically
better than the classifier mentioned in the leading column, the lower right value is the posterior probability that the classifier
mentioned in the leading column performs practically better than the best performing classifier, and the upper value is the posterior
probability of the ROPE. An underscore indicates that a significant result is obtained. Lastly, the average ranking of the best
performing classifier per performance measure is given in bold.

AUC BS PG EMP
Conventional methods

Logistic Regression
.404

.576 ; .002
.467

.377 ; .156
.042

.838 ; .120
.656

.266 ; .078

Decision Tree
.001

.999 ; .000
.000

1.000 ; .000
.000

1.000 ; .000
.023

.977 ; .000
Ensemble methods

Random Forest
.886

.099 ; .015
.852

.110 ; .038
.026

.549 ; .426
.945

.000 ; .055
XGBoost 2.4 1.8 3.0 2.6

Multilayer Perceptron Networks

MLP, 1 Hidden Layer
.734

.264 ; .002
.518

.366 ; .117
.111

.481 ; .408
.928

.071 ; .000

MLP, 3 Hidden Layers
.530

.467 ; .003
.145

.855 ; .000
.010

.670 ; .319
.794

.201 ; .005

MLP, 5 Hidden Layers
.013

.987 ; .000
.094

.906 ; .000
.001

.733 ; .266
.462

.538 ; .000
Deep Belief Networks

DBN, 1 Hidden layer
.000

1.000 ; .000
.000

1.000 ; .000
.000

1.000 ; .000
.001

.999 ; .000

DBN, 3 Hidden layers
.000

1.000 ; .000
.000

1.000 ; .000
.000

1.000 ; .000
.001

.999 ; .000

DBN, 5 Hidden layers
.000

1.000 ; .000
.000

1.000 ; .000
.000

1.000 ; .000
.001

.999 ; .000

hard rule of 95%. However, a large fraction of the posterior distribution (85.2-94.5%) seems to support the

ROPE for three out of the four performance measures considered, suggesting that the performance of the

two classifiers is practically equivalent based on those performance measures. Like before, the three DBN

architectures considered here perform significantly worse than XGBoost based on all performance measures

considered with a probability between 99.9-100%. The MLP network with five hidden layers also performs

significantly worse than XGBoost based on the AUC with a probability of 98.7%. The same architecture

with three hidden layers was found to perform significantly worse than XGBoost based on the Brier score

using frequentist NHST methods. When the classifiers are compared using Bayesian methods none of the

obtained posterior probabilities exceed the hard rule of 95%. However, a large fraction of the cases support

XGBoost based on the Brier score (85.5%). Also, there is strong evidence in support of the ROPE over the

MLP architecture (o(ROPE,MLP3) = 158) and positive evidence in support of the ROPE over XGBoost

(o(ROPE, XGB) = 4) based on the EMP, indicating that the performance of the two classifiers is practically

equivalent based on that performance measure. Lastly, no statistically significant differences were identified
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when the performance of the MLP network with one hidden layer was compared to the performance of the

best performing classifier using frequentist methods. When the results from the Bayesian model compar-

ison are observed we can see that a substantial fraction of the posterior distribution seems to support the

ROPE based on three out of the four performance measures considered. E.g. a large majority of the cases

sampled from the posterior support the ROPE based on the EMP (92.8%) indicating that the performance

of the classifiers is practically equivalent based on that performance measure.

Table 6: Comparison of neural network based classifiers per performance measure. The lower left value in each cell is the posterior
probability that the classifier mentioned on the left performs practically better than the classifier mentioned on the right, the lower
right value is the posterior probability that the classifier mentioned on the right performs practically better than the classifier
mentioned on the left, and the upper value is the posterior probability of the ROPE. An underscore indicates that a significant result
is obtained.

AUC BS PG EMP

DBN-1 vs. DBN-3
.964

.000 ; .036
1.000

.000 ; .000
.078

.282 ; .640
1.000

.000 ; .000

DBN-1 vs. DBN-5
.927

.011 ; .062
1.00

.000 ; .000
.060

.290 ; .650
1.000

.000 ; .000

DBN-3 vs. DBN-5
1.000

.000 ; .000
1.000

.000 ; .000
.552

.365 ; .083
1.000

.000 ; .000

MLP-1 vs. MLP-3
.963

.000 ; .037
.999

.001 ; .000
.097

.223 ; .680
0.963

.000 ; .037

MLP-1 vs. MLP-5
.124

.876 ; .000
.960

.040 ; .000
.016

.787 ; .197
0.558

.442 ; .000

MLP-3 vs. MLP-5
.301

.699 ; .000
1.000

.000 ; .000
.099

.705 ; .196
0.461

.539 ; .000

In order to investigate how deep networks compare to their shallower counterparts, pairwise differences

in the performance of neural network based classifiers were explored using Bayesian statistical testing

procedures as given in Table 6. When analysed using frequentist NHST methods no significant differences

were found when the performance of deep networks were compared to the performance of their shallower

counterpart, it should be reaffirmed here that this cannot be interpreted as evidence of no difference in

the performance of the methods, since no conclusion can be drawn when frequentist NHST methods do

not reject the null hypothesis. This can, however, be formally tested using Bayesian statistical testing

procedures. As can be seen from Table 6, deep networks do not seem to improve on the performance of

their shallower counterparts in general. When DBNs are considered, the performance of the network with

three hidden layers is practically equivalent to its one layer counterpart based on the AUC, Brier score and

EMP. The performance of the same network with five hidden layers is also practically equivalent to a DBN

with one hidden layer based on the Brier score and EMP. Furthermore, the performance of a DBN with

five hidden layers is practically equivalent to the performance of the same network with three hidden layers
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based on the AUC, Brier score and EMP. From observing the results of the comparison for MLP networks

similar conclusions emerge. A MLP with a single hidden layer performs practically equivalently as the

same network with three hidden layers based on the AUC, Brier score and EMP. The network with one

hidden layer performs practically equivalently too the same network with five hidden layers based on the

Brier score. Also, a MLP with three hidden layers performs practically equivalently to the same network

with five hidden layers based on the Brier score.

6. Conclusions

The appropriateness of different classification algorithms for credit scoring has been extensively researched

since the field originated in the 1950s. In the past decade, research in credit scoring has taken into ac-

count the emergence of ensemble methods and concluded that one such method, random forests, should be

considered as a benchmark method for credit scoring. More recently, XGBoost has been proposed and con-

sidered for credit scoring where it has been shown to outperform random forests in some cases. However,

research on classification algorithms for credit scoring has largely ignored the development of deep learn-

ing architectures. This calls for a further update on research by considering deep learning algorithms for

credit scoring. To this end, two deep learning architectures were constructed, namely deep belief networks

and multilayer perceptron networks, and compared to conventional methods for credit scoring, logistic re-

gression and decision trees, and two ensemble methods for credit scoring, random forests and XGBoost.

The different classifiers were compared based on four performance indicators over ten data sets. Lastly,

Bayesian statistical testing procedures were introduced in the context of credit scoring and compared to

frequentist NHST methods which have traditionally been considered best practice in credit scoring. This

comparison highlighted the many benefits of Bayesian statistical testing procedures and secured empirical

findings.

Mainly two conclusions can be drawn from comparing the different classifiers. Firstly, XGBoost is the

overall best ranking classifier of all classifiers considered here and is the best performing classifier based

on all performance measures considered. Secondly, deep networks with a number of hidden layers, i.e.

deep learning, do not outperform shallower networks with one hidden layer. It should also be taken into

account in this comparison that the deep networks come with a much greater computational cost than the

other classifiers considered here since the number of models that one needs to construct to adequately tune

the hyper-parameters of the models grows exponentially with the number of hidden layers. Hence, one
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can conclude that deep learning algorithms do not seem to be appropriate methods for credit scoring and

that an ensemble method, XGBoost, should in general be preferred over the other credit scoring methods

considered here when classification performance is the main objective of credit scoring activities.

As discussed earlier, the modern era of research on neural networks can be attributed to the pioneering

work of McCulloch and Pitts (1943) who showed that in theory neural networks could fit any computable

function. In light of this result, it seems surprising that an ensemble method, namely XGBoost, is the best

performing classifier and that the neural network based models are not able to outperform the classifier. In

this research, two neural network based architectures were considered and constructed using one, three and

five hidden layers. From our analysis, we could conclude that in general deep networks do not outperform

their shallower counterparts. More specifically it was found that in many cases the performance of deep

networks is often practically equal to the performance of its shallower one layer counterpart. A plausible

explanation for why the deep networks do not outperform the other methods considered here is likely pro-

vided by the fact that deep learning has been shown to be very good at discovering intricate structures, given

however that plenty of instances are available to learn from (LeCun et al., 2015), which might not be the

case for most credit risk data sets.

It should also be noted that ensemble models are so-called “black box” models, indicating that it is

difficult to interpret why these models reach a certain outcome or make a certain prediction. If interpretabil-

ity of the model’s prediction is of main concern one might want to fall back on conventional methods for

credit scoring, e.g. logistic regression. However, if predictive performance is the primary focus of model

construction then XGBoost seems to be the best choice in general. Furthermore, the neural network based

models considered here, i.e. multilayer perceptron and deep belief networks, are also considered black box

models. Therefore, these models in general have worse predictive performance for credit scoring than the

two ensemble methods considered here and are more difficult to construct and interpret. It is worth noting

that even when interpretability is a precondition for credit scoring activities, black-box models, which have

shown to perform well for credit scoring, are still a valuable benchmarking tool. This is due to the fact that

these models can be utilized in order to identify important non-linear effects and/or interactions in credit

scoring data sets. If consequential non-linearities are identified then practitioners can approximate these

using generalized additive models. This framework for model construction has already been suggested

and successfully applied in the literature (e.g. Van Gestel et al. (2005, 2006)). Furthermore, over the past

decades the field of explainable AI (XAI) has emerged which concerns itself with developing methods in
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order to interpret the prediction of black box models (Adadi and Berrada, 2018). This has resulted in a

number of methods being developed for this purpose (see e.g. Ribeiro et al. (2016); Lundberg and Lee

(2017)).

To reach our outcome, a sizeable number of real-life data sets were included in our empirical setup.

These data sets are quite varied both in terms of the number of observations and inputs used, therefore

this research gives a good indication of the general performance of the considered classifiers for credit

scoring. An interesting avenue for future work would be to consider less traditional data sources for credit

scoring, e.g. unstructured data sources such as imagery or text, in an attempt to enhance the richness of the

considered data sources and further improve the performance of classification algorithms for credit scoring.

Using mobile phone data and textual data has for example shown very promising results in this regards

(e.g. Óskarsdóttir et al. (2019); Stevenson et al. (2020)). Additionally, future research could expand on this

research by taking into account other novel deep learning algorithms such as convolutional neural networks.
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