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ABSTRACT

This paper analyzes a condition-based maintenance (CBM) model for a system with two

heterogeneous components in which degradation follows a bivariate gamma process. Unlike the

traditional CBM formulation that assumes an infinite planning horizon, this paper evaluates

the maintenance cost in a finite planning horizon, which is the practical case for most systems.

In the proposed CBM policy, both components are periodically inspected and a preventive or

corrective replacement might be carried out based on the state of degradation at inspection.

The CBM model is formulated as a Markov decision process (MDP) and dynamic programming

is used to compute the expected maintenance cost over a finite planning horizon.

The expected maintenance cost is minimized with respect to the preventive replacement

thresholds for the two components. Unlike an infinite-horizon CBM problem, which leads to

a stationary maintenance policy, the optimal policy in the finite-horizon case turns out to be

non-stationary in the sense that the optimal actions vary at each inspection epoch. A numerical

example is presented to illustrate the proposed model and investigate the influence of econom-

ic dependency and correlation between the degradation processes on the optimal maintenance

policy. Numerical results show that a higher dependence between the degradation processes

actually reduces the maintenance cost, while a higher economic dependence leads to higher pre-

ventive replacement thresholds.
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1 Introduction

With the fast development of modern industries, maintenance operations have played an increasing-

ly important role in preventing system failures and improving operational safety. In recent years,

advances in sensing and monitoring technologies have inspired rapid development of condition-

based maintenance (CBM)(Elwany et al., 2011; Wu and Castro, 2020; Liu, Do, Iung and Xie, 2020;

Omshi et al., 2020). CBM has shown its superiority over time-based maintenance from both the

academic and practical points of view (Bei et al., 2019).

Several CBM strategies have been reported in the literature for single-unit systems. In general,

maintenance strategies for a single-unit system cannot be directly applied to multi-unit systems

due to various dependencies among components (economic, structural, and stochastic) (Dekker

et al., 1997; Wang, 2002; Luo and Wu, 2018). Economic dependence indicates that simultaneous

maintenance of multiple components can save cost compared with multiple individual maintenance

actions, as the setup cost can be shared when the components are jointly maintained. Structural

dependence occurs when the components structurally constitute a unified part, i.e., maintenance

of one component requires the disassembly or replacement of other components. Stochastic depen-

dence implies that failure or degradation of one component influences the state of degradation in

other components (Olde Keizer et al., 2017).

Traditionally, group maintenance and opportunistic maintenance are two main approaches to

dealing with economic dependence (Wildeman et al., 1997; Bouvard et al., 2011; Liu et al., 2017;

Vu et al., 2018; Abbou and Makis, 2019). In the first approach, a common practice is to specify

one or multiple maintenance thresholds in advance and then repair or replace the components

whose degradation levels have exceeded the associated critical thresholds as found by an inspection

(Van Horenbeek and Pintelon, 2013; Shafiee and Finkelstein, 2015; Olde Keizer et al., 2016; Chalabi

et al., 2016; Verbert et al., 2017; Wu et al., 2017). As opposed to group maintenance under which the

inspection interval and preventive maintenance thresholds are scheduled in advance, opportunistic

maintenance does not require planned maintenance operations. In this approach, the maintenance

action is initiated upon hitting a critical threshold (either at the system level or at the component

level), and additional opportunistic thresholds are specified to determine the maintenance actions

on other components (Tian and Liao, 2011; Huynh et al., 2015; Zhou et al., 2015; Zhang and Zeng,

2015; Liu et al., 2018).

Recently, several studies have been devoted to maintenance modelling and optimization with

consideration of dependence among degradation processes. This type of dependence can occur in

various scenarios, e.g., failure-induced, load-sharing, and common-mode (Olde Keizer et al., 2017).

In the failure-induced scenario, failure of one component can cause damage to the remaining compo-

nents (Rasmekomen and Parlikad, 2016; Olde Keizer et al., 2017; Berrade et al., 2018; Yuan et al.,

2019; Liu, Zhao, Liu and Liu, 2020). Dao and Zuo (2016) proposed a selective maintenance model

for a multi-unit system, where failure or degradation of one component increases the failure rates
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of other components. In the load-sharing scenario, multiple components share the total system

load (Zhao et al., 2018; Xu et al., 2019). Failure or degradation of one component will increase

the load on other components, resulting in an increased degradation level or failure rate. Shi and

Zeng (2016) developed an opportunistic CBM policy considering the influence of one component’s

degradation level on the remaining useful life of other components. In the common-mode scenario,

components follow similar deterioration or failure patterns when operating in a common environ-

ment. An increase in the degradation of one component is usually accompanied with a degradation

increase of other components. Copula is a popular approach to model dependencies among compo-

nents. Li et al. (2016) described the dependence of degradation processes via Lévy copulas, which

are useful to model the dependence among degradation processes. In addition, dependence among

degradation processes due to common environment can be characterized through a multivariate

degradation process. Mercier and Pham (2012) adopted a bivariate non-decreasing Lévy process

to model a two-unit system. The degree of dependency is described by the correlation coefficient

of the process. Yet in that model, the components are assumed to be maintained simultaneously

upon any component reaching a preventive replacement threshold. The authors further extended

this work by considering separate maintenance (Mercier and Pham, 2014).

An extensive literature review shows that CBM for multi-unit systems has been largely limited

to an infinite horizon scenario. A possible reason is that maintenance optimization in an infinite-

horizon can be easily performed via an asymptotic approach based on the renewal reward theorem

(de Jonge and Scarf, 2020). The asymptotic long-run cost rate converges to the ratio of the

expected cost in a renewal cycle to the expected length of a renewal cycle, which is rather easy to

obtain (Pandey and Van Der Weide, 2017). In reality, most equipment and facilities are designed to

operate for a finite time period (Wang, Li and Xie, 2020; Wang, Zhao and Liu, 2020). Various factors

contribute to the obsoleteness, such as demand change or incompatibility due to software/hardware

upgrade. Several practical systems, such as piping systems, are usually evaluated in a finite time

horizon. For example, Pandey et al. (2011) evaluated the life cycle maintenance cost of a piping

system that is used for heat transport in nuclear power plants for a 30-year horizon. In this scenario,

maintenance decisions based on the infinite-horizon assumption may provide a suboptimal solution.

This study investigate the CBM policy for a two-unit system in the finite-horizon setting. The

system under investigation consists of two non-identical components, in which degradation processes

are modeled as a bivariate gamma process. A component is said to be failed when its degradation

level exceeds a specific failure threshold. Periodic inspection is carried out to detect and measure

the degradation levels of the components. Each component will be preventively replaced if its

degradation level exceeds a specific preventive maintenance threshold, and corrective replacement

will be implemented if a component is found failed at inspection. We formulate the maintenance

problem into a Markov decision process (MDP) framework and obtain the optimal maintenance

policy by minimizing the expected maintenance cost. Specifically, we investigate the structure

property of the optimal maintenance policy and obtain boundaries for various maintenance actions.
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A backward dynamic programming algorithm is developed to compute the expected maintenance

cost. Finally, we present a numerical example to illustrate the proposed maintenance model and

investigate the influence of economic dependence and correlation between the degradation processes

on the optimal maintenance policy.

Research contributions of this paper are summarized as follows:

• We develop a CBM model for a degrading system in a finite-time horizon.

• We consider a system with two non-identical dependent components and formulate the main-

tenance problem as a MDP.

• We investigate the structure of the optimal solution of maintenance policy and determine the

boundaries for various maintenance actions.

• We investigate the influence of economic dependence and correlation between the degradation

processes on the optimal maintenance policy.

The rest of the paper is organized as follows. Section 2 describes the bivariate gamma degra-

dation processes and discusses the maintenance actions and costs. In Section 3, the maintenance

problem is formulated as MDP and a solution algorithm is presented based on backward dynam-

ic programming. Section 4 evaluates the maintenance cost under fixed preventive maintenance

thresholds for comparison purposes. Section 5 presents an illustrative example to demonstrate the

implementation of the proposed maintenance model. This section includes sensitivity analysis with

respect to various model parameters. Finally, concluding remarks and future research directions

are discussed in Section 6. All technical proofs are presented in the Appendix.

Nomenclature

Xi(t) Degradation level of component i at time t

X(t) = (X1(t), X2(t)) Bivariate indicator denoting system degradation level at time t

Ga(t;α, β) Gamma process with shape parameter α and scale parameter β

ρ correlation coefficient between the degradation level of the two components

fX(t)(x1, x2) Joint pdf of the system degradation level

FX(t)(x1, x2) Joint cdf of the system degradation level

Li Failure threshold of component i

Pi Preventive maintenance threshold of component i

δ Inspection interval

ci, cp,i, cf,i Cost of inspection, preventive maintenance for component i

and corrective replacement for component i, respectively

cs Setup cost of maintenance actions

4



cd Downtime cost per unit time

γ Discount rate

Te Length of the planning horizon

N Total number of inspections

Vkδ(x1, x2) Value function, denoting minimum expected total discounted

cost from period k to the terminal period (cost-to-go)

for system at state (x1, x2)

Wkδ(x1, x2) Expected downtime cost between the kth and (k + 1)th

inspections for system at state (x1, x2)

Tk Time interval between a system failure and the kth inspection

d(Tk) Downtime cost between the kth and (k + 1)th inspections

Si Discretized states of component i

M Number of discretized states of the components

2 Problem statement

2.1 Bivariate gamma process of degradation

Degradation in a two-unit series system is modeled as a bivariate gamma process. In a univariate

gamma process, degradation at time t, Y (t), follows a gamma distribution with parameters (α, β),

i.e., Y (t) ∼ Ga(t;α, β), with the probability density function (pdf)

fαt,β(y) =
βαt

Γ(αt)
e−βyyαt−1. (1)

Degradation magnitudes in two components are denoted as X(t) = (X1(t), X2(t)). We construct

the bivariate gamma process by trivariate reduction (Mercier and Pham, 2012). Let {Y1(t)}t≥0,

{Y2(t)}t≥0, and {Yu(t)}t≥0 be three independent univariate gamma processes, with parameters

(α1, β), (α2, β), and (αu, β). Define X1(t) = Y1(t) + Yu(t), and X2(t) = Y2(t) + Yu(t). The process

{X(t)}t≥0 = {(X1(t), X2(t))}t≥0 is then a bivariate subordinator with gamma marginal processes

and parameters (ai, β), where ai = αi + αu, i = 1, 2. In this way, the linear correlation coefficient

between the two random variables X1(t) and X2(t) is

ρ =
αu√
a1a2

,

which is independent of t. Since the components follow gamma degradation processes, the degra-

dation increment of each component, which is the increment of degradation level between any two

time instants, must be nonnegative, the joint pdf of X1(t) and X2(t) is given by

fX(t)(x1, x2) =

∫ xm

0
fα1t,β(x1 − u)fα2t,β(x2 − u)fαut,β(u)du, (2)
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and the associated cumulative distribution function (cdf) is expressed as

FX(t)(x1, x2) =

∫ xm

0
Fα1t,β(x1 − u)Fα2t,β(x2 − u)fαut,β(u)du. (3)

, where xm = min{x1, x2}.

2.2 Maintenance actions and costs

The system fails when degradation in any component exceeds a specific threshold. Periodic in-

spection is carried out to detect and measure the degradation level, with inspection interval δ and

inspection cost ci. We assume that the component failure mode is dormant, which can only be

discovered at inspection. Upon inspection, a failed component will undergo corrective maintenance

at a cost cf,i for component i. Meanwhile, the decision maker needs to determine whether to pre-

ventively maintain the other component. For each component, there are three possible maintenance

actions: do nothing (DN), preventive maintenance (PM), and corrective maintenance (CM). We

assume that for both PM and CM actions, a component will be replaced by a new identical one,

i.e., it will be restored to the as-good-as-new state upon maintenance. The maintenance duration

is assumed to be negligible. The PM cost of component i is denoted as cp,i. In addition, a setup

cost cs is incurred whenever maintenance actions (either PM or CM) are implemented. The setup

cost can be shared when multiple maintenance actions are carried out simultaneously. The unit

costs associated with different maintenance actions are given as follows:

• ci, if no replacement is implemented;

• cs + cp,i, if only component i is preventively replaced;

• cs + cp,1 + cp,2, if the two components are preventively replaced simultaneously;

• cs + cf,i, if only component i is correctively replaced;

• cs + cf,1 + cf,2, if the two components are correctively replaced simultaneously;

• cs+cp,i+cf,j , if component i is preventively replaced and component j is correctively replaced.

If the system breaks down between two inspections, downtime cost will occur at cd per unit

time. It is assumed that the costs incurred at time t would be discounted to present value using

discount factor, e−γt, for a fixed nonnegative rate γ (γ ≥ 0), where γ = 0 implies no discount. It

is further assumed that the system operates for a finite horizon Te. With the inspection interval

δ, the total number of inspections is given by N = bTe/δc, where b·c is the floor operation. Since

periodic inspection is performed on the system, for notational convenience, we denote tk = kδ, and

tk and kδ will be used interchangeably in the following context.
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3 Formulation of the maintenance policy

In this section, we formulate the maintenance problem as a MDP model and investigate the structure

property of the optimal maintenance policy, which shows that the optimal maintenance decision

is a control-limit policy. In addition, we develop a backward dynamic programming algorithm to

obtain the optimal maintenance policy and the associated cost.

3.1 MDP formulation

Let the value function, Vkδ(x1, x2), denote the minimum expected discounted cost from the current

period k to the terminal period (cost-to-go) for the system at state (x1, x2). The optimality equation

can be formulated as

Vkδ(x1, x2) =


cs + cf,1 + cf,2 + Vkδ(0, 0), x1 > L1 & x2 > L2

min{cs + cf,1 + Vkδ(0, x2), cs + cf,1 + cp,2 + Vkδ(0, 0)}, x1 > L1 & x2 ≤ L2

min{cs + cf,2 + Vkδ(x1, 0), cs + cp,1 + cf,2 + Vkδ(0, 0)}, x1 ≤ L1 & x2 > L2

min {C0,k, C1,k, C2,k, C12,k} , otherwise

(4)

C0,k = e−γδ(ci + Ukδ(x1, x2)) +Wkδ(x1, x2), (5)

C1,k = cs + cp,1 + Vkδ(0, x2), (6)

C2,k = cs + cp,2 + Vkδ(x1, 0), (7)

C12,k = cs + cp,1 + cp,2 + Vkδ(0, 0), (8)

where Ukδ(x1, x2) is the expected value function at the next inspection epoch and Wkδ(x1, x2) is

the expected downtime cost within the kth and (k + 1)th inspections. It follows that

Ukδ(x1, x2) = E[Vk+1(X1,k+1, X2,k+1)|X1,k = x1, X2,k = x2], (9)

and

Wkδ(x1, x2) = E[d(Tk)|X1,k = x1, X2,k = x2]

= E

[∫ δ

Tk

cd · e−γtdt
]

=

∫ δ

0

cd(e
−γt − e−γδ)

γ
dFTk(t),

(10)
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where Tk is the time interval between a system failure and the kth inspection (0 ≤ Tk ≤ δ), and

d(Tk) is the downtime cost within the kth and (k + 1)th inspections. The cdf of Tk is given by

FTk(t) = 1− P (X1(t) ≤ L1, X2(t) ≤ L2|X1,k = x1, X2,k = x2)

= 1−
∫ Lm−xm

0
Fα1t,β(L1 − x1 − u)Fα2t,β(L2 − x2 − u)fαut,β(u)du,

(11)

where Lm − xm = min{L1 − x1, L2 − x2}.
The explanation of the optimality equation (4) goes as follows. If the two components are found

failed at the kth inspection, then CM will be implemented on both the components, and the system

is recovered to the perfect condition. If one of the components fails, CM will be performed on the

failed component and meanwhile the decision-maker needs to decide on whether to preventively

maintain the other component. Otherwise, the decision-maker has four options: PM on both

components, PM on component 1 only, PM on component 2 only, or do nothing till the next

inspection, depending on which one is more cost-effective.

For each component, three maintenance actions (CM, PM, and DN) can be implemented. There-

fore, there are totally nine maintenance actions that can be envisioned for the two-unit system, as

illustrated in Fig. 1. In this figure, the two axes, X1(tk) and X2(tk), stand for the degradation

levels of the two components at the kth inspection. The system state is divided into nine regions,

each of which is associated with an optimal maintenance action. PM12 (resp. CM12) represents

PM (resp. CM) on both the two components, and PMi (resp. CMi) stands for PM (resp. CM)

on component i. For each system state, there is an optimal maintenance action among the nine

actions, which can be obtained from the value function. In the following, we will investigate the

monotonicity property of the value function and the structure of the optimal maintenance policy.

DN

L1 X1(tk)

L2

X2(tk)

PM2 PM12 CM1,PM2

CM12

CM1PM1

CM2 CM2,PM1

Figure 1: Illustrative regions of maintenance actions

Backward dynamic programming is employed to solve the problem. Usually, the terminal values

can be determined based on the salvage value of the system. When the operating horizon Te is large

enough, arbitrarily setting the terminal values will not influence the optimal decision rules at the

initial periods. Before we proceed to study the property of the value function, we first introduce

the definition of stochastic dominance. A random variable X is stochastically less than a random
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variable Y , denoted by X≺stY , if P (X > t) ≤ P (Y > t) for all t ≥ 0. In addition, if X≺stY , it

holds that E[f(X)] ≥ E[f(Y )] for all non-increasing functions f(·). Stochastic dominance is used

to establish the monotonic property of the value function on the component degradation level x1

and x2.

Proposition 1. The value function, Vkδ(x1, x2), is nondecreasing in x1 and x2 for all k = 0, 1, 2, ..., N .

The monotonicity of the value function leads to the optimal maintenance policy.

Proposition 2. The optimal maintenance policy at inspection epoch tk (k = 0, 1, . . . , N − 1) is

a two-dimensional control-limit policy. The control limits exhibit the following properties. There

exists ζi (i = 1, 2) and a function hi(·), xi = ζi is the boundary of PM12 and PM3−i for hi(ζi) ≤
x3−i < L3−i. For 0 ≤ xi < ζi, the optimal maintenance action is PM3−i for x3−i > hi(xi)

and DN for x3−i ≤ hi(xi). There exists a line x2 = l(x1) as the boundary of PM12 and DN for

ζi ≤ xi < h3−i(x3−i). In addition, l(x1) is nonincreasing in x1.

Proposition 2 presents the structure of the optimal maintenance policy in the case that the

system is working at the inspection epoch. Fig. 2 illustrates the regions for PM and DN to better

understand the optimal structure. As one can observe, the system state is divided into four regions,

where each region corresponds to a maintenance action (DN, PM1, PM2, or PM12).

DN

L1 X1(tk)

L2
X2(tk)

PM2 PM12

PM1

x2=h1(x1)

x1=h2(x2)

x2=l(x1)

Figure 2: Illustration of the optimal two-dimensional control limit policy

Along with the discussion on the structure property of the optimal maintenance policy, another

interesting finding on the region of system state in which PM12 is the optimal maintenance action,

is discussed as follows.

Corollary 1. Given xi = ζi (i = 1, 2) as the boundary of PM12 and PM3−i, if PM12 is the optimal

maintenance action upon system state (x1, x2), then (x1, x2) ∈ [ζ1, L1]× [ζ2, L2].

The following corollary further shows the control limits when the degradation level at inspection

exceeds the failure threshold.

Corollary 2. If xi = ζi is the boundary of PM12 and PM3−i, it also serves as the boundary of

CM3−i and {CM3−i, PMi} for x3−i ≥ L3−i.
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Corollary 2 indicates that the control limits of preventive maintenance are also applicable to

corrective maintenance. That is to say, the boundaries of corrective maintenance can be readily

obtained when the boundaries of preventive maintenance are determined, which is useful for main-

tenance decision making. According to Corollary 2, the maintenance policy can be simplified by

focusing on the optimal policy for preventive maintenance.

While a stationary maintenance policy was proposed by Sun et al. (2018) for a k-out-of-n:

F system operating in an infinite horizon, the optimal policy in our study is non-stationary in

such a way that the obtained control limits vary with the number of inspection k. This is due to

the fact that the operating horizon is finite and the optimal maintenance decision varies with the

remaining operating period. The optimal decision at the kth inspection, πk(x1, x2), can be obtained

by solving the Bellman equation at the current system state (x1, x2). The optimal maintenance

policy, Π(x1, x2), is the set of optimal decision rules through the inspection epochs, i.e., Π(x1, x2) =

(π1(x1, x2), π2(x1, x2), ..., πN (x1, x2)).

3.2 Solution based on backward dynamic programming

Having discussed the value function and its properties, we proceed to devise an algorithm to com-

pute the value function and the associate control limits at each inspection epoch. From the Bellman

equation in Eq. (4), we can find that the total cost-to-go at period k depends only on the values at

the next epoch and the expected downtime cost given the current system state. With this observa-

tion, we can employ backward dynamic programming for the calculation purpose (Puterman, 2014).

Before implementing the backward dynamic programming algorithm, we first need to discretize the

continuous degradation processes into a set of finite states. We discretize the degradation level of

the two components into M states for some positive integer M . The degradation level of component

i is evenly divided within the interval [0, Li], with the increment Λi = Li/M . Then the component

state is denoted as Si = {Λi, 2Λi, ..., Li−Λi, Li}. Component i is said to stay in state jΛi (j ≤M)

if the degradation level is within the interval [(j−1)Λi, jΛi). Fig. 3 sketches how the discretization

of component degradation process works.

Figure 3: Discretization of the degradation process

The state space of the finite-horizon MDP is given by S = {K×S1×S2}, where K = {1, 2, ..., N}
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is the set of decision epochs and “×” denotes the Cartesian product of two sets. At the kth

inspection, given that the system has not failed (x1 < L1 and x2 < L2), the transition probability

of the system state at the next inspection is given as

P (X1,k+1 = ω1, X2,k+1 = ω2|X1,k = x1, X2,k = x2)

=

∫ ζm

0
g1(u)g2(u)fαut,β(u)du,

where ζm = min{ω1−Λ1−x1, ω2−Λ2−x2}, and gi(u) = Fαit,β(ωi−xi−u)−Fαit,β(ωi−Λi−xi−u),

i = 1, 2.

Before implementing the dynamic programming algorithm, we first need to determine the

boundary cost. Without loss of generality, we assume that the terminal cost is zero regardless

of the degradation level, i.e., VTe(x1, x2) = 0, ∀(x1, x2) ∈ R+
2 . Let Tm be the remaining time period

beyond the last inspection, i.e., Tm = Te −Nδ. If the operating horizon can be evenly divided by

the inspection, i.e., Tm = 0, then we have VNδ(x1, x2) = 0. Otherwise, for Tm > 0, the expected

downtime cost for the remaining period is given as

WTm(x1, x2) =

∫ Tm

0

cd(e
−γt − e−γTm)

γ
dFTN (t).

At the Nth inspection, the value function VNδ(x1, x2) can be evaluated as

VNδ(x1, x2) =


cs + cf,1 + cf,2 + VNδ(0, 0), x1 > L1 & x2 > L2

min{cs + cf,1 + VNδ(0, x2), cs + cf,1 + cp,2 + VNδ(0, 0)}, x1 > L1 & x2 ≤ L2

min{cs + cf,2 + VNδ(x1, 0), cs + cp,1 + cf,2 + VNδ(0, 0)}, x1 ≤ L1 & x2 > L2

min {C0,N , C1,N , C2,N , C12,N} , otherwise

(12)

The terms C1,N , C2,N , C12,N can be readily obtained by Eqs. (6)-(8). However, the expected

cost of DN, C0,N , should be replaced by

C0,N = e−γδci +WTm(x1, x2).

This is because the downtime cost is computed within the remaining period Tm and the terminal

cost is set as 0 for all (x1, x2) ∈ R+
2 . Detailed procedure of the backward dynamic programming

algorithm is presented in Algorithm 1, which produces the optimal total discounted maintenance

cost and the associated control limits.

Algorithm 1 Backward dynamic programming algorithm

Require: Parameters of the degradation processes; cost parameters; failure thresholds; discount

factor and inspection interval.

Ensure: Value function Vkδ(x1, x2) and the associated control limits at each inspection epoch.
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1: compute P (X1,k+1, X2,k+1|X1,k = x1, X2,k = x2) and Wkδ(x1, x2) for all x1 ∈ [0, L1] and

x2 ∈ [0, L2].

2: start at k = N and initialize VNδ according to Eq. (12).

3: repeat

4: replace k by k − 1;

5: calculate Vkδ(0, 0); Vkδ(0, 0) = e−γδ(ci + Ukδ(0, 0)) +Wkδ(0, 0)

6: let x1 = 0;

7: for all x2 do

8: calculate Vkδ(0, x2).

Vkδ(0, x2) =


min{e−γδ(ci + Ukδ(0, x2)) +Wkδ(0, x2),

cs + cp,2 + Vkδ(0, 0)}, if x2 ≤ L2

cs + cf,2 + Vkδ(0, 0), if x2 > L2

9: end for

10: let x2 = 0;

11: for all x1 do

12: calculate Vkδ(x1, 0).

Vkδ(x1, 0) =


min{e−γδ(ci + Ukδ(x1, 0)) +Wkδ(x1, 0),

cs + cp,1 + Vkδ(0, 0)}, if x1 ≤ L1

cs + cf,1 + Vkδ(0, 0), if x1 > L1

13: end for

14: for all x1 and x2 do

15: calculate Vkδ(x1, x2) according to Eq. (4).

16: end for

17: until k = 0;

18: return Vkδ(x1, x2) and the optimal control limits.

At each inspection epoch, we first calculate the value function Vkδ(0, 0) at perfect state (Step

5). It is expected that at the perfect state, one should do nothing and wait till the next inspection.

Obviously, PM or CM cannot be optimal at state (0, 0). Then we proceed to calculate the value

functions when only one component is perfect (Steps 8 and 12). This is because computation of

the value function at an arbitrary system state requires values of Vkδ(x1, 0) and Vkδ(0, x2). With

these values in hand, all the value functions can be obtained with the backward approach.

It is noteworthy that Algorithm 1 is designed for any given inspection interval δ. In practice, it

is interesting to determine an optimal inspection interval so as to minimize the total maintenance

cost. Recall that the number of inspections over the planning horizon is N = bTe/δc. On the one
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hand, a large δ will increase the failure risk and expected downtime cost, which in turn results in

a higher expected maintenance cost between two consecutive inspections. On the other hand, a

longer inspection interval cuts down the number of inspections within the planning horizon and

thus reduces the total inspection cost. This tradeoff implies that there exists an optimal inspection

interval such that the total maintenance cost is minimized. The optimal inspection interval can be

determined by

δ∗ = arg min
δ

Vkδ(0, 0), for k = 0, (13)

which is a one-dimensional optimization problem. For a given δ, we employ the backward dynamic

programming to obtain the associated minimal maintenance cost. Each time when δ varies, we

can have the corresponding optimal maintenance cost. The optimal inspection interval δ∗ can be

obtained by any derivative-free search approaches.

4 A simple case with fixed PM thresholds

Traditional CBM policies are usually performed by comparing the degradation levels with fixed PM

thresholds. Although this simplified policy may be suboptimal, it is easy to implement in practical

applications. The proposed MDP formulation can solve this problem.

Let Pi be the PM threshold for component i, i = 1, 2. The system states for different main-

tenance actions can be divided into nine regions, as shown in Fig. 4. Denote Dj (j = 1, 2, ..., 9)

as the regions of various maintenance actions. For fixed PM thresholds, the maintenance regions

reduce to rectangular shapes instead of the general shapes in the optimal structure. This implies

that the maintenance action on one component is independent of the degradation level of the other

component.

D1 D2 D3

D4 D5 D6

D7 D8 D9

P1 L1 X1(t)

P2

L2

X2(t)

Figure 4: Illustration of the system state classification for given PM thresholds

Let ∆Xi(t1, t2) = Xi(t2) − Xi(t1) be the degradation increment of component i between t1

and t2 (t2 > t1). In this study, the system is under periodic inspection with interval δ and the

components follow gamma degradation processes. Since the gamma process is a stochastic process
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with independent, non-negative increments following gamma distribution (van Noortwijk, 2009), for

notational simplicity, we can denote the degradation increment of component i within the interval δ

as ∆Xi(δ). Given the system state X(tk) = (x1, x2), xi < Pi, at the kth inspection, the probability

that the system state remains in domain D1 at the next inspection is given by

P{X(tk+1) ∈ D1|X1,k = x1, X2,k = x2}

= P{∆X1(δ) < P1 − x1,∆X2(δ) < P2 − x2}

=

∫ Pm−xm

0
Fα1t,β(P1 − x1 − u)Fα2t,β(P2 − x2 − u)fαut,β(u)du

=

∫ Pm−xm

0

2∏
i=1

γ(αiδ, β(Pi − xi − u))

Γ(αiδ)

βαuδ

Γ(αuδ)
e−βuuαuδ−1du.

(14)

The probability that the system state enters D2 and D3 can be computed as

P{X(tk+1) ∈ D2|X1,k = x1, X2,k = x2}

= P{P1 − x1 < ∆X1(δ) < L1 − x1,∆X2(δ) < P2 − x2}

=

∫ Pm−xm

0
(Fα1t,β(L1 − x1 − u)− Fα1t,β(P1 − x1 − u))Fα2t,β(P2 − x2 − u)fαut,β(u)du,

(15)

and

P{X(tk+1) ∈ D3|X1,k = x1, X2,k = x2}

= P{∆X1(δ) > L1 − x1,∆X2(δ) < P2 − x2}

=

∫ Pm−xm

0
(1− Fα1t,β(L1 − x1 − u))Fα2t,β(P2 − x2 − u)fαut,β(u)du,

(16)

where Pm − xm = min{P1 − x1, P2 − x2}. The probability that the system state falls into other

regions at the next inspection can be obtained in a similar way. The value function in MDP is

described as

Vkδ(x1, x2) =



cs + cf,1 + cf,2 + Vkδ(0, 0), X(tk) ∈ D9

cs + cp,1 + cf,2 + Vkδ(0, 0), X(tk) ∈ D8

cs + cf,2 + Vkδ(0, x1), X(tk) ∈ D7

cs + cf,1 + cp,2 + Vkδ(0, 0), X(tk) ∈ D6

cs + cp,1 + cp,2 + Vkδ(0, 0), X(tk) ∈ D5

cs + cp,2 + Vkδ(0, x1), X(tk) ∈ D4

cs + cf,1 + Vkδ(0, x2), X(tk) ∈ D3

cs + cp,1 + Vkδ(0, x2), X(tk) ∈ D2

e−γδ(ci + Ukδ(x1, x2)) +Wkδ(x1, x2), X(tk) ∈ D1

(17)

The backward dynamic programming algorithm is employed to compute the maintenance cost using

Eq. (17), which is detailed in Appendix B.
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5 A practical example

In this section, a water supply pipe system is used as an example to illustrate the proposed main-

tenance model. The pipe system is used to transport water across areas, in which the pipes are

subject to corrosion during usage. We focus on two adjacent pipes where the corrosion of the

pipes are correlated because they operate in a similar soil environment. In the literature, gamma

process has been widely used to describe the corrosion in pipes (Pandey et al., 2011; Ye et al.,

2014). The corrosion in pipes follows a bivariate Gamma degradation process, with the parameters

(a1, a2, β, ρ) = (0.4, 0.5, 1, 0.6708). A pipe is assumed to fail when its degradation level exceeds

its failure thresholds, L1 = 25 and L2 = 15. The system is subject to periodic inspection, at a

cost ci = 3. Corrective replacement is performed if a pipe is found failed upon inspection, and a

preventive replacement is carried out if the degradation level of any pipe exceeds the PM threshold.

Costs for preventive replacement and corrective replacement are given as cp,1 = 40, cp,2 = 20, and

cf,1 = 80, cf,2 = 40. A setup cost cs = 30 is incurred along with the maintenance actions on any

component(s), which is close to the unit maintenance cost. The system failure mode is of latent

nature, i.e., it can only be detected by an inspection. When the system is shut down, a downtime

cost is incurred at cd = 100 per unit time. The discount rate is set as γ = 0.01 per year. The

system is designed to operate for a horizon of Te = 30 years and will be discarded after the use

period. Therefore, the terminal cost is set to 0 for all the system states, i.e., VTe(x1, x2) = 0, for

all x1, x2 ∈ R+
2 .

5.1 Optimal maintenance policy

To facilitate computation, we discretize the continuous degradation level of each component into

M = 20 discrete states. For a fixed δ, the optimal maintenance policy can be obtained via Algorithm

1; the optimal inspection interval δ∗ can be determined by a derivative-free search approach. Fig.

5 presents the expected total maintenance cost versus the inspection interval δ ranging from 1 to

10. The maintenance model leads to an optimal inspection interval of δ∗ = 5 and the associated

optimal cost of 40.8. It is interesting to see that the expected maintenance cost in a finite horizon

exhibits a unimodal trend in terms of the inspection interval.

At the optimal inspection interval δ∗ = 5, the total number of inspections is Te/δ
∗ = 6. The

optimal control limits are shown in Figs. 6 and 7, where Fig. 6 presents the optimal PM thresholds

for the first inspection and Fig. 7 shows the optimal PM thresholds for all the six inspection

epochs. As stated in Proposition 2, the two-dimensional area is divided into four regions by the PM

thresholds where each region corresponds to an optimal maintenance action. When the degradation

levels of the two components are small enough, DN should be selected as the optimal maintenance

action. When both components undergo large degradation, they should be preventively replaced

simultaneously. Only one component will be replaced if one component has much higher degradation

than the other one. Due to the finite nature of the operating horizon, the optimal control limits
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Figure 5: Expected total maintenance cost under different inspection intervals

vary with respect to the inspection interval. As shown in Fig. 7, the region for DN increases

with the inspection index, while the opposite holds for simultaneous replacement (PM12). This

is due to the fact that the system can operate at a high risk of system failure when approaching

to the terminal period. At the early stage of system operation, the maintenance policy is more

conservative so as to reduce the risk of system failure.
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Figure 6: Optimal PM thresholds at the first inspection

In addition, Fig. 8 shows the variation of the expected total cost with respect to different initial

degradation levels of the components. It is observed that the expected cost shows a nondecreasing

trend with respect to either of the component degradation levels. This is due to the nondecreasing

property of the value function, as stated in Proposition 1. The area where the expected cost remains

constant with the component degradation level indicates preventive replacement of that component

when its degradation level is within that area. This can be reflected by the value function in Eq. (4),

where preventive replacement is carried out when the degradation level exceeds a certain threshold

and restores the component to an as-good-as-new state.
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Figure 7: Optimal PM thresholds for the six inspection epochs
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5.2 Sensitivity analysis

In this part, we investigate the effect of three parameters on the optimal maintenance policy—the

correlation coefficient ρ, the setup cost cs and the discount rate γ. In essence, the correlation

coefficient ρ signifies the dependency level between the degradation processes, the setup cost cs de-

termines the economic dependence of the system, and the discount rate γ influences the importance

of future cost.

Influence of correlation coefficient ρ. One contribution of this paper is to incorporate a

realistic factor of degradation dependence between the components in maintenance decision making.

Fig. 9 shows that the expected total cost decreases monotonically with ρ. This is because the

components are in series and failure of any component can lead to system failure. When the two

components have a lower correlation, the degradations of the two components are more likely to

be random and the failure events more divergent. Hence, the system is more inclined to fail for

a low correlation coefficient. On the other hand, the existence of economic dependence (common

setup cost) contributes to the maintenance cost when the components are replaced individually.

The two components are more likely to simultaneously reach the failure or PM thresholds and be

replaced together with a higher correlation level between the degradation processes. Therefore, the

common setup cost can be shared more frequently, which results in a lower maintenance cost. Fig.

10 further presents the optimal maintenance decisions at the first inspection for alternative values

of the correlation coefficient ρ.
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Figure 9: Expected total cost versus the correlation coefficient ρ

Influence of setup cost cs. The setup cost reflects the economic dependence of the system.

Fig. 11 shows monotonic increase of the expected cost in terms of the setup cost cs. This is due to

the monotonic nature of Eq. (4) with respect to the setup cost.

Fig. 12 shows how the optimal maintenance actions vary with respect to the setup cost ranging

from cs = 0 to cs = 80. When the setup cost is reduced to 0, i.e., no economic dependence exists

between the components, the regions for optimal maintenance policy are reduced to rectangular

shapes rather than the irregular shapes that occur under finite setup cost. This indicates that the

optimal maintenance decision on one component is independent from the condition of the other
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cients: (a)ρ = 0.2, (b)ρ = 0.4, (c)ρ = 0.6, (d)ρ = 0.8
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Figure 11: Expected total cost versus the setup cost cs
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component. On the other hand, the boundaries between PM12 and PM1, and between PM12 and

PM2 (black lines) remain constant with different setup costs. This is due to the fact that setup cost

is induced when any of the components is replaced, which makes no difference between separate

replacement or simultaneous replacement. Another interesting finding is the region size of the four

maintenance actions. The region for DN shows an increasing trend with the setup cost, while the

region sizes of other maintenance actions (PM1, PM2 and PM12) decrease. This is because the

system is reluctant to be replaced at a high setup cost so as to reduce the maintenance cost. In

other words, a high setup cost leads to higher PM thresholds for both the two components. As can

be observed from Fig. 12, the boundary between PM2 and DN shifts up and that between PM1

and DN shifts right with the increase of setup cost, implying a less conservative policy.
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Figure 12: Optimal maintenance decisions at the first inspection with respect to setup cost: (a)cs =

0, (b) cs = 20, (c) cs = 40, (d) cs = 60

Influence of discount rate γ. The discount rate γ signifies the importance of future cost on

the maintenance decisions. A small discount rate indicates that future cost is important, whereas a

large value signifies that the present cost is far more important than the future cost. Fig. 13 shows

that the expected total cost decreases monotonically with γ since a higher discount rate reduces

future expenses.

Fig. 14 exhibits the optimal maintenance decisions at the first inspection with respect to the

the discount rate γ. It can be observed that the boundaries for preventive replacement shift right or

up, which indicates higher PM thresholds for both components and a more aggressive maintenance

policy. In addition, the region size of DN increases with the discount rate while the region of PM12

shows an opposite trend, due to the fact that the discount rate evaluates the weight of future cost.

A large γ implies that future costs will deplete fast and more effort should be devoted to the present

condition rather than future degradations. In other words, for a large γ, the system is allowed to

operate at a high failure risk since the failure cost occurring in future will add less value to the
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Figure 13: Expected total cost vs discount rate γ

current expense. Actually, the influence of the discount rate can be shown from the value function

of Eq. (4), where the value for DN (C0,k) decreases monotonically with γ. The optimal thresholds

are achieved when the value for DN reaches the values for PM (C1,k, C2,k, and C12,k), a higher

threshold is therefore envisioned with a larger discount rate.
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γ = 0.02, (b) γ = 0.04, (c) γ = 0.06, (d) γ = 0.08

5.3 Cost evaluation under fixed PM thresholds

In practice, many engineering systems are subject to fixed PM thresholds due to industry standards

or safety concerns. In this section, we consider the case in which the PM thresholds are exogenous.

We will focus on the inspection interval and evaluate the maintenance cost for each inspection

interval. The PM thresholds are set to P1 = 20 and P2 = 12, while the other parameters are

identical to those before.
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Fig. 15 presents the variation of the expected total cost with different inspection intervals

under fixed PM thresholds. It can be observed that the minimum expected cost is achieved as 43.9

at the inspection interval δ∗ = 3. The maintenance cost curve exhibits a similar pattern to that

under flexible PM thresholds. Nevertheless, the expected maintenance cost obtained with fixed

PM thresholds is larger than that under flexible PM thresholds. This is because the fixed PM

thresholds may not be the optimal policy. In addition, the optimal inspection interval is smaller

than that under flexible PM thresholds.

We also compare the analytical results with Monte Carlo simulation in Fig. 15. One can observe

that the analytical result matches the simulation for large inspection intervals while there exist some

discrepancies for small inspection intervals. A possible reason is that the the numerical error is

caused by discretization of the continuous degradation level in solving the value function. Another

reason is the simulation process itself. In the current simulation, the failure time and system states

are measured at integer points (e.g., 1, 2, 3,...). It neglects the case that the system may fail at

non-integral epochs, in which the effect is more significant for a small inspection interval.
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Figure 15: Expected total maintenance cost with different inspection intervals under fixed PM

thresholds

With the fixed PM thresholds, we investigate the influence of correlation coefficient, setup cost

and discount factor on the expected total cost. The results are shown in Fig. 16. As can be

observed, the curves are quite similar to those under flexible PM thresholds, which indicates that

the parameters have a similar impact on the expected maintenance cost. This is quite intuitive, as

the value functions for fixed or flexible PM thresholds exhibit a similar structure.

Next, we investigate the optimal maintenance policy under the setting of an infinite horizon.

As shown in Fig. 17, the optimal maintenance policy in an infinite horizon is a stationary two-

dimensional control limit policy, which indicates that the maintenance boundaries remain constant

at inspection epochs. The stationary infinite-horizon policy leads to an maintenance cost of 43.4,

at an inspection interval δ∗ = 5. The suboptimality of the infinite-horizon policy can be observed

when compared with the maintenance cost of the finite-horizon policy at 40.8.

In this study, we analytically present the optimal maintenance policy for a finite planning
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coefficient ρ, (b) setup cost cs, (c) discount rate γ
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Figure 17: Optimal maintenance policy for an infinite horizon
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horizon and show that the optimal policy is a dynamic control-limit policy. However, although the

proposed policy is theoretically optimal, it may not be so easy to implement in practice compared

with the stationary policy. One should take into consideration the cost due to the rearrangement of

maintenance staff and reallocation of the resources when implementing the non-stationary policy.

As can be observed, the difference between a dynamic and stationary policy depends largely on

the length of the planning horizon. If the planning horizon is short, then the proposed dynamic

policy is suggested. Yet if the planning horizon is relatively long but still finite, a hybrid policy

that combines the two policies can be adopted, i.e., engineers are suggested to follow the stationary

policy at the beginning of the horizon and switch to the dynamic policy when approaching to the

end of the planning horizon.

6 Conclusions

This paper analyzes a condition-based maintenance policy for a two-unit series system within a

finite-time horizon. The system under investigation consists of two heterogeneous components

in which degradation processes follow a bivariate gamma process. The components are subject

to periodic inspection and will be preventively replaced if their degradation levels exceed PM

thresholds. The maintenance problem is formulated as a MDP model and the optimal maintenance

policy is obtained by minimizing the expected total discounted cost over the horizon. The optimal

maintenance decision turns out to be a two-dimensional control-limit policy. Different from an

infinite-horizon case which permits a stationary optimal policy, the optimal maintenance policy

for a finite horizon is non-stationary, which varies at each inspection epoch. For a relatively long

but still finite planning horizon, a hybrid policy that combines the stationary and dynamic policies

is suggested, i.e., engineers can follow the stationary policy at the beginning and switch to the

dynamic policy when approaching to the end of the horizon. For engineering systems that may

have fixed PM thresholds due to safety reasons or industrial standards, the proposed approach

can also be employed to evaluate the optimal maintenance plan. In addition, the influence of

stochastic and economic dependence is investigated through a numerical example. It shows that a

higher dependence between the degradation processes reduces the maintenance cost while a higher

economic dependence leads to higher PM thresholds.

Although the present work focuses on two-unit systems, it can be extended to multi-unit systems

by generalizing the degradation process and Bellman equation. The control-limit policy applies to

multi-unit systems as well. However, unlike a two-unit system whose optimal maintenance policy

can be presented via a two-dimensional graph, maintenance decisions for multi-unit systems may

lead to a multi-dimensional structure. The difficulty for this extension lies in the computational

burden, where the size of transition probability and value functions grows dramatically with the

number of components.

There are several issues and topics worth further exploration. In the current work, we assume
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that the inspection is perfect and reveals the degradation levels of both components simultaneously.

In reality, the inspection may be comprised by measurement noise. In this case, some filtering

approaches (e.g., particle filter, Kalman filter and its variants) can be employed to estimate the

degradation level as a first step, followed by maintenance decision making. In addition, if the

inspection cost is high, we may allow separate inspection on the components instead of the whole

system. Moreover, several extensions on the maintenance model can be further investigated, such

as imperfect repair, non-periodic inspection or optimization on availability instead of cost.
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Appendix

A Proofs

Proof of Proposition 1. Before proving the monotonicity property of the value function, we first

need to show that the expected downtime cost Wkδ(x1, x2) is nondecreasing in x1 and x2. This

property can be proved via stochastic dominance. Conditioned on the system state (x1, x2), the

failure time Tk satisfies

P (Tk ≤ t|X1,k = x1, X2,k = x2) = P (X1(t) > L1 ∪X2(t) > L2|X1,k = x1, X2,k = x2).

Let us first consider the degradation level of the component 1, X1(t). For x−1 < x+1 , it follows that

P (Tk ≤ t|X1,k = x−1 , X2,k = x2) = P (X1(t) > L1 ∪X2(t) > L2|X1,k = x−1 , X2,k = x2)

< P (X1(t) > L1 ∪X2(t) > L2|X1,k = x+1 , X2,k = x2) = P (Tk ≤ t|X1,k = x+1 , X2,k = x2).

By the definition of stochastic order, we have the stochastic relationship of Tk conditioned on the

component degradation level as
〈
Tk|X1,k = x−1 , X2,k = x2

〉
�st

〈
Tk|X1,k = x+1 , X2,k = x2

〉
. On the

other hand, conditioned on the system state (X1,k = x1, X2,k = x2), we have the downtime cost

(discounted at the kth inspection tk) as

d(Tk) =

∫ δ

Tk

cd · e−γ(t−Tk)dt

=
cd(e

−γTk − e−γδ)
γ

,
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which is decreasing in Tk. Therefore, we have

Wkδ(x
−
1 , x2) = E[d(Tk)|X1,k = x−1 , X2,k = x2]

≤ E[d(Tk)|X1,k = x+1 , X2,k = x2] = Wkδ(x
+
1 , x2),

which indicates that Wkδ(x1, x2) is nondecreasing in x1. Similarly, we can prove that Wkδ(x1, x2)

is nondecreasing in x2.

We then prove the monotonicity property of the value function by mathematical induction.

First, at the terminal period k = N , the value function is constant, which obviously satisfies the

nondecreasing property. Assuming that the property holds at period k + 1 (0 ≤ k ≤ N − 1), we

can show that this property also holds at period k.

Consider the case that no component fails at the kth inspection, i.e., x1 < L1 & x2 < L2. We

have

Vkδ(x1, x2) = min
{
C0,k, C1,k, C2,k, C12,k

}
,

where

C0,k = e−γδ(ci + Ukδ(x1, x2)) +Wkδ(x1, x2),

C1,k = cs + cp,1 + Vkδ(0, x2),

C2,k = cs + cp,2 + Vkδ(x1, 0),

C12,k = cs + cp,1 + cp,2 + Vkδ(0, 0).

Recall that Ukδ(x1, x2) stands for the expected cost-to-go given the current system state, i.e.,

Ukδ(x1, x2) = E[Vk+1(X1,k+1, X2,k+1)|X1,k = x1, X2,k = x2].

Let us consider the effect of X1,k = x1 first. Since Vk+1(X1,k+1, X2,k+1) is nondecreasing with

respect to X1,k+1 and X2,k+1, and 〈X1,k+1|X1,k = x−1 , X2,k = x2〉 ≺ 〈X1,k+1|X1,k = x+1 , X2,k = x2〉
for any x−1 < x+1 , we have

Ukδ(x
−
1 , x2) = E[Vk+1(X1,k+1, X2,k+1)|X1,k = x−1 , X2,k = x2]

≤ E[Vk+1(X1,k+1, X2,k+1)|X1,k = x+1 , X2,k = x2] = Ukδ(x
+
1 , x2),

which indicates that Ukδ(x1, x2) is nondecreasing in x1. In a similar manner, we can prove that

Ukδ(x1, x2) is nondecreasing in x2. Combining the nondecreasing property of Wkδ(x1, x2) in x1 and

x2, we can conclude that C0,k is nondecreasing in x1 and x2.
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On the other hand, for C1,k, obviously it is nondecreasing in x1. In addition, we can easily show

that C1,k is nondecreasing in x2. For Vkδ(0, x2), we have

Vkδ(0, x2) = min{e−γδ(ci + Ukδ(0, x2)) +Wkδ(0, x2), cs + cp,2 + Vkδ(0, 0)}.

Based on the previous discussion, we can have that the first term is nondecreasing in x2. Obviously

the second term is nondecreasing in x2. Therefore, Vkδ(0, x2) is nondecreasing in x1 and x2. We

can conclude that C1,k is nondecreasing in x1 and x2. Similarly, we can prove that C2,k and C12,k

are nondecreasing in x1 and x2. Since C0,k, C1,k, C2,k and C12,k are nondecreasing in x1 and x2, we

can conclude that Vkδ(x1, x2) is nondecreasing in x1 and x2 for x1 < L1 & x2 < L2. With similar

argument, we can prove that Vkδ(x1, x2) is nondecreasing in x1 and x2 for any x1 > 0 and x2 > 0.

Hence, the induction hypothesis holds for all k = 0, 1, 2, ..., N , which completes the proof.

Proof of Proposition 2. Let us first consider the boundary of PMi and PM12. For component

2, since the value function is nondecreasing in both x1 and x2, C2,k = cs + cp,2 + Vkδ(x1, 0) is

nondecreasing in x1 and constant in x2, while C12,k = cs + cp,1 + cp,2 + Vkδ(0, 0) is constant

regardless the variation of x1 and x2. Therefore, there must exist ζ1 that C2,k > C12,k for x1 > ζ1.

Specifically, ζ1 can be expressed as

ζ1 = arg max
x1

{Vkδ(x1, 0) ≤ cp,1 + Vkδ(0, 0)}.

Via similar argument, we can have the line x2 = ζ2 as the boundary of PM1 and PM12.

Then we focus on the boundary of PMi and DN. Consider the maintenance action on component

1. For a given x2, C0,k = e−γδ(ci + Ukδ(x1, x2)) + Wkδ(x1, x2) is nondecreasing in x1 and C1,k is

constant. There must exist a h2(x2) that C0,k > C1,k for x1 > h2(x2), which implies that the

optimal maintenance action is PM1 if x1 > h2(x2) and DN otherwise. h2(x2) changes with the

variation of x2. The line x1 = h2(x2) constitutes the boundary of PM1 and DN. Similarly, we can

have x2 = h1(x1) as the boundary of PM2 and DN.

The boundary of PM12 and DN can be obtained in a similar way. For a given x1 (L1 > x1 ≥ ζ1),
since C0,k is nondecreasing in x2 and C12,k is constant, there must exist a l(x1) (L2 > l(x1) ≥ ζ2)

that C0,k > C12,k at the state (x1, x2) if x2 > l(x1). The line x2 = l(x1) can be obtained by varying

x1 within the interval [ζ1, h2(ζ2)].

In addition, since the value function is continuous on x1 and x2, it holds C0,k = C12,k at the

boundary line x2 = l(x1). Suppose that l(x1) is nondecreasing in x1. Without loss of generality,

let C0,k = C12,k at system state (x−1 , l(x
−
1 )). Then for system states (x+1 , l(x

+
1 )), x−1 < x+1 , we have

(C0,k; (x+1 , l(x
+
1 ))) > (C0,k; (x−1 , l(x

−
1 ))) = C12,k, which contradicts the argument that (x+1 , l(x

+
1 ))

is along the boundary line x2 = l(x1). Therefore, we can conclude that l(x1) is nonincreasing in

x1.

Proof of Corollary 1. We prove this corollary by contradiction. Suppose that (x1, x2) /∈ [ζ1, L1] ×
[ζ2, L2]. Without loss of generality, let x1 ∈ [0, ζ1). Based on the argument of Proposition 2, we
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have C2,k > C12,k for L1 > x1 ≥ ζ1 and C2,k < C12,k for 0 ≤ x1 < ζ1. If x1 ∈ [0, ζ1), then

PM2 is more cost-effective than PM12, which contradicts the argument that PM12 is the optimal

maintenance action. The argument also applies for x2 ∈ [0, ζ2).

Proof of Corollary 2. If x1 = ζ1 is the boundary of PM12 and PM2, with the expression of C2,k

and C12,k, we have Vkδ(x1, 0) ≤ cp,1 + Vkδ(0, 0)} for 0 ≤ x1 ≤ ζ1 and Vkδ(x1, 0) > cp,1 + Vkδ(0, 0)}
for L1 > x1 > ζ1. For the case x1 ≤ L1 & x2 > L2, by comparing the two terms in the value

function, we can have cs + cf,2 + Vkδ(x1, 0) > cs + cp,1 + cf,2 + Vkδ(0, 0) for L1 > x1 > ζ1 and

cs + cf,2 + Vkδ(x1, 0) ≤ cs + cp,1 + cf,2 + Vkδ(0, 0) for 0 ≤ x1 ≤ ζ1, which indicates that the optimal

maintenance action is CM2 for 0 ≤ x1 ≤ ζ1 and {CM2, PM1} for L1 > x1 > ζ1. The similar result

can be obtained for component 2.

B Backward dynamic programming algorithm under fixed PM

thresholds

See Algorithm 2.

Algorithm 2 Backward dynamic programming algorithm under fixed PM thresholds

Require: Parameters of the degradation processes; cost parameters; failure and PM thresholds;

discount factor and inspection interval.

Ensure: Value function Vkδ(x1, x2) at each inspection epoch.

1: compute P (X1,k+1, X2,k+1|X1,k = x1, X2,k = x2) and Wkδ(x1, x2) for all x1 ∈ [0, L1] and

x2 ∈ [0, L2].

2: start at k = N and initialize VNδ according to Eq. (12).

3: repeat

4: replace k by k − 1;

5: calculate Vkδ(0, 0). Vkδ(0, 0) = e−γδ(ci + Ukδ(0, 0)) +Wkδ(0, 0);

6: let x1 = 0;

7: for all x2 do

8: calculate Vkδ(0, x2).

Vkδ(0, x2) =


e−γδ(ci + Ukδ(0, x2)) +Wkδ(0, x2), if x2 ≤ P2

cs + cp,2 + Vkδ(0, 0), if P2 < x2 ≤ L2

cs + cf,2 + Vkδ(0, 0), if x2 > L2

9: end for

10: let x2 = 0;

11: for all x1 do

28



12: calculate Vkδ(x1, 0).

Vkδ(x1, 0) =


e−γδ(ci + Ukδ(x1, 0)) +Wkδ(x1, 0), if x1 ≤ P1

cs + cp,1 + Vkδ(0, 0), if P1 < x1 ≤ L1

cs + cf,1 + Vkδ(0, 0), if x1 > L1

13: end for

14: for all x1 and x2 do

15: calculate Vkδ(x1, x2) according to Eq. (17).

16: end for

17: until k = 0;

18: return Vkδ(x1, x2) for all x1, x2 and k ∈ {0, 1, 2, ...N}.
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