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1. Introduction

ABSTRACT

In hierarchical production planning, the consideration of interdependencies between superior top-level
decisions and subordinate base-level decisions is essential. In this respect, the anticipation of base-level
reactions is highly recommended. In this paper, we consider an example from the metal-processing in-
dustry: a serial-batch scheduling problem constitutes the top-level problem and a complex nesting prob-
lem constitutes the base-level problem. The top-level scheduling decision includes a batching decision,
i.e., the determination of a set of small items to be cut out of a large slide. Thus, to evaluate the fea-
sibility of a batch, the base-level nesting problem must be solved. Because solving nesting problems is
time consuming even when applying heuristics, it is troublesome to solve it multiple times during solving
the top-level scheduling problem. Instead, we propose an approximative anticipation of base-level reac-
tions by machine learning to approximate batch feasibility. To that, we present a prediction framework to
identify the most promising machine learning method for the prediction (regression) task. For applying
these methods, we propose new feature vectors describing the characteristics of complex nesting prob-
lem instances. For training, validation, and testing, we present a new instance generation procedure that
uses a set of 6,000 convex, concave, and complex shapes to generate 88,200 nesting instances. The test-
ing results show that an artificial neural network achieves the lowest expected loss (root mean squared
error). Depending on further assumptions, we can report that the approximate anticipation based on
machine learning predictions leads to an appropriate batch feasibility decision for 98.8% of the nesting
instances.

of the base-level founded on hypothetical instructions of the
top-level.

Almost every manufacturing company applying production
planning and scheduling methods uses the concept of hierarchical
production planning. This concept leads back to the works of
Hax and Meal (1973) and Bitran, Haas and Hax (1981) (amongst
others). Particularly the conceptual framework of Schneeweil3
(1995) describes the hierarchical aspects of production plan-
ning systems. In this framework, the interdependencies between
superior top-level decisions (defining the instructions or top-
down influence) and the subordinate base-level decisions are
explicitly emphasized. In addition, the anticipation of base-level
reactions (bottom-up feedback) by top-level decisions is highly
recommended. This anticipated reaction can be modelled by a
so-called anticipation function “calculating” hypothetical reactions
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In this paper, we investigate a hierarchical production plan-
ning example from the metal-processing industry: a serial-batch
scheduling problem constitutes the top-level decision problem and
a complex nesting problem (CNP; also known as two-dimensional,
highly irregular strip packing problem; cf, e.g., Leao, Toledo,
Oliveira, Carravilla & Alvarez-Valdés, 2020) constitutes the base-
level decision problem. Thereby, the top-level scheduling decision
comprises a batching decision (i.e., the determination of a set of
items to be cut out of one metal slide) and a scheduling decision
(i.e., the allocation of batches to machines and their sequencing).
Important regarding the batching decision is that the base-level
nesting problem must be solved to evaluate the feasibility of
batches. Because solving a CNP is time consuming even when
applying heuristics, it is troublesome to solve it multiple times
during solving the top-level scheduling problem. Instead, we
propose to use machine learning for the anticipation of base-
level reactions (particularly batch feasibility) instead of iteratively
solving CNPs. Without losing the ambition to propose machine



learning as a general anticipation method, the application context
of CNPs is motivated by several aspects:

- First, CNPs, a special kind of packing/cutting problems, occur
in many industrial sectors like metal-processing, carbon fiber,
or textile manufacturing and therefore, make our approach rel-
evant in many different industrial application fields (Burke,
Kendall & Whitwell, 2009).

- Second, nesting problems, or packing/cutting problems in gen-
eral, very often constitute a subordinated problem of a superior
decision problem (e.g., a machine scheduling problem) or are
at least closely related to it (cf., e.g., Chryssolouris, Papakostas
& Mourtzis, 2000 or Helo, Phuong & Hao, 2019).

- Third, solving CNPs causes high computation times, even if
heuristics are used (note, that solving CNPs within an iterative
solution method for the superior problem would even be trou-
blesome if computation times are only a few seconds; cf,, e.g.,
Mundim, Andretta, Carravilla & Oliveira, 2018).

Therefore, a most accurate and also efficient anticipation
method for complex nesting solutions would be valuable to im-
prove the solution quality and/or reduce computation times for
many superior decision problems in a broad range of applications
and industries.

Our main contribution to literature is the new anticipation ap-
proach, i.e., applying machine learning for the anticipation of com-
plex nesting solutions, in hierarchical production planning. In con-
trast to Rohde (2004) who only uses artificial neural networks
to anticipate lot-size inventories and setup times in the context
of master production scheduling, we recommend to use a broad
range of machine learning techniques to improve anticipation ac-
curacy. To that, we propose a prediction framework to identify
the most suitable technique. Further contributions to literature are
the new instance generation procedure for CNPs (based on real-
world shapes and controllable attributes) and the feature vectors
to model CNP characteristics used by the machine learning tech-
niques. The complete data set used in this paper is available at
Mendeley data (Gahm, 2020).

The structure of this paper is as follows: After the detailed de-
scription of the investigated decision problem in Section 2, we dis-
cuss the related work of our anticipation approach in Section 3.
The anticipation method itself is described in Section 4, followed
by the prediction framework used for the anticipation (Section 5).
Section 6 is dedicated to the evaluation of the applied machine
learning techniques and the proposed anticipation approach. The
paper closes with a conclusion of our results and an outlook on
further research topics in Section 7.

2. Problem description

An incisive example of the interdependencies between a top-
level decision and a base-level decision in hierarchical production
planning can be found in the metal-processing industry. Fig. 1 il-
lustrates the serial-batch scheduling problem of the top-level and
the complex nesting problem of the base-level.

In this industry, cutting operations performed by laser or water
jet cutting machines are necessary to fabricate a wide variety
of metal pieces (items) out of large base metal slides. Thereby,
the items should be grouped into batches to avoid unnecessary
machine setups and/or to increase resource efficiency by avoiding
waste. All items grouped in one batch are then cut out from
the same metal slide. Because cutting operations are performed
sequentially, the processing time of a batch is equal to the sum of
processing (cutting) times of all the items assigned to this batch
(“serial batching”). The machine setups are required to extract
completed slides, to insert new slides, and to adjust machine

parameters. Because setup efforts depend on the base slide char-
acteristics material type and thickness, sequence-dependent setup
times must be considered. These base slide characteristics also
define incompatible item families because items with different
material type and/or thickness requirements cannot be cut out
of the same base metal slide and therefore cannot be grouped in
one batch. The metal items have arbitrary shapes and sizes and
the base slides have a limited capacity corresponding to their size.
Thus, the items that can be grouped within one batch are not only
restricted by their family but additionally by the slide capacity.
The batching decision (item to batch assignment) combined with
the scheduling decision (batch to machine allocation - in the case
of multiple cutting machines - and sequencing of batches) de-
fines a serial-batch scheduling problem representing the top-level
decision (for an overview on different kinds of batch scheduling
problems see for instance Potts & Kovalyov, 2000).

To implement the final schedule and also to evaluate the fea-
sibility of a batch (the items of a batch must not exceed the
slide capacity and may not overlap), the items must undergo
a packing task which specifies the spatial arrangement of the
items’ shape. This packing or nesting task represents the base-
level decision problem. Actually, this base-level decision problem
could be formulated as “two-dimensional bin packing problem”
(or “two-dimensional finite bin packing problem”; cf, the typol-
ogy of Wascher, HaulBner & Schumann, 2007). Instead, we consider
the more general “two-dimensional strip packing problem” having
one open (infinite) dimension (cf., e.g., Martello, Monaci & Vigo,
2003). For this problem, the planning objective is the minimiza-
tion of the required strip height whereas the second dimension
(width) is fixed. Then, to evaluate batch feasibility, the calculated
height can be compared to any reference height, e.g., the height
of standard metal slides or the height of smaller metal slides re-
maining from previous cutting processes (to increase resource ef-
ficiency). Regarding the cutting items, it must be considered that
the customer specific items have arbitrary shapes that are typi-
cally irregular (also called non-regular; cf.,, Wdscher et al., 2007;
for an overview of relevant application areas see e.g., Dowsland
& Dowsland, 1995). Accordingly, the problem is called “irregular
strip packing problem” or “nesting problem” (cf., Oliveira, Gomes
& Ferreira, 2000; in textile manufacturing, the problem is called
“marker-making problem”, cf.,, e.g., Li & Milenkovic, 1995). Burke,
Hellier, Kendall and Whitwell (2007) use the term “highly irreg-
ular” shapes if the item shapes include concavities and/or holes.
Complexity further increases if the items can be rotated (at fixed
angles, a given number of times, or even arbitrarily). In conse-
quence, for evaluating the feasibility of a batch in the context of
serial-batch scheduling in metal processing, the “highly irregular
strip packing problem with free rotations” must be solved. We call
this problem the “complex nesting problem (CNP)” in the follow-
ing. The CNP represents the base-level decision in the hierarchical
planning context.

To summarize the problem description, we depict the relation-
ship between the theoretical concept of hierarchical production
planning and the concrete manifestations of the application case’s
decision problems (models) in Fig. 2. The bold terms represent the
concepts and elements as used in literature (cf., e.g., Schneeweif,
1995 and Schneeweil3, 2003), whereas the italic terms depict the
concrete manifestations regarding the metal processing application
case. The numbers in brackets show the basic course of action.

Due to the high complexity of the top-level serial-batch
scheduling problem, heuristic solution methods will most likely be
used for solving. During the execution of these solution methods,
a huge number of potential batches is created and their feasibility
must be evaluated. Because the iterative solving of CNPs (to
evaluate batch feasibility) is very time consuming even when
applying heuristic nesting methods, approximative approaches
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about the feasibility of a batch. In this way, we aim at a most suit-
able trade-off between feasibility-decision accuracy and response
time (i.e., the time required for deciding about batch feasibility).

3. Background and related work

The literature review to examine related work is divided into
three parts. The first part is dedicated to anticipation functions in
the context of hierarchical production planning. The second part
contains contributions related to the application of machine learn-
ing in the area of packing and cutting, whereas the third part in-
troduces major machine learning concepts in general and briefly
describes potential machine learning techniques appropriate for
the prediction task.

3.1. Basics on anticipation functions

In Schneeweif3 (2003), four archetypical types of anticipation
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Fig. 2. Hierarchical integration of the approximate anticipation by machine learn-
ing.

are commonly used. To the best of our knowledge, only simple
approximation approaches are currently used in literature (cf.,
Section 4.2 and e.g., Helo et al., 2019). Since these simple approxi-
mation approaches lack accuracy and solving CNPs by heuristics is
not efficiently enough, we propose to use machine learning for the
anticipation of complex nesting solutions and thus, for the decision

functions are described: perfect anticipation (reactive), approxi-
mate anticipation (reactive), implicit approximation (reactive), and
non-reactive anticipation. In the case of perfect anticipation, the
base-level decision model is completely known and exactly inte-
grated into the top-level model. Only the parameters (information)
used by the top-level model might not be known deterministically
and change when solving the base-level model. In contrast, ap-
proximate anticipation is performed by using some approximative
anticipation function (models or methods). For an implicit antici-
pation, only some (most important) aspects of possible base-level
reactions are considered within the anticipation function. Note that
for these three anticipation types, explicit anticipation functions
are used, whereas for the last type, non-reactive anticipation, no
explicit anticipation function is used. Instead, some major aspects



of the base-level decision are incorporated within the top-level
model. Hereby, these aspects are not (reactively) depending on
the top-level instructions. Because the complexity of the top-level
model is often already too high, using non-reactive anticipation
or even perfect anticipation is not possible. This is particularly
the case for the models considered in this paper: the serial-batch
scheduling problem (e.g., with minimizing total weighted tardiness
as objective, it is NP-hard since it is a reduction from the corre-
sponding NP-hard single machine sequencing problem) and the
CNP (already the strip packing problem with rectangular items is
NP-hard in the strong sense; cf.,, Martello et al., 2003). Therefore,
we propose to use an approximative anticipation function that has
also an implicit anticipation aspect as we only consider the height
(representing the major aspect) to decide on batch feasibility and
do not require the complete CNP solution.

In literature, different approaches for approximative anticipa-
tion functions can be found: for instance, exponential smoothing
(Selcuk, Fransoo & Kok, 2006), clearing functions (cf,, e.g., Graves,
1986 or Asmundsson, Rardin, & Uzsoy et al., 2006), or simulation
(cf,, e.g., Venkateswaran & Son, 2005 or Albey & Bilge, 2011). To the
best of our knowledge, only Rohde (2004) uses a machine learning
technique (artificial neural networks) for anticipation as we pro-
pose. Giving a good example for implicit anticipation, Kallestrup,
Lynge, Akkerman and Oddsdottir (2014) emphasize that for non-
perfect anticipations, the actual reaction from the object-system
may be quite different from the anticipated reaction and that this
problem can be reduced by increasing the quality of the anticipa-
tion. Therefore, we are not going to rely our prediction on a sin-
gle machine learning technique like Rohde (2004) but propose a
prediction framework to identify the most suitable technique.

3.2. Machine learning applied to packing and cutting problems

In contrast to the almost non-existing application of machine
learning techniques for anticipation purposes, these techniques
are commonly used by hyper-heuristics and less frequently as
solution method itself. Hyper-heuristics can be defined as “an
automated methodology for selecting or generating heuristics to
solve hard computational search problems” (Burke et al., 2010;
for a similar definition cf,, Pappa et al., 2014). To that, the central
idea of hyper-heuristics is to learn which heuristic (or operator)
will perform best by exploiting information about the current
problem instance to solve and/or information from already solved
problem instances. In this context, Burke et al. (2010) propose the
distinction between online and offline learning. Online learning
takes place while a heuristic solves a single problem instance,
whereas offline learning aims to gather knowledge (e.g., in form
of rules) from a set of training instances and to use this knowl-
edge for solving unknown instances better. For recent advances
and an extended classification scheme of hyper-heuristics see
Drake, Kheiri, Ozcan and Burke (2020). Most relevant publications
concerning the development of hyper-heuristics for solving cut-
ting and packing problems are Lopez-Camacho, Terashima-Marin,
Ochoa and Conant-Pablos (2013b), Lépez-Camacho, Terashima-
Marin, Ross and Ochoa (2014), Segredo, Segura and Leén (2014),
Sim, Hart and Paechter (2012), Terashima-Marin, Ross, Farias-
Zarate, Lopez-Camacho and Valenzuela-Rend6n (2010), and Gomez
and Terashima-Marin (2018). Although these publications have a
different scope, they are relevant concerning the prediction task
at hand as the authors use features to characterize their problems
that are related to CNPs. An explicit performance prediction
to estimate minimum reference values for evaluation purposes
or as termination criteria of iterative solution methods for the
rectangular two-dimensional strip-packing problem is proposed
by Neuenfeldt Janior, Silva, Gomes, Soares and Oliveira (2019).
Besides the differing prediction purpose, another main difference

between their and our prediction task is their limitation to the
problem with rectangular shaped items (in contrast to highly
irregular ones). Remember, the goal of our approach is to predict
the height of the strip that would result from the application of
the CNP solution method that will be actually used for solving the
CNPs defined by the superior scheduling (batching) decision.

Another way of applying machine learning techniques is to
use them as autonomous solution method or as a part of a so-
lution method. For instance, to calculate initial solutions for a
two-dimensional cutting problem, Han and Na (1996) combine
self-organizing feature maps (an unsupervised learning architec-
ture) and fuzzy c-means. Dagli and Poshyanonda (1997) use a
back-propagation neural network to generate larger patterns out
of smaller input patterns for the nesting of rectangular patterns.
Wong and Guo (2010) use a learning vector quantization neural
network to classify items in order to select packing rules.

3.3. Major machine learning concepts

Recent advances in machine learning have risen new possibil-
ities for its application. Particularly deep learning (a synonym for
deep neural networks; cf., Goodfellow, Bengio & Courville, 2017 or
Kraus, Feuerriegel & Oztekin, 2020) has become a very powerful
technique in the last years. Besides deep learning and “traditional”
artificial neural networks, also other machine learning techniques
might be appropriate for the height prediction task at hand.
To be appropriate, the technique must be capable to perform a
univariate multiple regression for the following reasons: First, as
the strip height to be predicted is a single dependent continuous
variable (“outcome variable”), classification and clustering models
(methods) are not useful but univariate regression models. Second,
as we do not expect that the height is related to a single CNP
instance characteristic, several independent variables (also called
“predictors”, “covariates”, or “features”) must be considered by a
multiple regression model. Summarizing, machine learning tech-
niques that are capable to perform univariate multiple regressions
and that belong to the class of supervised machine learning
methods are basically appropriate. To select and evaluate the
most appropriate machine learning method, we will briefly review
models and methods in the following. For easier reading, we use
the term regression model, regression method, or the abbreviation
RM if we refer to corresponding machine learning models and
methods in the remainder of this paper.

Because a detailed description of RMs is out of the scope of
this paper, we only carve out the main aspects related to the
prediction task at hand and refer to several books that are good
starting points to deepen the topics. Remark that the basic idea of
supervised machine learning is the use of training data (containing
training instances or samples comprising independent variables
and dependent/response variables) to determine the parameters of
a model in such a way that a sufficient generalization is achieved.
In the context of machine learning, a sufficient generalization
means that a RM performs well on new, previously unseen inputs
(cf., Goodfellow et al., 2017) and not only on the training data.
Because we are not interested in inference (i.e., understanding
the relationship between independent and dependent variables)
but in most accurate predictions, the aspect of interpretability
is not that important and thus, even very flexible parametric
and non-parametric regression models are suitable. An important
theoretical result of statistics and also machine learning is that
a model’s “generalization error” (i.e., its error rate on unknown
data; also called “out-of-sample error”, “test error”, or, related to
prediction tasks, “prediction error”) consists of three very different
errors (cf, Géron, 2019, p. 195): bias, variance, and irreducible
error. Accordingly, the challenge is to find a RM for which bias and
variance are low (this is referred to as the bias-variance trade-off;



cf., e.g., James, Witten, Hastie & Tibshirani, 2013 or Goodfellow et
al., 2017). This is challenging because in general, more flexible RMs
have a lower bias but a higher variance compared to inflexible
ones. Note that the generalization error is not measured by using
the training data but by a special hold-out data set called “test
set”. This test set may not be used in advance, neither during
development, training, nor during the validation (evaluation) of
different RMs. For the validation of different models (i.e., the
identification of the most suitable RM), a special hold-out set,
the “validation set”, can be separated from the training data set.
Behind this background, we briefly describe some main aspects of
appropriate machine learning techniques in the following.

The group of rather inflexible, linear models includes multiple
linear regression and regularized linear models like Ridge regres-
sion, Lasso regression or Elastic net. More flexible are non-linear
models like Polynomial regression (based on non-linear transfor-
mations of the predictors; cf, e.g., Géron, 2019) and even more
flexible is Support vector regression. Central hyper-parameter
(hyper-parameters control the general behavior of a RM, e.g.,
how the model is trained; in contrast, a “normal” parameter is
part of the model and determined during training) of Support
vector regression is the used kernel: e.g., linear, polynomial with
a specific degree, Gaussian RBF, or sigmoid. The kernels are
used for “virtually enlarging” the feature space without having
the (computational) drawback of an actually large feature space
(cf,, e.g., Bishop, 2006 or Murphy, 2013).

Another group of regression model bases on decision trees. Be-
sides their advantages (e.g., interpretability or visualizability), de-
cision trees have several disadvantages, i.e. they are non-robust
(instable to even small changes in the data; cf. e.g., Géron, 2019)
and tend to overfitting. To eliminate these disadvantages, for ex-
ample Bagging regression trees, Random patches and Random sub-
spaces, Random forests (particularly helpful to determine a fea-
ture’s importance), or Boosting (e.g., Gradient boosted regression
trees) have been developed. Because these RMs use several deci-
sion trees to construct a more accurate prediction model, they be-
long to the group of “ensemble models” where the final prediction
is the (weighted) mean value of the individual predictions of the
ensemble’s members (e.g., decision trees). Generally, the result of
an ensemble model has a similar bias but a lower variance than
a single prediction model (cf, James et al.,, 2013). Instead of us-
ing the mean value to determine the final prediction, also an addi-
tional RM could be used. This type of ensemble model, where one
or more layers of RMs are used and the prediction of the preceding
layer is the input (feature) of the succeeding layer, is called stack-
ing or blending (cf., e.g., Géron, 2019). An idea that is also used by
the following RM.

Artificial neural networks are maybe the most flexible machine
learning technique for predicting the strip height, as they do not
make any assumptions about the relationship between indepen-
dent variables and dependent variable (cf. Bishop, 1995). Because
we are not going to discuss biological neural networks, we use
the term Neural networks (or NN) for simplicity in the following.
Due to their nonlinear nature, NNs perform very well for modeling
complex data structures where the functional form is most likely
nonlinear. Because the number of NN architectures is almost infi-
nite (a good visualization is provided on www.asimovinstitute.org),
we are not going into more detail about all available architectures.
In this paper, we concentrate on a “standard” feedforward NN
architecture with two hidden layers and evaluate several hyper-
parameters like number of neurons per hidden layer and learning
epochs. Such a NN with two hidden layers can be seen as a deep
learning method.

Summarizing the related work, we conclude that there is
no existing approach that uses and evaluates different ma-
chine learning techniques for the approximative anticipation

of base-level reactions

problems.

in the context of complex nesting

4. Approximate anticipation by machine learning predictions

Central goal of the application of machine learning as approx-
imative anticipation function is a most accurate anticipation of
base-level reactions. Regarding the metal-processing application
case, the anticipation function is used to predict batch feasibility,
i.e., if the items assigned to a batch can be placed on a metal slide.
Note that goal of the prediction is not a minimum height or lower
bound but to hit the result of the nesting solution method that
would be actually used for solving the finally created CNPs. In-
stead of solving the corresponding CNP, we seek to find an efficient
RM (used as anticipation/prediction function f*) and its parame-
ters that predicts the height f; of a CNP instance I; based on a set
of instance features 6; such that the prediction error is minimum.
To measure the prediction error, we use the root mean squared er-
ror (RMSE) because larger errors are penalized stronger and it has
the same unit (and similar scale) as the predicted value. Besides
using the RMSE as prediction error measure in the training, hyper-
parameter tuning, and validation phase, the RMSE is also used to
estimate the overall expected loss of prediction function f regard-
ing unknown instances. Depending on the purpose, instance set X
in Eq. (1) can either be a training data set (T), a validation set (V),
or a test set (D):

LX, f7) = %Z(H{P—H{S“)z M
ieX

In (1), I:Il.fp depicts the height predicted by prediction function

f7 and H/™ (H; for readability in the following) depicts the height
calculated by solution method fM for CNP instance I;: H; = H,.f M
fM(I;). Thus, H; depicts the known response variable in the re-
gression analysis and is called label in the context of supervised
machine learning. Note that whenever the prediction of the height
I:Ilfp is directly compared to the label H; and the RMSE definition
(1) is used by a RM, we call this “absolute labeling strategy” (“Ab-
sLab”) in the remainder of the paper.

Before describing three simple approximative anticipation func-
tions and their evaluation in terms of prediction accuracy,
notations and further terms are introduced.

4.1. Notations

Basic task of the CNP as considered in this contribution is to
position a set P; = {p;_y,..., pn} of n items on a large object (the
strip) having a fixed width W; by minimizing the “used” height
of the object. A feasible solution (called “nesting”) is a place-
ment of items without overlaps and with no item outside the
object limits. An item p; is represented by a tuple of polygons
Vi =(0j1:Pj2 - Pj, nj) with n; > 1. The first (enclosing) polygon
pj1 (also depicted by E in the following) defines the enclosing line
and thus, separates the “interior” from the “exterior” of an item
shape. All other polygons define holes of an item (these are also
called difference polygons). Each of the polygons is defined by a
tuple of vertices A;, = (V1.73. ... 7%,,) in R2. The edges defined
by the vertices of a polygon are given by I'; , and their lengths by
Q.
Jﬁasic properties of an item’s shape are the height h; and width
w; of the shape’s minimum bounding rectangle (MBR; as we allow
arbitrary rotations, the dimension naming is not relevant but we
use the convention that without rotation, the width of an item is
not smaller than its height, i.e., w; > h;). The area of the enclos-
ing polygon is depicted by af, the area of the convex hull of the
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enclosing polygon by af” , and the area of the minimum bounding
rectangle by aﬂV’BR =h;-wj (cf. Fig. 3). The area of a hole defined
by a polygon ) k(2. ;) is depicted by at.

4.2. Simple approximation approaches

Based on the “area lower bound” idea proposed by Martello et
al. (2003) for the strip-packing problem, three very simple and
fast computable problem-specific approximate anticipation func-
tions can be derived: SA-E (2), SA-CH (3), and SA-MBR (4).

The first function “fills” the strip with the total area of the en-
closing polygons and represents an inordinate optimistic anticipa-
tion approach:

SA—E: I:Ifzmax{maxjeﬁ{hj},Zaf/Wi} (2)

Jeh

The second, more conservative approach, fills the strip with the
total area of the convex hulls:

SA—CH: I:If”zmax{maxjepi{hj},Zaf”/Wi} 3)

Jjeh,

The third, most conservative approach, fills the strip with the
total area of the MBR of all items:

SA—MBR:  AMR = max {maxj&p‘.{hj}, > a’}”BR/Wi} (4)

Jjek

Fig. 4 illustrates the three simple approximation approaches
compared to a nested solution by an example with 15 items:

The low prediction accuracy of the simple approximation ap-
proaches is illustrated by the three diagrams in Fig. 5. In each di-
agram of Fig. 5, the abscissa depicts the heights obtained by the
CNP solution method and the ordinate depicts the heights esti-
mated by the simple approximation approaches (the light grey di-
agonal shows the perfect estimation). The illustrated approxima-
tions base on test data set D consisting of 17,640 CNP instances
(cf. Section 5.4.1).

The diagrams of Fig. 5 show that the simple approximation
methods are not suitable for an accurate decision on the batch
feasibility: SA-E and SA-CH most likely will underestimate the
height and lead to infeasible batches, whereas the accuracy of
SA-MBR decreases with increasing height. Further details, substan-
tiating the low prediction accuracy of the simple approximation
methods are listed in Table 5 in Section 6.3. The lack of accuracy
of these methods manifests the need for more accurate techniques
e.g., from (supervised) machine learning.

However, the information provided by the simple approxima-
tion methods should or can be used by the RMs. One way for
integration is to use them as descriptive features (independent
variables). Another way is to use one of them for defining a new
response variable AH; based on the difference between H; and
AMBR: AH; = H; — AMR (AMBR is used because it achieved the
lowest RMSE of all simple approximation approaches). In this case,
the RM is no longer predicting the height FI{", but predicts the
difference AH/” between H; and AMX. The “predicted” height can
then be easily derived by I:I,.fp = AMBR 4 AHifp. With this difference
labeling strategy (“DiffLab”), we use the following RMSE definition
to measure prediction errors during training and validation:

S (AH - AH) (5)
ieX

RMSE (X, f©) = \/ |>1(_|

5. The prediction framework

For the approximate anticipation, we propose the following
framework to identify and apply the most suitable RM for the
strip height prediction. Fig. 6 illustrates the framework’s main
components and the flow of information and data regarding the
identification of the best RM (grey arrows) and the application
of the RM by the scheduling method (dashed black arrows). It
also highlights the relationship between the top-level and the
base-level decisions.

To identify the most suitable RM (fBEST), CNP instances are
required for training, validation, and testing. These instances,
provided by the “Data acquisition” component, can be acquired
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Fig. 6. Prediction framework.

“real-world” instances (obtained by historical scheduling method
applications; (1)) and/or generated instances (II) that best possibly
represent “real-world” instances (the latter aspect is discussed in
detail in 5.1).

All acquired instances (IlI) are then used by the component
“Feature preparation” that is responsible for calculating the de-
scriptive features of the CNP instances (cf. 5.2.1) which in turn
are given to the “Dimension reduction” component (cf. 5.2.2). Note
that these two steps must also be performed when applying the
best RM (fBESTY for the prediction of the height. Therefore, both
steps should be very efficient.

For CNP instances that are not yet solved (IV), it is important to
calculate the actual heights H; (response variables, labels) with the
same CNP solution method with which the “real-world” instances

are solved (cf. 5.3). If the solution method changes, all available
instances must be solved again by using this solution method. This
is part of the component “CNP solving”.

The resulting set of instances with features and labels are then
split to training and test data sets (V; cf. 5.4.1).

The component “RM selection” uses these data sets for the RM
(pre-) selection, hyper-parameter tuning (HP-tuning), training, val-
idation, and testing (cf. 5.4). Thereby, we recommend to use two
phases of HP-tuning, training, and validation: In the first phase
(VI), all generally applicable RMs (cf. Section 3.3) are evaluated by
means of their RMSE. To reduce computation times, this evaluation
is based on the half of the training data and a limited set of hyper-
parameter settings (HP-settings). In the second phase (VII), a selec-
tion of the n most promising RMs is investigated with a greater set
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of HP-settings and the complete training data set. In this way, the
complete potential of each promising RM can be exploited and the
best RM is identified and trained in an efficient manner.

After that, the expected loss of the best RM can be estimated
based on the test data set and this trained RM is ready to be ap-
plied by the scheduling method (VIII).

The scheduling solution method uses this best RM fBEST to
evaluate if a constructed batch (A), which in turn defines a CNP
instance (B), is feasible. To enable the height estimation, features
for this CNP instances must be calculated and the following
dimension reduction provides the information used by fBEST (C).

The predicted height Iflif o (D) is then used to decide if a nesting
is possible, i.e., if the constructed batch is feasible.

5.1. Data acquisition and CNP instance generation

If there is no sufficient number of real-world CNP instances
for training, validation, and testing of RMs available (not sufficient
means that the number of samples is too small and thus, sampling
noise is induced), instances can be generated (e.g., also pro-
posed by Feng, Li, Cen & Huang, 2003). To avoid sampling biases,
these instances must be representative for the complete, diverse
instance space of real-world instances. Therefore, we basically
rely on the procedures and aspects discussed by Lopez-Camacho
et al. (2014) and Neuenfeldt Janior et al. (2019), Silva, Oliveira
and Wadscher (2014), Wang and Valenzela (2001), Wadscher et al.
(2007) for generating instances. In addition, we particularly follow
the advice of Smith-Miles and Bowly (2015) to generate instances
by controllable characteristics (attributes) to achieve a high in-
stance dissimilarity and method discrimination (instances should
elicit different behaviors; cf.,, Smith-Miles, Baatar, Wreford & Lewis,
2014). Note that the following instance generation procedure could
be applied or easily adapted to any type of (complex) cutting and
packing problems.

Because the quality of the training data is substantial for apply-
ing machine learning techniques, we put great emphasize on the
instance generation procedure and its description.

5.1.1. Basic item shapes

In contrast to the generation of shapes for regular, rectangu-
lar, or (simple) irregular packing and cutting problems, the shapes
of CNPs have a high degree of freedom and a completely auto-
mated generation of shapes would likely lead to unrealistic shapes
and consequently, to unrealistic problem instances. To address
this problem, we use shapes based on technical drawings from a
sheet metal manufacturer operating several laser cutting machines
(Fig. 7).

In doing so, we take care that the generated instances repre-
sent the diversity of real-world shapes. Accordingly, the instances
base on 50 elementary item shapes with three basic types BT ¢
{CV, CA, CX}: 10 shapes are convex (CV; regular and irregular), 20
shapes are concave (CA), and 20 shapes are complex (CX). These
elementary shapes are then used to derive a comprehensive set
of diverse item shapes by scaling according to the attributes item
widths IW and item height IH.

Based on the item width attribute specified by IW € {S, M, L,
XL}, the width of the new item’s MBR is drawn from a uniform
distribution with restrictions related to the reference strip width
WK = 1,000 scaled by parameter ¢: w;(IW) ~U(0.9-¢ -WR 1.1,
¢-WRy with ¢ =01, £ =025, ¢ =0.5, and ¢ =075 for S, M,
L, and XL, respectively. To reflect the approach of quadratic and
narrow items proposed by several authors (cf, e.g., Terashima-
Marin et al, 2010 or Silva et al., 2014), we use quadratic, half-
narrow, and narrow items. Accordingly, the item height attribute
IH € {Q. HN, N} defines how the height of an item’s MBR is drawn
from a uniform distribution with restrictions related to the item’s
width w; scaled by parameter ¥: h;(IH) ~U0.9- ¢ -w;, 1.1-¢ -
w;) with ¢ =1.0, ¥ =0.5, and ¥ =0.25 for Q, HN, and N, re-
spectively. After determining the MBR according to IW and IH, the
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elementary shape is maximized (scaled) within the bounds (w;
and h;) to create the shape of the new item (Fig. 8 illustrates the
scaling for the elementary shape depicted in Fig. 3).

For each of the 12 combinations of width and height attribute,
we derive ten MBRs by drawing w; and h; ten times. Then,
we scale each of the 50 elementary shapes to fit in the 120
MBRs. This leads to a shape repository of 6,000 different shapes
that are separated into 36 categories according to their attributes
type BT e {CV. CA, CX}, width IW e {S, M, L, XL}, and height IH ¢
{Q. HN, N}: e.g., the category (CV, S, Q) contains 100 basic shapes
or the category (CA, L, HN) contains 200 basic shapes.

5.1.2. Instance attributes and classes

All generated instances are categorized by classes based on sev-
eral attributes (generation parameters). First attribute of a gener-
ated instance I; is the width W; of the strip. Here, we use the
attributes OW ¢ {SW, MW, IW} with the corresponding widths
of W;(SW) =1,000, W;(MW) = 2,000, and W;(IW) = 4, 000. To-
gether with the number of items n and the item related param-
eters explained in the following, the strip width determines if
the strip (or nesting) aspect ratio is basically rather “quadratic”
or “narrow” (on the importance of the strip aspect ratio cf, e.g.,
Neuenfeldt Junior et al., 2019). Item related attributes used in our
generation procedure described in the following section are item
type assortment (ITA), item type heterogeneity (ITH), item width
assortment (IWA), and item height assortment (IHA).

Before describing these attributes in detail, we introduce the
mechanism of “random attribute selection with shuffling” that
is used later on (cf. Section 5.1.3). As pointed out by Silva
et al. (2014), beta distributions with probability density func-
tionf(x, o, B) should be preferred for instance generation because
of their flexibility to model different probabilities depending on
the parameters « and S. Because randomly parameterized beta
distributions would result in too similar instances (contradicting
the request for diverse instances), we use a set B of 81 beta dis-
tributions based on all combinations of & and S values from the
set {1.0, 1.5, 2.0, ..., 5.0}. The resulting density functions and the
attribute selection intervals are illustrated in Fig. 9. A uniformly
drawn beta distribution is named beta® in the following.

As the evaluation of the resulting attribute selection by these
distributions has shown undesired accumulations due to the law of
large numbers (cf. Fig. 10), we enhance the attribute selection by a
“shuffling” mechanism, i.e., a randomized assignment of attributes
to selection intervals. The randomly determined assignment of an
attribute to a selection interval is called attPerm in the following.

The positive effect of the shuffling mechanism is illustrated
in Fig. 10. For the illustration of the shuffling mechanism, a

< e o "
«——» Selection intervals
D e e >

f(x,0,B)

Fig. 9. Visualization of selectable beta distributions.

simulation with 1,000 iterations is used. In each iteration, one
beta distribution (out of the set B containing 81 distributions) was
drawn and based on this beta distribution, 1,000 attributes have
been drawn out of three or four classes, respectively. Summarizing,
the “random attribute selection with shuffling” (RBetaS) mecha-
nism uses two randomly defined parameters: beta® and attPerm.

The parameter item type assortment ITA defines the composi-
tion of different items with regard to the elementary shape types
convex (CV), concave (CA), and complex (CX): ITA € {CV, CA, CX,
CV+CA, CV+CX, CA+CX, CV+CA+CX}. If more than one type is spec-
ified, the selection is done by RBetasS.

To further improve instance dissimilarity, we use the param-
eter item type heterogeneity ITH € {WH, SH} and only consider
randomly defined subsets of all elementary shapes (specified by
the other parameters) for selection. Thereby, for WH (“weakly
heterogeneous”) and SH (“strongly heterogeneous”), the number
of elementary shapes in the subsets is drawn from a discrete
uniform distribution restricted by [0.2 - U - Nesr, 0.4 -V - Negt] With
v =1 and v = 2, respectively. Here, ney depicts the total num-
ber of elementary shapes per type (e.g., fes = 10 for convex
shapes).

The parameter item width assortment IWA defines the compo-
sition of items with different widths according to IW ¢ {S, M, L,
XL}: WA € {S+M, M+L, [+XL, S+ M+L, M+L+XL, S+M+ L+XL}.
If more than one type is specified, the selection is done by RBetaS.
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Fig. 10. Influence of the shuffling mechanism.

The item height assortment parameter [HA defines the com-
position of items with different heights according to I[H e
{Q. HN, N}: IHA € {Q HN, N, Q+HN, Q+N, HN+N, Q+HN+N}. If
more than one type is specified, the selection is done by RBetasS.

According to the attributes OW, ITA, ITH, IWA, and [HA, a to-
tal number of 1,764 instance classes is available. Each class can
be specified by a tuple like (SW, CV+CX, WH, M+ L+XL, Q+HN).
Regarding the aspect of weakly and strongly heterogenous items
(cf. Wdscher et al., 2007), we classify all instances with item type
heterogeneity WH and an item width assortment from the subset
{S+M, M+L, L+XL} to be weakly heterogenous and all others to
be strongly heterogenous.

5.1.3. Generation procedure
The following pseudo-code illustrates the main course of action
of the instance generation procedure:

createlnstances(N.:= number of instances per class, [b", ub", shapeRepository[])
For each OW <{SW, MW, LW}
For each ITA €{CV, CA, CX, CV+CA, CV+CX, CA+CX, CV+CA+CX}
For each ITH <{WH, SH}
For each IWA € {S+M, M+L, L+XL, S+M+L, M+ L+XL, S+ M+ L+XL}
For each [HA <{Q, HN, N, Q+HN, Q+ N, HN+N, Q+HN+N}
For i=1 to N,

betaf.,:= ~U(B); betak,,:= ~U(B); betaf,,:= ~U(B);

attPermyrp:= getPerm(ITA);

attPermyy,:= getPerm(IWA);

attPermyy,:= getPerm(IHA);

S[]:= getShapeSubsets (shapeRepository[], ITA, ITH, IWA, IHA)

n:= ~U(Ib", ub")

Forj=1ton
basicType;.= getTypeAttribute (betafm. attPermyry, ITA); |/ e.g., CX
wj:= getWidthAttribute (betal,,, attPermyy,, IWA); /[ e.g., L
h;:= getHeightAttribute (betaf,,, attPermya, IHA); | e.g., IH
item:= selectitemFromSubset (S[], basicType;, wj, h;)
addItemTolnstance (item);

Next

Next

Based on this procedure, we generate 50 instances (N. = 50) for
each of the 1764 instance classes, leading to 88,200 CNP instances
in total. The lower bound of the number of items per instance
(Ib" = 50) is derived by the number of items used by instances
from literature, whereas the upper bound (ub"™ = 150) is justified
by the application case.

5.2. Feature preparation

The descriptive features used by the RMs are based on ag-
gregated item (shape) properties and further instance related
characteristics. Thereby, we use properties and concepts known
from literature and new ones, particularly developed to character-
ize CNPs. Feature selection and combination are part of the feature
engineering that has an important influence on the prediction
performance of RMs (e.g., on the one hand, too less features can
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lead to underfitting but, on the other hand, irrelevant features can
lead to overfitting; these aspects will be discussed in more detail
in Section 5.2.2).

Instead of numerically descriptive features used by our RMs,
it would be generally possible to use the information how many
items with a specific shape are part of an CNP instance: e.g., the
instance contains eight items with shape A, 34 items with shape B,
12 items with shape C, and so on. This kind of feature preparation
could be very fruitful if item shapes are not varying but constant
because using this kind of features, other prediction methods,
like bag-of-words models as used in Naive Bayes spam filtering,
could be used. Unfortunately, the number of different shapes is
anything but constant in most companies and particularly in most
sheet metal manufacturing companies. In this case, whenever a
new shape has to be cut or packed, new instances for training,
validation, and testing would have to be available or generated.
As this is not an adequate approach for real-world applications,
we use descriptive numerical features as these provide a higher
degree of flexibility (regarding new item shapes).

5.2.1. Feature calculation

Besides the basic properties described in Section 4.1, further
item properties are used to define the descriptive features 6; of
a CNP instance i. Some of these properties are obvious, some of
them are derived from literature (Lopez-Camacho et al., 2013b,
2014; Wang & Valenzela, 2001, and Neuenfeldt, Silva, Miguel
Gomes & Oliveira, 2018), and some are newly defined to particu-
larly express highly irregular shapes. The complete set of 43 item
properties is listed in Table 8 in Appendix A-1. Based on these item
properties, we use the functions SUM, MED (median), MIN, MAX,
VAR (variance), Q1 (first quartile), Q3 (third quartile), P10 (10% per-
centile), P90 (90% percentile), and SKEW (Fisher-Pearson coefficient
of skewness; cf., Zwillinger & Kokoska, 2000) to determine aggre-
gated instance related features. Note that mean values are omitted
because they are directly related to SUM. In contrast to Neuenfeldt
Janior et al. (2019), we are not using the ratios Q3/Q1 and P90/P10
but use the “unrelated” values and leave the combination of both
to the RM. Besides these 430 (43 - 10) aggregated features (named
SUM(h;), MED(h;) etc. in the following), additional instance re-
lated features are listed in Table 1 (features marked by an asterisk
* originate from Lopez-Camacho et al., 2013b).

The number of totally 452 features (43 .10+ 22) seems to be
quite large and can cause difficulties for some RMs. To that, we
use dimension reduction as described in the following section. In
addition, we define two sets containing different instance features
to evaluate the influence of features on the prediction quality
and computation times. The first set contains the total number
of available instance features (TIF), whereas the second set only
contains a reduced number of instance features (RIF). This second
set RIF does not contain features having an average-case com-
putation complexity higher than O(n), e.g., O(n log n): MED, QI,
Q3, P10, P90, and SKEW. Accordingly, feature set RIF only contains



Table 1
Additional instance features.

Feature Description

n Total number of items

w Width of the strip

At Predicted height based on the area of the enclosing polygon

ACH Predicted height based on the area of the enclosing polygon’s
convex hull

FAMBR Predicted height based on the area of the enclosing polygon’s
MBR

nP Number of different item categories; two items have a different
category if they are not completely identical regarding the
combination of the attributes BT < {CV, CA, CX}, W (S, M, L,
XL}, and IH € {Q, HN, N}.

MIN#PC Minimum number of items regarding all item categories

MAX#IpC Maximum number of items regarding all item categories

MEAN#IPC Mean of the number of items regarding all item categories

MED*PC Median of the number of items regarding all item categories

VAR¥1PC Variance of the number of items regarding all item categories

SKEW*PC  Skewness of the number of items regarding all item categories

Q1#IrC First quartile of the number of items regarding all item categories

Q3*IrC Third quartile of the number of items regarding all item
categories

P10#*IPC 10% percentile of the number of items regarding all item
categories

P9Q*IpC 90% percentile of the number of items regarding all item
categories

nt! Number of large items (w; > 0.75-W); *

nsl Number of small items (w; < 0.25-W); *

n'R Number of items with a high rectangularity (rf >0.9); *

niR Number of items with a low rectangularity (rjE <0.5); *

nNCoN Number of non-convex items (items with n;‘”‘ >0)

ncomp Number of complex items (items with n; > 1)

188 features (43 -4 + 16). Note that because item properties only
have to be computed once, their amount influences computation
efficiency only minimally.

As many RMs require or perform better on scaled feature val-
ues, we use a normalization (min-max scaling) between 0.0 and
1.0 for scaling all features.

5.2.2. Dimension reduction

At first sight, a large number of descriptive features seems to be
favorable for characterizing an instance in the best possible way
and thus, increase prediction accuracy. This is indeed the case if
these features are actually relevant for the prediction. If features
are not relevant, prediction accuracy can get worse and training
time unnecessarily increases. This is because such “noise” features,
while increasing the dimensionality, exacerbating the risk of over-
fitting and adding bias (cf,, e.g., James et al., 2013). Even if features
are relevant, the variance incurred in determining their coefficients
may compensate the benefits that they bring. Furthermore, the in-
creased dimensionality leads to the need for larger data sets due
to the curse of dimensionality (cf., e.g., Géron, 2019). To handle the
trade-off between benefits and drawbacks of more or less descrip-
tive features, dimension reduction methods can be very helpful.

One of the most popular dimension reduction methods is the
Principal Component Analysis (PCA) belonging to the area of unsu-
pervised machine learning. Within the prediction framework, PCA
is used to convert a set of features into a set of uncorrelated
descriptive variables (called “principal components”) by retaining
most of the variance of the original features. Main parameter for
the PCA is the number of resulting components. Instead of defining
a fixed number, we use the approach to specify a minimum value
for the training data set’s variance to be preserved (e.g., PCA(98%);
as proposed by Géron, 2019).

Of course, also other dimension reduction methods like “Kernel
PCA”, “Locally Linear Embedding”, or “Linear and Quadratic Dis-
criminant Analysis” could be applied.
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5.3. CNP solving

Because the RM is used to predict strip heights calculated
with one specific CNP solution method, this solution method, that
is not only used for solving training instances but also applied
on the real CNP instances resulting from the superior schedul-
ing task, must be determined. The CNP solution method used in
this contribution is the open source nesting software “deepnest”
(https://deepnest.io) that bases on “SVGnest” (https://svgnest.com)
which in turn bases on the works of Burke et al. (2007), Kendall
(2000), and Lépez-Camacho, Ochoa, Terashima-Marin and Burke
(2013a). All used sources and libraries are available at github.com.
For solving the CNP instances, we used the following parameters:
population size = 10 (standard value), mutation rate =10 (standard
value), optimization ratio=0 (only material utilization is opti-
mized, not cutting length), maximum computation time = 180 sec-
onds, and number of threads = 2. Note that the last two parameters
are set in order to achieve a reasonable trade-off between solution
quality and computation time.

5.4. RM selection

The determination of the most appropriate RM, its parameters,
and hyper-parameters starts with the separation of the available
data into training data and test data. Only the training data is used
for the next steps of hyper-parameter tuning, model training, and
model validation. Final result of these steps is the RM achieving
the lowest RMSE with regard to the training data.

5.4.1. Data separation: training and test data

As it is common practice to use at least 20% of the available
data for testing, we follow this approach and separate our 88,200
CNP instances into a training data set (T) consisting of 70,560 in-
stances and a test data set (D) of 17,640 instances. Because we use
an integrated training and validation method (cf., Section 5.4.3), an
explicit validation set is not required. To have a greatest possible
diversity in the test data set, we randomly select 10 from each of
the 1,764 instance classes for the test data set and put the remain-
ing instances into the training data set. This results in a stratified
sampling.

5.4.2. RM pre-selection

Because we have only very limited information about previ-
ous RM applications related to the prediction task at hand (only
Neuenfeldt Janior et al., 2019 address a similar problem), we have
pre-selected a relatively large number of 18 RMs to be evaluated
in the first phase of the RM selection process (the pre-selection is
based on the different groups of RMs described in Section 3): Mul-
tiple linear regression (MLR), Ridge regression (RR), Lasso regres-
sion (LR), Elastic net (EN), LARS Lasso (LL), Polynomial regression
(PR; with the best tuned linear model), Stochastic gradient descent
(SGD), K-nearest neighbors regression (KNN), Kernel ridge regres-
sion (KRR), Support vector regression (SVR), Decision tree — CART
(CART), Bagging regression trees (BRT; uses one of the base esti-
mators PR, SGD, KNN, KRR, SVR, or CART with best hyperparam-
eters), Random forest regressor (RF), Extremely randomized trees
(ERT), AdaBoost with R2 (ABR2; uses one of the base estimators PR,
SGD, KNN, KRR, SVR, or CART with best hyperparameters), Gradi-
ent boosted decision trees (GBDT), Stochastic gradient boosted de-
cision trees (SGBDT), and Neural networks (NN). Because some of
the RMs (PR, BRT, and ABR2) base on other RMs, a corresponding
sequence of experiments must be respected.

5.4.3. Hyper-parameter tuning, training, and validation
Because hyper-parameter tuning, training, and validation are
strongly related to each other, these aspects are explained together.



To determine the best hyper-parameter setting (HP-setting) of
a RM, approaches like manual search, grid search, or randomized
search are common. In manual search, hyper-parameter values
are set manually, in grid search, given value vectors for each
hyper-parameter are combined to a full factorial analysis, and in
randomized search, random combinations of the values given by
predefined vectors for each hyper-parameter are used. In all three
cases, one RM is iteratively trained and validated to determine the
best hyper-parameter setting.

The training and validation of a RM with a specific hyper-
parameter setting is performed based on the cross validation
technique (cf., e.g., Bishop, 1995 or Goodfellow et al., 2017). This
technique is commonly used by learning methods to achieve a
good generalization, to compare the performance of several RMs
(cf, Wong, 2015), and to estimate prediction errors (cf., Fushiki,
2011). Therefore, for determining the most suitable RM and its
parameters, we use grid search and a 5-fold cross-validation with
shuffling. Shuffling means that the instances in the training data
set are randomly reordered before they are split into the different
folds. To reduce computation times, we restrict the number of
folds to five and do not perform any repetitions as we can assume
that our training data set is large enough (35,280 instances in the
first phase and 70,560 in the second phase; for discussions about
the usefulness of a higher number of folds and repetitions cf.,
e.g., Bengio & Grandvalet, 2004 or Baets, Manderick, Rademaker &
Waegeman, 2012).

The result of the 5-fold cross-validation of a RM is the mean
validation RMSE of all five folds. This mean validation RMSE is the
major criteria when determining the most suitable RMs in the first
phase and the best RM in the second phase. Further criteria are the
mean computation times (regarding all folds and the best hyper-
parameter setting) and the coefficient of determination (R2).

5.5. Testing and RM application (prediction)

To evaluate whether a RM generalizes well on new CNP prob-
lem instances, we follow the common approach and apply the best
RM on the test data set (containing instances the RM has never
“seen” before) to determine its expected loss.

The best (most accurate) RM is finally used for the prediction
of the strip height, i.e., this trained RM provides a highly efficient
anticipation function for the superior scheduling problem to antic-
ipate batch feasibility (and quality).

6. Evaluation

The accuracy of a machine learning technique does not only de-
pend on its basic capabilities (e.g., the possibility to model nonlin-
ear relations) but also on the engineered features, the dimension
reduction (parameters), and the labeling strategy. Accordingly, we
investigate the influence of the two feature sets RIF and TIF com-
bined with three parameter settings:

- “PCA(98%)-AbsLab":
PCA with 98% variance preservation combined with the abso-
lute height label “AbsLab” (cf., (1) in Section 4)

- “PCA(98%)-DiffLab":
PCA with 98% variance preservation combined with the differ-
ence label “DiffLab” (cf,, (5) in Section 4.2)

- “PCA(90%)-SimApp”:
PCA with 90% variance preservation combined with the abso-
lute height label “AbsLab” and the additional information of
the simple height approximations as unscaled features (to com-
pensate the reduced number of principal components resulting
from PCA with 90%)
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This latter setting is used to analyze the performance (efficiency
and effectiveness) of RMs with regard to the number of compo-
nents (features).

The proposed prediction framework is implemented in Python
3.7, instance data, training and test results are persisted in a Post-
greSQL database, and statistical analyses are performed by RStu-
dio. For implementing the various regression methods, we use the
“scikit-learn” package (Pedregosa et al., 2011) despite for SGBDT
and NN. For SGBDT, we use “XGBoost” (xgboost.ai) and for NN,
we use “Keras” (keras.io) and “TensorFlow” (www.tensorflow.org).
To provide the possibility to reproduce our results, an executable
Jupyter-Notebook and the complete set of instance samples with
instance attributes, features, labels, simple approximations, and the
results of our best RM method are provided within a data set
hosted on Mendeley data (Gahm, 2020).

All experiments are executed on workstations with Intel Xeon
3.0 GigaHertz CPUs and 64 GigaBytes RAM.

6.1. Results of RM selection phase |

In phase I, we evaluate the 18 pre-selected RMs in terms of
their mean validation RMSE and with regard to the different fea-
ture parameter settings previously described. Besides the mean
validation RMSEs, Table 2 additionally depicts the number of tuned
hyper-parameters (“Num. HP”) and the number of investigated
HP-settings (“Num. HP-settings”) for each RM. Note that PR(EN)
names Polynomial regression combined with tuned Elastic net,
BRT(PR(EN)) names Bagging regression trees with tuned PR(EN),
and so on. Unfortunately, not all RMs have been able to produce
reasonable results and the return codes have not been meaningful
in all cases. Thus, in Table 2, abbreviation OOM indicates “out of
memory” errors and UKE indicates “unknown errors”.

The results in Table 2 show that the calculation of all defined
instance features (TIF) justifies the additional computation times
by improved predictions. Particularly when comparing the compu-
tation times: the RIF instance feature set can be calculated in 0.09
seconds on average and the TIF instance feature set can be cal-
culated in 0.39 seconds on average. However, if computation times
are very critical also the RIF set in combination with NN, PCA(98%),
and “DiffLab” is an opportunity. The results also show that the lin-
ear models MLR, RR, LR, EN, and LL are underfitting and thus, are
not suitable for the height prediction task. Furthermore, the results
clearly indicate the benefit of using the information provided by
the simple approximation approaches, especially if AMPR is used
by the “DiffLab” label (cf., Eq. (5)).

Most promising RMs after this first phase are marked bold in
Table 2 and analyzed in detail in Table 3. Besides the RMSE, we
report the explained variance (R%) and the mean training time
(“MTT”; mean with regard to the best HP-setting and the five folds
including training and validation).

Because the solution quality of ABR2(PR(EN)) is similar to that
of the other most promising RMs but its mean computation is re-
markably higher, we decided to analyze PR(EN), BRT(PR(EN)), and
NN in RM selection phase II.

The results of the RM selection phase I also show the benefit of
the proposed prediction framework that emphasizes the evaluation
of a broad range of RMs, different feature sets, different labeling
strategies, and dimension reduction parameters in order to identify
the most suitable ones.

6.2. Results of RM selection phase Il

In phase II, we concentrate on the three RMs PR(EN),
BRT(PR(EN)), and NN and the two configurations with RIF and TIF
combined with PCA(98%) and “DiffLab”. Here, we use the complete
training data set with 70,560 CNP instances. Table 4 depicts the



Table 2
RMSEs with regard to RM, feature set, PCA variance, and labeling.

RM (Num. HP, Num. HP-settings) RIF TIF
PCA(98%) PCA(98%) PCA(90%) PCA(98%) PCA(98%) PCA(90%)
-AbsLab -DiffLab -SimApp -AbsLab -DiffLab -SimApp

MLR (0, 1) 6786.6 8223 788.3 6600.8 750.8 767.5
RR (2, 120) 6786.6 8223 788.3 6600.7 750.8 767.5
LR (3, 240) 6786.6 8223 788.3 6600.7 750.8 767.5
EN (4, 2160) 6786.6 8223 788.3 6600.7 750.8 767.5
LL (2, 120) 6786.6 8223 788.3 6600.7 750.8 767.5
PR(EN) (4, 1080) 753.1 464.8 4435 432.3 389.7 413.6
SGD (4, 3240) 6818.9 828.2 UKE 6641.8 758.7 UKE
KNN (3, 48) 3550.6 805.8 628.3 4159.0 800.1 628.8
KRR (2-4, 1140) OOM OOM OOM O0OM OOM OOM
SVR (3-5, 4650) 24479 772.0 UKE OOM O0OM O0OM
CART (5, 256) 2604.1 840.8 727.6 2505.4 826.8 745.5
BRT (PR(EN)) (2, 8) 751.9 462.9 442.8 430.1 386.4 410.6
RF (6, 1024) 1684.6 684.1 558.9 1725.4 642.8 550.1
ERT (6, 1600) 1612.8 664.0 5413 1548.1 609.9 526.8
ABR2 (PR(EN)) (2, 10) 752.2 463.6 442.5 429.8 386.8 4111
GBDT (6, 1536) 1399.8 664.0 553.8 1390.1 577.0 536.8
SGBDT (7, 4608) 1244.0 590.5 550.8 1280.7 552.6 528.3
NN (5, 225) 4249 389.5 7324 361.7 341.7 725.4
Number of principal components 57 57 20+3 120 120 30+3

Table 3

Key figures of most promising RMs in phase I (all with TIF, PCA 98%, and “DiffLab”).
RM RMSE R2 MTT [seconds]
PR(EN) 389.7 0.8813 115.96
BRT(PR(EN)) 386.4 0.8833 6256.07
ABR2(PR(EN)) 386.8 0.8831 45,182.49
NN 341.7 0.9088 962.95

key figures with regard to RM and feature set, and additionally the
percentage changes compared to phase I.

As we can see by the percentage changes of the mean com-
putation times, computational efforts remarkably increase (partic-
ularly for NN) whereas prediction accuracy and explained variance
are only slightly improved (despite NN with RIF where we have
a larger improvement). Note that the remarkably increase of the
mean computation time of the NN in phase II can be traced back
not only to the larger number of CNP instances in the training set
but also to the different best HP-settings: in phase I, we have two
hidden layers with 512 and 64 neurons and 200 epochs and in
phase II we have two hidden layers with 1,024 and 1,024 neurons
and 500 epochs.

Summarizing the RM selection process, artificial neural net-
works (with two hidden layers each containing 1,024 nodes, a
dropout rate of 0.3 for each node in the hidden layers and a L2
weight regularization rate of 0.001 for 500 epochs) are identified
to provide the most accurate predictions.

6.3. Testing results

The final testing of the best RM (NN with TIF, PCA(98%),
and “DiffLab”) is used to estimate the overall expected loss of
the prediction. The standard test of machine learning techniques
to estimate L(X, fP) bases on the test data set separated from
the complete data set before starting training and validation (cf,,
Section 5.4.1). In Table 5, the results of the testing are depicted
with regard to the complete test set D and with regard to the dif-
ferent instance classes (in the last four rows, the number in brack-
ets indicates the number of instances).

The results of Table 5 clearly show the remarkable benefit of
using NN as anticipation function compared to the simple approx-
imation methods: For any case of instance characteristics, the ex-
pected loss achieved with NN is much lower compared to SA-E,
SA-CH, and, SA-MBR. However, there are some CNP instance char-
acteristics that make predictions more difficult: e.g., instances with
a small strip width (OW=SW), instances where items with a large
or extra-large width constitute the majority of items (IWA=L+XL
or IWA=M+L+XL), or instances where items are all more or less
quadratic (IHA=Q). Furthermore, the results also show that predic-
tion accuracy decreases with increasing number of items.

Summarizing the testing results, the prediction accuracy of the
NN is remarkably good (with a mean expected loss - RMSE - of
327.89), particularly when comparing the predictions of the NN
illustrated in Fig. 11 to the simple approximation methods illus-
trated by the diagrams in Fig. 5 (Section 4.2).

Table 4
Key figures of most promising RMs in phase II (with PCA(98%) and “DiffLab”).
RM RIF TIF
RMSE R? MTT [seconds] RMSE R? MTT [seconds]
PR(EN) 471.58 0.8383 42.19 383.96 0.8926 240.40
(1.46%) (0.90%) (72.13%) (-1.47%) (1.28%) (107.31%)
BRT(PR(EN))  470.84 0.8389 3284.89 383.22 0.8930 17,082.95
(1.72%) (0.81%) (149.90%) (—0.82%) (1.10%) (173.06%)
NN 374.96 0.8978 6135.63 339.17 0.9162 56,569.90
(—3.73%) (1.88%) (191.26%) (—0.74%) (0.81%) (5774.65%)
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Table 5
Testing results.

hid LX, 7 R?
SA-E SA-CH SA-MBR NN SA-E SA-CH SA-MBR NN
Testing (D) 3688.03 2474.07 1230.48 327.89 0.8286 0.9229 0.9809 0.9986
ow sw 5918.05 4062.95 1931.17 509.31 0.7797 0.8962 0.9765 0.9984
MW 2148.95 1218.10 812.13 217.55 0.8435 0.9497 0.9777 0.9984
w 1078.64 609.66 391.47 125.73 0.8430 0.9498 0.9793 0.9979
ITA v 3129.45 3129.45 1249.70 275.33 0.8760 0.8760 0.9802 0.9990
CA 4601.00 1611.84 1146.52 350.19 0.6833 0.9611 0.9803 0.9982
X 3149.15 2502.35 1586.27 357.52 0.8932 0.9326 0.9729 0.9986
CV+CA 3977.66 2424.98 1051.82 303.41 0.7877 0.9211 0.9852 0.9988
CV4+CX 3119.24 2792.69 1251.61 334.86 0.8843 0.9072 0.9814 0.9987
CA+CX 3949.07 2090.48 1147.13 335.36 0.8030 0.9448 0.9834 0.9986
CV+CA+CX 3631.07 2478.72 1103.30 331.17 0.8319 0.9217 0.9845 0.9986
ITH WH 3615.56 2419.76 1292.59 356.02 0.8312 0.9244 0.9784 0.9984
SH 3759.10 2527.21 1165.05 297.11 0.8260 0.9214 0.9833 0.9989
IWA S+M 451.00 270.59 169.20 77.85 0.8356 0.9408 0.9769 0.9951
M+L 2021.32 1208.99 724.60 225.19 0.8231 0.9367 0.9773 0.9978
L4+XL 6644.81 4589.43 2186.82 506.77 0.7525 0.8819 0.9732 0.9986
S+M+L 1303.67 752.53 507.64 170.35 0.8440 0.9480 0.9763 0.9973
M+ L+XL 4310.76 2773.85 1415.28 402.00 0.7944 0.9149 0.9778 0.9982
S+M+L+XL 3589.52 2422.33 1219.77 375.32 0.8140 0.9153 0.9785 0.9980
HA Q 6352.49 4394.10 212528 545.00 0.7792 0.8943 0.9753 0.9984
HN 2813.26 1737.32 865.29 249.37 0.8066 0.9263 0.9817 0.9985
N 1108.51 727.32 258.17 133.20 0.7966 0.9124 0.9890 0.9971
Q+HN 447339 2957.50 1504.45 360.63 0.8178 0.9204 0.9794 0.9988
Q+N 3608.03 2460.09 1232.61 346.02 0.8350 0.9233 0.9807 0.9985
HN+N 1920.72 1150.45 530.59 182.41 0.8270 0.9379 0.9868 0.9984
Q+HN+N 2999.24 1967.05 1096.40 304.28 0.8451 0.9334 0.9793 0.9984
50< n <75 (4547) 2215.57 1429.96 725.22 221.77 0.8221 0.9259 0.9809 0.9982
75< n<100 (4396) 3145.23 2032.87 1000.57 289.51 0.8137 0.9222 0.9811 0.9984
100< n <125 (4312) 3967.05 2695.10 1331.19 353.93 0.8238 0.9187 0.9802 0.9986
125< n <150 (4385) 4922.76 3349.28 1673.09 417.48 0.8208 0.9170 0.9793 0.9987
P"INN Table 6
Nesting computation times and prediction response times.
100.000 Number of First solutions Best solutions  Response times
items (n) 3
Min. CT [s] Mean CT [s] Mean CT [s] RIF [s]  TIF [s]
50 5.16 8.75 119.93 0.11 0.40
y 75 5.28 11.38 102.72 0.12 0.42
75.000 100 6.12 14.83 104.54 0.13 0.43
125 8.36 19.44 112.63 0.15 0.45
150 7.74 21.00 106.14 0.16 0.46
50.000 onds). If this response time is not suitable, prediction accuracy
could be traded for a lower response time by using the RIF
feature set. With the RIF feature set, the NN (with PCA(98%), and
“DiffLab”) achieves a mean expected loss of 368.46 (+11.01%) and
25.000 a mean total response time of 140.13 microseconds (—214.57%;
instance feature calculation: 99.91 microseconds; feature scaling:
0.09 microseconds; PCA computation: 0.09 microseconds; NN
prediction: 40.04 microseconds). For a better assessment of the
0 H response times, we compare them to the computation times
. . . . .
0 25.000 50.000 75.000 100.000 (CT) of the nesting solution method for calculating first solutions

Fig. 11. Height predictions by NN with TIF, PCA(98%), and “DiffLab” (test data set).

Against the background of the hierarchical planning model (cf.,
Fig. 2), not only prediction accuracy but also response time can
be important (depending on the solution method of the superior
decision problem). The mean total response time to predict the
height of a CNP instance with NN based on TIF, PCA(98%), and
“DiffLab” is 440.81 microseconds (instance feature calculation:
397.56 microseconds; feature scaling: 0.10 microseconds; PCA
computation: 0.09 microseconds; NN prediction: 43.06 microsec-

and best solutions (with settings as described in 5.3) in Table 6.
The comparison bases on 50 randomly selected instances hav-
ing a corresponding number of items. Note that Mundim et al.
(2018) report similar computation times for their general heuristic
when solving two-dimensional nesting problems.

The much higher computation times of the nesting solution
method show the superiority of the approximative anticipation
by machine learning in terms of time. However, the time benefit
comes at the costs of a lower prediction accuracy compared to
the perfect “prediction” (best solution) achieved by the nesting
solution method. The actual influence of the prediction accuracy
on the feasibility-decision is discussed in the following section.
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Fig. 12. Histogram of relative percentage errors by SA-MBR (test data set).

Table 7
Comparison of anticipation functions regarding batch feasibility decisions.

Over- Underestimations below or equal to
estimations
5% 10%
SA-MBR 62.4% 79.2% 89.9%
NN with PCA(98%), RIF 60.8% 92.9% 98.6%
“DiffLab”, and TIF  58.5% 93.4% 98.8%

6.4. Discussion

In this paper, we propose using machine learning for the ap-
proximate anticipation of base-level reactions instead of itera-
tively solving CNPs to achieve a most suitable trade-off between
feasibility-decision accuracy and response time. As discussed so
far, on the one hand, the application of a nesting solution method
leads to perfect batch feasibility-decision accuracy at the expense
of high computation times and, on the other hand, the simple ap-
proximation approaches have computation times of almost zero
but lack batch feasibility-decision accuracy. The question yet to be
answered is the investigation of the feasibility-decision accuracy
achieved with our machine learning based predictions.

Remember, during solving the superior serial-batch scheduling
problem, the predicted height is used to estimate whether or not
a created batch is feasible, i.e., a batch is feasible if the predicted
height is smaller than the maximum height of any currently avail-
able metal slide. In this context, we must be aware of two cases:
false negative feasibility decisions and false positive feasibility de-
cisions (the two other cases, i.e., true positive and true negative,
will not cause any problems). False negative feasibility decisions
mean that the height has been overestimated and thus, a batch has
been declared to be infeasible despite being feasible. In this case,
we might skip a good, or even the optimum, scheduling solution
(i.e., scheduling solution quality is affected). False positive feasibil-
ity decisions mean that the height has been underestimated and
thus, a batch has been declared to be feasible despite being in-
feasible. In this case, the most critical one, not only solution qual-
ity but solution feasibility is affected and the scheduling solution
might be infeasible.

Because we do not have any information about actually avail-
able metal slides, we show the benefits of our approach by the fol-
lowing line of arguments. Each of the histograms in Fig. 12-14 de-
picts 12 classes of relative percentage errors. Thereby, negative er-
rors indicate overestimations and positive errors underestimations.

Assuming that false negative decisions are bearable, all overes-
timations are acceptable (cf. column two in Table 7). Furthermore,
if we can assume that underestimations below or equal to 5% only
lead to a negligible share of false positive conclusions, up to 93.4%
of the overall decisions would be implementable (NN with TIF).
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Fig. 13. Histogram of relative percentage errors by NN with RIF (test data set).
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Fig. 14. Histogram of relative percentage errors by NN with TIF (test data set).

Relaxing this assumption to underestimations below or equal to
10%, this value even increases to 98.8% (cf. Table 7, the underlying
values can be derived from Fig. 12, Fig. 13, and Fig. 14,).

The superiority of the approximate anticipation of base-level re-
actions by NN compared to the best simple approximation SA-MBR
in terms of feasibility-decision accuracy becomes obvious by com-
paring the key figures depicted in Table 7.

7. Final remarks

Goal of our investigation has been to analyze the potential ben-
efits of applying machine learning techniques for the approximate
anticipation of base-level reactions instead of using simple approx-
imate anticipation functions or solving the base-model. Although
our investigation is related to a specific application case constitut-
ing the two related decision models serial-batch scheduling (top-
level) and complex nesting (base-level), the underlying concept of
using machine learning techniques as anticipation function in a hi-
erarchical planning system is general and universal. To support the
identification and application of the most suitable machine learn-
ing technique and its (hyper-) parameters, we propose a prediction
framework comprising several components like data acquisition,
instance generation, feature engineering, dimension reduction, and
RM selection. The testing results demonstrate that the proposed
prediction framework is capable to identify, train, and validate
the best machine learning technique for the univariate multiple
regression task at hand. The concluding discussion underscores
the importance of a most accurate height prediction and shows
the suitability of the proposed anticipation approach and its supe-
riority compared to simple approximate anticipation functions.

Potential to improve prediction accuracy further is endowed
by developing new, and enhancing or combining existing machine



learning techniques. For instance, the application of deeper neu-
ral networks or stacking models. Additionally, providing prediction
or confidence intervals quantifying the uncertainty of a prediction
would be helpful for the batch feasibility decision. Also, research
into machine learning stack models directly deciding on batch
feasibility is of interest.

Besides the application case of sheet metal manufacturing,
other areas of application can be found. For instance, the emerging
area of additive manufacturing constitutes a very similar decision
environment: top-level batching and scheduling decisions com-
bined with base-level three-dimensional nesting decisions. Here,
depending on the additive manufacturing technology, not only the
feasibility of a batch is of interest but also the processing (build)
time of a batch depends on the nesting decision (e.g., on the build
orientation or on the maximum height of the batch; cf., Griffiths,

Scanlan, Eres, Martinez-Sykora & Chinchapatnam, 2019 and Zhang,
Yao & Li, 2020, respectively).

Beyond the application of machine learning techniques as ap-
proximate anticipation function in the area of production schedul-
ing, the concept is applicable to other hierarchical decision envi-
ronments and its potential should be investigated.

Appendix
A-1: List of item properties
References

Albey, E., & Bilge, U. (2011). A hierarchical approach to FMS planning and
control with simulation-based capacity anticipation. International Journal of

Table 8
Item properties.

Production Research, 49(11), 3319-3342. https://doi.org/10.1080/00207543.2010.
482570.

Property Description
h; Height of the MBR
wj Width of the MBR
= h]/w] Aspect ratio of the dimensions of the MBR

= hj/d; Ratio between the height and the diagonal of the MBR
7 =w;/d; Ratio between the width and the diagonal of the MBR
af Area of the enclosing polygon (including areas of the difference polygons)
as Area of the convex hull
altBR Area of the MBR
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Filling degree of the shape with a? = Z a’; depicting the total area of all difference polygons (aLf depicting the area of a
difference polygon k; cf., white area in Flg. 3)

Filling degree of the MBR with aj? = aJE —a? depicting the total occupied area

Elementary rectangularity based on MBR (cf., L6pez-Camacho et al., 2013b; for alternative measures of rectangularity cf.,
e.g., Rosin, 1999)

Rectangularity of the convex hull

Total number of vertices (edges) of the enclosing polygon

Total length of the enclosing polygon’s edges

Mean absolute length of the enclosing polygon’s edges

Mean relative length of the enclosing polygon’s edges

Median of the absolute lengths of the enclosing polygon’s edges

Median of the relative lengths of the enclosing polygon's edges

Variance of the absolute lengths of the enclosing polygon’s edges

Variance of the relative lengths of the enclosing polygon’s edges

Minimum absolute length of the enclosing polygon’s edges

Minimum relative length of the enclosing polygon’s edges

Maximum absolute length of the enclosing polygon’s edges

Maximum relative length of the enclosing polygon’s edges

Total cutting length, with l]" depicting the length of the perimeter of a difference polygon p.

Number of “right” interior angles (between 85° and 95°)

Relative number of “right” interior angles

Number of reflex interior angles (angles between 180° and 360°); if n;“" > 0, the item has an irregular shape

Relative number of reflex interior angles

Total number of polygons per item; if n; > 1, the item has a complex shape

Maximum degree of concavity (cf., Lopez-Camacho et al., 2013b and Wang, 1998)

Total degree of concavity measured by the sum of concavity of all reflex interior angles (e.g., to reflect star-shaped items)

Euclidean distance between the centroid of the enclosing polygon cf(deﬁned by the means of the x and y coordinates of all
vertices inAj ;) and the centroid of the MBR c?’“’" (cf., Fig. 3)

Mean absolute distance between the enclosing polygon’s vertices and centroid cf (with & depicting the set of all distances
between the enclosing polygon’s edges and cf)

Mean relative distance between the enclosing polygon’s vertices and the centroid cf

Median of absolute centroid distances

Median of relative centroid distances

Variance of absolute centroid distances

Variance of relative centroid distances

Minimum of absolute centroid distances

Minimum of relative centroid distances

Maximum of absolute centroid distances

Maximum of relative centroid distances

16



Asmundsson, ]., Rardin, R. L, & Uzsoy, R. (2006). Tractable nonlinear produc-
tion planning models for semiconductor wafer fabrication facilities. IEEE Trans-
actions on Semiconductor Manufacturing, 19(1), 95-111. https://doi.org/10.1109/
TSM.2005.863214.

Baets, B. de, Manderick, B., Rademaker, M., & Waegeman, W. (2012). On estimating
model accuracy with repeated cross-validation. In Proceedings of the 21st Bel-
gian-Dutch conference on machine learning.

Bengio, Y., & Grandvalet, Y. (2004). No unbiased estimator of the variance of K-fold
cross-validation. Journal of Machine Learning Research, 5, 1089-1105.

Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford: Clarendon
Press.

Bishop, C. M. (2006). Pattern recognition and machine learning. information science
and statistics: 01. New York, USA: Springer Science-+Business Media.

Bitran, G. R, Haas, E. A, & Hax, A. C. (1981). Hierarchical production planning: A
single stage system. Operations Research, 29(4), 717-743.

Burke, E. K., Hellier, R., Kendall, G., & Whitwell, G. (2007). Complete and robust no-
fit polygon generation for the irregular stock cutting problem. European Journal
of Operational Research, 179(1), 27-49. https://doi.org/10.1016/j.ejor.2006.03.011.

Burke, E. K., Hyde, M. R., Kendall, G., Ochoa, G., Ozcan, E., & Woodward, J. R. (2010).
A classification of hyper-heuristic approaches. In M. Gendreau, & ].-Y. Potvin
(Eds.), International series in operations research & management science: vol. 146.
handbook of metaheuristics (2nd ed.) (pp. 449-468). Springer Science+Business
Media.

Burke, E. K., Kendall, G., & Whitwell, G. (2009). A simulated annealing enhancement
of the best-fit heuristic for the orthogonal stock-cutting problem. INFORMS Jour-
nal on Computing, 21(3), 505-516. https://doi.org/10.1287/ijoc.1080.0306.

Chryssolouris, G., Papakostas, N., & Mourtzis, D. (2000). A decision-making approach
for nesting scheduling: A textile case. International Journal of Production Re-
search, 38(17), 4555-4564. https://doi.org/10.1080/00207540050205299.

Dagli, C. H., & Poshyanonda, P. (1997). New approaches to nesting rectangular pat-
terns. Journal of Intelligent Manufacturing, 8(3), 177-190. https://doi.org/10.1023/
A:1018517106992.

Dowsland, K. A., & Dowsland, W. B. (1995). Solution approaches to irregular nesting
problems. European Journal of Operational Research, 84(3), 506-521. https://doi.
org/10.1016/0377-2217(95)00019-M.

Drake, . H., Kheiri, A., Ozcan, E., & Burke, E. K. (2020). Recent advances in selec-
tion hyper-heuristics. European Journal of Operational Research, 285(2), 405-428.
https://doi.org{10.1016/j.ejor.2019.07.073.

Feng, S., Li, L, Cen, L, & Huang, J. (2003). Using MLP networks to design a pro-
duction scheduling system. Computers & Operations Research, 30(6), 821-832.
https://doi.org/10.1016/S0305-0548(02)00044-8.

Fushiki, T. (2011). Estimation of prediction error by using K-fold cross-
validation. Statistics and Computing, 21(2), 137-146. https://doi.org/10.1007/
$11222-009-9153-8.

Gahm, C. (2020). Mendeley data, V1. https://doi.org/10.17632/scr79chbxxd.

Géron, A. (2019). Hands-on machine learning with scikit-learn, keras, and tensorflow:
Concepts, tools, and techniques to build intelligent systems (2nd edition). Beijing,
Boston, Farnham, Sebastopol, Tokyo: O'Reilly.

Gomez, J. C, & Terashima-Marin, H. (2018). Evolutionary hyper-heuristics for tack-
ling bi-objective 2d bin packing problems. Genetic Programming and Evolvable
Machines, 19(1-2), 151-181. https://doi.org/10.1007/s10710-017-9301-4.

Goodfellow, 1., Bengio, Y., & Courville, A. (2017). Deep learning. adaptive computation
and machine learning series. Cambridge, Mass: MIT Press.

Graves, S. C. (1986). A tactical planning model for a job shop. Operations Research,
34(4), 522-533. https://doi.org/10.1287/opre.34.4.522.

Griffiths, V., Scanlan, J. P, Eres, M. H. Martinez-Sykora, A., & Chinchapat-
nam, P. (2019). Cost-driven build orientation and bin packing of parts in Selec-
tive Laser Melting (SLM). European Journal of Operational Research, 273(1), 334-
352. https://doi.org/10.1016/j.ejor.2018.07.053.

Han, G. C, & Na, S.-. J. (1996). Two-stage approach for nesting in two-dimensional
cutting problems using neural network and simulated annealing. Proceedings of
the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,
210(6), 509-519. https://doi.org/10.1243/PIME_PROC_1996_210_150_02.

Hax, A. C., & Meal, H. C. (1973). Hierarchical integration of production planning and
scheduling (Sloan working papers no. 656-73). MA, USA: Massachusetts Insti-
tute of Technology (MIT). Cambridge.

Helo, P, Phuong, D., & Hao, Y. (2019). Cloud manufacturing - scheduling as a service
for sheet metal manufacturing. Computers & Operations Research, 110, 208-219.
https://doi.org/10.1016/j.cor.2018.06.002.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical
learning: With applications in R (Corrected at 8th printing 2017). Springer texts
in statistics. New York: Springer Science+Business Media.

Kallestrup, K. B., Lynge, L. H., Akkerman, R., & Oddsdottir, T. A. (2014). Decision sup-
port in hierarchical planning systems: The case of procurement planning in oil
refining industries. Decision Support Systems, 68, 49-63. https://doi.org/10.1016/
j.dss.2014.09.003.

Kendall, G. (2000). Applying meta-heuristic algorithms to the nesting problem utilising
the no fit polygon PhD Thesis. Nottingham: University of Nottingham.

Kraus, M., Feuerriegel, S., & Oztekin, A. (2020). Deep learning in business analytics
and operations research: Models, applications and managerial implications. Eu-
ropean Journal of Operational Research, 281(3), 628-641. https://doi.org/10.1016/
j.ejor.2019.09.018.

17

Leao, A. A, Toledo, F. M,, Oliveira, ]. F, Carravilla, M. A., & Alvarez-Valdés, R. (2020).
Irregular packing problems: A review of mathematical models. European jour-
nal of Operational Research, 282(3), 803-822. https://doi.org/10.1016/j.ejor.2019.
04.045.

Li, Z, & Milenkovic, V. (1995). Compaction and separation algorithms for non-
convex polygons and their applications. European Journal of Operational Research,
84(3), 539-561. https://doi.org/10.1016/0377-2217(95)00021-H.

Lépez-Camacho, E. Ochoa, G., Terashima-Marin, H. & Burke, E. K. (2013a).
An effective heuristic for the two-dimensional irregular bin packing prob-
lem. Annals of Operations Research, 206(1), 241-264. https://doi.org/10.1007/
s10479-013-1341-4.

Lépez-Camacho, E., Terashima-Marin, H., Ochoa, G., & Conant-Pablos, S. E. (2013b).
Understanding the structure of bin packing problems through principal com-
ponent analysis. International Journal of Production Economics, 145(2), 488-499.
https://doi.org{10.1016/j.ijpe.2013.04.041.

Lopez-Camacho, E., Terashima-Marin, H., Ross, P, & Ochoa, G. (2014). A unified
hyper-heuristic framework for solving bin packing problems. Expert Systems with
Applications, 41(15), 6876-6889. https://doi.org/10.1016/j.eswa.2014.04.043.

Martello, S., Monaci, M., & Vigo, D. (2003). An exact approach to the strip-packing
problem. INFORMS Journal on Computing, 15(3), 310-319. https://doi.org/10.1287/
ijoc.15.3.310.16082.

Mundim, L. R, Andretta, M., Carravilla, M. A., & Oliveira, J. F. (2018). A general
heuristic for two-dimensional nesting problems with limited-size containers. In-
ternational Journal of Production Research, 56(1-2), 709-732. https://doi.org/10.
1080/00207543.2017.1394598.

Murphy, K. P. (2013). Machine learning: A probabilistic perspective (4. print. (fixed
many typos)). adaptive computation and machine learning series. Cambridge,
Mass: MIT Press.

Neuenfeldt Janior, A., Silva, E., Gomes, A. M., Soares, C., & Oliveira, ]. F. (2019). Data
mining based framework to assess solution quality for the rectangular 2D strip-
packing problem. Expert Systems with Applications, 118, 365-380. https://doi.org/
10.1016/j.eswa.2018.10.006.

Neuenfeldt, A., Janior, Silva, E., Miguel Gomes, A., & Oliveira, J. F. (2018). The two-di-
mensional strip packing problem: what matters? In A. L. F. Vaz, J. P. Almeida,
J. E Oliveira, & A. A. Pinto (Eds.), Springer proceedings in mathematics & statis-
tics, operational research (pp. 151-164). Aveiro, Portugal: Springer Cham.

Oliveira, J. F, Gomes, A. M., & Ferreira, ]. S. (2000). TOPOS - a new constructive
algorithm for nesting problems. OR Spektrum, 22(2), 263-284. https://doi.org/
10.1007/s002910050105.

Pappa, G. L., Ochoa, G., Hyde, M. R,, Freitas, A. A., Woodward, J. R., & Swan, J. (2014).
Contrasting meta-learning and hyper-heuristic research: The role of evolution-
ary algorithms. Genetic Programming and Evolvable Machines, 15(1), 3-35. https:
//doi.org/10.1007/s10710-013-9186-9.

Pedregosa, F, Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
et al. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learn-
ing Research, 12, 2825-2830.

Potts, C. N., & Kovalyov, M. Y. (2000). Scheduling with batching: A review. Euro-
pean Journal of Operational Research, 120(2), 228-249. https://doi.org/10.1016/
S0377-2217(99)00153-8.

Rohde, J. (2004). Hierarchical supply chain planning using artificial neural networks
to anticipate base-level outcomes. OR Spectrum, 26(4), 471-492. https://doi.org/
10.1007/s00291-004-0170-x.

Rosin, P. L. (1999). Measuring rectangularity. Machine Vision and Applications, 11(4),
191-196. https://doi.org/10.1007/s001380050101.

Schneeweil3, C. (1995). Hierarchical structures in organisations: A conceptual frame-
work. European Journal of Operational Research, 86(1), 4-31. https://doi.org/10.
1016/0377-2217(95)00058-X.

Schneeweil8, C. (2003). Distributed decision making--a unified approach. Euro-
pean Journal of Operational Research, 150(2), 237-252. https://doi.org/10.1016/
S0377-2217(02)00501-5.

Segredo, E., Segura, C., & Leén, C. (2014). Memetic algorithms and hyperheuris-
tics applied to a multiobjectivised two-dimensional packing problem. Journal of
Global Optimization, 58(4), 769-794. https://doi.org/10.1007/s10898-013-0088-4.

Selguk, B., Fransoo, J. C., & Kok, A. G. de (2006). The effect of updating lead times on
the performance of hierarchical planning systems. International Journal of Pro-
duction Economics, 104(2), 427-440. https://doi.org/10.1016/].ijpe.2005.04.005.

Silva, E., Oliveira, J. F,, & Wadscher, G. (2014). 2DCPackGen: A problem generator for
two-dimensional rectangular cutting and packing problems. European Journal of
Operational Research, 237(3), 846-856. https://doi.org/10.1016/j.ejor.2014.02.059.

Sim, K., Hart, E., & Paechter, B. (2012). A hyper-heuristic classifier for one dimen-
sional bin packing problems: improving classification accuracy by attribute evo-
lution. In D. Hutchison, T. Kanade, ]. Kittler, J. M. Kleinberg, F. Mattern, ...
J. C. Mitchell (Eds.), Lecture notes in computer science. parallel problem solving
from nature - PPSN Xii (pp. 348-357). Berlin, Heidelberg: Springer.

Smith-Miles, K., Baatar, D., Wreford, B., & Lewis, R. (2014). Towards objective mea-
sures of algorithm performance across instance space. Computers & Operations
Research, 45, 12-24. https://doi.org/10.1016/j.cor.2013.11.015.

Smith-Miles, K., & Bowly, S. (2015). Generating new test instances by evolving in
instance space. Computers & Operations Research, 63, 102-113. https://doi.org/10.
1016/j.cor.2015.04.022.



Terashima-Marin, H., Ross, P, Farias-Zarate, C. J., Lopez-Camacho, E., & Valenzuela-
Renddn, M. (2010). Generalized hyper-heuristics for solving 2D regular and ir-
regular packing problems. Annals of Operations Research, 179(1), 369-392. https:
//doi.org/10.1007/s10479-008-0475-2.

Venkateswaran, J., & Son, Y.-. J. (2005). Hybrid system dynamic—discrete event
simulation-based architecture for hierarchical production planning. Interna-
tional Journal of Production Research, 43(20), 4397-4429. https://doi.org/10.1080/
00207540500142472.

Wang, P. Y., & Valenzela, C. L. (2001). Data set generation for rectangular placement
problems. European Journal of Operational Research, 134(2), 378-391. https://doi.
0rg/10.1016/50377-2217(00)00263-0.

Wang, W. X. (1998). Binary image segmentation of aggregates based on polygo-
nal approximation and classification of concavities. Pattern Recognition, 31(10),
1503-1524. https://doi.org/10.1016/S0031-3203(97)00145-3.

Wascher, G., HauBner, H., & Schumann, H. (2007). An improved typology of cutting
and packing problems. European Journal of Operational Research, 183(3), 1109-
1130. https://doi.org/10.1016/j.ejor.2005.12.047.

18

Wong, T.-. T. (2015). Performance evaluation of classification algorithms by k-fold
and leave-one-out cross validation. Pattern Recognition, 48(9), 2839-2846. https:
//doi.org/10.1016/j.patcog.2015.03.009.

Wong, W. K, & Guo, Z. X. (2010). A hybrid approach for packing irregu-
lar patterns using evolutionary strategies and neural network. International
Journal of Production Research, 48(20), 6061-6084. https://doi.org/10.1080f
00207540903246631.

Zhang, ., Yao, X., & Li, Y. (2020). Improved evolutionary algorithm for parallel batch
processing machine scheduling in additive manufacturing. International Jour-
nal of Production Research, 58(8), 2263-2282. https://doi.org/10.1080/00207543.
2019.1617447.

Zwillinger, D., & Kokoska, S. (2000). CRC standard probability and statistics tables and
formulae. Boca Raton, Flo: Chapman & Hall/CRC.



