
Improved x-space Algorithm for Min-Max Bilevel Problems with an

Application to Misinformation Spread in Social Networks
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Abstract

In this work we propose an improvement of the x-space algorithm developed for solving a class

of min–max bilevel optimization problems (Tang Y., Richard J.P.P., Smith J.C. (2016), A class

of algorithms for mixed-integer bilevel min–max optimization. Journal of Global Optimization,

66(2), 225–262). In this setting, the leader of the upper level problem aims at restricting the

follower’s decisions by minimizing an objective function, which the follower intends to maximize

in the lower level problem by making decisions still available to her. The x-space algorithm solves

upper and lower bound problems consecutively until convergence, and requires the dualization

of an approximation of the follower’s problem in formulating the lower bound problem. We

first reformulate the lower bound problem using the properties of an optimal solution to the

original formulation, which makes the dualization step unnecessary. The reformulation makes

possible the integration of a greedy covering heuristic into the solution scheme, which results

in a considerable increase in the efficiency. The new algorithm referred to as the improved x-

space algorithm is implemented and applied to a recent min–max bilevel optimization problem

that arises in the context of reducing the misinformation spread in social networks. It is also

assessed on the benchmark instances of two other bilevel problems: zero-one knapsack problem

with interdiction and maximum clique problem with interdiction. Numerical results indicate

that the performance of the new algorithm is superior to that of the original algorithm, and also

compares favorably with a recent algorithm developed for mixed-integer bilevel linear programs.

Keywords: Combinatorial optimization; bilevel programming; social networks; influence

minimization; interdiction problems
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1 Introduction and Related Works

We address a two-player sequential game, where the second player (follower) has full knowledge

of the first player’s (leader’s) action, and the leader anticipates the follower’s optimal reaction

in his/her decision. In other words, the leader and follower play a Stackelberg game (Stackelberg,

1952). The leader aims to minimize a function that the follower aims to maximize, i.e., hampers the

follower’s objective over a feasible solution set that includes the optimal solutions of the follower’s

maximization problem. This problem can be formulated as the following bilevel optimization model:

z∗ = min
w∈W

max
x∈X (w)

z(x). (1)

Here w and x represent the decision variables controlled by the leader and follower, respectively,

while W and X (w) denote their corresponding feasible regions. We consider in particular the case

where both the leader and follower make binary decisions.

Bilevel programming problems are NP-hard even for case when upper and lower level problems

are linear programs (Jeroslow, 1985; Bard, 1991). When some of the decision variables are restricted

to be integers, the problem becomes a mixed-integer bilevel linear program (MIBLP). If integer

variables exist only in the upper level problem, then a typical solution approach is to reformulate

the problem as a single-level non-linear program using the optimality conditions on the follower’s

problem. On the other hand, if some of the follower’s variables are integer, the standard use

of optimality conditions is not possible and solving the bilevel problem becomes generally more

difficult. One of the first methods for general MIBLPs is the implicit enumeration scheme due to

Moore and Bard (1990). Bard and Moore (1992) also propose a branch-and-bound algorithm for

the case where all variables are binary and use this algorithm to solve problems with up to 50

variables. DeNegre and Ralphs (2009) address problems with only integer variables and devise a

branch-and-cut method which generates cuts that eliminate bilevel infeasible solutions. Xu and

Wang (2014) develop another branch-and-bound method and provide computational results on

more than 100 test instances with different sizes up to 920 variables. The cutting plane and

branch-and-cut algorithms of Caramia and Mari (2015) also eliminate bilevel infeasible solutions as

done by DeNegre and Ralphs (2009). They address pure integer problems and use different valid

inequalities which they show to be more effective in terms of solution time on test instances with

up to 25 variables. Fischetti et al. (2017) and Wang and Xu (2017) use intersection cuts and multi-

way disjunction cuts, respectively, to eliminate bilevel infeasible solutions. The branch-and-cut

algorithm in the former is considered as the state-of-the-art approach. Lozano and Smith (2017)

propose a sampling algorithm for general MIBLPs based on the solution of approximate integer

upper and a mixed-integer lower level subproblems that are generated using samples of feasible

solutions.

A particular class of studies which deal with interdiction problems formulated as MIBLPs where
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the aim of one player is to damage the objective value of the other’s by restricting its decisions, and

develops algorithms by exploiting their special structure. A significant amount of these studies deals

with the interdiction of some network components by an agent who aims to destroy the functionality

of the system. Wood (1993) develops integer programming formulations for a maximum flow

interdiction problem, in the context of reducing drug flow in South America. Church et al. (2004)

introduce the r-Interdiction Median Problem (RIM) and r-Interdiction Covering Problem (RIC) in

which r existing facilities are interdicted with the objective being the maximization of the weighted

distances between demand points and their assigned facilities in the RIM and the maximization of

the coverage reduction in the RIC. They formulate the problems as mixed-integer linear programs

(MILPs) by using closest assignment constraints. Scaparra and Church (2008a,b) add a fortification

level to the RIM to obtain the so-called RIM with fortification (RIMF) where the aim is to identify

the best protection strategy to reduce the impact of the most disruptive attack. In Scaparra

and Church (2008b), the RIMF is formulated as a single-level maximal covering problem with

precedence constraints, whereas in Scaparra and Church (2008a) an MIBLP is proposed with the

RIM being the lower-level problem. Extended versions of RIMF have been addressed in studies

such as Liberatore et al. (2011) and Aksen et al. (2010).

Hemmati et al. (2014) address an interdiction problem within the context of influence max-

imization, and present a cutting-plane algorithm that can optimally solve instances with up to

21 nodes. Tang et al. (2016) develop exact algorithms for general interdiction problems with a

mixed-integer follower’s problem. Their algorithms keep generating subproblems using samples of

feasible solutions, and solving them to compute lower and upper bounds on the optimal value until

they converge. The sampling approach is also used by Lozano and Smith (2016) for the three-level

defender-attacker-defender games, which they call interdiction problems with fortification. Solu-

tions are sampled from the third level’s feasible region and an iterative algorithm is proposed.

Fischetti et al. (2019) develop a branch-and-cut algorithm for interdiction problems whose lower

level problem satisfies the down-monotonicity assumption which is also necessary for one of the

general MIBLP algorithms proposed in Tang et al. (2016). This assumption restricts the applica-

bility of the algorithm since it is violated in some important applications including the Shortest

Path Interdiction Problem (Israeli and Wood, 2002) and the Misinformation Spread Minimization

Problem (Tanınmış et al., 2020). The x-space algorithm devised in Tang et al. (2016), however,

which is shown to outperform the other two algorithms in the same paper, does not make this

assumption, and becomes the starting point for the research in the present paper.

This paper’s contribution is twofold. The first one is methodological, and makes algorithmic

improvements for the x-space algorithm of Tang et al. (2016). This algorithm is developed for the

solution of mixed-integer bilevel min–max optimization problems when all the decision variables of

the leader and the integer variables of the follower are restricted to be binary. It solves approximat-

ing subproblems to generate lower and upper bounds at each step. One of its key features is the
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sampling approach used during the creation of the approximations: sample vectors are collected

only from the follower’s feasible solution set, i.e., x-space, resulting in a linear programming (LP)

approximation of the second level problem. This LP is then dualized to obtain a single-level ap-

proximation whose solution generates a lower bound on the optimal value of the bilevel problem.

As pointed out by the authors, most of the computational effort is spent on the generation and

solution of the lower bound problems. Hence, any improvement in the efficiency of this step can

considerably decrease the solution time of the overall algorithm. We have developed an alternative

formulation of the lower bound problem so that the dualization of the follower’s problem is no

longer necessary. This has been possible by means of blocking the follower’s solutions. A similar

approach is also partly considered for the fortification-interdiction-recourse problems in Lozano

and Smith (2016). However, while they aim to make some interdiction decisions infeasible in the

fortification step, we try to determine whether each follower decision (i.e., recourse) is infeasible

or not, and ensure that it is blocked in the interdiction step, if necessary. In addition, they do

not propose a general procedure for the solution of the restricted interdiction problem in their

algorithm. The idea of blocking the follower’s feasible solutions is also considered in Lozano and

Smith (2017), where a single-level relaxed formulation with blocking constraints on the follower’s

objective value is solved at every step and new follower solutions are utilized to add constraints

to this formulation. The main difference with the improved x-space algorithm considered in this

paper is that the special structure of the interdiction problems allows a set covering formulation as

opposed to a more general and complex mathematical model.

Note that the relation between interdiction and covering problems has already been addressed

in the literature. Dinitz and Gupta (2013) use linear programming duality to show the relation

between the packing interdiction problem with a continuous lower level and the partial covering

problem in the sense that the same approximation algorithm can be utilized for both problems.

Scaparra and Church (2008b) formulate a fortification-interdiction problem called RIMF as a max-

imal covering problem by enumerating the interdiction patterns. To the best of our knowledge, this

study is the first one proposing an exact algorithm for a general class of discrete bilevel interdic-

tion problems by means of a min-max covering formulation. This feature also helps the improved

x-space algorithm to benefit from the computational efficiency of covering heuristics.

The second contribution is the application of the improved x-space algorithm to exactly solve

the Misinformation Spread Minimization Problem (MSMP) for which only heuristics are proposed

so far (Tanınmış et al., 2020). In this problem, which is defined in the context of a social network,

the leader protects h nodes, and the follower subsequently activates k nodes among unprotected

ones to start a diffusion process. The objective of the leader is to minimize the expected final

spread, whereas that of the follower is to maximize the same quantity. The problem has important

applications such as preventing the diffusion of misinformation or fake-news as well as determining

the vaccination/immunization strategies to prevent the spread of a disease. In fact, it is a stochastic
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interdiction problem where the leader interdicts (prevents) the activation of a set of nodes by the

follower. The bilevel formulation proposed in Tanınmış et al. (2020) does not have the required

structure for the design of the improved algorithm. Nevertheless, the application becomes possible

via reformulation and utilizing some problem specific features. Note that the MSMP does not

satisfy the down-monotonicity assumption, and thus the general MIBLP solution algorithm by

Fischetti et al. (2019) is not applicable.

The remainder of the paper is organized as follows. Section 2 outlines the original x-space

algorithm, and discusses the properties of the optimal solutions to the lower bound problem. The

modifications to improve the original algorithm are also described and analyzed in this section. In

Section 3, we define the MSMP and modify the current formulation with the aim of implementing

the improved x-space algorithm. Section 4 is devoted to the numerical experiments. We conclude

the paper in Section 5 by mentioning some potential future research directions.

2 Improved x-space Algorithm

2.1 The Original Algorithm

Tang et al. (2016) focus on problems that can be addressed in the form of a Stackelberg game where

both the leader and the follower have the same objective function. The leader tries to minimize it,

whereas the follower’s aim is its maximization. They define the bilevel optimization problem under

investigation as

Z∗(W,F) = min
w∈W

max
x∈X

{
pTx : (w,x) ∈ F

}
, (2)

where w ∈ Zn1 denotes the upper level decision variables and x = (x1,x2)T with x1 ∈ Rn2−q and

x2 ∈ Zq denoting the lower level decision variables. As can be seen, the leader’s decision variables

are discrete while the follower’s decision variables can be both continuous and discrete. The feasible

solution set F is defined as

F = {w ∈ W,x ∈ X : Cx + Dw ≤ d} , (3)

where W = {w ∈ Zn1 : A1w ≤ b1,0 ≤ w ≤ u} denotes the feasible region of the upper level

problem, and the feasible region of the lower level problem is defined using the following two sets

of constraints: X = {x1 ∈ Rn2−q,x2 ∈ Zq : A2x ≤ b2,x ≥ 0} is independent of the upper level

decisions and Cx + Dw ≤ d relates the upper and lower level variables. Here, A1, A2, C, and D

are q1 × n1, q2 × n2, q3 × n2, and q3 × n1 dimensional rational matrices, respectively, while u, b1,

b2, and d are vectors of size n1, q1, q2, and q3, respectively.

Let W◦ = W ∩ {0, 1}n1 , X ◦ = X ∩ {0, 1}n2 , and F◦ = F ∩ {0, 1}n1+n2 . For C = I and u = 1,

it is shown that

Z∗(W◦,F◦) = Z∗(W◦, F̃◦), (4)
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where F̃◦ = {w ∈ Rn1 ,x ∈ Rn2 : w ∈ W◦,x ∈ conv(X ◦),x ≤ d−Dw} (Tang et al., 2016, p. 242).

Notice that the follower’s problem is an LP when the feasible region is defined by F̃◦, in which case

it is possible to reformulate (2) as a single-level problem. Nevertheless, to obtain the convex hull of

X ◦ is usually intractable. Therefore, Tang et al. (2016) propose an algorithm that involves sampling

from the solution space of the lower level problem (which they call the x-space) and obtaining an

(inner) approximation of the conv(X ◦) iteratively. They also show that this approximation leads

to a lower bound on the optimal objective value Z∗(W◦,F◦).
The original x-space algorithm, which is given as Algorithm 1 below, requires the following

assumptions:

1. The decision variables of the leader’s problem are binary.

2. The feasible region W◦ of the leader’s problem is not empty.

3. The follower’s problem is feasible for each decision w ∈ W◦ of the leader.

4. The follower’s problem is bounded above for at least one decision of the leader.

5. x = 0 is a feasible follower’s solution for each leader decision w ∈ W◦.

Algorithm 1 The x-space algorithm

1: Step 0: Initialization

2: Define J = {−(ρ− 1), ..., 0} as an index set of initial solutions where ρ ∈ Z+.

3: Select x0 such that x0 is a feasible follower solution for all feasible leader solutions.

4: Choose a feasible wτ and xτ ∈ arg maxx{pTx : (wτ ,x) ∈ F◦
}

for τ ∈ J \ {0}.
5: Let S1 =

⋃
τ∈J{xτ}.

6: Set q = 1.

7: Step q: (q = 1, 2, ...)

8: Step q1: Obtain an optimal solution wq and optimal value lq to the approximate leader

problem (LBq).

9: Step q2: Obtain an optimal solution xq and optimal value uq to the follower problem

(UBq).

10: Step q3: if lq 6= uq then

11: Expand Sq+1 = Sq ∪ {xq} and update J = J ∪ q.
12: Go to Step q + 1.

13: else

14: Return optimal solution (w∗,x∗) = (wq,xq) and z∗ = uq.

The upper bound problem UBq in Algorithm 1 is simply the follower’s problem which is defined
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using the most recently obtained leader solution wq:

uq = max
x
{pTx : (wq,x) ∈ F◦} ≥ Z∗(W◦,F◦). (5)

The lower bound problem LBq given as

lq = min
w∈W◦

max
x
{pTx : x ∈ conv(Sq),x ≤ d−Dw}

= min
w∈W◦

max
λ,x

{
pTx :

∑
τ∈J

λτ = 1,x−
∑
τ∈J

λτx
τ = 0,x ≤ d−Dw,x ≥ 0, λτ ≥ 0, τ ∈ J

}
(6)

is a bilevel problem itself, except that x ∈ conv(X ◦) is replaced by x ∈ conv(Sq), where Sq

approximates the follower’s solution set at step q. The set J contains the indices of the solutions

in Sq, and the new decision variables λτ are defined in order to express the follower solution x as a

convex combination of the solutions xτ in Sq using the constraint x−
∑

τ∈J λτx
τ = 0. Together with∑

τ∈J λτ = 1, this constraint implies that x ∈ conv(Sq). Notice that the constraint x ≤ d −Dw,

which links the upper and lower level variables, is included in LBq formulation as opposed to the

set X whose convex hull is inner-approximated. Tang et al. (2016) show that the lower bound

obtained at each iteration is at least as good as the previous one and the algorithm converges to

an optimal solution in finite number of iterations.

Notice that LBq’s lower level problem is an LP. It is solved by taking the dual of the LP by

treating the leader’s variable vector w as a parameter in Tang et al. (2016). Then, the constraints

describing W◦ are added to this formulation to end up with a non-linear model since w is actually

a decision variable. After removing the nonlinearities with the help of newly defined decision

variables necessary for linearization, the final single-level MILP is solved by a commercial solver.

The correctness of this scheme is based on the fact that the leader and follower objective functions

are the same but optimized in opposite directions. In the following sections, we propose a more

efficient method to optimally solve LBq. As we have mentioned in the introduction, Tang et al.

(2016) point out that more efficient solution of LBq is one of the future research challenges that

can markedly improve the performance of the x-space algorithm.

2.2 A New Formulation for the Lower Bound Problem

We focus our attention on the setting with d = 1, C = I, D = I, and n1 = n2 = n in the

development of the alternative formulation. It will be clear in Section 3.2 and Section 4.1 that the

method can be adapted to problems with other parameter values for d, C, and D, and different

number of decision variables in the upper and lower level problems as long as some or all of the

follower’s decisions are interdicted by the leader.

Let N = {1, ..., n} denote the set of indices for both upper and lower level variables. First, we

consider the inner optimization problem of LBq in (6), which we denote by LBq(w). Notice that
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w is not a decision variable but a parameter for LBq(w). Given w ∈ W◦ and Sq, we define the

following set

B(w, Sq) = {τ ∈ J : ∃i ∈ N, xτi > 1− wi}, (7)

and its complement B̄(w, Sq) = J \ B(w, Sq). By its definition, B(w, Sq) contains the indices of

the follower’s solutions in Sq that are rendered infeasible, i.e., blocked, by the leader’s solution w.

The remaining ones are not blocked and are represented by B̄(w, Sq).

Proposition 1. Let zτ denote the objective value of the follower’s solution xτ . The optimal objec-

tive value of LBq(w) is

z∗(w, Sq) = max
τ∈B̄(w,Sq)

zτ . (8)

Proof. Firstly, we will show that if (λ,x) is a feasible solution to LBq(w), then λτ = 0 for all

τ ∈ B(w, Sq). Since (λ,x) is feasible, xi =
∑

τ∈J λτx
τ
i ≤ 1 − wi must hold for all i ∈ N . By

contradiction, suppose that there exists a τ ′ ∈ B(w, Sq) such that λτ ′ > 0. Then, there must exist

at least one i ∈ N such that wi = 1 and xi =
∑

τ∈J λτx
τ
i > 0, which contradicts xi ≤ 1− wi.

Note that the objective function of the second level maximization problem can be arranged as

pTx =
∑
i∈N

pixi =
∑
i∈N

pi
∑
τ∈J

λτx
τ
i =

∑
τ∈J

λτ
∑
i∈N

pix
τ
i . (9)

The objective value of the follower’s solution xτ is defined as zτ =
∑

i∈N pix
τ
i . Thus, pTx =∑

τ∈J λτzτ follows. Using the result that λτ = 0 for all τ ∈ B(w, Sq), the objective function of

LBq(w) can be rewritten as pTx =
∑

τ∈J λτzτ =
∑

τ∈B̄(w,Sq)
λτzτ . Similarly, x =

∑
τ∈J λτx

τ =∑
τ∈B̄(w,Sq)

λτx
τ ≤ 1 − w because we know that xτ ≤ 1 − w for all τ ∈ B̄(w, Sq) by definition,

and λ ≥ 0. Then, by fixing λτ = 0, τ ∈ B(w, Sq), the problem reduces to

z∗(w, Sq) = max
λ

 ∑
τ∈B̄(w,Sq)

λτzτ :
∑

τ∈B̄(w,Sq)

λτ = 1,λ ≥ 0

 . (10)

As the objective value is a convex combination of the previous objective values, its optimal value

is equal to maxτ∈B̄(w,Sq) zτ .

As a consequence of Proposition 1, the bilevel lower bound problem (6) becomes

lq = min
w∈W

max
τ∈B̄(w,Sq)

zτ (11)

= min
w,z

z (12)

s.t.

w ∈ W (13)

z ≥ zτ , τ ∈ B̄(w, Sq). (14)
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Instead of generating the set B(w, Sq) for all w ∈ W, we define a new set Cτ = {i ∈ N : xτi = 1},
the indices of the leader variables that cause the solution xτ to be blocked when at least one of

them is positive. We refer to Cτ as the blocker set of τ . The following proposition establishes the

relation between Cτ and B(w, Sq).

Proposition 2. If
∑

i∈Cτ wi ≥ 1, then τ ∈ B(w, Sq), i.e., xτ is blocked by w.

Proof. If
∑

i∈Cτ wi ≥ 1, then there exists i′ ∈ Cτ such that wi′ = 1. By definition of Cτ , xτi′ = 1.

Recall that B(w, Sq) = {τ ∈ J : ∃i ∈ N, xτi > 1 − wi}. Since wi′ = 1 and xτi′ = 1, τ belongs to

B(w, Sq).

Notice that Constraint (14) is stated only for the unblocked solutions. We now introduce a new

binary decision variable ατ for each τ ∈ J , to indicate whether a follower solution is blocked or

not. In the new formulation denoted as LB′q, ατ = 0 when xτ cannot be blocked and Constraint

(17) becomes z ≥ zτ .

LB′q : lq = min z (15)

s.t.

w ∈ W (16)

z ≥ (1− ατ )zτ τ ∈ J (17)

ατ ≤
∑
i∈Cτ

wi τ ∈ J (18)

z ≥ 0, ατ ∈ {0, 1} τ ∈ J. (19)

The new formulation can be improved further using the information on the blocked solutions.

The following proposition yields this stronger formulation.

Proposition 3. Let Z̄ be an upper bound on the optimal objective value Z∗(W,F) of the leader.

Then, any solution xτ with a larger objective value than Z̄ must be blocked in an optimal leader

solution, i.e., ατ = 1 for all τ such that zτ > Z̄, in an optimal solution of LB′q.

Proof. Let (w∗,α∗) be an optimal solution of LB′q. Then lq ≥ (1−α∗τ )zτ for τ ∈ J . Suppose there

exist τ ′ ∈ J such that α∗τ ′ = 0 and zτ ′ > Z̄, which implies lq ≥ zτ ′ > Z̄. This clearly contradicts

lq ≤ Z∗(W,F) ≤ Z̄.

Recall that each solution in Sq can be obtained by solving the follower’s problem to opti-

mality with the exception of the trivial solution (τ = 0) that is feasible for all feasible leader

solutions. Therefore, each zτ , τ ∈ J \ {0} constitutes an upper bound on Z∗(W◦,F◦), i.e.,

zτ ≥ Z∗(W◦,F◦), τ ∈ J \ {0}. From now on, Z̄ = minτ∈J\{0} zτ denotes the current upper
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bound on the optimal objective value. Now, we define JB = {τ ∈ J : zτ > Z̄} as the index set of

the follower solutions that must be blocked according to Proposition 3. Then, we can derive

LB′′q : lq = min z (20)

s.t.

w ∈ W (21)

z ≥ (1− ατ )zτ τ ∈ J \ JB (22)

ατ ≤
∑
i∈Cτ

wi τ ∈ J \ JB (23)

1 ≤
∑
i∈Cτ

wi τ ∈ JB (24)

z ≥ 0, ατ ∈ {0, 1} τ ∈ J \ JB (25)

as an equivalent and stronger formulation of LB′q. The constraint (24) is similar to the supervalid

inequalities used by Israeli and Wood (2002). Notice that the objective value of this formulation

is equal to the maximum unblocked follower objective value. In other words, this reformulation is

possible since the leader and the follower have the same objective function.

Consider z0, the objective value of trivial follower solution x0 gives. It is associated with

a feasible (but not necessarily optimal) follower reaction for any leader solution, therefore z0 ≤
maxx{pTx : (w,x) ∈ F◦} ≤ Z∗(W◦,F◦) for all w ∈ W◦. Furthermore, since x0 is feasible for

all w ∈ W, it cannot be blocked by the leader, i.e., α0 = 0 and z ≥ z0 in an optimal solution of

LB′′q , and z0 ≤ lq ≤ Z̄ follows. Next proposition reduces the domain of lq further and it is a direct

consequence of Proposition 3.

Proposition 4. Either lq = z0 or lq = Z̄ for any q.

Proof. First of all, z0 ≤ Z̄ as explained above. Now, notice that the set {zτ : τ ∈ J \ JB} has only

two distinct values, z0 and Z̄ since J \ JB = {τ ∈ J : zτ ≤ Z̄} and Z̄ = minτ∈J\{0} zτ . As a result,

Constraint (22) includes z ≥ z0 and z ≥ (1 − ατ )Z̄ for τ ∈ J \ (JB ∪ {0}). If there is a feasible

leader solution that can block all τ ∈ J \ (JB ∪ {0}), then ατ = 1 and lq = z0; otherwise ατ = 0

and lq = Z̄.

In other words, if lq = Z̄, then Z̄ ≤ Z∗(W◦,F◦) ≤ Z̄ and the algorithm terminates; otherwise,

the lower bound remains the same as z0.

2.3 Greedy Maximum Covering

In an interdiction problem, the upper level feasible region is typically associated with cardinal-

ity/budget constraints and logical restrictions on the interdiction decisions. In this part, we focus
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on the case with cardinality constraints, i.e., W◦ = {w ∈ {0, 1}n :
∑

iwi ≤ g}. Given the index set

J for Sq, consider the maximum covering problem

cq = max
∑

τ∈J\{0}

ατ (26)

s.t.∑
i∈N

wi ≤ g (27)

ατ ≤
∑
i∈Cτ

wi τ ∈ J \ {0} (28)

wi ∈ {0, 1}, ατ ∈ {0, 1} i ∈ N, τ ∈ J \ {0} (29)

where the objective is to cover the maximum number among |J |− 1 items and xτ is covered only if∑
i∈Cτ wi ≥ 1. If cq = |J | − 1, which is the maximum objective value attainable, then it indicates

the existence of a feasible w which covers (blocks in our context) all xτ , τ ∈ J \ {0}. Then, the

optimum objective value lq of the lower bound problem for Sq is z0 due to Proposition 4. Now let ĉq

denote the objective value that a greedy maximum covering algorithm yields for the same problem

and ŵq denote the corresponding solution. Notice that ĉq ≤ cq since ŵq is a heuristic solution to

the problem. If ĉq = |J | − 1, then ŵq is an optimal solution to LBq and lq = z0. This identity

allows us to first identify a good, possibly optimal, feasible solution of LBq using a heuristic, and

then solve LB′′q given with (20)–(25) if ĉq < |J | − 1. At this point, we have all the ingredients

of the improved x-space algorithm (IXS), which is formally given as Algorithm 2 in the following.

IXS guarantees to find an optimal solution due to the correctness of the original algorithm and

the fact that solving LB′′q yields an optimal solution to LBq as shown before. The usage of the

greedy heuristic does not change the correctness of the algorithm since LB′′q is solved optimally as

an MILP whenever the greedy algorithm fails to find an optimal solution. It is also worthwhile

noticing that the IXS algorithm may yield a different optimal solution from the one provided by

the original algorithm in the case that multiple optimal solutions exist for the problem.

3 Misinformation Spread Minimization Problem

Influence Maximization Problem (IMP) is well-known and defined on social networks with many

application areas such as viral marketing. It involves finding a set of k nodes (seed set) to start

influence propagation on a network so that the expected number of affected nodes is maximized at

the end. Kempe et al. (2003) define IMP as a stochastic discrete optimization problem for the first

time and prove its NP-hardness for widely accepted (stochastic) diffusion models.

Definition 1 (IMP (Kempe et al., 2003)). Let G = (V,A) denote a directed graph with node set

V and arc set A, and σM (G, Y ) denote the expected number of influenced (active) nodes at the end
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Algorithm 2 Improved x-space (IXS) algorithm

1: Step 0: Initialization

2: Define J = {−(ρ− 1), ..., 0} as an index set of initial solutions where ρ ∈ Z+.

3: Select x0 such that it is a feasible follower solution for all feasible leader solutions.

4: for τ ∈ J \ {0} do

5: Choose a feasible wτ and xτ ∈ arg maxx

{
pTx : (wτ ,x) ∈ F◦

}
6: Set zτ ← pTxτ and Cτ ← {i ∈ N : xτi = 1}
7: end for

8: Let S1 =
⋃
τ∈J{xτ}.

9: Set q = 1, Z̄ ← minτ∈J\{0} zτ and w∗ ∈ {wτ : zτ = Z̄}
10: Step q: (q = 1, 2, ...)

11: Step q0: Use the Greedy Covering heuristic to obtain ŵq and ĉq

12: if ĉq < |J | then

13: Go to Step q1

14: else

15: Set wq ← ŵq, lq ← ĉq, go to Step q2

16: Step q1: Solve LB′′q to obtain an optimal solution wq and optimal value lq

17: Step q2: Solve UBq to obtain an optimal solution xq and optimal value uq

18: if uq < Z̄ then

19: Set Z̄ ← uq and w∗ ← wq

20: Step q3: if lq < Z̄ then

21: Expand Sq+1 = Sq ∪ {xq} and update J = J ∪ q.
22: Go to Step q + 1.

23: else

24: Return optimal solution (w∗,x∗) = (wq,xq) and z∗ = Z̄.

of the diffusion process, i.e. the spread, in graph G under the diffusion model M when the nodes

in Y is activated initially. Given G = (V,A) and a positive integer h, the IMP is

max
Y⊆V,
|Y |≤h

σM (G, Y ). (30)

Since then, the IMP and its several versions have been studied extensively (Chen et al., 2013). A

recent survey on influence maximization problems can be found in Li et al. (2018). Tanınmış et al.

(2020) address the Misinformation Spread Minimization Problem (MSMP), a competitive version

of the IMP in the form of a Stackelberg game where the leader of the game protects a subset of

nodes and then the follower activates a set of unprotected nodes to start a diffusion process. The

aim of the follower is to maximize the expected number of influenced nodes, i.e., the spread, while
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the leader wants to minimize the same objective function.

Definition 2 (MSMP (Tanınmış et al., 2020)). Let GX denote the graph obtained from G by

removing the node set X ⊂ V and all arcs incident to the nodes in X. Given a directed graph

G = (V,A), a diffusion model M , and positive integers h and k, the MSMP involves finding a set

of nodes X of size h minimizing σM (GX , Y
∗(X)), where Y ∗(X) is a set of k nodes in V \X which

maximizes the spread on GX , i.e.,

min
X⊂V,
|X|≤h

σM (GX , Y
∗(X)), (31)

where

Y ∗(X) = arg max
Y⊆V \X,
|Y |≤k

σM (GX , Y ). (32)

3.1 A Bilevel Programming Formulation via Live-arc Representation

Tanınmış et al. (2020) adopt the well-known Linear Threshold (LT) model where each node i ∈ V
has a random threshold value θi ∈ (0, 1), each arc (i, j) ∈ A has a deterministic weight wij satisfying∑

iwij ≤ 1, and node i becomes active at any step of the diffusion process if the total incoming

weight from its active neighbors exceeds the threshold. Once a node is active, it remains so until

the end of the diffusion process. Kempe et al. (2003) propose the live-arc model which is equivalent

to the LT under certain assumptions and it leads to a more efficient mathematical formulation. In

this model, each diffusion scenario is represented by a directed subgraph of the original directed

graph obtained by randomly labeling a subset of the arcs as live. If node i is reachable from any

seed node via the live arcs in a scenario, then it means that i is influenced in that scenario. For

the equivalence of the two models, it is required that the probability of labeling arc (i, j) as live is

wij and for each node at most one of its incoming arcs can be live in each scenario. In the bilevel

model formulated using the live-arc representation, the follower’s problem is a two-stage stochastic

program and the uncertainty is handled by realizing a scenario in the form of a directed subgraph

of the original graph. The list of sets, parameters and decision variables used in the model are

presented below, prior to the formulation.
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Sets and Parameters:

V : set of nodes in the network

h : number of nodes the leader protects

k : number of nodes the follower activates

R : a set of live-arc scenarios

pr : probability of scenario r, r ∈ R
aji(w, r) : 1 if node i is reachable from node j in scenario r, when the protection

decision is w; 0 otherwise

Decision variables:

wi : 1 if node i is protected by the leader; 0 otherwise

yi : 1 if node i is activated by the follower; 0 otherwise

uir : 1 if node i is influenced in scenario r; 0 otherwise

MSMP:

z∗L = min
w

z(w) (33)

s.t.∑
i∈V

wi ≤ h (34)

wi ∈ {0, 1} i ∈ V (35)

where

z(w) = max
y,u

∑
r∈R

∑
i∈V

pruir (36)

s.t.∑
i∈V

yi ≤ k (37)

yi ≤ 1− wi i ∈ V (38)

uir ≤ 1− wi i ∈ V, r ∈ R (39)

uir ≤
∑
j∈V

aji(w, r)yj i ∈ V, r ∈ R (40)

uir, yi ∈ {0, 1} i ∈ V, r ∈ R (41)

The objective (33) of the leader is to minimize the expected number of influenced nodes written

explicitly in (36) as the follower’s optimal objective value for the leader decision w. Constraint

(34) and Constraint (37) are the cardinality restrictions on the number of nodes protected and

activated, respectively. Constraint (38) and Constraint (39) ensure that a protected node can

neither be activated at the beginning nor be influenced in any scenario. For a node to be influenced
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in a scenario, it must be reachable from at least one seed node as stated in Constraint (40). Finally,

Constraint (35) and Constraint (41) are binary restrictions on the decision variables. Note that

R is defined as the set of all possible scenarios in Tanınmış et al. (2020), so that the distribution

of the number of influenced nodes is identical to the one in the LT model. Since the size of R is

exhaustive for even very small networks, an approximation method is used to solve the follower’s

problem whereas the leader’s problem is attacked with an heuristic. In this paper, we define R as

a live-arc scenario set of any size. Therefore, the spread distribution may be different than the one

in the LT model.

The upper bound problem in the improved x-space algorithm, Algorithm 2, corresponds to the

follower’s problem formulation in (36)–(41) and it needs to be updated and solved for each wq. To

develop a lower bound problem formulation, we rearrange the model as follows. The term aji(w, r)

is a parameter which can be computed via a graph traversal algorithm for given w, and it can be

defined explicitly as

aji(w, r) =


∏
k∈brji

(1− wk) j ∈ ari
0 j /∈ ari ,

(42)

where ari denotes the set of nodes that can reach node i via the arcs in scenario r including i itself.

Parameter brji represents the set of nodes on the path from j to i in scenario r excluding i and

j, if such a path exists. In other words, there is an eligible path from j to i if none of the nodes

between them is protected. By its definition, aji(w, r) = 1 if i = j or j is the direct predecessor

of i in scenario r, which implies brji = ∅. Note that, there can be at most one path from one

node to another in a scenario (a directed subgraph) due to the arc selection scheme of the live-arc

representation for the LT model. Therefore, we are not concerned with a path selection decision.

Let āri denote the subset of ari excluding i and its direct predecessor in scenario r, if it exists. To

linearize the right-hand side of the (40), we define a binary decision variable mr
ji for each i ∈ V ,

j ∈ āri and r ∈ R, whose value is one if node j is active and influences node i in scenario r. In short

mr
ji = yj

∏
k∈brji

(1− wk) and constraints

mr
ji ≤ yj i ∈ V, j ∈ āri , r ∈ R (43)

mr
ji ≤ 1− wk i ∈ V, j ∈ āri , k ∈ brji, r ∈ R (44)

mr
ji ≥ yj −

∑
k∈brji

wk i ∈ V, j ∈ āri , r ∈ R (45)

should be added to the lower level problem (LLP). Then, we replace Constraint (40) with

uir ≤
∑

j∈ari \āri

yj +
∑
j∈āri

mr
ji i ∈ V, r ∈ R. (46)

Although constraint set (45) is required to define mr
ji, it is easy to observe that, as a consequence of

the optimization direction, i.e., maximization, the optimum objective value remains the same when
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this constraint set is relaxed. Hence, we relax it to obtain the final LLP; it consists of constraints

(36)–(39), (41), (43)–(44), and (46). Note that it is also possible to formulate constraints (46) as

uir ≤
∑

j∈ari
mr
ji, which would be still correct despite the fact that it leads to a larger MILP.

3.2 Tailoring MSMP for the Improved x-space Algorithm

Recall that the lower bound (LB) problem (6) includes the convex combination constraints and the

constraints that relate the lower and upper level variables. Let x = (y,u,m) denote the combined

decision variables in the LLP of the MSMP. The LB problem formulation of the original x-space

algorithm is provided below, where W◦ is defined by (34) and (35):

lq = min
w∈W◦

max
λ,x

∑
r∈R

∑
i∈V

pruir (47)

s.t.∑
τ∈J

λτ = 1 (48)

x−
∑
τ∈J

λτx
τ = 0 (49)

yi ≤ 1− wi i ∈ V (50)

uir ≤ 1− wi i ∈ V, r ∈ R (51)

mr
ji ≤ 1− wk i ∈ V, j ∈ ari , k ∈ brji, r ∈ R (52)

λ ≥ 0,x ≥ 0. (53)

As can be noticed the formulation does not possess the special structure that we mention in

Section 2.2, i.e., d = 1, D = I and n1 = n2 = n. Despite this, the alternative LB problem

formulations LB′q and LB′′q can be derived for the MSMP as well. We first redefine the set B(w, Sq),

which allows us to obtain the particular form of Cτ necessary for these formulations.

Proposition 5. For the MSMP, B(w, Sq) = {τ ∈ J : ∃i ∈ V, r ∈ R,wi = 1, uτir = 1}.

Proof. Recall that B(w, Sq) is the index set of the follower solutions in Sq that w blocks, i.e.,

renders infeasible. A follower solution becomes infeasible for w if one of the constraints in (50)–

(52) is violated. Let Bl(w, Sq) be the set of follower solutions that violate lth of these constraints.

Then, B(w, Sq) = ∪3
l=1Bl(w, Sq) by definition. We need to show that B(w, Sq) = B2(w, Sq) =

{τ ∈ J : ∃i ∈ V, r ∈ R,wi = 1, uτir = 1}. Consider B1(w, Sq) = {τ ∈ J : ∃i ∈ V,wi = 1, yτi = 1}.
In an optimal follower solution, if yi = 1 then uir = 1, for r ∈ R. This leads to the relation

B1(w, Sq) ⊂ B2(w, Sq), since the solutions in Sq are optimal follower solutions except x0. Now

consider B3(w, Sq) = {τ ∈ J | ∃i ∈ V, j ∈ ari , k ∈ brji, r ∈ R,wk = 1,mτ
ji(r) = 1}. Choose

τ ∈ B3(w, Sq). If mτ
ji(r) = 1, i.e., if node j can influence node i under scenario r in solution τ , then
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all the nodes on the path from j to i must be influenced as well. In other words, if mτ
ji(r) = 1 then

uτkr = 1 for all k ∈ brji. Since also wk = 1 for some k ∈ brji, τ is contained in B2(w, Sq) implying

that B3(w, Sq) ⊂ B2(w, Sq).

To summarize, any solution in conv(Sq) that violates (50) or (52) also violates (51). This allows

us to define the blocker set of a follower solution by using only constraint (51). Thus, we obtain

Cτ = {i ∈ V : ∃r ∈ R, uτir = 1}. Now, we can use LB′q or LB′′q formulations developed in Section

2, since Cτ is explicitly defined. Note that for a fair comparison of the original and improved

algorithms constraints (50) and (52) are removed from the lower bound problem formulation of the

XS algorithm in (47)–(53) as a result of Proposition 5.

4 Computational Results

In this section, we first examine the performances of the original x-space (XS) and improved x-space

(IXS) algorithms, and compare them with a state-of-the-art method, MIX++ algorithm, developed

in Fischetti et al. (2017) on the bilevel zero-one knapsack problem with interdiction (BKP) and

bilevel maximum clique problem with interdiction (BCP). Then, we present the computational

results related to the implementation of these algorithms on the MSMP described in Section 3.

The XS and IXS algorithms are coded in C++ using Microsoft Visual Studio 2015. The experi-

ments are carried out on a workstation with an Intel Xeon E5-2687W CPU, 3.10 GHz processor, and

64 GB RAM running within Microsoft Windows 7 Professional environment. The MIBLP solver,

which is available at https://msinnl.github.io/pages/bilevel.html, is run on a virtual ma-

chine installed on the same workstation allocating 12 GB RAM with Ubuntu 20.04 operating system

using CPLEX 12.7. The experiments involving XS and IXS algorithms are carried out with two

MILP solvers: CPLEX 12.7 and Gurobi 8.0. We remark that in addition to the problems considered

in this paper, the IXS algorithm can also be utilized for other well-known problem classes such as

Shortest Path Interdiction Problem, Maximal Coverage Interdiction Problem, and r-Interdiction

Median Problem.

4.1 Results Obtained on the BKP and BCP Instances

Tang et al. (2016) consider two types of interdiction problems, the bilevel knapsack problem (BKP),

which is a min–max 0-1 knapsack problem, and the bilevel maximum clique problem (BCP), which

is a min–max clique problem, to evaluate the performance of the improved x-space algorithm.

In this section we compare the improved x-space algorithm with the original one as well as with

MIX++ of Fischetti et al. (2017) by solving the instances given in Tang et al. (2016). They can be

reached at http://jcsmith.people.clemson.edu/Test_Instances.html.
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The formulation of the BKP is given as

min
w∈W

max
x
{pTx : aTx ≤ b,x ≤ 1−w,x ∈ {0, 1}n}, (54)

where

W = {w ∈ {0, 1}n : 1Tw ≤ k}. (55)

Recall that it is necessary to define Cτ , the blocker set of solution τ , to develop the LB′′q

formulation of the improved algorithm. For the BKP, the set of solutions that w blocks is

B(w, Sq) = {τ ∈ J : ∃i ∈ {1, ..., n}, wi = 1, xτi = 1}. Using this set, we can define Cτ as

Cτ = {i ∈ {1, ..., n} : xτi = 1}. (56)

The second problem, BCP, is formulated as

min
w∈W

max
∑
i∈V

xi (57)

s.t. xi + xj ≤ 1 (i, j) ∈ Ē (58)

xi + xj ≤ 2− wij (i, j) ∈ E (59)

xi ∈ {0, 1} i ∈ V. (60)

Here V and E represent the set of vertices and edges, respectively, Ē = {(i, j) : (i, j) /∈ E}, and

W = {w ∈ {0, 1}|E| :
∑

(i,j)∈E wij ≤ k}. Defining the set of blocked solutions according to the

constraint set (59) as B(w, Sq) = {τ ∈ J : ∃(i, j) ∈ E,wij = 1, xτi + xτj = 2}, gives rise to the

blocker set

Cτ = {(i, j) ∈ E : xτi + xτj = 2} (61)

of edges as a result of the fact that the interdiction variables are related to the edges of the graph.

In other words, if nodes i and j are included in the clique of solution xτ , then interdicting the edge

(i, j) blocks that solution. Note that Tang et al. (2016) slightly modify the BCP formulation since

the XS algorithm requires a special structure.

While obtaining the single-level LB formulation used in the x-space algorithm, it is required to

dualize the inner problem in (6) and then linearize the resulting bilevel terms as explained in Section

2.1. To this end, bounds on the dual variables of the LB problem are needed. For both BKP and

BCP we compute the bounds as suggested in Tang et al. (2016) and use the same initial follower

solution set S1. It contains the optimal follower solutions for all possible unit vectors representing

leader solutions, trivial follower solution x = 0, and a heuristic feasible solution obtained via

relaxing the integer variables of the follower’s problem. We refer the reader to Tang et al. (2016)

for details.

The results for 150 BKP benchmark instances with 15 different (n, k) combinations are given

in Table 1. Columns XS-G and IXS-G are related to the results of our implementation of the
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x-space algorithm and improved x-space algorithm, respectively, which are obtained with Gurobi

8.0. Their counterparts with CPLEX 12.7 are given in columns XS-C and IXS-C. The last column

titled MIX++ indicate the results given by the branch-and-cut solver of Fischetti et al. (2017)

with its default settings where two types of intersection cuts are used along with a bilevel specific

preprocessing procedure and follower upper bound cuts. The results are presented in terms of the

number of unsolved instances over 10 instances in the same (n, k) setting, and the average CPU

time for those instances with one-hour CPU time limit.

Table 1: Results obtained on BKP instances.

# unsolved Time (sec.)

n k XS-G IXS-G XS-C IXS-C MIX++ XS-G IXS-G XS-C IXS-C MIX++

20

5 0 0 0 0 0 65.4 20.0 215.2 52.9 13.3

10 4 0 1 0 0 2486.4 213.4 1451.4 456.9 4.4

15 0 0 0 0 0 8.6 1.3 9.3 5.8 0.3

Average 1.3 0.0 0.3 0.0 0.0 853.5 78.2 558.6 171.8 6.0

22

6 0 0 4 0 0 1248.3 228.1 2724.9 610.9 21.5

11 8 1 8 1 0 3405.9 1376.7 3470.4 2074.3 6.7

17 0 0 0 0 0 20.9 1.8 12.4 7.3 0.3

Average 2.7 0.3 4.0 0.3 0.0 1558.4 535.5 2069.3 897.5 9.5

25

7 10 5 10 8 0 3601.9 2609.0 3601.6 3344.5 74.4

13 10 10 10 10 0 3601.3 3600.5 3600.6 3600.3 23.8

19 0 0 0 0 0 576.8 26.1 305.2 58.8 0.6

Average 6.7 5.0 6.7 6.0 0.0 2593.3 2078.5 2502.5 2334.5 32.9

28

7 10 10 10 10 0 3600.3 3600.6 3601.7 3601.2 191.7

14 10 10 10 10 0 3600.5 3600.4 3600.3 3600.5 63.3

21 8 0 5 0 0 3523.9 1042.2 3044.2 1194.4 1.2

Average 9.3 6.7 8.3 6.7 0.0 3574.9 2747.7 3415.4 2798.7 85.4

30

8 10 10 10 10 0 3600.3 3601.1 3600.6 3601.8 429.5

15 10 10 10 10 0 3600.6 3601.4 3600.3 3600.9 96.2

23 10 3 8 3 0 3600.6 1995.3 3472.0 1980.1 1.3

Average 10.0 7.7 9.3 7.7 0.0 3600.5 3066.0 3557.6 3060.9 175.7

As can be observed, IXS performs better than XS in terms of the total number of unsolved

instances with both MILP solvers. When the improved algorithm is used, the number of unsolved

instances reduces from 90 to 59 with Gurobi and from 86 to 62 with CPLEX. Note that the number

of unsolved instances for XS-C is less than the value reported in Tang et al. (2016), which can be

attributed to the MILP solver version (which is CPLEX 12.5 in that paper) or to hardware-related

differences. When the CPU times are considered, the difference between the two algorithms becomes

apparent especially for the (n, k) settings in which most of the instances can be solved optimally

within one hour. For example, the average CPU time for (25, 19) instances is reduced from 576.87

to 26.1 seconds with Gurobi, and from 305.2 to 58.8 seconds with CPLEX, whereas this number is
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equal to 1175 in Tang et al. (2016). The number of unsolved instances corresponding to settings

(28, 21) and (30, 23) decreases significantly for both solvers.

Nevertheless, MIX++ can solve all of the BKP instances optimally within one hour. This

means that although the IXS algorithm is effective, it is outperformed by the state-of-the-art

MIX++ method in solving BKP instances.

Figure 1 shows the performance profiles of the five solution methods as described in Dolan and

Moré (2002) for benchmarking various optimization software. In this approach, a performance ratio

ηo` of method ` ∈ L on problem instance o ∈ O is defined as the ratio of the solution time δ of o with

method ` to the minimum solution time for that problem instance, i.e., ηo` = δo`/min`{δo`}, when

the performance measure of interest is the solution time δ. The performance profile of each method

` ∈ L refers to the cumulative distribution function of ηo`. Following the approach in Fischetti

et al. (2017), we update the definition of ηo` as follows to reduce the effect of the problem instances

that can be solved in a very short amount of time (in seconds): ηo` = (δo`+1)/(min`{δo`}+1). For

those instances that cannot be solved by a given method within the time limit, δo` is set to 3600

seconds.

Figures 1a and 1b use a logarithmic scale with different ranges, and it is clear that MIX++ is

the best performer. Since it yields the minimum solution time in almost all BKP instances implying

that P (ηo` ≤ 1) ≈ 1, it gives a straight line on the top of the chart. We can observe that IXS-G

yields the next best setting, while XS-G and XS-C are very close to each other and yield the worst

performance. The probability that IXS-G (IXS-C) solves a BKP problem at most 10 times slower

than the best setting is around 30% (23%). Figure 2 shows the performance profiles of XS and

IXS algorithms when MIX++ is not considered. IXS-G performs better than the others in 95% of

the instances while the remaining instances are solved faster by IXS-C. The probability that XS-G

(XS-C) solution time is at most 10 times worse than the best method is 85% (75%).

(a) x ∈ [1, 10] (b) x ∈ [1, 1000]

Figure 1: Comparison of the methods for BKP instances.

The BCP instances in the benchmark data set are categorized into eight different (n, d) com-
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Figure 2: Comparison of IXS and XS for BKP instances.

binations where n denotes the number of nodes and d denotes the network density. The number

of interdicted edges is fixed to k = d |E|4 e with |E| representing the number of edges. There are 10

instances for each (n, d) combination resulting in 80 instances in total. The results are provided in

Table 2 in terms of the number of unsolved instances and CPU times. With the exception of the

smallest instances with (n, d) = (8, 0.7), XS-C and XS-G fail to solve all the instances optimally

within the time limit of one hour. The IXS algorithm can solve all the instances optimally within

the time limit of one hour. As a matter of fact, it takes only a few seconds except the last setting

with (n, d) = (15, 0.9), for which it requires less than two minutes on the average. MIX++ can

also solve all of the instances optimally, although it yields a slightly larger average solution time

than IXS-C and IXS-G. It is worth pointing out that MIX++ solution times that we obtain using

its publicly available code are longer than the ones obtained via CPLEX 12.6.3 and reported in

Fischetti et al. (2017). Recall that we carry out the numerical experiments related to MIX++ using

CPLEX 12.7 which is the newest version of CPLEX that the code works with at the time of our

study.

The performance profiles are showed in Figure 3 on a logarithmic scale as before. They show

that the proportion of instances for which IXS-G, IXS-C, and MIX++ have the minimum solution

time are 80%, 10%, and 10%, respectively. The minimum performance ratios of XS-G and XS-C

are 15 and 27, therefore their curves coincide with the horizontal axis in Figure 3a. IXS-C can

solve 90% of the instances within a CPU time of at most 1.5 times larger than the minimum time,

whereas this ratio is 2.9 for MIX++. The proportion of instances for which the solution time is very

close to the minimum (a performance ratio below 1.1) is larger for MIX++ compared to IXS-C.

However, the proportion of instances with performance ratios greater than two is also larger for this

method. In fact, IXS-C yields a ratio larger than two in only three of the instances and MIX++

does so in 17 of them.

Although the IXS algorithm performs better than XS for both interdiction problem types, the

improvement it yields is much more apparent for the BCP. As a matter of fact, this improvement is
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Table 2: Results obtained on BCP instances.

# unsolved Time(sec.)

n d XS-G IXS-G XS-C IXS-C MIX++ XS-G IXS-G XS-C IXS-C MIX++

8
0.7 0 0 0 0 0 1577.5 0.1 83.4 0.3 0.1

0.9 10 0 10 0 0 3600.4 0.1 3600.4 0.3 0.3

Average 5.0 0.0 5.0 0.0 0.0 2588.9 0.1 1841.9 0.3 0.2

10
0.7 10 0 10 0 0 3600.5 0.1 3600.5 0.4 0.3

0.9 10 0 10 0 0 3600.5 0.4 3600.4 0.7 1.3

Average 10.0 0.0 10.0 0.0 0.0 3600.5 0.3 3600.5 0.5 0.8

12
0.7 10 0 10 0 0 3600.6 0.3 3600.5 0.7 1.2

0.9 10 0 10 0 0 3600.4 2.2 3600.6 2.4 4.2

Average 10.0 0.0 10.0 0.0 0.0 3600.5 1.3 3600.5 1.6 2.7

15
0.7 10 0 10 0 0 3600.7 1.1 3600.6 1.8 5.4

0.9 10 0 10 0 0 3600.5 95.2 3600.6 113.1 168.5

Average 10.0 0.0 10.0 0.0 0.0 3600.6 48.2 3600.6 57.5 87.0

(a) x ∈ [1, 10] (b) x ∈ [1, 1000]

Figure 3: Comparison of the methods for BCP instances.

due to the LB problems since the UB problems can be solved rather quickly. The average iteration

times given in Table A1 show that the average time required to solve the LB problems is significantly

smaller for IXS in both problem types. However, the number of iterations which determine the size

of the final solution index set J is still large with the BKP instances, as presented in Table A2. This

implies that the success of IXS on BKP instances is due to the reduction in the average iteration

times. For the BCP instances, both this reduction is larger and the number of iterations given in

Table A3 is significantly smaller. We interpret this situation as follows. The algorithm proceeds

as long as a leader solution blocking all the follower solutions xτ , τ ∈ J , can be found. Finding

such a solution is easier if the intersection of all Cτ , τ ∈ J is larger. We observe that the average

size of Cτ is significantly smaller for BCP where it is defined as the set of edges included in the

maximum clique of the solution xτ . This makes more difficult finding a leader solution blocking all
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xτ solutions, which causes the algorithm to quickly terminate. Regarding the reduction in average

LB problem solution times, we attribute this result to the following difference between BKP and

BCP. In the BKP, the interdiction relations are straightforward, i.e., in the form of x ≤ 1 − w

where the size of the upper and lower level variables are the same as mentioned in Section 2.2,

and all of the follower variables can be interdicted by the leader. However, in the BCP the leader

interdicts some edges of the network and the follower selects nodes to form a maximum clique. The

interdiction decisions indirectly cause some nodes to be excluded from the maximum clique. We

can handle the situation by defining Cτ accordingly in the IXS algorithm without modifying the

problem formulation.

When the performances of IXS and MIX++ are compared on the BKP and BCP instances, it is

clear that IXS is outperformed on the former ones while it is the best performer in the latter ones.

One possible reason is the size of the formulations used by the two methods. MIX++ solves the

BKP instances using the bilevel formulation (54) and the BCP instances using the formulation (57)–

(60). It is clear that for the same number of leader variables, the BCP formulation always includes

more constraints and additionally these constraints have more nonzero coefficients as compared

with BKP. On the other hand, IXS solves whose number of variables and constraints depend only

on the number of leader variables and the iteration number. In addition, IXS solves LB′′q only if

the greedy covering heuristic fails to find an optimal solution. This situation might give IXS an

advantage on the BCP, in addition to smaller size of Cτ as explained above.

4.2 Instance Generation and Results Obtained on the MSMP Instances

The test instances for the MSMP are generated according to the Watts-Strogatz model which pro-

duces networks with small-world property, i.e., small distances between nodes and a relatively high

clustering coefficient (Watts and Strogatz, 1998). In the live-arc technique, scenarios (subgraphs)

are sampled following a probability distribution determined via the arc weights. The weight pa-

rameters are generated uniformly in the [0, 1] interval and normalized to satisfy the restriction total

incoming weight to a node cannot exceed one, as described in Kempe et al. (2003). The live-arc

scenario samples are generated using Latin Hypercube Sampling method since it is known that

it yields smaller variance between samples, as validated in the preliminary experiments, and it is

assumed that pr = 1/|R|, r ∈ R.

In all experiments of the IXS (XS) algorithm, the trivial follower solution selected in Step 0 of

Algorithm 2 (Algorithm 1) is determined as x0 = 0. Since any node in V can be protected by the

leader, this is the only solution that is feasible for all leader solutions. The initial set of the follower

solutions is obtained by solving the follower’s problem for randomly generated leader solutions. The

preliminary experiments show that choosing leader solutions by simple heuristic methods instead of

random selection does not have a significant impact on the results. For developing the UB problem
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formulations given in (36)–(41), the value of aji(w, r) is computed via a depth-first search on the

reverse of the associated scenario subgraph, which is an in-tree, since at most one of the incoming

arcs to a node can be live (active) in a scenario. For MIX++ the high-point relaxation problem is

minw,x

{∑
r∈R

∑
i∈V uir : (34), (35), (37)− (39), (41), (43)−−(44), (46)

}
.

Table 3 displays the results over 200 test instances. There are 10 instances for each of the 20

(n,R) combinations. The CPU time limit is one hour as before. Both XS and IXS algorithms

(regardless of the MILP solver used) can solve all instances with 20 nodes within the time limit,

with a significant difference in average solution times in favor of IXS. MIX++ fails to solve 15

instances with n = 20, and leads to very long solution times. For n ∈ {25, 30, 35}, IXS-C and

IXS-G can still solve all of the instances in one hour while XS-C fails to solve 68 and XS-G fails to

solve 77 out of 120. It is observed that for these values of n, MIX++ yields smaller solution times

than XS when R = 1, while the total number of unsolved instances is 76. When the set of instances

with n = 40 is considered, XS-G and XS-C can solve only 9 and 10 of them, respectively, while

IXS-G and IXS-C are able to solve 39 and 29 out of 40 instances optimally. When n = 40, R = 1,

the average solution time of MIX++ is slightly smaller than IXS-C. However, it is outperformed

by IXS-G, as is the case for all of the other problem sizes.

The performance profiles of each method over the MSMP instances are displayed in Figure

4. The intersections of the curves with the vertical axis indicate that IXS-G yields the smallest

CPU time in 85% of the instances and IXS-C needs the smallest time in 13% of them. MIX++,

XS-G and XS-C can only solve 2%, 1% and 0.5% of all instances respectively, faster than the other

methods. The proportion of the instances that require at most five times more CPU time than the

minimum solution time is 99.5% for IXS-G, 98% for IXS-C, 31% for MIX++, 21% for XS-G, and

19% for XS-C. It can be seen in Figure 4b that while MIX++ curve is above the ones of XS-C and

XS-G for small values of x, it gets worse after x = 15. In other words, while the probability of

yielding a solution time that is at most 15 times worse than the minimum solution time is larger

for MIX++ than XS-C and XS-G, the probability of yielding much worse performance ratios is

also larger (e.g., P (ηo` ≤ 5) which is 31% for MIX++ and 19% for XS-C and P (ηo` ≤ 100) which

is 86% for MIX++, and 97% for XS-C).

The results suggest that the IXS algorithm is less sensitive to the increase in the number of

scenarios. Table A4 shows that the number of iterations usually increases as R increases, which

also increases the size of Cτ , the set of nodes that are affected in any scenario in the solution xτ

according to our observations. This result is in line with the findings of Section 4.1 which indicate

that larger Cτ may lead to larger number of iterations, i.e., larger size of the final set J . We also

observe that the size of Cτ is affected most when R is increased from one to 10 and the average

iteration times remain close for larger R. Although the number of iterations increases, IXS still

performs well since the LB problems can be solved quickly. The poor performance of MIX++ can

be attributed to the size of the problems solved, since IXS makes it possible to discard a significant
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Table 3: Results obtained on MSMP instances.

# unsolved CPU Time (sec.)

n R XS-G IXS-G XS-C IXS-C MIX++ XS-G IXS-G XS-C IXS-C MIX++

20

1 0 0 0 0 0 1.0 0.0 1.3 0.3 2.1

10 0 0 0 0 0 9.3 0.9 11.1 1.6 127.7

25 0 0 0 0 6 21.0 2.1 27.0 3.6 2309.5

50 0 0 0 0 9 46.3 7.6 52.3 8.7 3330.4

Average 0.0 0.0 0.0 0.0 3.8 19.4 2.6 23.0 3.5 1442.4

25

1 0 0 0 0 0 33.1 2.7 41.0 6.3 7.7

10 0 0 5 0 1 1090.6 19.2 1914.3 32.4 1060.6

25 3 0 5 0 6 2007.2 28.2 2525.3 54.0 2816.4

50 5 0 7 0 10 2288.9 40.0 2868.7 89.6 3600.1

Average 2.0 0.0 4.3 0.0 4.3 1354.9 22.5 1837.3 45.6 1871.2

30

1 0 0 0 0 0 786.1 29.7 365.3 50.2 53.9

10 10 0 10 0 10 3600.0 209.6 3604.4 436.1 3600.0

25 10 0 10 0 10 3600.0 237.4 3605.4 462.5 3600.2

50 10 0 10 0 10 3600.0 380.9 3604.7 706.0 3600.4

Average 7.5 0.0 7.5 0.0 7.5 2896.5 214.4 2794.9 413.7 2713.6

35

1 0 0 0 0 0 518.8 22.8 278.2 19.3 46.1

10 10 0 10 0 9 3600.0 314.3 3604.2 837.3 3534.0

25 10 0 10 0 10 3600.0 362.0 3604.6 878.3 3600.1

50 10 0 10 0 10 3600.0 418.8 3610.3 1099.1 3600.2

Average 7.5 0.0 7.5 0.0 7.3 2829.7 279.5 2774.3 708.5 2695.1

40

1 1 0 0 0 0 1813.4 67.7 1074.7 133.4 114.2

10 10 0 10 4 10 3600.0 1204.1 3602.7 2399.2 3600.1

25 10 0 10 4 10 3600.0 1175.7 3606.3 2192.3 3600.2

50 10 1 10 3 10 3600.0 1396.2 3607.2 2454.2 3600.3

Average 7.8 0.3 7.5 2.8 7.5 3153.3 960.9 2972.7 1794.8 2728.7

(a) x ∈ [1, 10] (b) x ∈ [1, 1000]

Figure 4: Comparison of the methods for MSMP instances.
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number of constraints as a result of Proposition 5. This result is also an indication for the necessity

of algorithms that are tailored for the specific problem structure at hand.

5 Conclusion

In this study, we improve an existing algorithm called x-space (XS) algorithm that is proposed

for interdiction problems formulated as integer linear bilevel programming problems. The x-space

algorithm iteratively solves lower and upper bound problems both of which are single level mixed-

integer linear programs until the bounds converge to the same value. The solution time of the lower

bound problem dominates the overall time required. Our methodology is based on developing an

alternative lower bound problem formulation using the general features of the optimal solutions to

this problem. The new formulation, which is similar to a maximum coverage problem, allows the

use of a greedy coverage heuristic, which avoid solving a large number of lower bound mixed-integer

linear programs exactly.

The improved x-space (IXS) algorithm has been firstly tested on various instances of two bilevel

interdiction problems: bilevel knapsack problem with interdiction and bilevel maximum clique

problem with interdiction. Then, it is implemented on a stochastic bilevel optimization problem on

social networks (MSMP), by reformulating the problem and obtaining the problem specific blocker

set definition. The IXS algorithm reduces the solution times significantly for all problem types

considered as compared with the original XS algorithm. Furthermore, the computational results

show that the IXS algorithm can handle the increase in the number of scenarios significantly better

than the XS algorithm. A more general observation is that the improvement it yields becomes

even more striking when the interdiction relation between the upper and lower level variables is

not straightforward as is the case in the bilevel maximum clique problem with interdiction and

misinformation spread minimization problem. When the performance of the IXS algorithm is

compared with a state-of-the-art MIBLP solution algorithm MIX++, it is observed that although

IXS is outperformed on the bilevel knapsack problem, it yields better solution times on the bilevel

clique problem. Furthermore, it is clearly superior on the MSMP.

Searching for improvements in the lower bounding process via better formulations and faster

algorithms remains as a challenge for new research endeavors. However, the quality of the upper

bounds and the time spent for their computations are also important. Therefore, we believe that

efforts in this direction might result in further enhancement regarding the overall efficiency of the

algorithm.

26



Acknowledgements

We thank the reviewers for their constructive comments that improved both the content and pre-

sentation of the paper. This study is partially supported by Boğaziçi University Scientific Research
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Appendix: Additional Computational Results

Table A1: Average iteration times in seconds.

Problem XS-G IXS-G XS-C IXS-C

BKP 0.31 0.08 0.41 0.15

BCP 0.50 0.02 0.48 0.03

MSMP 2.45 0.06 2.06 0.11

Table A2: Number of iterations within the time limit for BKP instances.

n R XS-G IXS-G XS-C IXS-C

20

5 1168.4 1242.7 1329.8 1133.7

10 4345.9 4276 3582.7 3355.5

15 217.4 315.4 291.8 259.0

Average 1910.6 1944.7 1734.8 1582.7

22

6 3808.8 4017.2 3575.7 3358.7

11 6957.3 10003.7 6870.4 7362.6

17 310.5 355.6 378.7 342.3

Average 3692.2 4792.2 3608.3 3687.9

25

7 10966.9 13088.7 4772.1 10576.5

13 11354.3 18553.7 9320.8 13563.2

19 1686.7 1727.9 1633.2 1566.0

Average 8002.6 11123.4 5242.0 8568.6

28

7 11326.4 21323.6 4621.6 14997.7

14 12431.1 37548.1 9762.9 21348.8

21 6602.8 9950.4 6405.1 6735.6

Average 10120.1 22940.7 6929.9 14360.7

30

8 11327.7 50446 6979.9 34652.6

15 11589.8 65263.7 10116.3 39036.6

23 7532.8 13981.0 8208.0 9222.6

Average 10150.1 43230.2 8434.7 27637.3
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Table A3: Number of iterations within the time limit for BCP instances.

n R XS-G IXS-G XS-C IXS-C

8
0.7 5504.0 13.9 1239.7 13.7

0.9 10091.1 36.9 9557.4 35.7

Average 7797.6 25.4 5398.6 24.7

10
0.7 9065.6 29.9 8543.1 27.2

0.9 7729.2 92.2 7683.4 93.9

Average 8397.4 61.1 8113.3 60.6

12
0.7 7198.1 67.6 6768.7 64.3

0.9 6105.4 241.2 6365.4 237.2

Average 6651.8 154.4 6567.1 150.8

15
0.7 5603.0 175.8 5432.2 165.3

0.9 4272.5 791.0 4768.2 767.4

Average 4937.8 483.4 5100.2 466.4

Table A4: Number of iterations within the time limit for MSMP instances.

n R XS-G IXS-G XS-C IXS-C

20

1 41.7 35.0 50.1 34.1

10 107.3 100.3 105.7 100.4

25 126.8 116.8 124.2 117.6

50 136.4 127.3 134.3 128.4

Average 103.1 94.9 103.6 95.1

25

1 260.8 218.6 354.7 184.2

10 1174.5 1297.6 1222.1 1318.0

25 1340.5 1467.4 1055.6 1482.8

50 1397.4 1524.4 920.7 1547.7

Average 1043.3 1127.0 888.3 1133.2

30

1 1119.4 747.9 1115.2 665.3

10 3366.8 3401.7 1913.1 3415.8

25 2375.1 3734.2 1108.9 3747.1

50 1829.4 3861.3 829.8 3871.2

Average 2172.7 2936.3 1241.8 2924.9

35

1 759.3 611.8 821.7 421.3

10 3300.2 5070.2 1907.5 5135.5

25 2458.3 5628.7 992.4 5684.9

50 1879.8 5796.0 747.5 5845.1

Average 2099.4 4276.7 1117.3 4271.7

40

1 1530.5 1078.4 1444.6 757.5

10 3257.0 8721.3 1758.3 8760.0

25 2181.9 9367.4 924.8 9387.0

50 1671.9 9485.3 633.0 9465.6

Average 2160.3 7163.1 1190.2 7092.5
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