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ABSTRACT 

This paper develops a bi-level multi-objective model for road pricing optimization considering land use 

and transportation effects. The upper-level problem determines a cordon-based road pricing scheme, 

while the lower-level problem models the interaction between land use and transportation. To facilitate 

decision-making in a scenario characterized by a hierarchical ordering of objectives, a novel -

conditional lexicographic optimization method is established, which uses an value to capture the 

decision-maker’s perceived acceptability of the trade-off between different objectives with respect to 

the hierarchical objective orderingThe properties associated with this approach are derived, and an 

algorithm to find the -conditional lexicographic dominance solutions is developed. To solve the model, 

a revised genetic algorithm is further developed to illustrate how the proposed -conditional 

lexicographic optimization method can be embedded into existing heuristic or metaheuristic methods. A 

case study using data from Jiangyin, China, demonstrates the significance of considering land use effects 

when evaluating road pricing scenarios. The results reveal the trade-off between transportation and 

various land use objectives and the variation of such a trade-off among different types of traffic analysis 

zones. It is demonstrated that the proposed -conditional lexicographic approach can improve most of 

the land use objective values while ensuring that the total travel time is constrained within an 

acceptable range, enabling a balance between various land use and transportation objectives. 

Highlights 

 We propose a novel a-conditional lexicographic optimization approach to solve the 

multi-objective road pricing problem. 
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 We derive the properties associated with the a-conditional lexicographic optimization 

method.  

 We develop a revised genetic algorithm to solve the model.  

 Results demonstrate the difference between Pareto dominant solutions and a-conditional 

lexicographic solutions. 

 Case studies reveal the tradeoff between land-use and transportation objectives.  

 

 

Keywords: Transportation, Multiple objective programming, Road pricing, Land use and transportation 

interaction, Lexicographic optimization 

1 INTRODUCTION  

Aiming to mitigate transportation problems, such as congestion and air pollution, road pricing has been 

implemented in many cities around the world, including Singapore, London, Stockholm, Norwegian 

cities, and Milan. The concept of road pricing is rooted in the century-old work of Pigou (1920). Since 

then, researchers have extensively studied methods to design optimally effective road pricing schemes 

for urban transportation systems (e.g., Small, 1992; Yang and Huang, 1998; de Palma et al., 2005; Xiao 

and Zhang, 2014; Verhoef, 2020; Zhong et al., 2021). 

 The effects of road pricing can generally be classified into short-term and long-term effects, as depicted 

in the conceptual model in Figure 1. The short-term effects refer to the changes in the transportation 

system per se. The implementation of a road pricing scheme will in the shorter term stimulate a variety 

of changes in residents’ travel patterns, thus influencing the operating conditions and total travel time 

of the road network (see the right-hand side in Figure 1). In the long term, the changes in travel cost and 

accessibility will further induce the (re)location decisions of both households and firms, thereby 

affecting their activity distribution, land use density, and land use diversity (see the left-hand side in 

Figure 1). It usually takes several years to reach an equilibrium state (Zhong and Bushell, 2017b). Land 

use is defined as the human use of land, representing the economic and activities undertaken in a 

certain place (Leibowicz, 2020). In the urban planning literature, conventional metrics to describe the 

characteristics of urban land use or the built environment include density, diversity, street design, 

destination accessibility, and distance to transit (Cervero and Kockelman, 1997; Fan and Khattak, 2008; 

Leibowicz, 2020). In this study of the possible land use changes after the implementation of road pricing, 

land use mainly refers to density, diversity, and accessibility. 
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 Most studies (Nielsen, 2004; Yang and Huang, 2005; Tsekeris and Voß, 2009; de Palma and Lindsey, 

2011; Liu et al., 2014) have focused on the short-term effects. Nevertheless, the long-term effects 

should not be overlooked, considering that long-term (re)location decisions have a profound impact on 

transportation systems by affecting demand distribution and mode choice (Waddell et al., 2003; Iacono 

et al., 2008). Only recently have decision-makers and scholars taken a deeper interest in the long-term 

effects of road pricing on land use (Boyce and Mattsson, 1999; Zhong et al., 2015; Li and Wang, 2018). 

 It is necessary to capture the long-term effects because a road pricing policy could induce undesirable 

adverse effects on land use, such as reducing the population, jobs, accessibility, and land use diversity 

within the pricing area after the introduction of a road pricing scheme. Take the cordon-based road 

pricing policy as an example. It has been found that in the long term, when residents or enterprises 

cannot accept the increase in travel costs caused by road tolls, they will choose to relocate their 

residence/place of work or enterprise, resulting in a decrease in population and job density within the 

toll ring (Whitehead, 2005; Percoco, 2014; Zhong et al., 2015). This will lead to urban sprawl and cause a 

series of negative effects, including but not limited to increasing the government’s investment in 

infrastructure in the peripheral areas of the city, reducing the business performance within the pricing 

area, and increasing residents’ commuting distance (Whitehead, 2005; Anas and Hiramatsu, 2013; 

Zhong and Bushell, 2017a; Attardi et al., 2018). These negative effects will influence the public 

acceptability of a road pricing scheme, which, in turn, will affect the implementation effectiveness of 

road pricing policy (Sumalee et al., 2009; Tsekeris and Voß, 2009; Zhong and Bushell, 2017b), as it is 

likely that the public will tend to oppose road pricing policies with negative land use effects (Zhong et 

al., 2015). Moreover, while studies have evaluated the effects of road pricing policy using aggregated 

measures, i.e., total travel cost/time and social surplus, these measures discount the fact that an urban 

area contains different types of traffic analysis zones (TAZs), which may be affected differently by road 

pricing. Indeed, research has confirmed that due to the differences in their built environment attributes, 

the effects of road pricing on TAZs vary (Bhat and Guo, 2007; Zhong et al., 2015), and the neglect of such 

effects could induce equity or acceptability issues. Therefore, it is necessary for a road pricing policy to 

be designed with consideration of its effects across different TAZs. 

  Irrespective of the response time, the effects of road pricing on land use and transportation systems 

are multifaceted, meaning that road pricing optimization is essentially a multi-objective decision-making 

problem. The prevailing objectives considered in the literature include 1) Total travel cost/time (Zhang 

et al., 2008; Liu et al., 2014; Zhong et al., 2017); 2) Total emissions (Wang et al., 2014; Szeto et al., 2015); 

3) Social surplus (Bellei et al., 2002) or social welfare (Yang and Zhang, 2002); 4) Cost recovery (Lo and 

Szeto, 2009); and 5) Equity (Meng and Yang, 2002; Sumalee et al., 2009; Levinson, 2010; Szeto et al., 

2015). To the best of our knowledge, the long-term effects on land use have not been considered in the 

road pricing problem. 

  To address a multi-objective decision-making problem, in addition to using the composite indicator 

method (Attardi et al., 2018; Demesouka et al., 2019), most studies of the road pricing problem have 

identified Pareto optimal solutions and visualized the Pareto frontier to analyze the trade-off among 

different objectives (Sumalee et al., 2009; Wang et al., 2015; Zhong et al., 2017; Zhong et al., 2020). 
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Nevertheless, a decision-maker exploring the Pareto frontier may encounter a number of issues. 1) The 

number of solutions on the Pareto frontier could be very large. However, the decision-maker may not be 

interested in the full picture of the Pareto frontier. Instead, he/she typically only seeks a single solution 

for implementation or a few promising solutions for comparison. Thus, a methodology is needed to 

selectively identify a few solutions from the Pareto frontier. 2) The substitution rate among different 

objectives on the Pareto frontier could be large, meaning that a small increase in one objective value 

would induce a considerable (unacceptable) sacrifice in other objective values. In such a case, the 

solutions on the Pareto frontier may not be practically implementable. 3) Last but not least, the Pareto 

frontier does not consider the fact that for the decision-maker, the objectives to be optimized could be 

hierarchically structured, meaning that he/she prioritizes some objectives over others (Juergensmeyer 

and Roberts, 2003). For example, creating more jobs in a downtown area may take precedence over 

doing so in a suburban area, or reducing emissions may have a higher priority in a high-density 

residential area.  

 To address the above issues, this paper develops a bi-level multi-objective model for the road pricing 

problem considering land use effects. The upper-level problem optimizes a cordon-based road pricing 

scheme, while the lower-level problem models the interaction between land use and transportation. 

The proposed bi-level model allows us to measure a variety of land use-related objectives, including 

population density, job density, accessibility, and land use diversity, and analyze these effects.  

 Moreover, we develop an -lexicographic optimization approach, in which the value of measures the 

acceptable relative (absolute) difference of the same objective among different solutions (i.e., road 

pricing schemes). If the relative (absolute) difference of one objective is below the predefined value of 

the two road pricing policies are regarded as equivalent in terms of achieving the objective in 

question. The proposed -lexicographic optimization approach captures the fact that in practice, 

decision-makers specify a hierarchical ordering of the set of objectives and have a threshold or target 

value for certain objectives. For example, the planning departments of China have a planning and 

development target value for the population and jobs in a certain region (State Council of the People’s 

Republic of China, 2014). With the introduction of the  value, the proposed approach allows us to 

eliminate solutions that fail to meet the requirement specified by the threshold or target values while 

exploring solutions that are not on the Pareto frontier but are acceptable with respect to the threshold 

value of as they have a lower substitution rate. Hence, we can accomplish some improvement in one 

objective value at an acceptable cost of the deterioration of other objective values (we will further 

elaborate on this via examples in Section 4.2.1). Finally, to solve the bi-level multi-objective model, we 

develop an -lexicographic genetic algorithm (-lex-GA), in which the set of -lexicographic preferred 

solutions is updated iteratively.  

 To sum up, the contributions of this study include: 

 Solving a bi-level multi-objective road pricing problem via the lexicographic optimization 

approach to facilitate the decision-making when the hierarchical ordering of objectives is 

specified;  
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 Establishing a novel -conditional lexicographic optimization approach to solve the multi-

objective road pricing problem, in which the decision maker’s relative preference for specific 

objectives is considered;  

 Establishing the relationship between the proposed -conditional lexicographic solution and 

Pareto dominant solutions and demonstrating various properties of the -conditional 

lexicographic optimization approach theoretically and numerically; and 

 Developing a solution method for solving the -conditional lexicographic optimization method. 

 This paper is organized as follows: Section 2 presents a general bi-level modeling framework. Section 3 

develops two different modeling approaches and corresponding solution methods. Section 4 describes a 

case study. Finally, Section 5 concludes the study and provides directions for future research. 

2 BI-LEVEL FRAMEWORK  

The problem investigated in this paper is to design a uniform cordon-based road pricing scheme for an 

urban area considering a set of objectives. The urban area is divided into a set of TAZs, denoted as 

 1 2, ,..., MZ z z z , where M is the number of TAZs. The set of objectives is denoted by 

 1 2, ,..., NC f f f , where N is the number of objectives. It is assumed that the objectives are not 

equally important to the decision-maker and that he/she has an ordered preference for these 

objectives, requiring that the objective with a higher priority should be satisfied first. Accordingly, the 

elements in set C are reordered following the decision-maker’s preference, and the ordered set is 

denoted as  1 2 1, ,..., , ,...,n n N

c c c c c cO o o o o o  in which the  
th

1n  element is no less important than the 

thn  element. Depending on the preference of the decision-maker, the order of the objectives can either 

possess a well-defined structure or not. For example, in the former case, the city regulator may prefer to 

improve all of the objective values of zone i first, then those of zone j; while in the latter case, the city 

regulator may prioritize the reduction of the overall travel time over improving the accessibility for all 

zones. To capture the effects of road pricing policy on land use and model the interaction between land 

use and transportation, it is assumed that the responses of residents to a road pricing scheme include 

both location choice and travel behavior choice following random utility theory, which can be obtained 

by the TRANUS model (de la Barra, 1984). Below, the lower-level and upper-level problems are depicted 

first. Then, an overview of the bi-level model is given. 

2.1 Lower-level problem   

The lower-level problem depicts the interaction between land use and transportation under a given 

road pricing scheme. According to Wegener (2004) and Iacono et al. (2008), the existing integrated 

models considering both land use and transportation can be classified into three main types: I) Spatial 

interaction/Gravity-based models; II) Logit-based econometric models; and III) Micro-simulation models. 

In principle, any integrated model could be encapsulated in the lower-level problem, as long as the 

model captures the effects of road pricing on residents’ travel behavior and the land use pattern.  In this 

study, a logit-based land use and transportation integrated model, i.e., TRANUS, is adopted. Its 

framework is briefly introduced in Figure 2.  
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 As can be seen from Figure 2, the main components and models of TRANUS include the location and 

land use, trip generation, trip distribution, modal split, and traffic assignment. The travel modes in the 

TRANUS model include car, bus, rail transit, walking, bicycle, and the combination of different modes. 

Therefore, the model can well analyze the travel mode choice behavior under the influence of road 

congestion pricing. The reader is referred to de la Barra et al. (1984) for the detailed mathematical 

formulations of each component or to Appendix A (see supplementary materials) for a formulation 

framework. The distribution of activities obtained by the land use model will affect the trip generation 

and distribution in the transportation model; conversely, the accessibility and travel costs obtained by 

the transportation model will influence the spatial location choices of both residents and enterprises in 

the land use model. The land use and transportation models iterate via a naive approach until an 

equilibrium is reached. Our main reasons for adopting the TRANUS model are twofold. Theoretically, an 

embedded logit-based model can essentially be depicted as a fixed-point problem; this ensures the 

existence of the equilibrium solution, which is important for analyzing the property of the formulation. 

Practically, TRANUS has been broadly and effectively implemented worldwide (de la Barra, 1984; 

Bandeira et al., 2011; Zhong et al., 2015).  

2.2 Upper-level problem   
The upper-level problem determines the optimal road pricing scheme that simultaneously maximizes a 

set of objectives, which are evaluated based on the solution obtained by solving the lower-level 

problem. Due to the consideration of the land use and transportation interaction in the lower-level, the 

proposed bi-level model can access the measured values from both transportation and land use 

perspectives: 

1) Transportation-related objectives. In line with the literature, we measure the changes in the total 

travel time to evaluate the effect of a road pricing scheme. The total travel time associated with one 

TAZ is defined as the travel time from that TAZ to all other TAZs. 

2) Land use-related objectives. Four land use objectives are considered, including population density, 

job density, potential job accessibility, and land use diversity, which are defined as follows: 

a. Population density. The number of residents per unit area in a zone; 

b. Job density. The total number of jobs per unit area in a zone, such as jobs in the industrial, retail, 

government, entertainment, health, and education sectors; 

c. Potential job accessibility. This index measures the accessibility, from the perspective of a 

specific zone, of potential jobs in all other zones (Zhong and Bushell, 2017a) and comprises a 

function determining the number of jobs within a zone and a travel impedance function 

assessing the travel time between that zone and other zones. Mathematically, it is defined by  

      exp ,i j ij j ij
j Z j Z

PJA J I t J t i Z  
 

            (1) 
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 where PJAi  is the potential job accessibility of zone i, Jj is the number of jobs within zone j,  ijI t  

is the travel impedance function, ijt  is the minimum travel time between zones i and j, and  ,

 , and   are empirically calibrated impedance parameters (Zhong and Bushell, 2017a);  

d. Land use diversity. This measures the variety of land uses in a region and represents the entropy 

of land use categories. Its value ranges from 0 to 1, where 0 represents a scenario in which there 

is only one type of land use in a zone and 1 represents a scenario in which different types of land 

use are evenly distributed throughout the zone (Cervero and Kockelman, 1997). Mathematically, 

the land use diversity of zone i, LUDi, is computed by 

       1
ln / ln ,iD d d

i i i id
LUD q q D i Z


     
   (2) 

where d

iq  is the percentage of land use type d of the total land area of zone i, and Di is the 

number of different land use types in zone i.   

 The above-mentioned objectives capture both the long-term effects (changes in land use, such as land 

use density, diversity, accessibility) and the short-term effects (changes in the transportation system, 

such as total travel time) to assist decision-makers in understanding the various impacts of a road 

pricing policy on an urban system.   

2.3 Overview of the bi-level model   

Figure 3 explains the interaction between the upper and lower-level problems. Similar to traditional bi-

level road pricing models (e.g., Sumalee et al., 2009; Tsekeris and Voß, 2009; Zhong et al., 2017), the 

upper-level problem determines the road pricing scheme, i.e., toll value  , and the lower-level problem 

returns the corresponding equilibrated flow pattern (denoted as  v ) and the generalized travel cost 

(denoted as c ). The lower-level problem also provides activities and land use pattern solutions, 

represented by  L , which include the distributions of population, jobs, and different land use types, 

allowing us to evaluate the land use-related objectives defined in Section 2.2. 

 

 Based on Figure 3, the bi-level formulation is stated as follows,   

       max , , ,U


  c v L   (3) 

s.t.       (4) 

          , , LUTI     c v L                                                         (5) 

Equation (3) is the objective function, where     , , ,U   c v L  denotes the set of objectives and is 

given by:  
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               , , , , , , ,kU f k      c v L c v L   (6) 

where     , , ,kf   c v L  denotes the value of the kth-most important objective. 

 Equation (4) restricts the solution space for the road pricing scheme. Although this study only 

determines the road pricing scheme for one cordon, i.e.,   is a single value, the bi-level framework is 

applicable to more complicated cases, such as multiple cordons, dynamic pricing, and zone-based 

pricing. Following the notations in Yang and Bell (1998) and Wang and Lo (2010), the lower-level land 

use and transportation integrated model is depicted via the equilibrium constraint in Equation (5), 

stating that the interactions between land use and transportation achieve an equilibrium condition. 

Equation (5) is specifically derived to represent an integrated model combining land use and 

transportation. A more detailed description of the model is given in Appendix A (see supplementary 

materials). For convenience, in the rest of this paper, we use  U   and  kf  to represent 

    , , ,U   c v L  and     , , ,kf   c v L , respectively.  

3 METHODOLOGY DEVELOPMENT AND APPLICATION 

The bi-level formulation developed in the preceding section formalizes a multi-objective problem, for 

which a solution that optimizes each objective may not be guaranteed to exist. The prevailing approach 

in this field is to find the Pareto optimal solutions or the Pareto frontier for the decision-maker, at which 

no individual objective can be improved without deteriorating another objective. However, with the 

increase in the number of solutions on the Pareto frontier, it becomes more difficult for the decision-

maker to select one solution from the frontier to be implemented. To address that problem, this study 

develops a novel -conditional lexicographic optimization approach to select solutions, motivated by 

the fact that a decision-maker may differentially prioritize the objectives or rank the objectives in order 

of priority (e.g., in China and the United States, a priority ordering of multiple objectives is specified in 

the government strategic plan) (Juergensmeyer and Roberts, 2003; State Council of the People’s 

Republic of China, 2014). For completeness, in this section, we first introduce the traditional 

lexicographic optimization method.   

3.1 Lexicographic optimization 

3.1.1 Definition 

Given a road pricing scheme   and an ordered set of objectives cO , we can rank all objectives following 

their order specified in set cO  as  

             
1 2

, ,..., ,...,
n N

c c c cO O O O

cU O f f f f      (7) 

where  cU O  denotes the objective values obtained under the road pricing scheme   and set cO . 

The difference between  U   and  U   in Equation (3) is that the elements in  U   are organized 
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following a sequence. Specifically, the elements in  cU O  are organized in line with the objectives’ 

order in cO , meaning that  
n
cOf   is the value of the nth-most important objective.   

 Consider another road pricing scheme ' . We say that scheme   is lexicographically preferred to '  

with respect to cO   if   

       
     

   

1,..., , '
'

1, '

k k
c c

j j
c c

O O

c lex c O O

k N f f
U O U O

j k f f

 
 

 

  


   

 (8) 

 Equation (8) states that there exists an integer k, such that the value of the kth-most important objective 

given by   is larger than that given by ' , and for the objectives (objective) that have (has) a higher 

order than the kth-most important objective, their values (its value) obtained from   and '  are (is) 

equal (Podinovskii, 1972). In contrast, we say that   and '  are equivalent: 

            ' 1,..., , '
k k
c cO O

c lex cU O U O k N f f       (9) 

 Kerrigan and Maciejowski (2002) have proved that a lexicographic optimal solution is a special type of 

Pareto optimal solution that considers the order of the objectives.  

3.1.2 Algorithm to find lexicographic optimal solutions 

A typical process for finding a lexicographic optimal solution is to solve a hierarchical order of single-

objective constrained optimization problems (Ehrgott, 2005). When a hierarchical order of the 

objectives is given, the set of solutions that optimizes the most important objective is obtained first. 

Then, a subset of solutions that optimizes the second-most important objective is identified. This 

process is repeated until a unique solution is found or all objectives have been examined. For 

completeness, the algorithm is customized to our problem and depicted as follows.  

Algorithm 1: Find lexicographic optimal solutions  

1: Let *   

2:     for k = 1 to N do    // Loop all objectives  

3:           * * *argmax ,
k
cOf       

4:     end 

 In Algorithm 1, *  denotes the set of lexicographic optimal solutions to be found. Line 1 defines the 

initial condition. Line 2 loops all objectives following their order. Line 3 updates the solution set.  

Algorithm 1 thus determines a unique optimal value for each objective. Nevertheless, multiple optimal 

solutions to the single-objective optimization problem could potentially exist. 
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3.2 -conditional lexicographic optimization  

The merit of the lexicographic optimization method is that it respects the importance of the objectives 

specified by the decision-maker. However, it overlooks the magnitudes of the values that are traded-off 

among different objectives. To illustrate this, let us consider an example with two feasible solutions and 

a set of two ordered objectives. The values of the most important objective obtained from the two 

solutions are 1001 and 1000, respectively, while the values of the second-most important objective are 

900 and 1000, respectively. It is evident that following Algorithm 1, the first solution is the lexicographic 

optimal solution, as it maximizes the value of the most important objective. However, the decision-

maker would typically prefer the second solution, which sacrifices a very small fraction of the most 

important objective but gains substantially on the other objective. To capture rational decision-making 

in such scenarios, this study proposes a novel -conditional lexicographic formulation.   

3.2.1 Definition 

Given two solutions   and ' ,   is said to be -conditional lexicographically preferred to '  if 

                     
      

    

1,..., , , '
, ' ,

1, , '

k k k
c c c

j j j
c c c

O O O

c lex c
O O O

k N H f f
U O U O

j k H f f



  
 

  

  



   



α α  (10) 

where ,
k
cO k  

 
α  is the vector of predefined threshold values for each objective. Intuitively, the 

value of 
k
cO  indicates that a certain amount of difference between the two solutions with respect to a 

specific objective is acceptable.     , '
k k
c cO OH f f   is a function computing the difference between 

two values and is defined as follows: 

         

   
 

' / 1,if  is a relative threshold value
, ' , 1,...,

' , if  is an absolute threshold value

k k k
c c c

k k
c c

k k k
c c c

O O O

O O

O O O

f f
H f f k N

f f

  
 

  

 
  



 (11) 

 Equation (10) states that  ,cU O α  is preferred to  ' ,cU O α  if, for the kth-most important 

objective, the difference between its values obtained from the two solutions is larger than the 

predefined threshold value, while for the objectives that are more important than the kth-most 

important objective, the difference between its values obtained from the two solutions is within the 

threshold. In other words, to compare two solutions, the corresponding values of the objective that has 

a higher priority are compared first. If the difference between the values from the two solutions is 

acceptable, then those for the objective that has a lower priority are compared. The dominance 

relationship of the two solutions can be determined once the difference between the two solutions is 

beyond 
k
cO .  

 Similar to the lexicographic optimization method, two solutions are equivalent if,  
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            , ' , 1,..., , , '
k k k
c c cO O O

c lex c iU O U O k N H f f      α α  (12) 

 The merits of the proposed -conditional lexicographic method are twofold. First, it captures the likely 

situation in which certain objectives have very similar values in different solutions, i.e., 1000 vs. 1001. 

Second, it avoids large trade-offs among different objectives on the Pareto frontier by providing 

solutions that have smaller trade-offs and are thus more acceptable (see example in Section 4.2.1). 

3.2.2 Compromised comparison method   

When a set of feasible solutions is given, it is straightforward to apply a pairwise comparison method to 

compare all solutions to find -conditional lexicographic optimal solutions. However, the pairwise 

comparison based on Equation (10) violates the axiom of transitivity, which will be illustrated via the 

example in Section 4.1.2. To address the violation of this axiom, we develop a compromised comparison 

method, in which we take the ideal point as a benchmark point in the pairwise comparison. 

Mathematically, it is stated as follows.  

 Let ideal  be the solution corresponding to the ideal point where all objectives achieve their optimal 

values. Then,   is said to be preferred to '  if the following condition is satisfied.  

 

   

          

         

ideal

, ' ,

1,..., , , '  and  > '   
       

1 ,   , '  

k k k k k
c c c c c

j j j j j j
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c lex c

O O O O O

O O O O O Oideal ideal

U O U O

k N H f f f f

j k H f f and H f f

 

    

     



   


    


α α

，

 (13) 

 The above equation states that if   is -conditional lexicographically preferred to ' , then for the (k-

1)th objective, both   and '  are equivalent with respect to the ideal point, while for the kth objective, 

its value obtained by '  is not only worse than that at the ideal point but also worse than the value 

obtained by  . Unlike Equation (10), it can be verified that Equation (13) satisfies the axiom of 

transitivity. Moreover, the compromised method can be considered to be well-adapted to the features 

of realistic decision-making scenarios if the ideal point is interpreted as the decision-maker’s desired 

target level. Unless otherwise specified, in the rest of the paper, the -conditional lexicographic optimal 

solution refers to the solution obtained via the compromised comparison method.  

3.2.3 Properties   

Based on the compromised comparison method, we can define a set of global -conditional 

lexicographic solutions, i.e., solutions that are equivalent with respect to the ideal point for all 

objectives.  

Definition: Global -conditional lexicographic solution set.  

 Given ,
k
cO k  

 
α , the global -conditional lexicographic solution set is defined by  
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                ideal , , 1,...,
k k k
c c cO O OH f f k N       α  (14) 

 The following properties associated with   α  can be established.  

Property 1: The solutions in   α  are equivalent with respect to the ideal point for any order.  

Proof. This can be concluded based on the definition of equivalence. □ 

 This property implies that if   α  is a set of global -conditional lexicographic optimal solutions and 

there exists a solution in   α , then the decision-maker does not need to specify the order of 

objectives. However,   α  may not always exist, as stated in the following property.  

Property 2:   α  could be empty. 

Proof: Property 2 is proved using a descriptive example in Section 4.1.2. □ 

 This property implies that there may not be a feasible solution to the problem if the value of α  is not 

set appropriately. In practice, it implies that the decision-makers should be aware of a feasible range of 

the values of α  that give rise to an implementable road pricing scheme.  

Property 3: (Monotonicity). Given cO , α  and 'α , if  , 1,...,
k k
c cO O k N    , then     ' α α . 

Proof: Considering solution    α  and 
k k
c cO O  , we have     ideal ,

k k k k
c c c cO O O OH f f     , 

implying that    α ; in other words,    ' α α . This completes the proof. □ 

 This property indicates that   α  is monotonically increasing with respect to the values of α , meaning 

that the larger the values of α , the larger the set of -conditional lexicographic solutions. It is, thus, 

straightforward that when the value of α  is sufficiently large,   α . Combining properties 2 and 3, 

we can derive the following property.  

Property 4: There exists a minimum value of α  that ensures the existence of   α , and the minimum 

value of α  that guarantees the existence of   α  for all of the objectives is 

 
     ideal

1,...,
min min m ,ax

k k
c cO O

k N
H f f 

  


τ
. 

Proof:  Because   α  could be empty (property 2) and monotonically increases with α  (property 3) 

until it coincides with  , there must exist 
*α  such that   α  is empty when α  is less than 

*α , and 
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  α  is nonempty when α  is larger than 
*α . In addition, if all of the objectives have at least one 

solution, it is obvious that for any    α ,       n

ide l

mi

amax ,
k k
c c

k

O OH f f  


 . □ 

Property 5: (Dominance).  

(1) For any  '  α , if there exists   such that   Pareto dominates ' , then    α . 

(2) If there exists a solution   such that Pareto dominates all other solutions '  , then 

   ,  if   α α . 

Proof: Given  '  α , we have       ideal , ' ,
k k
c cO OH f f k   α . According to Equation (11) and 

the definition of Pareto dominance, we have           ideal' , ,
k k k k
c c c cO O O O

i if f H f f k      α . 

Thus,    α . This completes the proof of (1).  Once property (1) is proved, property (2) is 

straightforward. Given    α , there exists   '   α . Because   Pareto dominates all other 

solutions, then    α  based on property 5 (1). This completes the proof. □ 

This property indicates that if a solution Pareto dominates an -conditional lexicographic solution, 

then it is also an -conditional lexicographic solution; and if there exists a solution that Pareto 

dominates all other solutions, it must be an -conditional lexicographic solution for any non-negative α

. The distinction between the two statements is that   only Pareto dominates the -conditional 

lexicographic solution in statement (1), while it dominates all solutions in statement (2). The above 

properties are established to understand the relationship between the proposed -conditional 

lexicographic solution and Pareto dominant solutions.  Following Property 5, we can define a set of -

conditional lexicographic Pareto optimal solutions as follows.  

Definition: -conditional lexicographic Pareto optimal solution. 

 The set of Pareto solutions contained in   α  is defined as the -conditional lexicographic Pareto 

solution set and denoted as  p α  .  

 It can be directly concluded that  p α is a subset of the Pareto solutions, and when the value of α  is 

sufficiently large,  p α  coincides with the set of Pareto optimal solutions.  

3.2.4 Algorithm to find -conditional lexicographic optimal solutions 

The algorithm for finding a lexicographic optimal solution cannot be applied to find the -conditional 

lexicographic optimal solution due to the additional α termAlgorithm 1 introduced in Section 3.1 has 

to be revised as follows to take into account α . 

Algorithm 2: Find a-conditional lexicographic optimal solutions 
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1: Let  * α   //   be the initial solution set 

2:  for k = 1 to N do    // Loop all objectives 

3:                ideal ,
k k k k k
c c c c cO O O O OH f f         

4:         If  
k k
c cO O   or k =N, then output  * α     

5:         else      * *k k
c cO O  α α   

6:   end 

 Algorithm 2 follows the idea of Algorithm 1. When an ordered set of objectives is given, the set of -

conditional lexicographic optimal solutions with respect to the most important objective is obtained 

first. Then, the subset that interacts with the -conditional lexicographic optimal solutions with respect 

to the second-most important objective is found. This process is repeated until the termination 

condition is satisfied. 

3.3 Application  

To apply the developed -conditional lexicographic methodology to optimize road pricing, this section ` 

it as a bi-level optimization model and develops a solution algorithm.   

3.3.1 Bi-level -conditional lexicographic optimization problem 

The bi-level formulation from Section 2 can be reformulated by the developed -conditional 

lexicographic optimization methodology;  

    lexmax ,cU O





α    (15) 

s.t.   Constraints (4) and (5) 

 Objective function (15) states that the formulation determines the road pricing scheme that results in 

the set of -conditional lexicographic solutions, where   ,cU O α  denotes the set of objectives under 

the road pricing scheme  , set cO , and the predefined threshold values for each objective α . Recall 

that when α 0 , the -conditional lexicographic optimization problem reduces to the traditional 

lexicographic optimization problem.  

3.3.2 Solution algorithm  

Bi-level programming problems are often NP-hard and are typically solved via heuristic or metaheuristic 

algorithms. Even for the single-cordon toll that is the decision variable in this study, an exact solution 

method is elusive due to the complexity of the lower-level land use and transportation integrated 
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model. Moreover, having developed a novel -conditional lexicographic optimization objective for the 

bi-level model, it is important that it can be extended to solve other more complex road pricing 

problems. Therefore, we adopted the classic genetic algorithm (GA) (Haupt and Ellen Haupt, 2004) and 

revised it, as outlined in Figure 6, to solve the proposed bi-level -conditional lexicographic optimization 

problem. The following remarks warrant noting. 1) In the revised GA, the road toll is the decision 

variable and is encoded as a list of binary values in GA. The length of the list depends on the upper and 

lower bounds of the toll value. For example, in Section 4.2 (case studies), each decision variable is 

encoded by six binary generations, i.e.,  6 5 4 3 2 1, , , , ,b b b b b b , with the minimum increment or step size of 

the toll set as 0.5. The decoding equation is given by 
5

1

0

2l

l
l

b 



 , where lb  denotes the value of an 

individual generation. Accordingly, if a solution is coded as 101111, then the corresponding toll value is 

23.5. 2) We do not devise a fitness function that aggregates the multi-objectives into a single value. The 

GA population is sorted via the classic bubble sort method using the proposed comparison method (i.e., 

Equation (10)). 3) To select the next generation from the population for mating, the method of pairing 

parents from top to bottom (Haupt and Ellen Haupt, 2004) is adopted. 4) As developing an efficient GA is 

not the focus of this study, we adopt a simple two-point crossover strategy and the bit flip mutation 

strategy. 5) The next generation is determined by elite selection, meaning that the first half of the 

population from the sorted solution is selected (Deb et al., 2002). 6) The ideal point is determined by 

finding the optimal values for each objective in the existing population. 7) When the GA terminates, we 

still need to run Algorithm 2 to find the optimal solution set using the last population maxIPop  as input. 

This is necessary because although the GA sorts the population, it does not determine whether a 

solution should be within the set  * α . 

Algorithm 3: Revised genetic algorithm  

1: Generate an initial population 0Pop  

2: Obtain ideal point ideal,0  for population 0Pop  

3: Set I = 0 

4: Sort IPop  using Eq. (13) based on ideal,0  

5:     While maxI I  do  // maxI  is the maximum number of generations for GA 

6:         Generate offspring IQ  // using crossover and mutation to generate offspring IQ  
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7:         Update ideal point ideal,I  based on population I I IC Pop Q    

8:         Sort IC  using ideal,I  and Eq. (13) 

9:         Select population to survive to the next generation as 1IPop      // elite selection 

10:       I = I + 1 

11:    end 

4 CASE STUDIES  

This section illustrates the properties of the lexicographic and -conditional lexicographic solutions on 

some smaller examples. Subsequently, a real case study using data from Jiangyin, China is conducted to 

1) illustrate the difference between the Pareto optimal, lexicographic optimal, -conditional 

lexicographic optimal, and-conditional lexicographic Pareto optimal solutions; and 2) demonstrate the 

effects of considering land use in road pricing problem.  

4.1 Illustrative example 
We consider designing a road pricing scheme for an urban area containing two zones and two 

development objectives for each zone. The ordered objective vector of objectives is given by 

1 1 2 2

2 1 2 1, , ,z z z zf f f f , where the subscript and the superscript denote the zone index and objective index, 

respectively. We consider five feasible road pricing schemes, 1 2 3 4, , ,    , and 5 , and list the 

corresponding objective values† in Table 1. It is also assumed that the values at the ideal point **  

associated with the ordered objective vector are  55, 53,24, 29 . 

4.1.1 Lexicographic optimal solution 

The lexicographic optimal solution can be obtained via Algorithm 1 (See Section 3.1.2), where the most 

important objective is optimized first. In this example, the most important objective is 
1

2

zf   and we can 

see that solution 2  has the highest value of 
1

2

zf  . Therefore, 2  is the lexicographic optimal solution. 

4.1.2 -Conditional lexicographic solution 

For illustration, we set the relative threshold   (see Equation (11)) to be equal for all objectives. Table 2 

lists the set of global -conditional lexicographic solutions  *   for different values of .  

 

 

                                                           

†
 These are hypothetical values for illustration.  
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 From Table 2 we can see first that there is no -conditional lexicographic solution when 0   (Property 

2). This verifies that the set of -conditional lexicographic solutions is empty when   is less than a 

threshold value (Property 4). Based on Property 4, we can easily obtain the threshold value min 0.091   

in this numerical example, meaning that when 0.091  , the set of global -conditional lexicographic 

solutions  *   is not empty. Additionally, we can see that if a solution is feasible for a given value  , 

it remains feasible for a larger value of   (Property 3). For example, 3  and 5  are feasible solutions 

when 0.15  . Both solutions remain in the solution set when  is greater than 0.15.  

 As mentioned earlier, to find the optimal solution for the -conditional lexicographic optimization 

problem, we cannot apply a pairwise comparison method based on Equation (10) because this would 

violate the axiom of transitivity. For example, given 1.1  , if we directly applied Equation (10) to 

compare the solutions pairwise, we would conclude that 
2 1 1 4,lex lex

     , and 
4 2lex

  , which 

violates the axiom of transitivity. To address this, we propose to determine the set of solutions by 

comparing each solution with respect to an ideal point, for which we develop Algorithm 2 (see Section 

3.2.4). Table 3 presents the algorithmic steps to find an -conditional lexicographic solution when 

0.1  . In Table 3,  k

i   is the feasible solution set for objective k and zone i. From Table 3, we can 

see that the highest-priority objective is optimized before the lower-priority objectives are optimized. 

Furthermore, the higher-priority objective retains its optimal value in the -lexmax relation sense when 

the lower-priority objectives are optimized. The final -conditional lexicographic solution is 5 . 

 In addition, we use  *

j   to denote the set of solutions obtained when the thj -most important 

objective is optimized. Table 4 provides  *

j   for different lexicographic orders of objectives. We can 

see that despite the differences between the lexicographic orders of objectives, the final results of the 

global -conditional lexicographic solution set  *

4   are the same.  

4.2 Case study of Jiangyin 

The objective of this real case study is twofold: 1) to illustrate the difference between the solutions 

obtained by different approaches and 2) to demonstrate the effects of considering land use in the road 

pricing problem. 

The research area is the city of Jiangyin, Jiangsu province, China. Jiangyin is selected as a rapidly 

developing city that is facing severe traffic congestion within the central urban area. Jiangyin had a 

population of 1.6 million in December 2010 and covers an area of 988 km2. We consider a cordon-based 

road pricing scheme for which the charging area is downtown Jiangyin, with an area of 24 km2, as 

indicated in Figure 7. In the lower-level land use and transportation integrated model, i.e., TRANUS, the 

base year is set as 2010 and the road pricing is introduced in 2020. Then, the TRANUS model runs every 

five years from 2010 until 2025. To reflect the effects on land use of a road pricing policy, the land use 

data for 2025 predicted by the model are used to analyze their dependence on the road charging 

scheme. Referring to the example of the congestion charge in London, U.K., it is appropriate to assume 
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that the road toll is fixed for at least five years, i.e., from 2020 to 2025. Without loss of generality, to 

simplify the problem, we assume that the feasible tolls for entering the charging area range from 10 

Chinese yuan (CNY) to 30 CNY, and the step size is 0.5 CNY. The purpose of the above settings is 

threefold. First, they favor practical implementation and public acceptability. For example, the 

congestion charge in London has also been increased in £0.5 intervals since its implementation. Second, 

they allow us to also use the brute-force method to obtain the exact optimal solution for an accurate 

analysis of the land use effects. Third, the exact solution can be used to benchmark and verify the 

correctness of the GA. Recall that the purpose of developing a GA is to demonstrate how the proposed 

-conditional lexicographic method can be embedded into an existing metaheuristic or heuristic 

algorithm for solving a multi-objective model. Therefore, examining the performance of the GA is 

beyond the scope of this study, although it could be a future research direction.  

  

 The total area of Jiangyin is divided into 265 TAZs. To facilitate discussion of the results, we use different 

types of TAZ as the basic unit of analysis, where a type is determined by its built environment attributes. 

This is motivated by the previous finding that a road pricing policy exerts similar effects on TAZs of the 

same type (Bhat and Guo, 2007; Zhong and Bushell, 2017b). We quantitatively classified the 265 TAZs 

into 8 TAZ types. The classification results and the description of each TAZ type can be found in 

Appendix B (see supplementary materials). Due to space limitations, we refer the reader to Zhong and 

Bushell (2017b) for more detailed information regarding the classification method.  

4.2.1 Comparison of solution approaches 

This experiment demonstrates the difference between the solutions obtained by the Pareto optimal, 

lexicographic, and -conditional lexicographic approaches. For illustration, we focus on comparing the 

following two objectives and assume that objective one is more important than objective two. 

1) Objective one: total travel time in TAZ type 6 

2) Objective two: population density in TAZ type 7 

 According to Appendix B, TAZ type 6 is a commercial center located in the suburbs. The street design 

and bus transportation conditions are relatively poor. This cluster has a large number of industrial jobs 

and population. TAZ type 7 represents an employment center outside of the toll ring. The population 

condition is low. 

 The solutions obtained from the different approaches are plotted in Figures 8 and 9, where 1  and 2  

denote the relative threshold values for the two objectives (see Equation (11)), respectively. Compared 

with Figure 8, the scenario in Figure 9 uses larger 1  and 2 values and, accordingly, includes more -

conditional lexicographic solutions, marked by the yellow circles. It is worth noting that in order to make 

the utility of different objectives increase with the increase of the coordinate axis value, the travel time 

is taken as a negative value. In addition, in this example, we expect to maximize population density and 

minimize travel time. Nevertheless, some countries/cities might not consider increase population 

density as a benefit. In this case, we can also take a negative value for population density. 
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 The following observations on the two figures can be made.  

(a) The lexicographic optimization solution, denoted by the black triangle, is a single point on the 

rightmost edge of the Pareto frontier, as it maximizes the preferred objective (objective one, the 

total travel time in TAZ type 6). 

(b) In contrast, the set of Pareto optimal solutions, represented by the light-blue squares, contains 

multiple points, complicating the decision-maker’s task of selecting a solution from the Pareto 

frontier to implement. The substitution rate among different objectives can be large. As can be 

seen in Figure 8, for some solutions on the Pareto frontier, a small increase in objective two 

(population density), for example, the increase achieved by moving from point B to point A, would 

incur an unacceptably large sacrifice in objective one (total travel time). 

(c) Unlike the Pareto optimal solutions, the -conditional lexicographic solutions, represented by both 

the red pentagons and the small blue circles, provide more acceptable solutions with a less severe 

trade-off between the two objectives, measured by the increase or reduction when moving from 

one point to another. Meanwhile, the set of lexicographic solutions grows as the value of  

increases and incorporates more points that are not distributed on the Pareto frontier. 

 

(d) The set of -conditional lexicographic solutions is different from that of the Pareto optimal 

solutions. Nevertheless, the set of mutual solutions to both approaches is non-empty and lies on 

the Pareto frontier. These solutions are known as -conditional lexicographic Pareto optimal 

solutions and are denoted by the pentagons. From Figure 8, we can see that the -conditional 

lexicographic solution (denoted by the pentagon at point B) is different from the lexicographic 

optimal solution (denoted by the triangle).  

(e)  Compared with the Pareto optimization approach, the -conditional lexicographic Pareto 

optimization method not only reduces the number of solutions on the Pareto frontier but also 

avoids the possibility of an unacceptably large sacrifice in other objectives for the sake of a small 

increase in one objective. By setting different  values, decision-makers can shrink the set of -

conditional lexicographic Pareto optimal solutions to aid the search for a final implementable 

solution. For example, in this study, when 1 0.002   and 2 0.0001  , the -conditional 

lexicographic Pareto optimal solution to be implemented is point B (Figure 8). 

4.2.2 Effects of considering land use  

To demonstrate the effects of considering land use in the road pricing problem, we compare the results 

obtained by the following two models: a single-objective model that only minimizes the total travel time 

and the proposed multi-objective model, which considers a set of land use and transportation 

objectives. For the multi-objective model, we prioritize the development of the downtown area over 

that of the suburban areas and solve the model via the lexicographic and -conditional lexicographic 

approaches. Considering that a cordon-based road pricing policy has its greatest impact within the 
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cordon (here, the downtown area), we focus on three TAZ types associated with this area (i.e., types 1, 

2, and 3 in Appendix B in the supplementary materials). Five objectives are considered for each TAZ 

type, in the following order: population density, job density, accessibility, land use diversity, and total 

travel time. Using the algorithm proposed in Sections 3.2.4 and 3.1.2, we can calculate that the toll rates 

are 14 CNY, 10.5 CNY, and 30 CNY under the -conditional lexicographic approach, lexicographic 

approach, and single-objective optimization model, respectively. These calculations were performed on 

a laptop with an Intel Core i5-7300HQ 2.50 GHz CPU and 8 GB RAM. The land use and transportation 

integrated model in the lower-level problem was solved using TRANUS software. For a given road pricing 

scheme, it took approximately 2 minutes for the TRANUS software to output a set of equilibrium 

solutions. Algorithms 2 and 3 were coded in Matlab R2019a. In Algorithm 3 (the revised GA), the 

population size was 20, the number of iterations was 50, the mutation rate was 0.2, and the crossover 

rate was 0.8. In this example, the algorithm for finding the set of -conditional lexicographic solutions 

required a total of 428.4 minutes to solve, where solving TRANUS is the main computational burden. 

Nevertheless, since the model is developed for the purpose of strategic planning, a longer computation 

time could be acceptable, and the development of a more efficient solution method is left for future 

research.   

 The objective values obtained under different road pricing schemes and a do-nothing scenario (without 

pricing) are presented in Table 5. Higher values indicate better satisfaction of the objective, except for 

the total travel time. The number in brackets beneath each objective value in the columns “-

Conditional lexicographic approach”, “Lexicographic approach”, and “Minimize total travel time” 

represents the difference with respect to the same objective obtained via the do-nothing scenario. The 

numbers reported in Table 5 are the unit numbers, that is the average value per square kilometer. 

Therefore, although the values may seem small, the aggregated effect for a zone is large. From Table 5, 

the following conclusions can be drawn: 

(a) The single-objective optimization model, which only minimizes the total travel time of the road 

network, exerts greater pricing-related negative impacts on the land use objective values, such as 

population and jobs, which may harm the public acceptability of the road pricing scheme. Take TAZ 

type 1 as an example. Compared with the lexicographic approach, the single-objective model 

scheme reduces the population density by approximately 2.7 count/km2 (i.e., 5515.29 − 5512.59 in 

the third row) and job density by approximately 34.7 count/km2 (i.e., 52772.20 − 52737.48 in the 

fourth row). 

(b) When solving the multi-objective model, for some land use objectives, the total travel time always 

increases with the improvement in that objective value, revealing the trade-off between 

transportation and land use improvements. Meanwhile, the changes in any given land use 

objective, relative to the single-objective model, vary between different TAZ types. For example, 

the accessibility decreases in TAZ type 1, but increases in TAZ type 2.  

(c) Compared with the traditional lexicographic approach, the -conditional lexicographic approach 

induces smaller changes in the objective values because it prevents any objective from taking a 

value that is worse than the best possible value by more than Therefore, this method improves 

most of the land use objective values while ensuring that the total travel time is increased within an 
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acceptable range selected by the decision-maker to achieve a balance between different land use 

and transportation objectives. 

(d) In this example, although the traditional lexicographic approach maximizes the population density 

in TAZ type 1, it produces the worst accessibility and total travel time in TAZ type 1 among the three 

approaches, and these two objective values are unacceptable according to the decision-maker’s 

pre-set  value. In contrast, the -conditional lexicographic approach outputs a toll rate for which 

the objective values are not worse than the best possible objective values by or more. Compared 

with the traditional approach, although the -conditional lexicographic approach slightly reduces 

the population density in TAZ type 1, it greatly improves the accessibility and total travel time of 

TAZ type 1. 

 

 Finally, Figure 10 visualizes the changes in the values of the land use and transportation objectives 

under the -conditional lexicographic solution compared with the absence of road pricing. The effects of 

road pricing on TAZs with different built environment attributes are evidently different, which is 

consistent with previous research (Bhat and Guo, 2007; Zhong et al., 2015). This justifies the necessity of 

considering the effects of road pricing schemes across different zones. Using the -conditional 

lexicographic scheme, the changes of the objectives are relatively mild and within acceptable limits. In 

addition, the following table compares the changes of the mode share rate under the -conditional 

lexicographic approach and the do-nothing scenario (without pricing). It shows that the proposed model 

acts as expected. After the introduction of the -conditional lexicographic approach-based road pricing 

policy, there is an overall decrease in car travel and an increase in public transportation usage. Table 6 

5 CONCLUSIONS   

The negative long-term effects of a road pricing scheme on land use would influence the public 

acceptability of such a policy, which, in turn, would affect the implementation effectiveness of the 

scheme. Therefore, it is important to take these effects into consideration when designing a road pricing 

scheme. This study developed a multi-objective bi-level optimization model, in which the upper-level 

problem optimizes the road pricing scheme while the lower-level models the interaction of land use and 

transportation. To account for the hierarchical ordering of the decision-maker’s objectives, the 

lexicographic optimization approach was adopted. Specifically, we proposed a novel -conditional 

lexicographic optimization method that not only takes into account the decision-maker’s preference for 

different objectives but also incorporates the decision-maker’s acceptable range for specific objectives. 

Using the proposed -conditional lexicographic optimization method, we can explore solutions that are 

not on the Pareto-frontier but for which the substitution rate among different objectives is acceptable, 

meaning that one objective value can be improved at the expense of an acceptable deterioration in 

other objectives. 

 The proposed method was demonstrated by a case study of the city of Jiangyin. The proposed -

conditional lexicographic approach improved most of the land use objective values while ensuring that 
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the total travel time and accessibility remained within an acceptable range, enabling the decision-maker 

to achieve a balance between different land use and transportation objectives and different zones when 

designing a road pricing scheme. The methodology, however, if formulated as a general framework 

where more objectives, such as total emissions, traffic accidents, and equity can be added, and where 

the generic solution algorithm can be extended from the single fixed cordon pricing problem to more 

complicated situations, including multiple cordons, periodical toll changes or dynamic pricing, and zone-

based pricing. Meanwhile, it is possible that the changes in the road pricing will affect the transportation 

market (Adler et al. 2021), which will further trigger the changes in the routes, station, and fare of public 

transportation, affecting commuter’s perception of public transportation service (e.g., Fan et al. 2016; 

Nielsen et al. 2021) and their selection on work and house locations. Thus, the road pricing, public 

transportation network, and even the emerging multi-modal mobility service (e.g., Molenbruch et al. 

2021; Enzi et al. 2021) could be considered simultaneously in future studies.  
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Figure 1 Conceptual model of the short-term and long-term effects of road pricing 

Figure 2 Schematic of the logit-based land use and transportation integrated model TRANUS  

Figure 3 Bi-level framework for the road pricing problem considering land use and transportation 

interaction 

Figure 4 Algorithm for finding lexicographic optimal solutions 

Figure 5 Algorithm for finding the set of -conditional lexicographic solutions 

Figure 6 Revised GA for generating the -conditional lexicographic initial solution set 

Figure 7 Map of the case study area and the location of the road pricing cordon 

Figure 8 Comparison of solutions when 1 0.002   2 0.0001  . “Pareto”, “-Lex,” and “Lex” represent 

the solutions of the Pareto optimal, -conditional lexicographic, and lexicographic approaches, 

respectively. 

Figure 9 Comparison of solutions when 1 0.003  , 2 0.00015  . “Pareto”, “-Lex,” and “Lex” 

represent the solutions of the Pareto optimal, -conditional lexicographic, and lexicographic 

approaches, respectively. 

Figure 10 Changes in the values of the land use and transportation objectives  

Table 1 Objective values of the illustrative example 

 Ordered objectives* 

Solution 
1

2

zf  
1

1

zf  
2

2

zf  
2

1

zf  

1  
49 

(0.109) 

53 

(0.000) 

23 

(0.042) 

24 

(0.172) 

2  
55 

(0.000) 

50 

(0.057) 

22 

(0.083) 

23 

(0.207) 

3  
47 

(0.145) 

48 

(0.094) 

24 

(0.000) 

25 

(0.138) 
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4  
52 

(0.055) 

46 

(0.132) 

20 

(0.167) 

29 

(0.000) 

5  
50 

(0.091) 

49 

(0.075) 

23 

(0.042) 

27 

(0.069) 

**  55 53 24 29 

*
Note that the value of    **/ 1k k

i if f    is in brackets 

Table 2  *   for different values of    

   0 0.1 0.15 0.17 0.19 0.21 

 *       5   3 5,    3 4 5, ,     1 3 4 5, , ,      1 2 3 4 5, , , ,      

Table 3 The process for finding an -conditional lexicographic solution 

Steps Intermediate process  *   Termination judgment 

0 0.1       *

1 2 3 4 5, , , ,         

1 

   1

1 2 4 5= , ,    

       * 1 *

1 2 4 5= , ,        
Continue, because 

 1

1     *    

2 

   2

1 1 2 3 5= , , ,     

       * 2 *

1 2 5= ,      
Continue, because 

 2

1       *

2 4 5, ,     

3 

   1

2 1 2 3 5= , , ,     

       * 1 *

2 2 5= ,      
Continue, because 

 1

2       *

2 5,    

4 

   2

2 4 5= ,   

       * 2 *

2 5=      
Terminate, because 

i = 2 and k = 2    *

2 5,    

Table 4 *

j
  for different lexicographic orders of objective functions 

No. Lexicographic order of objectives  *

1     *

2    *

3    *

4   

1        
1 2 1 2

2 2 1 1

z z z zf f f f      2 4 5, ,     2 5,    2 5,    5  
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2        
1 1 2 2

2 1 2 1

z z z zf f f f      2 4 5, ,     2 5,    2 5,    5  

3        
1 1 2

1 2 1 2

2z z zf f f f      1 2 4 5, , ,      2 5,    5   5  

Table 5 Comparison of the objective values from different solution methods with do-nothing scenario 

  Multi-objective models Single-objective model Do-nothing scenario 

Ordere
d TAZ 
type 

Ordered 
objectives 

-Conditional 
lexicographic 

approach 

Lexicographic 
approach 

 

Minimize total travel 
time 

Without pricing 

TAZ 
type 1 

Population density 
(count/km

2
) 

5514.48 

(-0.99) 

5515.29 

(-0.18) 

5512.59 

(-2.88) 
5515.47  

Job density 

(count/km
2
) 

52762.51 

(-6.14) 

52772.20 

(3.55) 

52737.48 

(-31.17) 
52768.65  

Accessibility 
86.05 

(6.22) 

85.27 

(5.44) 

88.64 

(8.81) 
79.83  

Land use diversity 
0.318385 

(2.25E-05) 

0.318379 

(1.65E-05) 

0.318397 

(3.45E-05) 
0.318363  

Total travel time 
(hour) 

16128.40 

(-195.19) 

16154.07 

(-169.52) 

16026.02 

(-297.57) 
16323.59  

TAZ 
type 2 

Population density 
(count/km

2
) 

7356.09 

(-14.65) 

7358.24 

(-12.50) 

7354.03 

(-16.71) 
7370.74  

Job density 

(count/km
2
) 

10093.83 

(-2.10) 

10094.29 

(-1.64) 

10093.46 

(-2.47) 
10095.93  

Accessibility 
75.52 

(-2.69) 

76.66 

(-1.55) 

73.92 

(-4.29) 
78.21  

Land use diversity 
0.692647 

(5.01E-05) 

0.692637 

(4.01E-05) 

0.692654 

(5.71E-05) 
0.692597  

Total travel time 
(hour) 

12445.15 

(-83.16) 

12447.04 

(-81.27) 

12402.61 

(-125.70) 
12528.31  

TAZ 
type 3 

Population density 
(count/km

2
) 

1295.80 

(0.57) 

1295.71 

(0.48) 

1296.20 

(0.97) 
1295.23  
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 Job density 

(count/km
2
) 

1176.32 

(0.04) 

1176.32 

(0.04) 

1176.37 

(0.09) 
1176.28  

Accessibility 
22.87 

(0.34) 

22.84 

(0.31) 

22.94 

(0.41) 
22.53  

Land use diversity 
0.446142 

(1.67E-06) 

0.446145 

(4.67E-06) 

0.446123 

(-1.73E-05) 
0.446140  

Total travel time 
(hour) 

43697.62 

(-149.08) 

43754.47 

(-92.23) 

43354.28 

(-492.42) 
43846.70  

 

Table 6 Changes of the mode share rate under different scenarios 

Mode share rate 
-conditional 

lexicographic approach 

Do-nothing scenario 
(without pricing) 

Difference 

Car 23.64% 25.56% -1.91% 

Public transportation  

(bus + rail transit) 
25.16% 24.31% 0.85% 

Walk 35.57% 34.44% 1.13% 

Bike 15.62% 15.70% -0.08% 

 

 

                  


