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ABSTRACT

The rise of algorithmic decision-making has spawned much research on fair machine
learning (ML). Financial institutions use ML for building risk scorecards that support a
range of credit-related decisions. Yet, the literature on fair ML in credit scoring is scarce.
The paper makes three contributions. First, we revisit statistical fairness criteria and examine
their adequacy for credit scoring. Second, we catalog algorithmic options for incorporating
fairness goals in the ML model development pipeline. Last, we empirically compare
different fairness processors in a profit-oriented credit scoring context using real-world
data. The empirical results substantiate the evaluation of fairness measures, identify suitable
options to implement fair credit scoring, and clarify the profit-fairness trade-off in lending
decisions. We find that multiple fairness criteria can be approximately satisfied at once and
recommend separation as a proper criterion for measuring the fairness of a scorecard. We
also find fair in-processors to deliver a good balance between profit and fairness and show
that algorithmic discrimination can be reduced to a reasonable level at a relatively low cost.
The codes corresponding to the paper are available on GitHub1.

Keywords Credit scoring · Algorithmic fairness · Fair machine learning · Discrimination

1 Introduction

Financial institutions increasingly rely on machine learning (ML) to support decision-making (Crook et al.,
2007). The paper considers ML applications in the retail credit market, which is a large and economically
important segment of the credit industry. For example, the total outstanding amount of retail credit in the US
exceeded $4,161 billion in 20202. ML-based scoring models, also called scorecards, have played a major role
in the approval of the corresponding loans.

In 2016, the Executive Office of the President of the US published a report on algorithmic systems, opportunity,
and civil rights (Executive Office of the President, 2016), which highlights the dangers of automated decision-
making to the detriment of historically disadvantaged groups. It emphasizes credit scoring as a critical sector
with a large societal impact, calling practitioners for using the principle of “equal opportunity by design"
across different demographic groups. Similar actions were taken by the EU when they supplemented their
General Data Protection Regulation with a guideline that stresses the need for regular and systemic monitoring
of the credit scoring sector (European Commission, 2017). The guidelines issued by the EU and the US
evidence political concern that potential violations of anti-discrimination law in credit scoring might affect
debt and wealth distributions and have undesired economic effects on the society (Liu et al., 2018).

1The code is available at: https://github.com/kozodoi/Fair_Credit_Scoring
2Source: https://www.federalreserve.gov/releases/g19/current
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A growing literature on fair ML echos these concerns and proposes a range of statistical fairness measures and
approaches for their optimization. It is common practice to discuss algorithmic fairness through the lens of
differences between groups of individuals. The groups emerge from one or multiple categorical attributes that
are considered sensitive. Examples include gender, religious denomination or ethnic group. The goal of fair
ML is then to ensure that model predictions meet statistical fairness criteria. Narayanan (2018) distinguishes
21 such criteria while Barocas et al. (2019) show that most criteria can be derived from one of three main
fairness measures: independence, separation, and sufficiency. Beyond quantifying fairness in model-based
predictions, fairness criteria also serve as constraints or objectives in the optimization problem that underlines
the training of an ML model. Approaches to adjust model training to optimize fairness criteria next to common
indicators of model fit are known as fairness processors.

Surprisingly, the literature on fair ML and credit scoring share few touching points. As we detail in Section
3.1, only three studies (Fuster et al., 2017; Hardt et al., 2016; Liu et al., 2018) have considered the interface
between the two disciplines. None of them focuses on operational decisions in the loan approval process
and the potential trade-off between fairness and profit. Therefore, the goal of the paper is to i) provide a
broad overview and systematization of recently developed fairness criteria and fairness processors, and to ii)
empirically test their adequacy for credit scoring. While the fairness enhancing procedures that we consider
are not new and have been developed in the fair ML literature, we suggest that our holistic and integrative
perspective is useful to help risk analysts stay abreast of recent developments in that literature, judge their
impact on credit scoring practices, and focus future research initiatives concerning fair credit scoring.

In pursuing its objective, the paper makes the following contributions: First, we revisit statistical criteria for
measuring fairness and examine whether these criteria and their underlying understanding of distributional
equality are appropriate for credit scoring. Given that different fairness criteria typically conflict with one
another (Chouldechova, 2017), our analysis is useful to inform the selection of a suitable fairness criterion (or
set of criteria). Considering the relative costs of classification errors for banks and retail clients, we identify
separation as a preferable criterion to appraise fairness in a lending context. More generally, our analysis may
raise awareness for the risk of algorithmic discrimination in credit scoring, which, given the sparsity of prior
work on the topic, may be seen as a valuable contribution to the credit risk community.

Second, we review and catalog state-of-the-art fairness processors across multiple important dimensions,
including the target fairness criterion, the implementation method, and requirements for the classification
problem. The catalog provides a systematic overview of fairness processors and clarifies whether and when
these meet requirements associated with loan approval processes and the application context of credit scoring.
The catalog also addresses the critique of Mitchell et al. (2021), who demand a more uniform fairness
terminology among scholars.

Last, we empirically compare a range of different fairness processors along several performance criteria using
seven real-world credit scoring data sets. Unlike prior studies on fair ML, our analysis recognizes prediction
performance indicators that are established in credit scoring and, importantly, the profitability of a scoring
model. Furthermore, to extend the conceptual discussion on the suitability of the fairness criteria for credit
scoring, we measure fairness not only with the criterion optimized by a processor but a range of different
fairness criteria. The corresponding results provide original insights concerning the agreement among fairness
criteria in credit scoring and their compatibility with profit. More specifically, our comparative analysis
contributes to the empirical credit scoring literature by identifying fairness processors that best serve the
interests and requirements of risk analysts and by elucidating the trade-off between profitability and fairness of
a credit scoring system. A deeper understanding of this trade-off is crucial for managers and policy-makers to
decide on the deployment of fairness enhancing procedures in financial institutions and regulatory directives to
enforce certain levels of fairness, respectively.

2 Theoretical Background

This section covers relevant background on fair ML. We first examine methods to integrate fairness constraints
into the model development pipeline and than review established fairness criteria. We focus on independence,
separation and sufficiency because these criteria encompass a variety of other fairness concepts (Barocas
et al., 2019; Mitchell et al., 2021). Table A1 in the online Appendix details how independence, separation and
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sufficiency have synonymously been referred to in the literature and how they relate to the other formulations
of fairness.

2.1 Fairness Optimization in the Modeling Pipeline

Research on fair ML has recently emerged from the continuous integration of automated decision-making
into important areas of social life and fairness concerns arising during this process (Barocas & Selbst, 2016).
Much fair ML literature focuses on classification settings in which an unprivileged demographic group
experiences discrimination through a classification model (Mitchell et al., 2021). Several attempts have been
made to formalize the concept of fairness. Incorporating the corresponding fairness criteria in the ML pipeline
facilitates measuring the degree to which class predictions discriminate against minorities (Barocas et al.,
2019).

Algorithmic interventions designed to implement statistical fairness constraints are denoted as fairness
processors. A processor can alter different stages in the ML pipeline. The literature distinguishes three methods
of intervention: pre-processing, in-processing and post-processing (Berk et al., 2021). Their application
generally depends on the conceptual and technical feasibility of a given prediction task. Figure 1 illustrates the
fairness processors within an ML pipeline. We describe selected approaches from each group in Section 4.

Integrating a fairness processor into the pre-processing stage transforms the training data such that the input
to a model is fair with respect to one or more sensitive features. Typically, fair pre-processing involves
decorrelating the feature space with the sensitive attribute (e.g., Calmon et al., 2017). Even though modifying
the training data is sometimes not possible or practical, the advantage of fair pre-processing is that if fairness is
ensured before ML model training, it will also be ensured during the next model development steps (Barocas
et al., 2019).

In-processing methods introduce auxiliary fairness constraints during ML model training. Then, training
involves minimizing the empirical risk of the model while also optimizing a fairness criterion. In-processing
renders a learned classifier (approximately) fair for the training data (Zafar et al., 2017). Optimizing fairness
during training has the potential to generate the highest utility as the tuning process also considers the fairness
constraint. At the same time, in-processors are typically developed for settings with specific requirements
(e.g., supporting only a single sensitive attribute), which limits their generality (Barocas et al., 2019). Another
disadvantage is that implementing a fair in-processor requires full access to the training process and the input
data. This is especially problematic in heavily regulated domains such as credit scoring, where changes to a
risk model might require regulatory approval and are associated with high costs.

After an ML model is trained, post-processing can be applied to adjust the learned classifier or change its
predictions according to the requirements of a particular fairness criterion (Hardt et al., 2016). The standard
procedures include modifying the predicted scores or labels for specific observations. Unlike pre- or in-
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processing
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processing
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Figure 1: Fairness Integration in the ML Pipeline: In-processing, Pre-processing and Post-processing.
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processing, post-processors need no information about the input data or the base model. This has the advantage
that post-processors can be applied to any set of predictions. However, generality has a price. Post-processing
is often less effective than alternative approaches and may substantially decrease classification accuracy
(Barocas et al., 2019).

2.2 Fairness Criteria

This subsection introduces three established fairness criteria from a credit scoring perspective. Consider a
setting in which a financial institution uses data on previous customers to predict whether a loan applicant will
default. Let 𝑋 ∈ R𝑘 denote the 𝑘 features of a loan applicant and 𝑦 ∈ {0, 1} a random variable indicating if
the applicant repays the loan (𝑦 = 1) or defaults (𝑦 = 0). The institution approves applications using a scoring
model that predicts risk scores 𝑠(𝑋) = P(𝑦 = 1|𝑋). The score function can be turned into a classifier by
accepting customers with scores above a cutoff 𝜏. Let 𝑥𝑎 ∈ {0, 1} denote a protected attribute associated with
certain characteristics of an applicant. For example, 𝑥𝑎 could indicate whether she has a disability (𝑥𝑎 = 1) or
not (𝑥𝑎 = 0). Clearly, the value of 𝑥𝑎 must not impact the decision of the credit institution.

In the following, we consider a binary protected attribute to simplify the exposition. The discussed fairness
criteria generalize to multinomial protected attributes (i.e., protected attributes with more than two unique
values). Also, note that the fair ML literature often uses the terms protected attribute and sensitive attribute
interchangeably. From a methodological perspective, it is less important whether the use of an attribute is
socially undesirable or regulated by law. We use the term sensitive attribute throughout the paper while
acknowledging that our example attribute disability is not only sensitive but protected. The groups created
when splitting individuals by a sensitive attribute are referred to as sensitive groups.

2.2.1 Independence

The score 𝑠(𝑋) satisfies independence at a cutoff 𝜏 if the fraction of customers classified as good risks (𝑦 = 1)
is the same in each sensitive group. Formally, this condition can be written as:

P [𝑠(𝑋 | 𝑥𝑎 = 0) > 𝜏] = P [𝑠(𝑋 | 𝑥𝑎 = 1) > 𝜏] (1)

Equation (1) states that 𝑠(𝑋) is statistically independent of the sensitive attribute 𝑥𝑎 (Barocas et al., 2019).
Classifier predictions are not affected by the sensitive attribute, and the probability to be classified as a good
risk is the same in both groups (Pleiss et al., 2017). In the prior work, the independence condition is also
known as demographic or statistical parity (Chouldechova, 2017).

This strict constraint is usually not feasible for real-world applications like credit scoring, as the resulting
loss in model performance can make a business unsustainable. Therefore, it is a common practice in anti-
discrimination law to allow the score and the sensitive attribute to share at least some mutual information and
introduce a relaxation of the independence criterion (Barocas & Selbst, 2016). The Equal Opportunity Credit
Act has a regulation that is referred to as the “80 percent rule” (Feldman et al., 2015). The rule requires that
P(𝑠(𝑋 | 𝑥𝑎 = 1) > 𝜏) ≤ 0.8 · P(𝑠(𝑋 | 𝑥𝑎 = 0) > 𝜏), where {𝑥𝑎 = 0} is the privileged group (Kleinberg et al.,
2017).

Following the relaxation of the independence condition suggested in the prior work (Barocas et al., 2019), we
measure independence using a metric denoted as IND, which we define as:

IND = |P [𝑠(𝑋 | 𝑥𝑎 = 0) > 𝜏] − P [𝑠(𝑋 | 𝑥𝑎 = 1) > 𝜏] | (2)

A positive difference between the two terms implies that the group {𝑥𝑎 = 0} is considered the privileged group
and vice versa. The closer IND is to zero, the lower is the discrimination.

2.2.2 Separation

The separation condition, also known as the equalized odds condition, is satisfied if the classification based on
the predicted score 𝑠(𝑋) and the cutoff 𝜏 is independent on 𝑥𝑎 conditional on the true outcome 𝑦 (Barocas
et al., 2019). Formally, the score 𝑠(𝑋) satisfies separation at a cutoff 𝜏 if:{

P [𝑠(𝑋 | 𝑦 = 0, 𝑥𝑎 = 0) > 𝜏] = P [𝑠(𝑋 | 𝑦 = 0, 𝑥𝑎 = 1) > 𝜏]
P [𝑠(𝑋 | 𝑦 = 1, 𝑥𝑎 = 0) ≤ 𝜏] = P [𝑠(𝑋 | 𝑦 = 1, 𝑥𝑎 = 1) ≤ 𝜏] (3)
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The expression in the first line compares the false positive rate (FPR) across the sensitive groups, whereas the
second line compares the false negative rate (FNR) per group. The separation criterion, therefore, requires that
the FNR and the FPR are the same for the sensitive groups.

Separation acknowledges that 𝑥𝑎 may be correlated with 𝑦 (e.g., applicants with a disability might can a higher
default rate). However, the criterion prohibits the use of 𝑥𝑎 as a direct predictor for 𝑦. When the difference
between group sizes is large, the criterion will punish models that perform well only on the majority group
(Hardt et al., 2016). To measure the degree to which the separation condition is satisfied, we suggest using a
criterion denoted as SP, which we define as:

SP =
1
2
��(FPR{𝑥𝑎=1} − FPR{𝑥𝑎=0}) + (FNR{𝑥𝑎=0} − FNR{𝑥𝑎=1})

�� (4)

SP calculates the average absolute difference between the group-wise FPR and FNR. A positive difference
between each of the two group-wise error rates indicates that one of the groups has a lower misclassification
rate. Perfect separation (i.e., SP = 0) is observed when the group-wise FPR and FNR are equal. Note that this
also implies that the group-wise FPR and TPR are equal. Higher values of SP indicate stronger discrimination
through a larger difference in model performance across the sensitive groups.

2.2.3 Sufficiency

The score 𝑠(𝑋) is sufficient at a cutoff 𝜏 if the likelihood that an individual belonging to a positive class is
classified as positive is the same for both sensitive groups (Barocas et al., 2019). This implies that for all
values of 𝑠(𝑋) the following condition holds:

P(𝑦 = 1 | 𝑠(𝑋) > 𝜏, 𝑥𝑎 = 0) = P(𝑦 = 1 | 𝑠(𝑋) > 𝜏, 𝑥𝑎 = 1) (5)

Equation (5) requires that the positive predictive value (PPV) is the same for the sensitive groups (Choulde-
chova, 2017). This paper defines the sufficiency metric SF as the absolute difference between the group-wise
PPV:

SF =
��PPV{𝑥𝑎=0} − PPV{𝑥𝑎=1}

�� (6)
A large difference between the group-wise PPV indicates inconsistent model performance across the sensitive
groups. The closer SF is to zero, the higher is the achieved sufficiency.

3 Fairness and Credit Scoring

The section discusses the interplay between fair ML and credit scoring. We summarize previous work in the
field and examine the adequacy of fairness criteria for credit scoring.

3.1 Prior Work on Fair Credit Scoring

Prior literature on fair ML for credit scoring is surprisingly sparse. To our best knowledge, only three studies
address algorithmic discrimination in credit scoring, and their focus differs substantially from that of this study.
A first study by Fuster et al. (2017) considers the credit market. The authors formalize the introduction of ML
as a market intervention and examine the corresponding effect on interest rates in demographically different
groups. Liu et al. (2018) take a similar perspective. Referring to the sample-selection bias, which arises from
training scorecards on previously accepted cases (Banasik & Crook, 2007), they argue that selection bias
leads to scorecards overestimating the creditworthiness of some groups of applicants and perpetuates existing
unfairness. To remedy this effect, Liu et al. (2018) call for mathematical constraints that optimize fairness
as a long-term societal goal. However, the formulation of these constraints is still subject to further research.
More generally, the long-term perspective of Fuster et al. (2017) and Liu et al. (2018) emphasizes regulatory
questions and is orthogonal to the focus on static fairness interventions, which prevails in the fair ML literature.
These interventions address operational loan approval decisions and provide concrete approaches to remedy
algorithmic bias.

Focusing on fairness interventions, a third study of Hardt et al. (2016) is related to this paper more closely.
Hardt et al. (2016) propose the equalized odds fairness criterion and develop an algorithm that adjusts classifier
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predictions to raise fairness according to this criterion. The authors report enhanced fairness compared to a
maximum profit benchmark using a credit scoring example based on FICO scores. In comparison to the focal
paper, Hardt et al. (2016) focus on the specific combination of one fairness processor and one fairness criterion.
Their study does not examine the trade-off between profit and fairness and provides limited empirical evidence
on how equalized odds compare to other fairness criteria or how fairness is best ensured in an ML pipeline.

In summary, the main distinction between the focal paper and previous studies on fairness in credit scoring is
that we undertake a comprehensive empirical analysis of alternative fairness criteria and fairness processors,
which optimize these criteria. Prior work fails to account for the breadth of approaches that have been proposed
in the scope of fair ML. Also, no previous study examines the interplay between fairness criteria and processors.
Therefore, we aim at consolidating different advancements in fair ML, discussing their suitability for credit
scoring, and providing rich empirical results that clarify the degree to which fairness constraints affect the
predictive ability of credit scorecards and the corresponding profit implications, and how the trade-off between
fairness and profit develops across fairness criteria and processors. We hope that our results offer actionable
insights on how to set and pursue fairness objectives in credit scoring.

3.2 Fairness Criteria for Credit Scoring

The choice of the fairness criterion has severe consequences for the social impact of lending decisions (Liu et al.,
2018). An unconstrained scoring model will take full advantage of the available (sensitive) information and
discriminate between protected groups if this enhances predictive performance. The purpose of introducing
fairness is, therefore, to adjust decision-making (i.e., scoring) practices for a better, discrimination-free
outcome. According to the U.S. anti-discrimination law, for example, the demographic properties of a loan
applicant should not influence lending decisions (Equal Credit Opportunity Act, 1974). Arguably, the societal
goal behind such law is an equal opportunity for financial well-being across demographically different groups.
Achieving this goal in credit scoring is difficult as clients face unequal misclassification costs. Applicants that
are denied a loan they could have repaid face the cost of a missed opportunity to enhance their social and
economic position. However, if applicants receive a loan they cannot repay, they are confronted with financial
debt and a long-term worsening of their financial situation as future access to financing will be more difficult.
With these characteristics of credit scoring in mind, the following considerations elaborate on the extent to
which independence, separation and sufficiency fulfill the goal of equal opportunity for financial well-being in
society.

Forcing independence on a scoring model’s results in the same rate of accepted customers within sensitive
groups. The problem with this approach is that the ability to repay a loan can have a different distribution in
each group (Barocas et al., 2019). If this is the case, but members of both groups have the same probability of
receiving a loan, one group will experience more actual defaults. For a client, the consequences of defaulting
can be more severe than the opportunity costs associated with a rejected application. Typically, the historically
unprivileged group has a higher rate of non-solvent customers. Handing out loans to such individuals might
worsen their financial situation in the long term (Hardt et al., 2016). Instead of achieving fairness, this can lead
to further perpetuating existing unfairness. The goal of better financial equality would not be met, and the
financial gap in society could become even wider.

The separation criterion addresses this dilemma and acknowledges that a sensitive attribute might correlate
with default rates. Requiring the same error rates between groups but allowing different positive classification
rates, separation achieves a fair result that is closer to the reality of credit allocation decisions and more
desirable from a customer’s perspective. More precisely, separation accounts for different misclassification
costs between groups. On the contrary, separation would be inadequate if credit scoring had a strictly preferred
outcome for a customer, as is the case in domains like college admission (Mitchell et al., 2021). Interestingly,
the first formulation of the separation criterion in the context of ML by (Hardt et al., 2016) is based on the
example of the credit scoring domain and the limitations of the independence criterion to meet its requirements.

Sufficiency requires the ratio of true positive classifications over all positive classifications to be the same for
the sensitive groups. This concept has two disadvantages for credit scoring. First, it allows for substantial
discrimination in separation. For both groups, the proportion of correctly labeled non-default clients can be the
same, satisfying sufficiency. In contrast, the likelihood of a potential non-default customer being classified as
a bad risk can still differ between groups, violating the separation constraint. Second, most ML algorithms are
designed to achieve sufficiency without integrating a fairness constraint if the model can predict the sensitive

6



PREPRINT

attribute from the other features (Barocas et al., 2019). In credit scoring, the question would, therefore, be if
the current procedure for assessing a customer’s default risk and the associated distribution of loans is fair.
The literature suggests a negative answer to this question (Fuster et al., 2017; Liu et al., 2018; Hardt et al.,
2016). Hence, sufficiency appears less suitable for credit scoring.

Based on these considerations, the separation criterion appears most suitable to achieve a desirable form of
fairness in credit scoring. Separation accounts for the imbalanced misclassification costs of the customer, and,
as these imbalanced costs also exist for the financial institution, separation is also able to consider the interests
of the loan market.

The considerations provided in this section suggest that the question of which fairness constraint is most
adequate for credit scoring should be a part of a wider academic and societal debate. Such a democratic
process should also acknowledge the importance of studying the long-term effects of implementing different
fairness constraints to judge whether the societal goal of better financial equality between demographic groups
can be achieved with specific interventions (Liu et al., 2018).

4 Methodology

This section systematically reviews and catalogs fairness processors suggested in the prior work across different
dimensions and discusses their applicability in credit scoring. Using the constructed catalog, we select and
describe eight fairness processors that are part of the empirical study.

4.1 Cataloging Fairness Processors

The fair ML literature has developed a variety of fairness processors to implement independence, separation
and sufficiency constraints. The complexity between these processors varies considerably, from simply
relabeling the prediction outcomes (e.g., Kamiran et al., 2012) to complex deep learning approaches for
training a discrimination-free classifier (e.g., Zhang et al., 2018). Furthermore, some processors are limited
to specific problem setups. This motivates us to develop a structured overview of fairness processors with
respect to their characteristics and applicability. Specifically, we catalog existing fairness processors in Table
1 using six dimensions: (i) point of intervention into the ML pipeline; (ii) optimized fairness criterion; (iii)
classification problem type supported by a processor (binary or multinomial); (iv) possible number of sensitive
attributes (one or multiple); and (vi) supported types of sensitive attributes (binary or multinomial).

Three main conclusions emerge from Table 1. First, the majority of processors implement the independence
criterion. This may come the other criteria being invented only recently (see Table A1 in the online Appendix
for comparison). Furthermore, independence allows implementation via pre-processing, which provides an
additional point of intervention in the ML pipeline. In many scenarios, however, fairness through independence
may not be a suitable choice. This calls for additional processors that implement the other two criteria.

Second, the choice of a suitable fairness processor is limited by the application and implementation context
of a scorecard. The application context determines the type of target variable and sensitive attribute(s) to be
handled by a processor. For instance, in a setup with multiple sensitive attributes optimizing separation is
only possible via the adversarial debiasing or reject option classification. This is a severe limitation for credit
scoring because financial institutions commonly face several protected attributes: the U.S. anti-discrimination
law distinguishes nine bases that must not influence lending decisions, including race, color, religion and
other customer attributes (Equal Credit Opportunity Act, 1974). The implementation context can also limit
possible points of intervention in the ML pipeline. Replacing a scorecard with a fair in-processor might require
regulatory approval and incur additional costs. Post-processors are easier to implement since they are agnostic
of the input data and the scorecard and only require access to the predicted scores.

Third, it is a standard procedure to embed the fairness processor into an accuracy-optimizing framework.
The loss in predictive accuracy is commonly used as a performance measure to judge the cost of integrating
a fairness constraint. In line with this framework, Friedler et al. (2019) conducted a comparative study to
examine the achieved fairness and accuracy of four fairness processors. However, recent credit scoring
literature criticizes the practice of using standard performance measures for evaluating scoring models and
calls for profit-driven evaluation (Verbraken et al., 2014). In such a setup, evaluation of fairness processors
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should be performed with a profit maximization objective instead of standard statistical performance measures
such as accuracy.

To conclude, the catalog suggests that a comparative analysis of fairness processors under profit maximization
is needed to clarify the “cost of fairness”. We argue that the profitability aspect is underrepresented in the
fair ML literature, while it is highly relevant for real-world applications. A better understanding of the
(dis)agreement of profitability and different fairness criteria is also useful for policy making as it sheds some
light on the thorny question of which criterion lending institutions should emphasize. Which fairness processor
to use for optimizing the desired criterion is yet another question with high relevance for practice. Prior
literature offers limited guidance due to assessing processors typically only in terms of the single criterion that
this processor implements. Contributing toward answering these pressing questions is the overall goal of the
paper.

4.2 Selected Fairness Processors

This subsection overviews eight fairness processors from the catalog presented in Table 1. The selection of
processors covers all combinations of fairness interventions. Following the setup introduced in Section 2,
we consider a credit scoring setup with a binary target variable 𝑦 ∈ {0, 1} and a binary sensitive attribute
𝑥𝑎 ∈ {0, 1} to introduce the processors. Some of the considered processors also generalize to multinomial
target and sensitive attributes (see Table 1 for details).

4.2.1 Pre-Processors

Fairness pre-processors transform the input data to achieve fairness. Reweighing is a pre-processor that
assigns weights to each observation in the training set based on the overall probabilities of the group-class
combinations (Calders et al., 2009). Thus, weights for observations with (𝑥𝑎 = 1, 𝑦 = 1) are greater than
weights for observations with (𝑥𝑎 = 0, 𝑦 = 1) if members of the group {𝑥𝑎 = 1} have a lower probability to
belong to a positive class than those of the group {𝑥𝑎 = 0}:

𝑊 (𝑋 | 𝑥𝑎 = 1, 𝑦 = 1) =
P𝑒𝑥𝑝 (𝑥𝑎 = 1 | 𝑦 = 1)
P𝑜𝑏𝑠 (𝑥𝑎 = 1 | 𝑦 = 1) , (7)

where P𝑒𝑥𝑝 is the expected probability and P𝑜𝑏𝑠 is the observed probability. For instance, assume that
90% of all individuals belong to the positive class and 20% percent belong to the group {𝑥𝑎 = 1}. Then,
P𝑒𝑥𝑝 (𝑥𝑎 = 1 | 𝑦 = 1) = 0.9 · 0.2 = 0.18. If, in fact, only 12% of all cases in {𝑥𝑎 = 1} belong to the positive
class, then 𝑊 (𝑋 | 𝑥𝑎 = 1, 𝑦 = 1) = 0.18

0.12 = 0.9.

Based on the computed weights, a fair training set is resampled with replacement such that combinations
with a higher weight reappear more often. This procedure helps to fulfill the independence criterion. A
discrimination-free classifier can then be trained on the resampled data.

Another pre-processing technique is the disparate impact remover proposed by Feldman et al. (2015). The
intuition behind this processor is to ensure independence by prohibiting the possibility of predicting the
sensitive attribute 𝑥𝑎 with the other features in 𝑋 and the outcome 𝑦. This is achieved by transforming 𝑋 into
𝑋 while preserving the rank of 𝑋 within sensitive groups defined by 𝑥𝑎. By preserving the rank of 𝑋 given 𝑥𝑎,
the classification model 𝑓 (𝑋) will still learn to choose higher-ranked credit applications over lower-ranked
ones based on the other features.

The transformation is performed using an interpolation based on a quantile function and the cumulative
distribution of 𝐹 : P(𝑋 | 𝑥𝑎 = 𝑎). This ensures that given the transformed 𝑋 at some rank, the probability of
drawing an observation given 𝑥𝑎 = 𝑎 is the same as for the entire data set. Hence, 𝑥𝑎 cannot be predicted
with the other attributes, and the independence criterion is fulfilled. Since ensuring perfect independence
can have a strong negative impact on a classifier utility, the transformation can be modified to only partially
remove disparate impact. The meta-parameter 𝜆 ∈ [0, 1] allows controlling the desired level of fairness-utility
trade-off during transformation.
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4.2.2 In-Processors

In-processors achieve fairness when building a classifier. One of such methods, prejudice remover, introduces
a fairness-driven regularization term to the classification model (Kamishima et al., 2012). Regularization is a
standard statistical approach to penalize a model for some undesired behavior. This is typically done by adding
a regularizer term to the loss function.

The fairness-driven regularization introduced by Kamishima et al. (2012) is based on the prejudice index PI,
which quantifies the degree of unfairness based on the independence criterion:

PI =
∑︁

(𝑦,𝑥𝑎) ∈𝐷
P(𝑦, 𝑥𝑎) ln

P(𝑦, 𝑥𝑎)
P(𝑥𝑎)P(𝑦)

, (8)

where P(𝑦, 𝑥𝑎), P(𝑦) and P(𝑥𝑎) are empirical distributions of 𝑦 and 𝑥𝑎 over the sample 𝐷. PI measures the
amount of mutual information between 𝑦 and 𝑥𝑎. High values of PI indicate that a sensitive attribute 𝑥𝑎 is a
good predictor for 𝑦. The optimization problem extends to:

min
𝑓

𝐿 [ 𝑓 (𝑋) , 𝑦] + 𝜂PI , (9)

where 𝐿 (·) is the underlying loss function of the model 𝑓 (𝑋), and 𝜂 controls the importance of the term PI. In
this study, we tune 𝜂 to maximize the profitability of a scorecard. The regularization term ensures that the
sensitive attribute 𝑥𝑎 becomes less influential in the final prediction.

Adversarial debiasing is another in-processor that stacks two neural networks with contrary objectives on top
of each other (Zhang et al., 2018). The first network (predictor) is trying to learn a function to predict 𝑦 given
𝑋 , while also minimizing the success of the second network. The second network (adversary) takes the output
layer of the first model 𝑦̂ and the true labels 𝑦 as input and tries to predict the sensitive attribute 𝑥𝑎. Both
models have objective-specific loss functions and weights that can be optimized using standard gradient-based
optimization methods such as stochastic gradient descent or Adam (Kingma & Ba, 2014).

The adversary is assumed to have weights 𝑈 and loss function 𝐿𝐴(𝑥𝑎, 𝑥𝑎). The weights 𝑈 are updated
according to the gradient ∇𝑈 𝐿𝐴 to minimize 𝐿𝐴. The weights of the predictor denoted as 𝑊 are modified
based on a gradient that minimizes its loss function 𝐿𝑃 ( 𝑦̂, 𝑦) but also maximizes the loss function of the
adversary: ∇𝑊 𝐿𝑃 ( 𝑦̂, 𝑦) − 𝛼 ∇𝑊 𝐿𝐴 (𝑥𝑎, 𝑥𝑎), where 𝛼 is a meta-parameter.

Since the adversary takes the output of the predictor 𝑦̂ as input, the predictor aims to hold back any additional
information about the sensitive attribute 𝑥𝑎 in its output 𝑦̂ as it would improve the adversary’s loss. In other
words, the predictor will try to deceive the adversary and not share any additional information in 𝑦̂. As 𝑦 is
known to the adversary, the algorithm acknowledges that the sensitive attribute might correlate with 𝑦, and
only unnecessary information will be avoided. Hence, the adversarially debiased model will converge towards
the separation criterion.

The meta fair classification algorithm is yet another in-processor designed to achieve fairness according to
one of the different fairness criteria. For a given criterion, Celis et al. (2019) suggest using a corresponding
group-wise fairness metric denoted as FM, where similar values of FM across sensitive groups indicate a higher
level of fairness. Given a classifier 𝑓 (𝑋) with a loss function 𝐿 ( 𝑓 (𝑋) , 𝑦), they add a fairness constraint to
the loss optimization problem during training:

min
𝑓

𝐿 ( 𝑓 (𝑋) , 𝑦) s.t.
min [FM( 𝑓 (𝑋 | 𝑥𝑎 = 0)), FM( 𝑓 (𝑋 | 𝑥𝑎 = 1))]
max [FM( 𝑓 (𝑋 | 𝑥𝑎 = 0)), FM( 𝑓 (𝑋 | 𝑥𝑎 = 1))] ≥ 𝜎, (10)

where 𝜎 ∈ [0, 1] is a desired fairness bound. Higher values of the fraction in Equation 10 indicate a higher
similarity of FM across sensitive groups, and 𝜎 = 1 implies perfect fairness.

For example, in case of sufficiency, FM is set to positive predictive value (PPV) such that FM( 𝑓 ) = PPV( 𝑓 ) =
P( 𝑓 =1 | 𝑥𝑎=𝑎,𝑦=1)

P( 𝑓 =1 | 𝑥𝑎=𝑎) . If the group {𝑥𝑎 = 1} has a low PPV and the group {𝑥𝑎 = 0} has a high PPV, the fraction in
the optimization condition is close to zero. A high 𝜎 will, therefore, bound the classifier to a high degree of
fairness. During training, the value for 𝜎 can be tuned such that it maximizes profit while minimizing the loss
in fairness, i.e., the loss in sufficiency.
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4.3 Post-Processors

As a post-processing method, reject option classification is based on the output of a learned classifier (Kamiran
et al., 2012). In a credit scoring setup, the classifier output is a credit score that reflects the posterior probability
to not default for each customer 𝑠(𝑋) = P( 𝑦̂ = 1|𝑋). The closer the score is to 1 or 0, the higher is the certainty
with which the classifier assigns the corresponding labels, whereas a score close to 0.5 implies a high degree
of uncertainty.

Reject option classification defines a critical region of high uncertainty and reassigns labels for customers that
have predicted scores within this region, such that members of the unprivileged group receive a positive label
(𝑦 = 1) and vice versa. Formally, the critical region is defined as:

max [P( 𝑦̂ = 1|𝑋) , 1 − P( 𝑦̂ = 1|𝑋)] ≤ 𝜃 , (11)
where 0.5 < 𝜃 < 1. Given a set of predicted scores and the true outcomes, a suitable value of 𝜃 and the number
of required posterior reclassifications can be tuned to optimize a fairness criterion (e.g., independence) within
a specified interval restricted by the lower and the upper bound of the fairness metric denoted as [𝜎𝑙 , 𝜎𝑢].
Equalized odds processor uses a different logic to post-process classifier predictions. It finds a cutoff value 𝜏
that optimizes the predictive performance while satisfying the separation criterion, i.e., ensuring the same false
negative and false positive rate per group (Hardt et al., 2016).

Consider the receiver operating characteristic (ROC) curves that depict the trade-off between true and false
positive rates for two sensitive groups. In an unfair scenario, the group-wise ROC curves have different slopes,
which implies that not all trade-offs are achievable in each group. In the accuracy optimization setting, the
optimal cutoff that satisfies sufficiency lies at the intersection of group-wise ROC curves. When optimizing
for profit, the misclassification costs are not the same for both error rates. Thus, the optimal cutoff could
lie somewhere else. Given a loss function 𝐿 (·), Hardt et al. (2016) suggest to derive a suitable cutoff 𝜏 by
optimizing the following objective:
min P (𝑠(𝑋 |𝑥𝑎 = 𝑎, 𝑦 = 0) ≤ 𝜏) · 𝐿 ( 𝑦̂ = 1, 𝑦 = 0) + [1 − P (𝑠(𝑋 |𝑥𝑎 = 𝑎, 𝑦 = 1) > 𝜏)] · 𝐿 ( 𝑦̂ = 0, 𝑦 = 1) (12)

Platt scaling is a post-processing method that stems from the notion of calibration (Platt, 1999). Calibration
addresses the problem that some classification algorithms are not able to make a statement about the certainty
of their prediction, i.e., the probability with which an instance belongs to a certain class. In credit scoring, the
predicted score could be an indicator of default risk but not the actual probability of default. A score 𝑠(𝑋) is
calibrated if P (𝑦 = 1 | 𝑠(𝑋) = 𝜏) = 𝜏.

When extending the calibration condition to the group level, it becomes apparent that it implements the
sufficiency criterion (see Barocas et al. (2019) for proof):

P [𝑦 = 1 | 𝑠(𝑋) = 𝜏, 𝑥𝑎 = 1] = P [𝑦 = 1 | 𝑠(𝑋) = 𝜏, 𝑥𝑎 = 0] = 𝜏 (13)

To achieve calibration per group, Platt scaling is applied separately to each sensitive group. The method
uses the output of a possibly uncalibrated score 𝑠(𝑋) as input for logistic regression fitted against the target
variable 𝑦. Based on the loss function of the logistic regression, the result is a new calibrated score that
represents the probability that an instance belongs to the positive class. Formally, Platt scaling minimizes the
log-loss −E[𝑦𝑙𝑜𝑔 (𝜎) + (1 − 𝑦) log(1−𝜎)] by finding the optimal parameters 𝑎 and 𝑏 of the sigmoid function
𝜎 = 1

1+exp(𝑎𝑆+𝑏) .

5 Experimental Setup

5.1 Data

The empirical experiment is based on seven credit scoring data sets. Data sets german3 and taiwan4 stem from
the UCI Machine Learning Repository. Data sets Pakdd5, gmsc6 and homecredit7 were provided by different

3Source: https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
4Source: https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
5Source: https://www.kdnuggets.com/2010/03/f-pakdd-2010-data-mining-competition.html
6Source: https://kaggle.com/c/givemesomecredit
7Source: https://kaggle.com/c/home-credit-default-risk
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Table 2: Credit Scoring Data Sets
Data set Sample size No. features Default rate Sensitive group rate

german 1,000 61 .30 .19
bene 3,123 82 .33 .12
taiwan 23,531 76 .23 .14
uk 30,000 51 .04 .20
pakdd 50,000 185 .26 .11
gmsc 150,000 68 .07 .02
homecredit 307,511 92 .08 .04

companies for the data mining competitions on PAKDD and Kaggle. Data sets Bene and uk were collected
from financial institutions in the Benelux and UK (Lessmann et al., 2015).

Each data set has a unique set of features describing a loan applicant and loan characteristics. The target
variable 𝑦 is a binary indicator of whether the applicant has repaid the loan (𝑦 = 1) or not (𝑦 = 0). Each data
set also contains a sensitive demographic attribute 𝑥𝑎 indicating the applicant’s age group. The Equal Credit
Opportunity Act prohibits that demographic characteristics such as the applicants’ age impact credit approval
decisions. We distinguish two groups of applicants: {𝑥𝑎 = 1} contains applications where the applicant’s
age is below 𝜓 years, and {𝑥𝑎 = 0} refers to the applications from customers older than 𝜓. We set 𝜓 = 25,
following the findings of Kamiran & Calders (2009), who used one of the consumer credit scoring data sets
to discover that applicants from different age groups exhibit the greatest disparate impact (i.e., difference in
P [𝑦 = 1 | 𝑥𝑎 = 𝑎]) at a threshold of 25 years. Table 2 summarizes the main characteristics of the data sets.

5.2 Experimental Setup

On each data set, we implement the eight fairness processors introduced in Section 4, following the model
development pipeline depicted in Figure 18. First, we partition the data into training (60%) and test (40%) sets.
We then perform five-fold cross-validation on the training set. Each of the five combinations of training folds
is used to train a scoring model and implement fairness processors. An unconstrained scoring model (i.e., a
model that does not include any fairness-optimizing procedures) serves as a benchmark and represents the
profit maximization scenario. Next, we consider in-processors in the form of the prejudice remover, adversarial
debiasing and the meta fair algorithm. Relying on an in-processor implies that the trained in-processor serves
as a scorecard. This contrasts pre- and post-processors, in which the actual scorecard is still based on a
conventional ML algorithm. We consider reweighing and the disparate impact remover to pre-process (i.e.,
transform) the training data before developing a scoring model. Reject option classification, the equalized
odds processor and Platt scaling represent the post-processors in our study. To learn a post-processing model,
we apply each of them to the validation fold predictions of the unconstrained scorecard.

Fairness pre- and post-processors, as well as an unconstrained scorecard, use four base classifiers: logistic
regression, artificial neural network and the tree-based ensemble learners random forest and extreme gradient
boosting (XGB). Using multiple base learners allows us to check the robustness of processors across different
classifiers. The base learners are established in credit scoring (e.g., Lessmann et al., 2015; Kozodoi et al.,
2019), whereby XGB (Chen & Guestrin, 2016) is maybe less known in the community. We include XGB due
to its reputation as a highly powerful learning algorithm in Kaggle competitions and its strong performance
in a recent credit scoring study by Gunnarsson et al. (2021), who find XGB outperforming challenging deep
learning benchmarks. Meta-parameters of the base classifiers are tuned in a nested four-fold cross-validation
on the training data. The meta-parameters of fairness processors are also tuned using grid search. The details
on the meta-parameter values and the tuning procedure are provided in the online Appendix.

Fairness processors and benchmarks are evaluated on the test set using multiple performance metrics. First,
we measure the profitability of a scorecard by computing profit per EUR issued by a financial institution. To
estimate profit, we start from the Expected Maximum Profit (EMP) criterion (Verbraken et al., 2014). The
EMP measures the incremental profit compared to a base scenario in which loan applications are accepted
without screening. This often leads to a small magnitude of EMP differences across classifiers (Kozodoi et al.,

8The code is available at: https://github.com/kozodoi/Fair_Credit_Scoring
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Table 3: Cost Matrix for Profit Computation
Predicted label

Actual label Bad risk Good risk

Bad risk 𝜋0𝐹0 (𝜏) 𝜋0 (1 − 𝐹0 (𝜏))
benefit: 0 cost: 𝐵

Good risk 𝜋1𝐹1 (𝜏) 𝜋1 (1 − 𝐹1 (𝜏))
cost: 𝐶 benefit: 𝐶

2019) and complicates the interpretation of the metric. To enable a more direct interpretation, we normalize
misclassification costs such that the base scenario represents rejecting all applications.

Table 3 provides the confusion matrix of a scoring model, where 𝜋𝑖 are prior probabilities of good and bad
risks, and 𝐹𝑖 (𝜏) are predicted cumulative density functions of the scores of class 𝑖 given a cutoff value 𝜏. If an
applicant is predicted to be a good risk, a financial institution faces cost 𝐵 in case of an incorrect prediction
and earns 𝐶 from an accurate prediction. In contrast, if an applicant is predicted to be a bad risk, a company
faces an opportunity cost 𝐶 in case of an incorrect prediction. Parameters 𝐵 and 𝐶 are defined according to
Verbraken et al. (2014).

The parameter 𝐵 reflects the cost associated with misclassifying a bad risk. Providing credit to a defaulter, the
company faces a loss; specifically, the expected loss in case of default:

𝐵 =
LGD · EAD

𝐴
, (14)

where LGD refers to the loss given default, EAD is the exposure at default, and 𝐴 is the principal. 𝐵 varies
between 0 and 1 and several distributions may arise (Somers & Whittaker, 2007). We follow Verbraken et al.
(2014) and treat 𝐵 as a random variable with probability distribution:

• 𝐵 = 0 with probability 𝑝0 (a customer repays the entire loan after default);
• 𝐵 = 1 with probability 𝑝1 (the bank loses the entire loan);
• 𝐵 follows a uniform distribution in (0, 1) with 𝐹 (𝐵) = 1 − 𝑝0 − 𝑝1.

The parameter 𝐶 reflects the opportunity cost or earned benefit associated with good risks. By accepting a
good customer, the company earns the equivalent to the return on investment ROI:

𝐶 = ROI =
𝐼

𝐴
, (15)

where 𝐼 is the total interest payments. Given these parameters, we compute profit as:

Profit =
∫ 1

0

[
𝐶 ·

(
𝜋1 (1 − 𝐹1 (𝜏)) − 𝜋1𝐹1 (𝜏)

)
− 𝐵 · 𝜋0 (1 − 𝐹0 (𝜏))

]
𝑓 (𝐵)𝑑 (𝐵) (16)

This paper follows the empirical findings of Verbraken et al. (2014) and assumes a constant ROI of 0.2664 and
the point masses 𝑝0 = 0.55 for no loss and 𝑝1 = 0.1 for full loss to compute 𝐵.

Apart from estimating the profitability of each fairness processor, we also compute the area under the ROC
curve (AUC), which is a widely used indicator of the discriminatory ability of a scoring model. In addition,
we evaluate fairness by measuring independence, separation and sufficiency. We aggregate the performance
of pre- and post-processors over seven credit scoring data sets, five training fold combinations and four base
classifiers, obtaining 140 performance estimates per processor. Since in-processors do not require a base
classifier, their performance is aggregated over 35 values obtained from seven data sets and five training fold
combinations.

6 Empirical Results

This section presents the empirical results. We first examine the correlation between the scorecard performance,
profitability, and fairness. Next, we compare the performance of different fairness processors. Last, drawing on
the findings that suggest a strong negative correlation between profit and fairness, we examine the profit-fairness
trade-off to appraise the monetary cost of fairness.
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6.1 Correlation Analysis

Table 4 depicts the mean Spearman correlation between the evaluation metrics. The correlation coefficients are
computed on the performance estimates obtained from different variants of fairness processors and averaged
over the seven credit scoring data sets. The results suggest that the AUC and profit often produce similar model
rankings (correlation is 0.80). Still, there is some disagreement between the two measures, which indicates
that optimizing profit is important to identify potentially more profitable scorecards. Therefore, we emphasize
profit in the following.

Comparing profit and fairness, we observe a moderate negative correlation between independence, separation,
and profitability9. As expected, integrating fairness constraints to reduce discrimination prevents a scorecard
from taking full advantage of the available information, which decreases profit. At the same time, a weak
positive correlation between sufficiency and profit suggests that optimizing profitability without implementing
additional fairness constraints could also improve sufficiency. This result confirms the observation that
most ML algorithms are designed to automatically achieve sufficiency and implies that directly optimizing
sufficiency with a fairness processor is not essential.

A different conclusion emerges from examining the agreement of the other two fairness criteria. As indicated
by Table 4, independence and separation have a strong positive correlation of 0.95. Optimizing either of these
two criteria will, therefore, favor models that fulfill both independence and separation. In other words, reducing
the mutual information between a sensitive attribute and model predictions also helps to align the parity of
error rates across the sensitive groups. This is an interesting finding, given that the former constraint targeted
by independence is stricter compared to the one targeted by separation. For a risk analyst, the observed result
implies that it is ample to rely on a single fairness criterion. Since separation has a better ability to capture the
cost asymmetry (see Section 3 for details), we conclude that optimizing and measuring the separation criterion
is the most suitable way to integrate and evaluate the fairness of a credit scoring model.

6.2 Benchmarking Fairness Processors

Table 5 provides average performance gains from fairness processors compared to the unconstrained scoring
model across the seven credit scoring data sets. A positive gain indicates a better performance of a processor
relative to the unconstrained model in terms of a particular evaluation measure. Individual results for each of
the data sets are provided in the online Appendix.

Table 5 confirms that using a processor to enhance fairness decreases profit compared to the unconstrained
model. Results in terms of the AUC mirror this finding, whereby two processors show marginally higher
AUC values than the unconstrained model. Table 5 also evidences that the unconstrained model suffers from
discrimination. Six out of eight processors achieve better independence and five processors attain better
separation. However, sufficiency is consistently higher in the unconstrained model, which confirms that this
metric differs fundamentally from independence and separation. High agreement between the sufficiency and
profit, expressed by strict dominance of the unconstrained model in Table 5, also indicates that the goal of

9Higher values of the AUC and profit indicate better performance, whereas lower values of independence, separation,
and sufficiency indicate higher fairness. Therefore, we invert correlation signs between the two former performance metrics
and the three fairness criteria to facilitate the consistent interpretation of the results.

Table 4: Rank Correlation between Evaluation Metrics
Metric AUC Profit IND SP SF

AUC 1
Profit 0.8014 1
IND −0.4707 −0.3774 1
SP −0.3326 −0.2994 0.9477 1
SF 0.3489 0.1636 −0.2156 −0.1311 1

Abbreviations: AUC = area under the ROC curve, IND = independence,
SP = separation, SF = sufficiency.
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Table 5: Average Performance Gains from Fairness Processors Relative to the Unconstrained Model
Method Fairness processor AUC Profit IND SP SF

Pre-processing Reweighting -3.19% -23.04% 66.00% 61.24% -38.18%
Disparate impact remover 0.82% -10.60% 5.33% 4.50% -19.99%

In-processing
Prejudice remover 0.37% -4.28% 11.51% 9.41% -202.36%
Adversarial debiasing -0.21% -13.90% 9.38% 2.98% -148.36%
Meta fair algorithm -2.98% -7.25% -7.49% -20.88% -108.17%

Post-processing
Reject option classification -8.64% -30.71% 74.80% 74.55% -263.51%
Equalized odds processor -16.22% -59.73% 25.83% -11.08% -407.82%
Platt scaling -0.45% -26.98% -85.28% -108.45% -85.02%

Average change across fairness processors -3.81% -22.06% 12.51% 1.53% -159.18%
Abbreviations: AUC = area under the ROC curve, IND = independence, SP = separation, SF = sufficiency. Values
represent percentage differences relative to an unconstrained scorecard averaged over seven data sets × five folds ×
× four base models; positive values indicate improvement.

profit maximization is compatible with maximizing sufficiency, which questions the fairness perspective that
the latter embodies.

Considering individual processors, the reject option classification post-processor demonstrates the best fairness
in independence and separation. This is achieved by sacrificing more than 30% profit compared to the
unconstrained model. On the other hand, we observe the least profit decrease of less than 5% for the prejudice
remover, which also attains a similar AUC as the unconstrained model. At the same time, the prejudice
remover provides a smaller fairness improvement than other processors. These results emphasize the trade-off
between profit and fairness.

Comparing processors within the implementation methods, we can identify promising techniques. Considering
post-processors, the equalized odds processor is dominated by reject option classification in all evaluation
measures. Platt scaling achieves higher profit and sufficiency than the latter but gives the by far worst results in
independence and separation. In sum, Table 5 clearly identifies reject option classification as the most suitable
post-processor. Concerning pre-processors, no clear result emerges. Reweighing achieves the best fairness but
decreases profitability by 23%. The disparate impact remover retains a red higher share of profit but offers
substantially smaller improvements in independence and separation.

Among the in-processors, we observe the unconstrained model to dominate the meta fair algorithm, which
displays negative results for all metrics of Table 5. Therefore, the meta fair algorithm does not warrant further
consideration. Comparing the prejudice remover to adversarial debiasing, we find the former to deliver better
results in all metrics but sufficiency. Given reservations against the fairness concept of the sufficiency metric,
the results of Table 5 suggest that the prejudice remover is the best performing in-processor.

The results of Table 5 have several implications. First, we identify two fairness processors, Platt scaling and
the meta-fair algorithm, inadequate for credit scoring since they decrease profit and predictive performance
while not improving fairness compared to the unconstrained model. Second, we find that the equalized odds
processor is dominated by another post-processor in all considered evaluation metrics and should, therefore,
be avoided.

The remaining processors arrive at different solutions in the space between sacrificing profit and reducing
discrimination, leaving decision-makers with the difficult task to balance these conflicting goals according to
their preferences, business requirements, and regulation. In general, in-processors offer more flexibility in
prioritizing fairness or profit through meta-parameters. For example, the prejudice remover incorporates a
regularizer to penalize fairness violations and exposes the weight of that penalty as a meta-parameter. However,
the benefit of higher flexibility carries a cost. Compared to alternative options, in-processors replace existing
scorecards and impact the scoring process the most. Post-processors largely retain an existing scoring pipeline,
which simplifies their deployment. Pre-processors address fairness at the data level, which represents a more
invasive change of the scoring process compared to post-processing but seems less difficult to implement than
in-processing. Together with the results of Table 5, in which the best in-processor (i.e., the prejudice remover)
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finds a better trade-off between profit and fairness than the disparate impact remover while the best post-
processor (i.e., reject option classification) increases fairness to a larger extent than reweighting, considerations
related to the complexity of deploying fairness processors and revising loan approval processes suggest two
options for addressing fairness in credit scoring. Decision-makers can choose between a flexible but invasive
in-processor and a post-processor, which is easier to deploy but might substantially decrease profitability.
Table 5 represents the corresponding options by the prejudice remover and reject option classification.

6.3 The Cost of Fairness

Previous results indicate that it is possible to improve fairness by sacrificing profit. Figure 2 provides a more
detailed examination of the profit-fairness trade-off on each of the seven data sets using the concept of Pareto
frontiers. The points on the frontiers refer to the test set performance of fairness processors trained with
different base classifiers and on different combinations of the training folds. The frontiers only contain the
non-dominated solutions, i.e., the points where it is impossible to improve on one objective (i.e., profit) without
harming the other objective (i.e., fairness). Based on the previous results, we use the separation criterion to
measure fairness.

Figure 2 reveals that discrimination can be substantially reduced at a relatively low cost. Recall that separation
indicates the difference between the false positive and false negative rates across the sensitive groups. Accord-
ing to Figure 2, reducing the difference in error rates below 0.2 is possible while sacrificing less than e0.01
profit per EUR issued. Across the data sets, this translates to an average profit reduction of 4.91% compared
to the most profitable scorecard with stronger discrimination. At the same time, completely eliminating
unfairness is more costly: achieving separation of 0 is only possible when sacrificing more than 35% of the
profit. However, since perfect fairness is not required by regulation, we conclude that a financial institution
can reduce discrimination to a reasonable extent while maintaining a relatively high profit margin.

7 Conclusion

The paper sets out to consolidate recent advancements in fair ML from a credit scoring perspective. Cataloging
approaches for quantifying fairness and the ML pipeline interventions for fairness maximization, we have
examined the adequacy of these fairness measures and processors for credit scoring. To substantiate our
conceptual analysis, we have undertaken a systematic empirical comparison of several fairness processors
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from different families to identify preferable approaches and clarify the degree to which increasing fairness in
loan approval processes harms profitability.

The conceptual comparison of different fairness criteria reveals separation to be the most appropriate metric for
credit scoring. Separation acknowledges the imbalanced misclassification costs, which are instrumental to the
lending business. The presented catalog of fairness processors offers practitioners a starting point for deciding
which processors to consider for a given problem setting. The catalog also indicates that most processors have
been evaluated based on their accuracy and that some relevant credit scoring scenarios are not well covered by
the available processors. For example, in a setting with multiple sensitive attributes (e.g., race and religion),
only two processors, adversarial debiasing and reject option classification, facilitate optimizing the separation
criterion.

The empirical study benchmarks fairness processors in a profit-oriented credit scoring setup. Several impli-
cations emerge from the results. First, examining the agreement between the fairness criteria under study
reveals that separation and independence are strongly correlated. While other empirical studies support this
finding (Friedler et al., 2019), it contradicts the intuition from theoretical considerations that fairness criteria
are mutually exclusive (Mitchell et al., 2021). We also find that sufficiency has a property to be achievable
by any well-trained classifier that can predict the sensitive attribute from the other features (Barocas et al.,
2019). This calls into question the overall suitability of sufficiency for credit scoring and further emphasizes
separation as a proper criterion for measuring the fairness of credit scorecards.

Second, we find that the choice of an appropriate fairness processor depends on the implementation feasibility
and preferences of a decision-maker regarding the conflicting objectives of profit and fairness. Post-processing
methods such as reject option classification are the easiest to implement in production but improve fairness at
a high monetary cost. In-processors such as the prejudice remover perform best in finding the profit-fairness
trade-off and offer the most flexibility in calibrating the importance of the conflicting objectives. However,
using in-processors requires replacing a deployed scoring model with a new algorithm, which might require
regulatory approval and is, more generally, associated with considerable efforts.

Third, while achieving perfect fairness is costly, we find that reducing discrimination to a reasonable extent
is possible while maintaining a relatively high profit. These results support the current anti-discrimination
regulation that allows unfairness to exist up to a certain limited extent. The analysis of fairness processors
from the perspective of the Pareto frontiers offers decision-makers a tool to analyze the profit-fairness trade-off
specific to their context and identify techniques that reduce discrimination to a required level at the smallest
monetary cost.

Our study may also have implications for customer scoring models beyond the credit industry. Fairness
concerns arise from the increasing use of ML to automate decisions in many domains, such as hiring (Barocas
et al., 2019), college admission (Mitchell et al., 2021) or criminal risk assessment (Berk et al., 2021). The
catalog of fairness processors and the results of their empirical analysis can aid these domains in identifying
suitable techniques for integrating fairness in decision support systems. Future work on fair ML may also
draw value from the empirical comparison in that it highlights effective approaches that set a benchmark for
new fairness processors.
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Online Appendix

A Overview of Fairness Criteria

As shown by Barocas et al. (2019), the fairness criteria considered in this paper – independence, separation
and sufficiency – comprise a number of other fairness criteria proposed in prior work. This appendix illustrates
the relationship between the three criteria and related fairness formulations.

Table 6 reveals that the statistical formulation of fairness constraints originates from the field of psychological
testing (Darlington, 1971) and has been rediscovered for ML applications much later. The 19 fairness concepts
presented in the table can be derived from independence, separation and sufficiency in the form of an equivalent
or a relaxed condition. This underpins the relevance of the three fairness criteria and justifies our criteria
selection in the focal paper.

However, it is important to note that all fairness criteria of Table 6 and the paper as a whole embody the idea
of group-based fairness. Prior literature has introduced alternative fairness concepts including individual and
counterfactual fairness. The former requires a classifier to produce similar outputs for similar individuals,
whereas the latter implies that a classifier output remains the same when the sensitive attribute is changed to its
counterfactual value.

Table 6: Fairness Criteria and their Relation to Independence, Separation, and Sufficiency
Reference Criterion Closest relative Relation

Darlington (1971) Darlington criterion (4) Independence Equivalent
Dwork et al. (2012) Statistical parity Independence Equivalent
Dwork et al. (2012) Group fairness Independence Equivalent
Dwork et al. (2012) Demographic parity Independence Equivalent
Corbett-Davies et al. (2017) Conditional statistical parity Independence Relaxation

Darlington (1971) Darlington criterion (3) Separation Relaxation
Hardt et al. (2016) Equal opportunity Separation Relaxation
Hardt et al. (2016) Equalized odds Separation Equivalent
Kleinberg et al. (2017) Balance for the negative class Separation Relaxation
Kleinberg et al. (2017) Balance for the positive class Separation Relaxation
Zafar et al. (2017) Avoiding disparate mistreatment Separation Equivalent
Chouldechova (2017) Predictive equality Separation Relaxation
Woodworth et al. (2017) Equalized correlations Separation Relaxation
Berk et al. (2021) Conditional procedure accuracy Separation Equivalent

Cleary (1968) Cleary model Sufficiency Equivalent
Darlington (1971) Darlington criterion (1), (2) Sufficiency Relaxation
Chouldechova (2017) Predictive parity Sufficiency Relaxation
Chouldechova (2017) Calibration within groups Sufficiency Equivalent
Berk et al. (2021) Conditional use accuracy Sufficiency Equivalent

B Meta-Parameters of Base Models and Fairness Processors

This appendix provides meta-parameter values of the base classifiers and the fairness processors used in
the empirical experiment. Table 8 depicts the candidate values of the meta-parameters of the four base
classifiers used as a scoring model by fairness pre- and post-processors as well as by the unconstrained profit
maximization benchmark. The meta-parameter values are optimized with grid search using the EMP as an
objective. The meta-parameter tuning is performed separately on each combination of the training folds using
a nested four-fold cross-validation.
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Table 7 provides candidate values of the meta-parameters of fairness processors that are tuned within the
higher-level cross-validation framework. We measure the EMP of fairness processors on each validation
fold to select the appropriate meta-parameter values. The notation for processor meta-parameters and their
explanation is available in Section 4.

Table 7: Meta-Parameters of Fairness Processors
Method Fairness processor Meta-parameter Candidate values

Pre-processing Reweighting – –

Disparate impact remover Repair level 𝜆 0.5, 0.6, 0.7, 0.8, 0.9, 1

In-processing

Prejudice remover Fairness penalty 𝜂 1, 5, 15, 30, 50, 70, 100, 150

Meta fair algorithm Fairness penalty 𝜏 0.05, 0.10, 0.15, 0.20, 0.25, 0.30

Adversarial debiasing
Adversarial loss weight 𝛼 0.1, 0.01, 0.001
Number of epochs 50
Batch size 128

Post-processing
Reject option classification

Fairness bound [𝜎𝑙 , 𝜎𝑢] [−0.1, 0.1], [−0.2, 0.2], [−0.3, 0.3]
Number of thresholds 100
Number of ROC margins 50

Equalized odds processor – –

Platt scaling – –

Table 8: Meta-Parameters of Base Classifiers
Base classifier Meta-parameter Candidate values

Logistic regression – –

Random forest Number of trees 500
Number of sampled features 5, 10, 15

Extreme gradient boosting

Number of trees 100, 500, 1000
Maximum tree depth 5, 10
Learning rate 0.1
Ratio of sampled features 0.5, 1
Ratio of sampled cases 0.5, 1
Minimum child weight 0.5, 1, 3

Artificial neural network
Size 5, 10, 15
Decay 0.1, 0.5, 1, 1.5, 2
Maximum umber of iterations 1000

C Extended Empirical Results

This appendix provides additional results of the experiment presented in Section 6. Tables 9 – 15 compare the
performance of fairness processors as well as an unconstrained scorecard on each of the seven credit scoring
data sets in terms of the AUC, profit per EUR issued and fairness. Performance of pre- and post-processors is
averaged over 25 values from five cross-validation folds × five base classifiers; performance of in-processors
is aggregated over five training fold combinations.
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Table 11: Performance of Fairness Processors: Taiwan
Method Fairness processor AUC Profit AR IND SP SF

Pre-processing Reweighing .7605 .0725 .5954 .0441 .0406 .0189
Disparate impact remover .7909 .0769 .5999 .1781 .1324 .0216

In-processing
Prejudice remover .7867 .0882 .5992 .1170 .0876 .0311
Adversarial debiasing .7918 .0892 .5987 .2762 .2262 .0215
Meta fair algorithm .7893 .0880 .6009 .1212 .0854 .0197

Post-processing
Reject option classification .7080 .0515 .5869 .0514 .0328 .0505
Equalized odds processor .6231 -.0081 .5797 .1902 .1915 .0618
Platt scaling .7565 .0294 .5960 .2738 .2187 .0159

Unconstrained profit maximization .7532 .0643 .5956 .1211 .0872 .0278
Abbreviations: AUC = area under the ROC curve, AR = acceptance rate, IND = independence, SP = separation,
SF = sufficiency. Performance is averaged over five cross-validation folds × four base models.

Table 9: Performance of Fairness Processors: German
Method Fairness processor AUC Profit AR IND SP SF

Pre-processing Reweighing .7604 .0252 .6113 .2204 .1752 .1563
Disparate impact remover .8121 .0494 .6172 .2989 .1919 .1249

In-processing
Prejudice remover .7933 .0463 .6112 .3200 .2091 .1655
Adversarial debiasing .7965 .0502 .6103 .2528 .1898 .1705
Meta fair algorithm .8074 .0467 .6158 .2262 .1117 .1555

Post-processing
Reject option classification .7124 .0254 .5985 .1105 .0881 .2121
Equalized odds processor .6999 .0300 .5965 .0836 .1475 .2514
Platt scaling .8012 .0464 .6139 .4195 .3369 .1532

Unconstrained profit maximization .8124 .0492 .6143 .3078 .1979 .1445
Abbreviations: AUC = area under the ROC curve, AR = acceptance rate, IND = independence, SP = separation,
SF = sufficiency. Performance is averaged over five cross-validation folds × four base models.

Table 10: Performance of Fairness Processors: Bene
Method Fairness processor AUC Profit AR IND SP SF

Pre-processing Reweighing .7469 .0524 .6108 .0934 .0777 .0487
Disparate impact remover .7875 .0638 .6138 .3622 .2832 .0694

In-processing
Prejudice remover .7952 .0702 .6194 .3141 .2284 .1615
Adversarial debiasing .7813 .0670 .6118 .3250 .2450 .1393
Meta fair algorithm .7875 .0653 .6143 .3227 .2446 .0980

Post-processing
Reject option classification .7082 .0501 .6037 .0726 .0711 .2339
Equalized odds processor .6677 .0491 .6039 .0396 .0844 .2485
Platt scaling .7880 .0659 .6158 .4469 .3684 .0681

Unconstrained profit maximization .7896 .0659 .6152 .3540 .2743 .0825
Abbreviations: AUC = area under the ROC curve, AR = acceptance rate, IND = independence, SP = separation,
SF = sufficiency. Performance is averaged over five cross-validation folds × four base models.
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Table 12: Performance of Fairness Processors: UK
Method Fairness processor AUC Profit AR IND SP SF

Pre-processing Reweighing .6786 .0165 .5544 .0807 .0396 .0056
Disparate impact remover .7174 .0131 .5543 .2926 .2051 .0113

In-processing
Prejudice remover .7087 .0187 .5543 .3033 .2433 .0191
Adversarial debiasing .7092 .0181 .5543 .2614 .1622 .0181
Meta fair algorithm .5584 .0038 .5542 .3389 .4128 .0021

Post-processing
Reject option classification .6523 .0181 .5542 .0621 .0222 .0162
Equalized odds processor .6206 .0189 .5542 .1783 .2042 .0225
Platt scaling .6986 .0244 .5543 .6839 .5329 .0200

Unconstrained profit maximization .7129 .0180 .5543 .3111 .2141 .0141
Abbreviations: AUC = area under the ROC curve, AR = acceptance rate, IND = independence, SP = separation,
SF = sufficiency. Performance is averaged over five cross-validation folds × four base models.

Table 13: Performance of Fairness Processors: PAKDD
Method Fairness processor AUC Profit AR IND SP SF

Pre-processing Reweighing .5783 .0078 .5836 .0710 .0685 .0198
Disparate impact remover .6022 .0134 .5840 .4126 .3862 .0818

In-processing
Prejudice remover .6003 .0134 .5839 .2829 .2506 .1171
Adversarial debiasing .5777 .0079 .5835 .1864 .1686 .0952
Meta fair algorithm .6027 .0136 .5839 .3383 .3070 .1138

Post-processing
Reject option classification .5677 .0080 .5834 .0822 .0602 .1153
Equalized odds processor .5653 .0112 .5833 .0173 .0394 .1214
Platt scaling .6053 .0144 .5840 .6249 .5920 .1044

Unconstrained profit maximization .6045 .0139 .5840 .4347 .4069 .0829
Abbreviations: AUC = area under the ROC curve, AR = acceptance rate, IND = independence, SP = separation,
SF = sufficiency. Performance is averaged over five cross-validation folds × four base models.

Table 14: Performance of Fairness Processors: GMSC
Method Fairness processor AUC Profit AR IND SP SF

Pre-processing Reweighing .8425 .0415 .5589 .0595 .0437 .0055
Disparate impact remover .8535 .0419 .5593 .1935 .1077 .0151

In-processing
Prejudice remover .8553 .0437 .5593 .2454 .1445 .0085
Adversarial debiasing .8588 .0438 .5594 .1126 .0508 .0154
Meta fair algorithm .8261 .0418 .5593 .4318 .2766 .0182

Post-processing
Reject option classification .7762 .0388 .5576 .0590 .0525 .0187
Equalized odds processor .5903 .0234 .5568 .3844 .2812 .0240
Platt scaling .8531 .0424 .5594 .5691 .3564 .0000

Unconstrained profit maximization .8545 .0406 .5594 .2461 .1429 .0121
Abbreviations: AUC = area under the ROC curve, AR = acceptance rate, IND = independence, SP = separation,
SF = sufficiency. Performance is averaged over five cross-validation folds × four base models.

23



PREPRINT

Table 15: Performance of Fairness Processors: Homecredit
Method Fairness processor AUC Profit AR IND SP SF

Pre-processing Reweighing .7275 .0353 .5589 .1225 .0958 .0056
Disparate impact remover .7392 .0361 .5590 .2784 .2010 .0167

In-processing
Prejudice remover .7387 .0372 .5589 .2072 .1356 .0238
Adversarial debiasing .7379 .0371 .5589 .3170 .2464 .0169
Meta fair algorithm .7351 .0367 .5588 .3482 .2661 .0058

Post-processing
Reject option classification .6785 .0350 .5585 .0506 .0207 .0290
Equalized odds processor .6190 .0260 .5583 .2481 .2482 .0426
Platt scaling .7406 .0371 .5590 .4884 .3643 .0140

Unconstrained profit maximization .7411 .0367 .5590 .33044 .2435 .0130
Abbreviations: AUC = area under the ROC curve, AR = acceptance rate, IND = independence, SP = separation,
SF = sufficiency. Performance is averaged over five cross-validation folds × four base models.
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