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Scheduling heterogeneous delivery tasks on a mixed logistics platform 

Lu Zhen1, Roberto Baldacci2, Junyan Lyu1, Shuaian Wang3*, Zheyi Tan1 
1 School of Management, Shanghai University, Shanghai, China 

2 Department of Electrical, Electronic, and Information Engineering, University of Bologna, Cesena, Italy 
3 Department of Logistics & Maritime Studies, The Hong Kong Polytechnic University, Hong Kong 

Abstract: Large e-commerce retailers usually establish their own logistics systems. Such systems make 

use of their own dedicated fleets but will also use a crowdsourced delivery mode by hiring occasional 

fleets. These mixed logistics systems with both dedicated and occasional fleets serve both retailers’ 

internal delivery tasks and external tasks requested by local businesses. This paper studies the problem 

of scheduling heterogeneous (internal and external) delivery tasks on a mixed logistics platform with 

multiple depots and two types of vehicle (dedicated and occasional). A delivery task is executed by either 

a dedicated vehicle or an occasional vehicle. The dedicated vehicles depart from and return to the 

platform’s depots; the occasional vehicles depart from their original location and pick up goods from 

depots or external pickup locations, fulfill the delivery tasks, and finish their route at the final delivery 

location. We propose mixed integer programming models and column generation-based solution methods 

to solve the problem. A computational study is conducted based on a series of randomly generated 

instances and real-world instances involving 20 depots, 200 internal customers, 40 external delivery tasks, 

and 70 dedicated and occasional vehicles. The results obtained demonstrate the efficiency of the column 

generation-based solution methods. Moreover, the effectiveness of the proposed models is validated by a 

significant cost saving in comparison to intuitive decision rules. A sensitivity analysis is also conducted 

to derive a number of managerial implications. 

Keywords: OR in service industries; crowdsourced delivery; close-open mixed multi-depot vehicle 

routing problem; heterogeneous fleet; e-commerce logistics. 

1. Introduction 

The boom in retail e-commerce presents online retailers with new challenges in delivering a large 

number of time-critical orders in a short period. For example, in 2019, a total of 63 billion parcels were 

delivered to online shopping customers in China. On November 11 (China’s annual “double-eleven” 

online shopping festival), the revenue generated by online shopping was 58.9 billion USD, from 1.66 

billion orders (parcels). Aside from large volume, delivery time requirements are very strict. Some e-

commerce retailers in China promise that if a customer makes an order before 11 pm, she/he will receive 

it before 3 pm the following day. Fulfilling a huge number of delivery tasks in a timely manner places a 

great deal of pressure on e-commerce retailers. 
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Large e-commerce retailers in China such as JD.com and TMall.com have established their own 

logistics companies, such as JD Logistics and CAINIAO Logistics. To cope with operations challenges, 

e-commerce logistics companies are seeking ways to improve their capacity and efficiency, such as 

investing in new delivery technologies and adopting data mining tools to improve facility location 

decisions. Crowdsourced delivery has become a popular, cost-effective way for e-commerce logistics 

companies to improve their efficiency (Vazifeh et al., 2018; Alnaggar et al., 2019; Bergmann et al., 2020; 

Yang et al., 2020). Crowdsourced delivery takes advantage of the excess capacity of private vehicles to 

support delivery tasks. It may be possible to achieve faster and cheaper deliveries using this mode than 

with the traditional delivery mode (Gansterer and Hartl, 2018).  

Large e-commerce logistics companies maintain dedicated fleets, and also adopt crowdsourced 

delivery to hire occasional fleets. For instance, about 10% of JD Logistics’ fleet is fulltime couriers owned 

by the company; the remainder is occasional couriers crowdsourced by the company. These mixed 

logistics systems act as platforms that serve both retailers’ delivery tasks and external tasks requested by 

local small businesses such as online shopkeepers, flower shops, gift shops, and take-out restaurants.  

This paper studies how to schedule internal and external delivery tasks on a mixed logistics platform 

with multiple depots and two types of fleet, i.e., dedicated and occasional fleets. To fulfill the internal 

delivery tasks requested by the retailers, the dedicated vehicles owned by the logistics platform depart 

from the platform’s depots and return to the depots after having fulfilled the deliveries. The occasional 

vehicles depart from their original location and pick up the goods from the depots or from external pickup 

locations, fulfill the delivery tasks, and finish their route at the last delivery location. Each internal 

delivery task must be fulfilled by either a dedicated vehicle or an occasional vehicle. However, the 

external delivery tasks requested by local small businesses may be undertaken or rejected by the platform 

due to capacity limitations or an unfavorable cost-benefit analysis. To fulfill an external delivery task 

requested by a shop, a dedicated or occasional vehicle travels to the shop’s location to pick up the goods, 

and then travels to the site of the shop’s customer to perform the delivery. For a logistics platform, all of 

the internal tasks must be fulfilled and undertaking external delivery tasks could bring extra benefit for 

the platform. The objective is to minimize the total traveling cost minus the extra benefit of undertaking 

external tasks. 

The above scheduling problem represents a new variant of the close–open mixed multi-depot vehicle 

routing problem (VRP) with two types of delivery task and two types of vehicle fleet. The problem has 

the following four features: (1) multiple heterogeneous depots form the network of warehouses for the 

platform; (2) two types of vehicle (dedicated and occasional) constitute a mixed fleet; (3) dedicated 

vehicles’ routes follow the structure of classical VRPs, whereas occasional vehicles adhere to open VRPs; 

(4) two types of task (internal and external) are fulfilled by the fleet.   
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2. Related works 

With the emergence of ride-sharing, which offers the possibility of crowdsourced delivery to satisfy 

various demands at a large scale, new challenges arise in developing routing optimization models and 

algorithms to solve these new scheduling problems. The recent literature in this context is summarized in 

Alnaggar et al. (2019), who analyze current industry trends in crowdsourced delivery and provide a 

taxonomy of available systems based on their scheduling and matching mechanisms, target markets, and 

compensation schemes. Below we review works related to the problem addressed in this paper. 

Arslan et al. (2019) study a variant of the dynamic pickup and delivery problem for real-time matching 

delivery tasks and occasional vehicles on a service platform with a rolling horizon. Qi et al. (2018) 

conduct an analytical study on crowdsourced delivery by considering occasional drivers’ wage-response 

behavior in the ride-share market and investigate the optimal sizes of service zones for last-mile delivery. 

The core problem in these related studies on crowdsourced delivery, shared mobility, and e-commerce 

logistics is mainly related to studies of the classic VRP and its variants. We also study a new VRP variant.  

The VRP was first investigated by Dantzig and Ramser (1959). The classic VRP usually assumes that 

vehicles depart from and return to a single depot and each customer is served exactly once by a vehicle. 

Some excellent literature reviews on the VRP have been conducted in recent years by Laporte (2009) and 

Toth and Vigo (2014). Among variants of the VRP, the VRP with time windows (VRPTW) generalizes 

the basic Capacitated VRP (CVRP) by imposing the requirement that each customer be visited within a 

specified time interval (a time window). Numerous scholars have conducted studies on the VRPTW, such 

as Desrochers et al. (1992), Bent et al. (2004), Pecin et al. (2017), and Bianchessi et al. (2019). Many 

exact and heuristic methods have been proposed for it, including an exact algorithm based on a set-

partitioning integer formulation (Baldacci et al., 2011; Baldacci et. al., 2012), an exact algorithm based 

on dynamic programming and a state-space-time network (Mahmoudi and Zhou, 2016), an algorithm 

based on an alternating direction method of multipliers (Yao et al., 2019), an adaptive large neighborhood 

search (ALNS) based heuristic (Francois et al., 2019), and an exact algorithm based on column generation 

and cutting plane (Paradiso et al., 2020). Another related VRP variant considers both delivery tasks and 

pickup tasks in routing decisions. Some representative studies in this area consider new features such as 

divisible (or discrete split) deliveries and pickups (Nagy et al., 2015), time limits (Polat et al., 2015), and 

random demands and predefined customer order (Dimitrakos et al., 2015). The reader is referred to the 

book edited by Toth and Vigo (2014) for a comprehensive overview of exact and heuristic methods for 

VRPs. 

Single-depot VRPs, such as the CVRP and VRPTW, do not fit the background of e-commerce logistics. 

E -commerce retailers usually deploy several dispersed warehouses (or distribution stations), which are 

generally located in urban areas. Our study is for this reason more closely related to studies that feature 

multiple depots in the VRP domain (Laporte et al., 1988), i.e., the multi-depot VRP (MDVRP). Salhi et 

al. (2013) develop a variable neighborhood search approach for the MDVRP with a fleet of heterogeneous 

vehicles, whereas Baldacci et al. (2013) design an exact method for the two-echelon MDVRP. Alinaghian 
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and Shokouhi (2018) design a hybrid ALNS algorithm for solving a new MDVRP. For MDVRPs and 

two-echelon VRPs, the reader is referred to the excellent surveys of Montoya-Torres et al. (2015) and 

Cuda et al. (2015), respectively. 

An open loop is a major characteristic of crowdsourced delivery–related VRPs (Qi et al., 2018). This 

study focuses on an open VRP (OVRP), where some of the vehicles (occasional vehicles) need not return 

to the depots. There have been a few studies that have combined the MDVRP and OVRP, i.e., a multi-

depot open VRP (MOVRP). For example, Liu et al. (2014) develop a genetic algorithm (GA) for the 

MOVRP. The problem is also addressed by Lalla-Ruiz et al. (2016), who propose an improved mixed 

integer programming (MIP) model for the problem. Lahyani et al. (2019) develop a meta-heuristic based 

on ALNS to solve the MOVRP with up to six depots and 288 customers. Liu and Jiang (2012) address a 

close–open mixed VRP (COMVRP) involving a fleet of heterogeneous vehicles. Azadeh and Farrokhi-

Asl (2019) combine the COMVRP and MDVRP and investigate a close–open mixed multi-depot VRP 

(COMMVRP), which represents the closest model proposed in the literature to the problem addressed in 

this paper. Azadeh and Farrokhi-Asl (2019) describe an MIP model for the COMMVRP and design a GA 

for its solution. Our work further extends the COMMVRP by addressing the problem in the context of 

the crowdsourced delivery industry. Indeed, in addition to the COMMVRP, we consider different types 

of delivery task (internal or external), different pickup locations (depots or external shops), and different 

starting positions for the vehicles.  

2.1 Contributions of this paper 

In this paper, we investigate a new variant of the COMMVRP that finds important applications in the 

context of the crowdsourced delivery industry. We describe MIP models for the problem and for its 

special case that arises when only internal deliveries are considered. To solve the problem efficiently, 

column generation (CG) techniques are used. Numerical experiments are performed to verify the 

efficiency of the proposed solution methods. The results obtained show that the proposed method can 

produce high-quality solutions in a limited amount of computing time for large-scale instances involving 

up to 20 depots, 200 internal customers, 40 external tasks, and 70 double-type vehicles. Managerial 

insights are reported based on the results of a sensitivity analysis. 

The remainder of this paper is organized as follows. The next section describes the problem addressed 

in this paper in details. Section 4 proposes an MIP model as well as a CG based solution method for the 

problem without external deliveries. Extensions of the model to the general case of external deliveries as 

well as a CG based solution method are elaborated and validated in Section 5. A computational study for 

a large-scale instance taken from a real-world application is presented in Section 6. Finally, we conclude 

the paper and indicate future research directions in Section 7. 
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3. Problem description 

We consider an e-commerce retailer running a logistics service platform as a corporate spin-off. The 

platform mainly fulfills delivery tasks for its parent company, but it can also serve outside businesses 

within its delivery capacity. Fulfilling the delivery tasks for the parent company, named internal 

deliveries, has a higher priority than fulfilling the deliveries for outside businesses, which are named 

external deliveries. 

The logistics service platform has a network of warehouses or depots, each of which has a set of 

dedicated vehicles. The route of each dedicated vehicle is called a dedicated route, on which the dedicated 

vehicle departs from its depot and returns to it after having completed its deliveries; dedicated vehicles 

perform no other kinds of routes. Further, the depots are not identical with respect to the inventory of 

goods, and an internal delivery can potentially be supplied from more than one depot, but a customer’s 

demand cannot be split among the different depots. Each external delivery defines both pickup and 

delivery locations and a vehicle servicing it must first visit the pickup location to collect the goods and 

then the associated delivery location.  

In addition to the dedicated vehicles, a fleet of occasional vehicles is also available. Each occasional 

vehicle has a specified starting location from which its route must originate. The vehicle on an occasional 

route (i.e., a route performed by an occasional vehicle) departs from its starting location, picks up the 

goods from the depots or external pickup locations, fulfills the delivery tasks, and stops at the last delivery 

location. An internal or external delivery can be served by either a dedicated or occasional vehicle, and a 

dedicated or occasional vehicle can perform at most one vehicle route. 

Each vehicle (dedicated or occasional) is associated with a given capacity, and in a vehicle route the 

total load of the deliveries served by the route must not exceed the vehicle capacity, as for the classical 

CVRP. Each internal delivery task must be served by exactly one vehicle, whereas an external delivery 

task can be left unserved, i.e., the logistics platform can undertake or reject an external delivery task 

according to its capacity and the benefit of delivering it. If an external delivery is served, then it must be 

assigned to exactly one vehicle.  

The problem objective is to minimize the total cost of the routes performed by the vehicles minus the 

extra benefit of undertaking external tasks.  

In the following, we first consider a special case of the problem considering internal deliveries only. 

Figure 1 shows the scheme of a solution involving internal deliveries only. In particular, the figure shows 

different types of vehicle route associated with the fleet of dedicated and occasional vehicles. 

For this special case, in the next section we present both a mathematical formulation and a solution 

method based on a CG procedure. In Section 5 we then extend the mathematical formulation and the 

solution method to the more general case, involving both internal and external deliveries. Figure 2 shows 

the scheme of a solution of the general problem involving both internal and external deliveries. 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 6 

depot

internal	delivery
dedicated	route occasional	route

starting	location	of	
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Figure 1: Example of a solution with internal deliveries only 

 

origin	of	external	
delivery

depot
internal	delivery dedicated	route
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Figure 2: Example of a solution for the general problem  
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4. Scheduling internal deliveries  

In this section, an MIP model and a CG-based solution method are designed for the special case of the 

problem where dedicated and occasional vehicles are used to serve internal delivery tasks only. We also 

present numerical experiments aimed at demonstrating the efficiency of the proposed solution method 

and the effectiveness of the proposed model. Managerial implications are also obtained based on a 

sensitivity analysis. 

4.1 Mathematical formulation 

In this section, an MIP model is formulated for the problem. The following notation is used in the 

model.  

Indices and sets 

𝐾   set of the dedicated vehicles, indexed by 𝑘. 

𝐾′  set of the occasional vehicles, indexed by 𝑘. 

𝐷   set of the depots, indexed by 𝑑. 

N  set of the customers (and their locations) representing the internal deliveries, indexed by 𝑖 and 

𝑗.  

𝐷(   set of the depots that can meet customer 𝑖’s demand, indexed by 𝑑, 𝑑 ∈ 𝐷(. 

𝑁+   set of the customers whose demands can be met by depot 𝑑. 

𝑂   set of the departure location of the occasional vehicles.  

𝐴   set of all nodes, 𝐴 = 𝐷 ∪ 𝑁 ∪ 𝑂. 

Parameters: 

𝑞(   demand of customer 𝑖, i.e., demand associated with the internal delivery i. 

𝑡(2   travel time between customer	𝑖 and customer 𝑗. 

𝑐(2  cost for dedicated vehicle 𝑘 to travel from customer 𝑖 to customer 𝑗. 

𝑐(25   cost for occasional vehicle 𝑘 to travel from customer 𝑖 to customer 𝑗. 

𝑒7  load capacity of dedicated vehicle 𝑘. 

𝑒75   load capacity of occasional vehicle 𝑘. 

𝑜7  origin of occasional vehicle 𝑘. 

𝑑7  index of the depot to which dedicated vehicle 𝑘 belongs. 

ℎ(  latest service or delivery time of customer 𝑖. 

𝑤  unit penalty cost of delay from the latest delivery time. 

𝑀   a sufficiently large positive number. 

The mathematical formulation uses the following decision variables. 

𝛼(  binary variable, which equals one if customer 𝑖 is served by an occasional vehicle, and zero if 

customer 𝑖 is served by a dedicated vehicle. 
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𝛽(+  binary variable, which equals one if customer 𝑖’s required goods are delivered from depot 𝑑, 

and zero otherwise. The goods are delivered by either a dedicated vehicle that belongs to the 

depot 𝑑, or one of all the available occasional vehicles.  

𝛾(7  binary variable, which equals one if customer 𝑖 is served by dedicated vehicle 𝑘, and zero 

otherwise. 

𝛾(75   binary variable, which equals one if customer 𝑖 is served by occasional vehicle 𝑘, and zero 

otherwise. 

𝜑+7  binary variable, which equals one if occasional vehicle 𝑘 travels from its origin to depot 𝑑 for 

picking up a parcel, and zero otherwise. 

𝛿(27  binary variable, which equals one if dedicated vehicle 𝑘  visits node 𝑗  immediately after 

visiting node 𝑖, and zero otherwise. 𝑖, 𝑗 ∈ 𝑁 ∪ 𝐷, 𝑘 ∈ 𝐾. 

𝛿(275   binary variable, which equals one if occasional vehicle 𝑘  visits node 𝑗  immediately after 

visiting node 𝑖, and zero otherwise. 𝑖, 𝑗 ∈ 𝐴, 𝑘 ∈ 𝐾′. 

𝜇7  nonnegative variable, departure time of dedicated vehicle 𝑘 from its depot. 

𝜂7  nonnegative variable, return time of dedicated vehicle 𝑘 to its depot. 

𝜆(7  nonnegative variable, time when dedicated vehicle 𝑘 visits customer 𝑖. 

𝜆(75   nonnegative variable, time when occasional vehicle 𝑘 visits customer 𝑖. 

 

The mathematical formulation is as follows. 

Minimize 𝑐(2𝛿(27 + 𝑐(257∈F52∈G∪H(∈I7∈F2∈G∪H(∈G∪H 𝛿(275 +  

𝑤 𝜆(77∈F + 𝜆(757∈FJ − ℎ( L
(∈H    (1) 

subject to: 

𝛽(++∈GM = 1	  ∀𝑖 ∈ 𝑁  (2) 

𝛾(757∈F5 = 𝛼(   ∀𝑖 ∈ 𝑁  (3) 
𝛿PQ+7
5 + 1 ≥ 𝛾(75 + 𝛽(+ ∀𝑖 ∈ 𝑁; 𝑘 ∈ 𝐾5; 𝑑 ∈ 𝐷(; 𝑜7 ∈ 𝑂 (4) 

2 ≥ 𝛿′+272∈HU + 1 ≥ 𝛾(75 + 𝛽(+   ∀𝑖 ∈ 𝑁; 𝑘 ∈ 𝐾5; 𝑑 ∈ 𝐷(  (5) 

2 ≥ 𝛿′2(72∈+∪HU + 1 ≥ 𝛾(75 + 𝛽(+  	 ∀𝑖 ∈ 𝑁; 𝑘 ∈ 𝐾5; 𝑑 ∈ 𝐷( (6) 

𝛿′(272∈HU/( ≤ 𝛿′2(72∈G∪HU/( = 𝛾(75   ∀𝑖 ∈ 𝑁; 𝑘 ∈ 𝐾5   (7) 

𝛿PQ+7
5 = 𝛿′+272∈HU = 𝜑+7 	 ∀	𝑘 ∈ 𝐾5; 𝑑 ∈ 𝐷; 𝑜7 ∈ 𝑂	 (8) 

𝜑+7+∈G ≤ 1  	 ∀	𝑘 ∈ 𝐾5	 (9) 
𝛾(75(∈H . 𝑞( ≤ 𝑒75        	 ∀	𝑘 ∈ 𝐾5	 (10) 

𝜆(75 + 𝑡(2 ≤ 𝜆275 + 	𝑀(1 − 𝛿′(27) ∀𝑖 ∈ 𝐴; 𝑗 ∈ 𝐷 ∪ 𝑁; 𝑘 ∈ 𝐾5  (11) 

𝛾(77∈F = 1 − 𝛼(   ∀𝑖 ∈ 𝑁     (12) 
𝛿2(72∈{+Q}∪HUQ

= 𝛿(27 = 𝛾(72∈{+Q}∪HUQ
  ∀𝑖 ∈ 𝑁; 𝑘 ∈ 𝐾; 𝑑7 ∈ 𝐷(  (13) 

𝛿2+Q72∈HUQ
= 𝛿+Q272∈HUQ

≤ 1    	 ∀𝑘 ∈ 𝐾; 𝑑7 ∈ 𝐷 (14) 

𝛾(7(∈H . 𝑞( ≤ 𝑒7     ∀𝑘 ∈ 𝐾 (15) 
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Objective (1) minimizes the sum of the total travelling cost of dedicated and occasional vehicles and 

of the penalty costs associated with late deliveries. Constraints (2) state each customer’s demand must be 

satisfied by one depot, from which either a dedicated vehicle or an occasional vehicle deliver the goods 

to the customer. The following two sets of constraints are present in the model. 

Constraints on occasional vehicles. Constraints (3) connect two variables 𝛼( and 𝛾(75  that are both 

related to the occasional vehicles. Constraints (4) state that if customer 𝑖 is served by occasional vehicle 

𝑘 (i.e., 𝛾(7 = 1) and customer 𝑖’s goods are delivered from depot 𝑑 (𝛽(+ = 1), vehicle 𝑘 needs to travel 

from its origin 𝑜7 to depot 𝑑 (i.e., 𝛿PQ+7
5 = 1). Constraints (5) state that if customer 𝑖 is served by the 

occasional vehicle 𝑘  (i.e., 𝛾(75 = 1) and customer 𝑖 ’s goods are delivered from depot 𝑑  (𝛽(+ = 1), 

vehicle 𝑘 travels from depot 𝑑 to a customer 𝑗 whose required goods are also stored in depot 𝑑 (i.e., 

𝛿′+27 = 1). Constraints (6) state that if customer 𝑖  is served by occasional vehicle 𝑘  and depot 𝑑 , 

vehicle 𝑘 travels from either the depot 𝑑 or a customer 𝑗 whose required goods are also stored in depot 

𝑑 to the customer 𝑖. Constraints (7) state that if customer 𝑖 is served by the occasional vehicle 𝑘, there 

must be one predecessor, and at most one successor in its vehicle route. Constraints (8) connect two 

variables 𝛿′(27  and 𝜑+7  that are all related to the occasional vehicles. Constraints (9) state that 

occasional vehicle 𝑘 visits at most one depot for picking up a parcel. Constraints (10) ensure that the 

total loads of an occasional vehicle cannot exceed its vehicle capacity. Constraints (11) mean time flow 

constraint of occasional vehicle. These constraints impose both the capacity and the connectivity 

requirements of the solution and avoid subtours involving customers’ nodes only. 

Constraints on dedicated vehicles. Constraints (12) connect two variables 𝛼(  and 𝛾(7  that are all 

related to the dedicated vehicles. Constraints (13) state that if customer 𝑖 is served by a dedicated vehicle, 

the customer has only one predecessor and one successor, which can be either depot 𝑑 that the dedicated 

vehicle belongs to, or a customer. Constraints (14) state that a dedicated vehicle must depart from its 

depot and return to the depot (if it is used). Constraints (15) ensure that the total loads of a dedicated 

𝜇7 + 𝑡+Q( ≤ 𝜆(7 + 𝑀(1 − 𝛿+Q(7)   ∀𝑖 ∈ 𝑁; 𝑘 ∈ 𝐾; 𝑑7 ∈ 𝐷  (16) 

𝜆(7 + 𝑡(2 ≤ 𝜆27 + 𝑀(1 − 𝛿(27)    ∀	𝑖, 𝑗 ∈ 𝑁; 𝑘 ∈ 𝐾  (17) 

𝜆(7 + 𝑡(+Q ≤ 𝜂7 + 	𝑀(1 − 𝛿(+Q7) ∀𝑖 ∈ 𝑁; 𝑘 ∈ 𝐾; 𝑑7 ∈ 𝐷 (18) 

𝛼( ∈ 0,1 	 ∀𝑖 ∈ 𝑁 (19) 
𝛽(+ ∈ 0,1 	 ∀𝑖 ∈ 𝑁; 𝑑 ∈ 𝐷	 (20) 
𝛾(7 ∈ 0,1 	 ∀𝑖 ∈ 𝑁; 𝑘 ∈ 𝐾	 (21) 
𝛾(75 ∈ 0,1 	 ∀𝑖 ∈ 𝑁; 𝑘 ∈ 𝐾′	 (22) 
𝜑+7 ∈ 0,1 	 ∀𝑘 ∈ 𝐾5; 𝑑 ∈ 𝐷	 (23) 
𝛿(27 ∈ 0,1 	 ∀𝑖, 𝑗 ∈ 𝑁 ∪ 𝐷; 𝑘 ∈ 𝐾	 (24) 

𝛿′(27 ∈ 0,1 	 ∀𝑖 ∈ 𝐴; 𝑗 ∈ 𝑁 ∪ 𝐷; 𝑘 ∈ 𝐾′	 (25) 

𝜇7, 𝜂7 ≥ 0	 ∀𝑖 ∈ 𝑁; 	𝑘 ∈ 𝐾	 (26) 
𝜆(7 ≥ 0	 ∀𝑖 ∈ 𝑁; 	𝑘 ∈ 𝐾	 (27) 
𝜆(75 ≥ 0	 ∀𝑖 ∈ 𝐴; 𝑘 ∈ 𝐾′.	 (28) 
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vehicle cannot exceed its vehicle capacity. Constraints (16)~(18) are travel time conservation constraints 

of dedicated vehicles. Finally, Constraints (19)~(28) define the domains of the decision variables. 

4.2 A CG-based solution method 

Commercial solvers such as IBM-ILOG CPLEX have difficulty solving the above MIP model for 

large-scale problem instances, while CG techniques have been proven to be very effective in solving 

many large-scale problems of a difficulty no standard commercial MIP solver could cope with (Lübbecke 

and Desrosiers, 2005). In this section, we describe a CG-based algorithm to solve the problem that also 

constitutes a contribution to the literature on algorithms for solving COMMVRP variants. 

4.2.1 A set-partitioning based mathematical formulation 

In this section, we reformulate the problem as a master problem (MP) model by using Dantzig-Wolfe 

decomposition (Dantzig and Wolfe, 1960). We define 𝒫7 as the set of all feasible routes for vehicle 𝑘, 

𝑘 ∈ 𝐾 ∪ 𝐾′. A binary variable 𝑥`Q is defined for each route 𝑝7 ∈ 𝒫7, 𝑘 ∈ 𝐾 ∪ 𝐾′. If route 𝑝7 is chosen 

in solution for vehicle 𝑘, 𝑥`Q equals one, zero otherwise. A binary parameter 𝑦(,`Q is also used to denote 

whether customer 𝑖 is served by route 𝑝7. The cost for vehicle 𝑘 associated with route 𝑝7 is denoted 

by 𝐶`Q, which also includes the penalty costs of late deliveries. Based on the above definition, the set-

partitioning model is formulated as follows. 

[MP] Minimize 𝐶`Q𝑥`Q`Q∈𝒫Q7∈F∪F5             (29) 

subject to: 

𝑦(,`Q𝑥`Q`Q∈𝒫Q7∈F∪F5 = 1        ∀𝑖 ∈ 𝑁      (30) 

𝑥`Q`Q∈𝒫Q ≤ 1           ∀𝑘 ∈ 𝐾 ∪ 𝐾′     (31) 

𝑥`Q ∈ 0,1             ∀𝑘 ∈ 𝐾 ∪ 𝐾′,∀𝑝7 ∈ 𝒫7.  (32) 

Objective (29) minimizes the total costs of the routes selected in the solution. Constraints (30) 

guarantee that each customer is served once by a vehicle route. Constraints (31) state that each vehicle is 

assigned to at most one route. Constraints (32) define the domain of the decision variables.  

The above formulation cannot be solved directly due the huge number of its variables corresponding 

to the set of all feasible routes. Hence, in practice a CG procedure solves the linear programming (LP) 

relaxation of the formulation by iteratively solving a restricted master problem (LR-RMP) defined over 

a subset  𝒫75 ⊆ 𝒫7 of the whole set of routes for vehicle k. Problem LR-RMP is defined as follows. 

[LR-RMP] Minimize 𝐶`Q𝑥`Q`Q∈𝒫Q
JF∪F5             (33) 

subject to: 

𝑦(,`Q𝑥`Q`Q∈𝒫Q
J7∈F∪F5 = 1        ∀𝑖 ∈ 𝑁      (34) 

𝑥`Q`Q∈𝒫Q
J ≤ 1           ∀𝑘 ∈ 𝐾 ∪ 𝐾′     (35) 

𝑥`Q ≥ 0            ∀𝑘 ∈ 𝐾 ∪ 𝐾′,∀𝑝7 ∈ 𝒫75 .  (36) 

Following the scheme of a CG procedure, at each iteration of the algorithm the optimal dual variables 

associated with LR-RMP are given as input to the pricing problem (PP) to generate new routes. The CG 

procedure terminates whenever no negative reduced cost columns or routes are generated, and the 
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resulting LR-RMP solution corresponds to the optimal solution of the LP-relaxation of the set-partitioning 

based formulation. Otherwise, the columns identified by solving problem PP are added to problem LR-

RMP, and a new iteration is executed. The initial sets of routes {𝒫75 } must be defined to guarantee the 

existence of an initial feasible LR-RMP solution. In our implementation, the initial set of routes is 

generated by using a greedy heuristic.  

4.2.2 Pricing problem PP 

Problem PP aims to generate columns or routes having negative reduced costs, which are then added 

to problem LR-MRP in an iterative fashion. At each iteration of the CG procedure, there are |𝐾|+|𝐾′| 

number of problems to be solved. A problem PP is associated with a vehicle 𝑘 and generates a feasible 

routing plan for the vehicle. The PP models for each vehicle 𝑘 ∈ 𝐾 ∪ 𝐾′ (denoted as PPk and PPk’) are 

defined as follows. Let 𝜋(  and 𝜔7  be the dual variables associated with constraints (34) and (35), 

respectively. 

The mathematical formulations of problem PP use the following decision variables: 

𝜃(,2 binary variable, which equals one if vehicle 𝑘 ∈ 𝐾 ∪ 𝐾′ visits node	𝑗 immediately after node 

𝑖, and zero otherwise. 

𝜏( binary variable, which equals one if vehicle 𝑘 ∈ 𝐾 ∪ 𝐾′ visits customer 𝑖, and zero otherwise. 

𝜁  nonnegative variable, departure time of dedicated vehicle 𝑘 ∈ 𝐾 from its depot. 

𝜓 nonnegative variable, return time of dedicated vehicle 𝑘 ∈ 𝐾 to its depot. 

𝜌+ binary variable, which equals one if occasional vehicle 𝑘′ ∈ 𝐾′ visits the depot 𝑑, and zero 

otherwise. 

𝜉(  nonnegative variable, time when dedicated vehicle 𝑘 ∈ 𝐾 visits customer 𝑖. 

𝜉(5  nonnegative variable, time when occasional vehicle 𝑘′ ∈ 𝐾′ visits customer 𝑖. 

The mathematical formulations PPk and PPk’ are as follows. 

(1) The PP for an occasional vehicle 𝒌′ ∈ 𝑲′ 

[PPk’]  Minimize 𝜎75 = 𝐶`QJ − 𝜏(𝜋((∈H − 𝜔75           (37) 

subject to: 

 𝜃(2 ≤ 𝜃2( =2∈G∪H/(2∈H/{(} 𝜏(       ∀𝑖 ∈ 𝑁      (38) 

 𝜃PQJ+ = 𝜃+( =(∈HU 𝜌+        ∀𝑑 ∈ 𝐷      (39) 

 𝜌+ = 1+∈G                   (40) 

 𝑞(𝜏((∈H ≤ 𝑒75                 (41) 

 𝜉(5 + 𝑡(2 ≤ 𝜉25 + 	𝑀(1 − 𝜃(2)        ∀𝑖 ∈ 𝐴; 𝑗 ∈ 𝐷 ∪ 𝑁    (42) 

𝐶`QJ = 𝑐(25 𝜃(22∈G∪H(∈I + 𝑤 𝜉(5 − ℎ( L
(∈H           (43) 

𝜏( ≤ 𝜌+             ∀𝑑 ∈ 𝐷; 𝑖 ∈ 𝑁+    (44) 

 𝜏( ∈ {0,1}           ∀𝑖 ∈ 𝑁      (45) 

 𝜃(2 ∈ {0,1}           ∀𝑖 ∈ 𝐴; 𝑗 ∈ 𝑁     (46) 

 𝜌+ ∈ {0,1}           ∀𝑑 ∈ 𝐷      (47) 
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 𝜉(5 	≥ 0            ∀𝑖 ∈ 𝐴.      (48) 

Objective (37) minimizes the reduced cost. Constraints (38)~(42) correspond to Constraints (7)~(11), 

respectively. Constraints (43) represent the calculation of the cost of a column, which is the sum of the 

occasional vehicle’s delivery costs and of the penalty costs. Constraints (44) ensure that an occasional 

vehicle should go to a depot 𝑑 that contains the goods required by customer 𝑖. Constraints (45)~(48) 

define the decision variables. 

(2) The PP for a dedicated vehicle 𝒌 ∈ 𝑲 

[PPk]  Minimize 𝜎7 = 𝐶`Q − 𝜏(𝜋((∈H − 𝜔7           (49) 

subject to: 

𝜃+Q2 = 12∈HUQ
                 (50) 

 𝜃(+Q = 1(∈HUQ
                 (51) 

 𝜃(2 = 𝜃2( =2∈HUQ∪{+Q}2∈{+Q}∪HUQ
𝜏(     ∀𝑖 ∈ 𝑁      (52) 

𝑞(𝜏((∈H ≤ 𝑒7                 (53) 

 𝜁 + 𝑡+Q( ≤ 𝜉( + 𝑀(1 − 𝜃+Q()       ∀𝑖 ∈ 𝑁      (54) 

 𝜉( + 𝑡(2 ≤ 𝜉2 + 𝑀(1 − 𝜃(2)        ∀𝑖 ∈ 𝑁; 𝑗 ∈ 𝑁     (55) 

 𝜉( + 𝑡(+Q ≤ 𝜓 + 	𝑀(1 − 𝜃(+Q)        ∀𝑖 ∈ 𝑁      (56) 

𝐶`Q = 𝑐(2𝜃(22∈H∪{+Q}(∈{+Q}∪H + 𝑤 𝜉( − ℎ( L
(∈H          (57) 

 𝜏( ∈ {0,1}           ∀𝑖 ∈ 𝑁      (58) 

 𝜃(2 ∈ {0,1}           ∀𝑖, 𝑗 ∈ 𝑁      (59) 

 𝜁, 𝜉(, 𝜓 ≥ 0           ∀𝑖 ∈ 𝑁.      (60) 

Objective (49) minimizes the reduced cost. Constraints (50)~(56) correspond to Constraints (12)~(18), 

respectively. Constraint (57) represents the calculation of the cost of a column. Constraints (58)~(60) 

define the domain of the decision variables. 

4.2.4 A column generation-based heuristic  

The optimal solution cost of formulation LR-RMP, computed as described in the previous section using 

the column generation method, provides a valid lower bound on the optimal solution cost of the problem. 

If the LR-RMP solution is also an integer solution, then the solution represents the optimal solution of 

the problem. Generally speaking, for difficult instances of the problem, the optimal solution of LR-RMP 

is generally fractional, i.e., some of the variables 𝑥`Q are selected in solution with fractional values in 

the interval (0,1). To produce an integer (and feasible) solution to the problem, we design a variable-

fixing algorithm based on the procedure proposed by Wang et al. (2018), which consists in heuristically 

fixing the value of selected 𝑥`Q variables to 1. The heuristic works as follows.  

We use two resources, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟(		for all 𝑖 ∈ 𝑁 (customer resource) and 𝑣𝑒ℎ𝑖𝑐𝑙𝑒7	 for all 𝑘 ∈ 𝐾 ∪

𝐾′ (vehicle resource), that are associated with the right-hand sides of constraints (34) and (35) in problem 

LR-RMP, respectively. A resource equal to 0 means that the corresponding constraint is no longer active 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 13 

or, in other words, that a customer has been already served or that a vehicle has been already used in the 

solution. Hence, after fixing the resources we obtain a new LR-RMP problem that can be used to generate 

new columns considering the new dual values in the pricing problem. At each iteration of the algorithm, 

set 𝛺 is used to represent the set of routes selected in the partial solution, while at the end of the algorithm 

the set contains the routes selected in solution. In this context, the solution approach consists of the 

following steps. 

Step 0. Initialize the resources 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟(	 = 1	for all 𝑖 ∈ 𝑁, and 𝑣𝑒ℎ𝑖𝑐𝑙𝑒7	 = 1 for all 𝑘 ∈ 𝐾 ∪ 𝐾′. 

Initialize the set 𝛺 as the empty set. 

Step 1. Solve problem LR-RMP in a column generation fashion, where the right-hand sides of 

constraint (34) and (35) are defined according to the values of the resources. Let 𝒫 be the set of routes 

selected in the optimal LR-RMP solution, i.e., the set of routes such that the corresponding variables 𝑥`Q 

are nonnegative. 

Step 2. Select from set 𝒫 all those variables or routes that are equal to 1, plus the fractional variable 

of highest value; in case of ties, the variable having the lower cost 𝐶`Q is selected. Update set 𝛺 with 

the selected routes. 

Step 3. Update the resources based on the set of routes 𝒫, i.e., all resources corresponding to customers 

served and to vehicles used in the routes of set 𝒫 are set equal to 0.  

Step 4. If 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟(	 = 0	 for all 𝑖 ∈ 𝑁 , then terminate the algorithm and an integer solution 

represented by the routes in set 𝛺 has been computed. Otherwise, go to Step 1. 

The above procedure can always find a feasible solution if each customer can be served by at least a 

single vehicle route and the number of vehicles available is sufficiently large. 

The flowchart of the CG-based solution method is shown in Figure 3. 

 
Figure 3: Flowchart of the CG-based solution method  
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4.3 Computational study 

In this section, we present numerical experiments to validate the efficiency of the proposed solution 

method and the effectiveness of the proposed model. Experiments were conducted on a computer 

equipped with an Intel(R) Core (TM) i7-8565U CPU, 1.8 GHz processing speed, and 20 GB of memory. 

The algorithm was implemented in C# (Visual Studio 2019), and the general-purpose MIP solver IBM-

ILOG CPLEX version 12.6.1 was used to solve the LR-RMP and the PP models. 

4.3.1 Test instances 

We use seven randomly generated instance groups (ISGs) to investigate the performance of the 

algorithm and to conduct a sensitivity analysis. The dimensions of the seven ISGs are shown in Table 1. 

In addition, the dedicated vehicles’ capacity is set equal to 7 whereas the occasional vehicles’ capacity 

ranges in the interval [5,8]. The demand of customers ranges in the interval [1,2]. The unit penalty cost 

of delay from the latest delivery time is set equal to 1. The latest service or delivery time of customers 

ranges in the interval [0.5,6.5]. 

Table 1: Data of the test instances 

 
depot  
𝐷  

dedicated vehicle 
 𝐾  

occasional vehicle 
 𝐾′  

total number of 
vehicles 𝐾 +

𝐾′  

customer 
points 
𝑁  

ISG1 2 4 2 6 12 
ISG2 3 4 3 7 15 
ISG3 3 6 2 8 18 
ISG4 3 6 4 10 24 
ISG5 4 8 3 11 30 
ISG6 4 8 5 13 42 
ISG7 4 8 6 14 60 

 

4.3.2 Evaluating the efficiency of the CG based solution method 

To evaluate the performance of the CG-based solution method, we compare the results obtained by the 

CG method with the results obtained by CPLEX on the small-scale instance groups ISG1, ISG2, and 

ISG3. The results are given in Table 2. The table shows that CPLEX failed to solve some instances of 

group ISG3 within two hours of computing time. Further, the table shows that for the instances that were 

solved by CPLEX, CG performs quite well, with an average gap value equal to 0.53%, as shown by the 

column “Gap” under the CG section of Table 2.  

4.3.3 Evaluating the effectiveness of the proposed model 

To further evaluate the effectiveness of the proposed model, we compare the results obtained by solving 

our model and the results obtained by some intuitive but practical decision rules. The comparative 

experiments are conducted for the medium-scale groups ISG4, ISG5, ISG6, and ISG7. The details of the 

decision rule used in these comparative experiments are as follows. 

Decision makers in a real-world environment may not be familiar with the methodology of 

mathematical programming and make their decisions based on some quality rules. They may select the 
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vehicles one by one according to some basic rule or order. In this study, two types of order are considered: 

the “capacity-cost” order and the “cost-capacity” order. 

Table 2: Comparison between CPLEX and CG on small-sized instances 

Instances CPLEX CG 
Gap 

Group number 𝐹x`yz{ 𝑡x`yz{(s) 𝐹x|  𝑡x|(s)  

ISG1 

1 15.65  7 15.65  11 0.00% 
2 19.58  2 19.58  15 0.00% 
3 15.82  8 15.98  12 1.01% 
4 13.06  7 13.31  13 1.91% 
5 13.63  6 13.81  9 1.32% 
6 17.28  12 17.28  13 0.00% 
7 20.20  10 20.28  15 0.40% 
8 15.75  6 15.88  14 0.83% 

ISG2 

9 21.10  674 21.23  23 0.62% 
10 18.51  90 18.53  20 0.11% 
11 20.78  634 20.78  21 0.00% 
12 17.36  409 17.36  33 0.00% 
13 18.46  615 18.46  31 0.00% 
14 17.20  284 17.28  22 0.47% 
15 19.03  272 19.03  21 0.00% 
16 19.44  87 19.44  28 0.00% 

ISG3 

17 19.97  5663 23.83  40 2.30% 
18 —— —— 24.69  41 —— 
19 —— —— 22.79  34 —— 
20 —— —— 23.83  40 —— 

Average      0.53% 
Notes: 𝐹x`yz{,	𝐹x|  represent the solution costs computed by CPLEX and CG, respectively; 𝑡x`yz{, 𝑡x|  
represent the computation time of CPLEX and CG, respectively. “Gap” is the percentage gap between 
the optimal solution obtained by CPLEX and the solution obtained by the CG method. 
 

In the “capacity-cost” order, vehicles are sorted according to decreasing values of vehicle capacity, and 

ties are broken by selecting the vehicle with the lower transportation cost. The “cost-capacity” order 

adopts a similar rule, but the transportation costs are used as the first criterion, and vehicle capacity as 

the second. Customers are assigned to vehicles using a greedy heuristic following a nearest-insertion rule. 

For a problem instance, we select the rule resulting in the lower value of the objective function. Table 3 

reports the results of a comparison between the two rules and the CG method. It clearly shows that the 

CG method can achieve significant cost savings with respect to quality rules (on average about 52%). 

This significant gap demonstrates the advantage of the operations research (OR) methodology in the 

context of this problem.  

For the medium-scale instances, Table 3 shows that the CG method can solve these instances within 

two hours of computing time, thus being very effective in comparison with the results of commercial 

solvers such as CPLEX.   
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Table 3: Comparison between the rule-based approach and CG on medium-sized instances 

Instances Model Rule 
Gap 

Group number 𝐹x|  𝑡x|(s) 𝐹G} 

ISG4 

1 25.65 119 37.96 47.99% 
2 25.53 150 36.66 43.60% 
3 25.86 156 46.22 78.73% 
4 27.52 147 37.42 35.97% 

ISG5 

5 38.22 261 51.99 36.03% 
6 31.09 212 56.42 81.47% 
7 36.43 191 56.50 55.09% 
8 29.95 272 48.10 60.60% 

ISG6 

9 41.87 786 66.39 58.56% 
10 39.98 848 59.56 48.97% 
11 37.05 1053 61.50 65.99% 
12 44.01 843 68.92 56.60% 

ISG7 

13 59.50 5247 81.77 37.43% 
14 58.44 5681 89.10 52.46% 
15 55.04 4667 86.29 56.78% 
16 65.71 4898 79.47 20.94% 

Average     52.33% 
Notes: 𝐹G}, 𝐹x|  represent the objective values obtained by the decision rules (DR) and method CG, 
respectively; 𝑡x|  gives the computation time of CG. “Gap” reports percentage gap between the decision 
rules and CG. 

5. Scheduling internal and external deliveries  

As mentioned in the introduction, an e-commerce logistics service platform may not only serve the 

deliveries of its parent company (the e-commerce retailer), but also perform deliveries for local small 

businesses that cannot maintain their own logistics network (external deliveries), such as flower shops, 

gift shops, and take-out restaurants. In this section, we extend the models and the solution approach 

described for the special case of internal delivery only to the more general case where both internal and 

external deliveries are considered. We also present numerical experiments to validate the extended model 

and solution method. 

5.1 A mathematical formulation for the general case 

In this section, we revise the mathematical formulation introduced in Section 4 for the internal 

deliveries case to include the external deliveries. We rewrite the objective function of the problem to add 

a term that considers the benefits of fulfilling external deliveries as part of a solution. 

The following notation is used in addition to the notation already introduced in Section 4: 

𝐿  set of the external delivery tasks, indexed by 𝑙. 

𝑔y, 𝑔y index of origin and destination of the external delivery task 𝑙. 

𝐺′  set of all origins of the external delivery tasks; 𝐺′ = {𝑔y|𝑙 ∈ 𝐿}. 

𝐺′′  set of all destinations of the external delivery tasks; 𝐺′′ = {𝑔y|𝑙 ∈ 𝐿}. 
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𝐺  set of all origins and destinations of the external delivery tasks; 𝐺 = {𝑔y, 𝑔y|𝑙 ∈ 𝐿}. 

𝐴  set of all nodes, 𝐴 = 𝐷 ∪ 𝑁 ∪ 𝑂 ∪ 𝐺. 

𝑝y demand of external delivery task 𝑙. 

𝑣y revenue for fulfilling the external delivery task 𝑙. 

The new mathematical formulation uses, in addition to the decision variables introduced in Section 4, 

a binary variable 𝜙y that is equal to one if external delivery task 𝑙 is undertaken, zero otherwise. The 

new mathematical formulation is as follows. 

The objective function (1) is revised as objective (61) by considering the revenue earned by undertaking 

external deliver tasks, i.e., 𝑣y	𝜙yy∈� . 

Minimize 𝑐(2𝛿(27 + 𝑐(257∈F52∈G∪H∪|(∈I7∈F2∈G∪H∪|(∈G∪H∪| 𝛿(275 +    

     𝑤 𝜆(77∈F + 𝜆(757∈FJ − ℎ( L
(∈H∪|55 − 𝑣y𝜙yy∈�          (61) 

Constraints (4), (10), and (15) are revised as constraints (62), (63), and (64), respectively. 

2 ≥ 𝛿PQ27
5

2∈{+}∪|J + 1 ≥ 𝛾(75 + 𝛽(+      ∀𝑖 ∈ 𝑁; 𝑘 ∈ 𝐾5; 𝑑 ∈ 𝐷(; 𝑜7 ∈ 𝑂   (62) 

𝛾(75(∈H . 𝑞( + 𝛾��7
5

��∈|JJy∈� . 𝑝y ≤ 𝑒75      ∀	𝑘 ∈ 𝐾5        (63) 

𝛾(7(∈H . 𝑞( + 𝛾��7��∈|JJ . 𝑝yy∈� ≤ 𝑒7     ∀𝑘 ∈ 𝐾.        (64) 

Further, in order to consider the external deliveries, in constraints (5)~(8), (11), (13), (14) and (25), the 

set to which the index 𝑗 belongs is extended to include set 𝐺; also in constraints (21)~(22), and (27), the 

set to which the index 𝑖 belongs is extended to include set 𝐺; in constraints (16), the set to which the 

index 𝑖 belongs is extended to include set 𝐺′; in constraints (17) and (24), the set to which the index 𝑖 

and 𝑗 belong is extended with set 𝐺; in constraints (18), the set to which the index 𝑖 belongs is extended 

with set 𝐺′′. Besides the above modification on constraints, the following new constraints are considered. 

𝛿52+72∈ PQ ∪| = 𝛿′+272∈HU∪|          	∀𝑘 ∈ 𝐾5; 𝑑 ∈ 𝐷      (65) 

𝛿��27
5

2∈G∪H∪| = 𝛿′2��72∈{PQ}∪G∪H∪|/{��} = 𝛾��7
5     ∀𝑙 ∈ 𝐿; 𝑔y ∈ 𝐺5; 𝑘 ∈ 𝐾5; 𝑜7 ∈ 𝑂   (66) 

𝛿��27
5

2∈G∪H∪|/{��} ≤ 𝛿′2��72∈G∪H∪| = 𝛾��7
5     ∀𝑙 ∈ 𝐿; 𝑔y ∈ 𝐺55; 𝑘 ∈ 𝐾5    (67) 

𝛾��7
5 = 𝛾��7

5            ∀𝑙 ∈ 𝐿; 𝑔y ∈ 𝐺5; 𝑔y ∈ 𝐺55; 𝑘 ∈ 𝐾5   (68) 

𝜆��7
5 ≤ 𝜆��7

5            ∀𝑙 ∈ 𝐿; 𝑔y ∈ 𝐺′; 𝑔y ∈ 𝐺55; 𝑘 ∈ 𝐾′   (69) 

𝛿2��72∈{+Q}∪HUQ∪|/{��}
= 𝛿��27 = 𝛾��72∈HUQ∪|

   ∀𝑙 ∈ 𝐿; 𝑔y ∈ 𝐺′; 𝑘 ∈ 𝐾; 𝑑7 ∈ 𝐷   (70) 

𝛿2��72∈HUQ∪|
= 𝛿��27 = 𝛾��72∈{+Q}∪HUQ∪|/{��}

   ∀𝑙 ∈ 𝐿; 𝑔y ∈ 𝐺55; 𝑘 ∈ 𝐾; 𝑑7 ∈ 𝐷   (71) 

𝛾��7 = 𝛾��7           ∀𝑙 ∈ 𝐿; 𝑔y ∈ 𝐺′; 𝑔y ∈ 𝐺55; 𝑘 ∈ 𝐾   (72) 

𝜆��7 ≤ 𝜆��7           ∀𝑙 ∈ 𝐿; 𝑔y ∈ 𝐺′; 𝑔y ∈ 𝐺55; 𝑘 ∈ 𝐾   (73) 

𝜙y = 𝛾��7
5

7∈FJ + 𝛾��77∈F         ∀𝑙 ∈ 𝐿; 𝑔y ∈ 𝐺55      (74) 

Constraints (65) state that if depot 𝑑 is visited by occasional vehicle 𝑘, there must be one predecessor 

and one successor. Constraints (66) ensure that if the origin of the external delivery task 𝑔y is served by 

occasional vehicle 𝑘, there must be one predecessor, and one successor; similar constraints are imposed 

for the destination of the external delivery task 𝑔y by constraints (67). Constraints (68) state that if the 
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destination of the external delivery task 𝑔y is served by occasional vehicle 𝑘, the origin of this external 

delivery task 𝑔y must be served by vehicle 𝑘. Constraints (69) ensure that occasional vehicle 𝑘 must 

travel to the origin of the external delivery task 𝑔y	to pick up the goods before it visits the destination  𝑔y 

of the external delivery task. Constraints (70) guarantee that if the origin of the external delivery task 𝑔y 

is served by dedicated vehicle 𝑘, there must be one predecessor, and one successor; similarly, constraints 

(71) are set for the destination of the external delivery task 𝑔y. Constraints (72) state that if the destination 

of the external delivery task 𝑔y is served by dedicated vehicle 𝑘, the origin of this external delivery task 

𝑔y must be served by vehicle 𝑘. Constraints (73) ensure that dedicated vehicle 𝑘 must travel to the origin 

of the external delivery task 𝑔y	to pick up goods before it visits the destination of this external delivery 

task 𝑔y. Constraints (74) link constraints among variables 𝛾(7, 𝛾(75  and 𝜙y. 

5.2 Extending the CG-based solution method to the general case 

In this section, we describe the changes required to the CG-based solution to handle the general case 

where both internal and externa deliveries are considered. Below, we summarize the list of changes of 

the LR-RMP and the pricing problem.  

(i) The following constraints (75) are added to the LR-RMP: 

𝑦��,`Q𝑥`Q`Q∈𝒫Q
J7∈F∪F5 ≤ 1      ∀𝑙 ∈ 𝐿; 𝑔y ∈ 𝐺′′       (75) 

(ii) For the pricing problem PPk’, the objective function (37) is replaced by the following objective: 

Minimize 𝜎75 = 𝐶`QJ − 𝜏(𝜋((∈H∪|55 − 𝜔75             (76) 

Further, constraints (41) and (43) are revised as constraints (77) and (78), respectively: 

𝑞(𝜏( +(∈H 𝑝y𝜏����∈|55y∈� ≤ 𝑒75               (77) 

𝐶`QJ = 𝑐(25 𝜃(22∈G∪H∪|(∈I − 𝑣y𝜏��y∈� + 𝑤 𝜉(5 − ℎ( L
(∈H∪|55          (78) 

For constraints (38)~(39), (42), and (46), the set to which the index 𝑗 belongs is extended to include 

set 𝐺; constraints (45) are revised similarly. Handling external deliveries into the model also require the 

following new constraints: 

𝜃��2 ≤ 𝜃2�� =2∈{PQJ}∪G∪H∪|/{��}2∈G∪H∪| 𝜏��  ∀𝑙 ∈ 𝐿; 𝑔y ∈ 𝐺′       (79) 

𝜃��2 ≤ 𝜃2�� =2∈G∪H∪|2∈G∪H∪|/{��} 𝜏��   ∀𝑙 ∈ 𝐿; 𝑔y ∈ 𝐺′′       (80) 

𝜏�� = 𝜏��          ∀𝑙 ∈ 𝐿; 𝑔y ∈ 𝐺5; 𝑔y ∈ 𝐺′′     (81) 

𝜉��
5 ≤ 𝜉��

5           ∀𝑙 ∈ 𝐿; 𝑔y ∈ 𝐺′; 𝑔y ∈ 𝐺55     (82) 

𝜉+5 ≤ 𝜉(5          ∀𝑑 ∈ 𝐷; ∀𝑖 ∈ 𝑁       (83) 

𝜃PQJ2 =2∈G∪|5 1.                  (84) 

Constraints (79)~(82) correspond to constraints (66)~(69), respectively. Constraints (83) guarantee that 

occasional vehicle 𝑘 must travel to depot 𝑑	to pick up goods before it visits the customers. Constraints 

(84) ensure that the occasional vehicle must travel from its origin if the vehicle is used in solution. 

(iii) For the pricing problem PPk, objective (49) is revised as follows: 

Minimize 𝜎7 = 𝐶`Q − 𝜏(𝜋((∈H∪|55 − 𝜔7.             (85) 

In addition, constraints (53) and (55) are revised as: 
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𝑞(𝜏((∈H + 𝑝y𝜏����∈|JJy∈� ≤ 𝑒7              (86) 

𝐶`Q = 𝑐(2𝜃(22∈{+Q}∪H∪|(∈{+Q}∪H∪| − 𝑣y𝜏��y∈� + 𝑤 𝜉( − ℎ( L
(∈H∪|55        (87) 

Further, constraints (50)~(52), (55), and (58)~(60) are extended to include set 𝐺, and constraints (54) 

and (56) are also extended to include sets 𝐺′ and 𝐺′′. Besides, the following new constraints are added 

to the model: 

𝜃��2 = 𝜃2�� =2∈{+Q}∪HUQ∪|/{��}2∈HUQ∪|
𝜏��  ∀𝑙 ∈ 𝐿; 𝑔y ∈ 𝐺′       (88) 

𝜃��2 = 𝜃2�� =2∈HUQ∪|2∈{+Q}∪HUQ∪|/{��}
𝜏��  ∀𝑙 ∈ 𝐿; 𝑔y ∈ 𝐺′′       (89) 

𝜏��=𝜏��          ∀𝑙 ∈ 𝐿; 𝑔y ∈ 𝐺′; 𝑔y ∈ 𝐺′′      (90) 

𝜉�� ≤ 𝜉��          ∀𝑙 ∈ 𝐿; 𝑔y ∈ 𝐺′; 𝑔y ∈ 𝐺55.     (91) 

Constraints (88)~(91) correspond to constraints (70)~(73), respectively. 

5.3 Computational study 

5.3.1 Test instances 

In this section, we report a computational study on a new group of four instances that also include 

external deliveries. Table 4 gives the details of the new group of instances. The aim of this section is to 

compare CPLEX and the rule-based approaches with the CG-based method on small and medium-size 

instances. In Section 6, we further extend this computational study by addressing large-scale instances 

involving up to 200 internal and 40 external deliveries. 

Table 4: Data of the test instances 

 
depot 

numbers 
𝐷  

dedicated 
vehicle 

numbers 𝐾  

occasional 
vehicle numbers 

𝐾′  

total vehicle 
numbers
𝐾 + 𝐾′  

customer 
points 
𝑁  

external 
delivery 
tasks 𝐿  

ISG8 2 2 2 4 10 2 

ISG9 2 4 2 6 12 2 

ISG10 3 6 2 8 18 4 

ISG11 3 6 4 10 24 5 

 

The results of the comparison with CPLEX are reported in Table 5. The table shows that high-quality 

solutions can be produced by the CG method, as shown by the average optimality gap of CG (0.11%). 

Further, all the instances of ISG9 are solved by CG in a small fraction of the computing time of CPLEX. 

To further attest the quality of the CG method, we compare it with a rule-based method like the one 

described in Section 4.3.3, where external tasks are considered together with internal tasks, but with a 

lower priority. Table 6 summarizes the comparison. The table shows that the average gap is equal to 

158.79%, thus showing the difficulty of these problems, and the importance of addressing them with 

mathematical tools such as the method proposed in this work. 
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Table 5: Comparison between CG and with CPLEX on small-sized instances 

Instances CPLEX CG 
Gap 

Scale index 𝐹x`yz{ 𝑡x`yz{(s) 𝐹x|  𝑡x|(s) 

ISG8 

1 6.04  6 6.04  10 0.00% 
2 11.51  2 11.51  14 0.00% 
3 8.71  7 8.71  18 0.00% 
4 13.73  12 13.74  10 0.07% 
5 11.27  8 11.36  9 0.80% 

ISG9 

6 20.03  1498 20.03  33 0.00% 
7 9.57  224 9.59  25 0.21% 
8 9.04  340 9.04  21 0.00% 
9 7.65  374 7.65  24 0.00% 

10 12.75  490 12.75  20 0.00% 
Average      0.11% 

Notes: 𝐹x`yz{,	𝐹x|  represent the solution costs obtained by CPLEX, and CG, respectively. 𝑡x`yz{, 𝑡x|  
are the computation times in seconds of CPLEX and CG, respectively. “Gap” is the optimality gap 
between the solution obtained by CPLEX and the solution obtained by the CG method. 
 

Table 6: Comparison between CG and the rule-based approach on medium-sized instances 

Instances Model Rule 
Gap 

scale index 𝐹x|  𝑡x|(s) 𝐹G} 

ISG10 

1 16.22 118 34.89  115.10% 
2 12.22 143 32.83  168.66% 
3 16.78 159 34.10  103.22% 
4 17.48 130 37.36  113.73% 
5 10.29 138  30.50  196.40% 

ISG11 

6 14.85 323  40.34  171.65% 
7 16.89 417  41.21  143.99% 
8 18.17 593  48.86  168.90% 
9 14.25 1162  40.66  185.33% 

10 17.60 572  56.48  220.91% 
Average     158.79% 

Notes: 𝐹G} , 𝐹x|  represent the solution costs obtained by decision rule (DR) and by method CG, 
respectively; 𝑡x|  represents the computation time in seconds of CG. “Gap” gives the percentage gap 
between the decision rule and the model solved by the CG. 
 

5.3.2 Sensitivity analysis 

(1) Sensitivity analysis on the total number of vehicles 

The first series of experiments is a sensitivity analysis of the total number of vehicles, which assumes 

a fixed ratio of 2:1 between the numbers of dedicated and occasional vehicles. The results are summarized 

in Figure 4 for the same instance used in the previous experiments. The x-axis denotes the total number 

of vehicles. From the two charts in Figure 4, we can see that the larger the total number of vehicles, the 

lower the total cost, no matter the value of the vehicles’ unit transportation cost (i.e., 𝑐(2 and 𝑐(25 ). 
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Dedicated vehicles’s cost is higher than occassional vehicles (𝑐(2 > 𝑐(25 )    Dedicated vehicles’s cost is lower than occassional vehicles (𝑐(2 < 𝑐(25 ) 

Figure 4: Sensitivity analysis of the total number of vehicles 

(2) Sensitivity analysis of the number of depots 

The second series of experiments is a sensitivity analysis of the number of depots given the number of 

dedicated vehicles, occasional vehicles, and customers. For the case “𝑐(2 > 𝑐(25 ”, the numbers of dedicated 

vehicles, occasional vehicles, customers and the external delivery tasks are 6, 2, 18 and 4, respectively; 

while for the case “𝑐(2 < 𝑐(25 ”, the numbers are 6, 4, 24 and 5. The results obtained are shown in Figure 5. 

The results show that the larger the number of depots is, the lower the total cost is no matter which type 

of vehicles’ unit transportation cost (i.e., 𝑐(2 and 𝑐(25 ) is adopted. If more depots are available, then there 

is a higher chance to assign the dedicated vehicles to reduce the total cost for fulfilling the customers’ 

orders.  

 
Dedicated vehicles’s cost is higher than occassional vehicles (𝑐(2 > 𝑐(25 )    Dedicated vehicles’s cost is lower than occassional vehicles (𝑐(2 < 𝑐(25 ) 

Figure 5: Sensitivity analysis of the number of depots 

(3) Sensitivity analysis of the regions of customers and the depots 

The third series of experiments is a sensitivity analysis of the size of regions where the customers and 

depots are distributed. The experiments are based on the instance group ISG 11, i.e., three depots, six 

dedicated vehicles, four occasional vehicles, 24 customers and 5 external delivery tasks. By following 

the experimental setting in the study of Bertsimas et al. (2019), we assume that the 24 customers and 5 

external delivery tasks are uniformly distributed in a circle with radius 𝑟� and the three depots are evenly 

located in a circle with radius 𝑟�, both centred at the same location. 
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The left part of Figure 6 shows the results with different 𝑟� values given 𝑟� of five; while the right 

part of Figure 6 shows the results under different 𝑟� values given 𝑟� of three. The results show that given 

a value of a radius, there is a value for the other type of radius that minimizes the total cost. This result 

attests the importance of determining these radius (or planning these regions’ sizes in reality) and can be 

potentially useful for managers in many ways.  

 
Figure 6: Sensitivity analysis of regions of the customers and the depots 

(4) Sensitivity analysis of distance between regions of customers and depots 

The fourth series of experiments is a sensitivity analysis of the distance between the previous 

mentioned two regions assuming that the two circles are centred at different locations. The results 

obtained are shown in Figure 7. More specifically, the x-axis denotes the distance between the center of 

the circle of radius 𝑟� on which the three depots are located and the center of the circle of radius 𝑟� in 

which 24 customers and 5 external delivery tasks are distributed. In the experiments, the first circle’s 

radius is four and the second circle’s radius is five. The blue bars in Figure 7 demonstrates the increasing 

trend of the final cost for increasing distances. The orange curve in Figure 7 shows that the instances are 

more difficult to solve, as testified by the increase in the computation time of method CG. 

 
Figure 7: Sensitivity analysis of distance between regions of customers and depots 

(5) Sensitivity analysis of the homogenous degree of depots 

The last series of experiments is a sensitivity analysis of the percentage of depots that can meet the 

customer’s demands. Figure 8 illustrates the results for the two series of experiments, both of which are 

based on the instances with four depots. More precisely, we consider different configurations of the depots, 
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and we compute for each customer the number of depots that can be used to serve the customer, and the 

corresponding average value. In the figure, values “1/4, 2/4, 3/4, and 1” on the x-axis denote the different 

depot configurations, where value x/4 means that on average x depots can be used (over the four depots) 

to serve a customer. The case with the percentage “1” means that the depots are homogenous or identical. 

As expected, the results show that the cost decreases for increasing values of degree of homogeneity of 

the depots. Indeed, when a logistics company (or retailer) deploys comprehensive goods in all the depots 

or even makes all the depots storing all the types of goods, there are benefits in term of cost reduction. 

On the other side, this can increase the running cost associated with the depots. 

Figure 8 also shows that a trade-off exists between the degree of homogeneity of the depots and the 

last-mile delivery activities. 

  
4 depots, 6 and 2 dedicated and occasional vehicles, 18 customers, 

4 external delivery tasks 
4 depots, 6 and 5 dedicated and occasional vehicles, 24 customers, 

5 external delivery tasks 
Figure 8: Sensitivity analysis of percentage of depots that can meet each customer’s demand 

6. Solving large-scale real-world instances 

In this section, we show the effectiveness of the CG method in solving large-scale real-world instances 

provided by a prominent e-commerce logistics platform, JD Logistics. The data of the instances come 

from China’s largest district, Pudong district in Shanghai city, which has a territory of about 1210 km2 

and a population of 5.5 million. In this district, JD Logistics has established 20 primary depots (also called 

stations). Figure 9 depicts the locations of the depots, which are marked with black squares in the figure. 

The real instances considered in our experiments involve 200 internal deliveries, 40 external deliveries, 

and 30 occasional vehicles. Figure 9 also depicts the different locations; the data of the instance are 

summarized in Table 7. 

Table 7: Instance data for the real case of JD Logistics in Shanghai Pudong district 

 
depot 

numbers 
𝐷  

dedicated 
vehicle 

numbers 𝐾  

occasional 
vehicle numbers 

𝐾′  

total vehicle 
numbers
𝐾 + 𝐾′  

customer 
points 
𝑁  

external 
delivery 
tasks 𝐿  

ISG12 20 40 30 70 200 40 
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It is time-consuming to solve the pricing problem for this kind of large-sized instance using a general-

purpose solver like CPLEX (as in our previous experiments). Hence, we designed a new, more efficient 

algorithm to solve the pricing problem of the CG method based on a Particle Swarm Optimization (PSO) 

algorithm (Sanchez et al., 2017). PSO has proven to be very effective in solving hard combinatorial 

optimization problems such as this. To conserve space, we do not report the PSO used in our experiments 

in detail. Clearly, the PSO algorithm does not guarantee the optimality of the solutions of the pricing 

problem, and therefore the resulting solution cost of LR-RMP is no more than a valid lower bound on the 

optimal solution cost of the problem.   

 
Figure 9: Layout of the real instance of JD Logistics in Shanghai Pudong district 

Table 8 summarizes the results obtained using the CG method with the PSO algorithm for the pricing 

problem (denoted as CG-PSO) for the real instances of JD Logistics. 

Table 8: Results of method CG-PSO on real-world instances of JD Logistics 

Instances Model Rule 
Gap 

scale index 𝐹x|  𝑡x|(s) 𝐹G} 

ISG12 

1 40.83  1733 130.08  218.59% 
2 44.89  7015 144.55  222.01% 
3 57.12  2870 160.41  180.83% 
4 44.80  2229 129.36  188.75% 
5 56.51  2526  142.72  152.56% 

Average     192.55% 
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In Table 8, we compare CG-PSO with the rule-based approach introduced in the previous sections, as 

a way of comparing a qualitative approach versus the quantitative approach provided by the CG method. 

The results show that CG-PSO can bring significant savings, as testified by the average gap of 193%. 

Given the difficulty of the instances, the computing time of method CG-PSO increases, but it remains 

acceptable and thus is usable in practice. 

7. Conclusions and future research 

In this paper, we investigate a vehicle routing problem that arises in the e-commerce context when a 

mixed fleet of dedicated and occasional vehicles must be routed to serve a set of heterogeneous orders 

composed of internal and external deliveries. We describe new mixed-integer programming models for 

the problem together with a column generation–based heuristic, denoted as CG. The models and CG-

based method were validated through an extensive computational study that also included results for real-

world instances. The study makes four main contributions: 

1) The problem addressed in this paper constitutes a new variant with respect to the existing literature 

on vehicle routing problems, which is more realistic in the context of the e-commerce logistics 

industry adopting the crowdsourced delivery model and serving both internal and external deliveries.  

2) The numerical experiments showed that the proposed CG method can reach, on average, an 

optimality gap of 0.11% in a limited amount of computing time. The effectiveness of the CG method 

is also validated by significant cost savings in comparison with two common intuitive decision rules. 

3) The sensitivity analysis reported in the paper indicates useful managerial implications. In particular, 

the analysis shows that trade-offs exist in the composition of the vehicle fleet and in the definition of 

the degree of homogeneity of the depots and last-mile delivery activities. 

4) The CG method was also used to solve a large-scale real-world problem provided by a leading e-

commerce logistics platform (JD Logistics) involving 20 depots, 200 internal customers, 40 external 

tasks, and 70 vehicles. The results obtained shows that the CG method brings significant benefits in 

comparison with intuitive decision rules. Furthermore, it produces high-quality solutions in less than 

one hour of computing time, a level of computational efficiency that means it is of practical use. 

We did not consider the behavioral factors of occasional drivers or pricing decisions, topics that have 

been considered by some studies of shared mobility studies (Qi et al., 2018). Further, the uncertainty of 

the actual travelling time between each link is also important in practice (Laporte et al., 1992). These 

topics, together with extensions of our algorithms to a larger scope of applications, will be the subject of 

our future work. 
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