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Abstract

Forecast combinations have been widely applied in the last few decades to improve forecasting.

Estimating optimal weights that can outperform simple averages is not always an easy task.

In recent years, the idea of using time series features for forecast combination has flourished.

Although this idea has been proved to be beneficial in several forecasting competitions, it may

not be practical in many situations. For example, the task of selecting appropriate features to

build forecasting models is often challenging. Even if there was an acceptable way to define

the features, existing features are estimated based on the historical patterns, which are likely

to change in the future. Other times, the estimation of the features is infeasible due to limited

historical data. In this work, we suggest a change of focus from the historical data to the pro-

duced forecasts to extract features. We use out-of-sample forecasts to obtain weights for forecast

combinations by amplifying the diversity of the pool of methods being combined. A rich set of

time series is used to evaluate the performance of the proposed method. Experimental results

show that our diversity-based forecast combination framework not only simplifies the modelling

process but also achieves superior forecasting performance in terms of both point forecasts and

prediction intervals. The value of our proposition lies on its simplicity, transparency, and com-

putational efficiency, elements that are important from both an optimisation and a decision

analysis perspective.
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1. Introduction

Many real-world problems are too complex for a single model that assumes a specific data

generation process. Dating back to 1818, Laplace stated that “In combining the results of

these two methods, one can obtain a result whose probability law of error will be more rapidly

decreasing” (Clemen, 1989). The literature shows that model combinations improve overall

performance in a variety of research areas, such as regression (e.g., Mendes-Moreira et al.,

2012), classification (e.g., Rokach, 2010), anomaly detection (e.g., Perdisci et al., 2006), and time

series forecasting (e.g., De Menezes et al., 2000). A recent overview of forecast combinations is

provided in Section 2.5 of the encyclopedic review article by Petropoulos et al. (2021).

The motivation for forecast combinations has focused on finding the optimal weights of

combining different forecasts, which are values at certain specific future times based on multiple

forecasting methods. The seminal work of Bates and Granger (1969) in the area of combining

forecasts suggests that forecast combinations can improve forecasting accuracy, provided that

the sets of forecasts contain some independent information. The usefulness of forecast combi-

nations has been demonstrated since then by numerous researchers using a variety of weighting

methods (e.g., Winkler and Makridakis, 1983; Mostaghimi, 1996; Watson and Stock, 2004;

Petropoulos and Kourentzes, 2015; Montero-Manso et al., 2020; Kang, Hyndman and Li, 2020).

Despite the large number of studies on forecast combinations, the “forecast combination

puzzle” –the arithmetic mean performing better than more sophisticated combination methods

in some applications– remains hard to tackle (Watson and Stock, 2004; Smith and Wallis, 2009;

Claeskens et al., 2016; Petropoulos and Svetunkov, 2020). This situation is presumably related

to that of equally weighted models in linear prediction (Dawes, 1979). We summarize the main

reasons for the forecast combination puzzle as follows. On the one hand, the optimal weights

estimated by forecast combination are often sensitive to historical data, and thus it is difficult

to assemble robust forecasts that could consistently outperform a simple average. On the other

hand, the merits of forecast combinations stem from independent information across multiple

forecasts, which is further explained in Section 2. If all forecasts are close to identical, forecast

combinations will be close to a simple average. Therefore, an optimal forecast combination

depends to some degree on the diversity of the individual forecasts, which is nonetheless difficult

to satisfy in reality (Thomson et al., 2019).

Because the relative performance of different forecast methods changes, depending on the

nature of the time series (Reid, 1972), one way to forecast a time series involves feature-based

forecasting. The majority of the studies in this line of work focus on developing rules or

selecting the best forecast model or averaging the models according to the historical features
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of the data (e,g, Collopy and Armstrong, 1992; Meade, 2000; Wang et al., 2009; Petropoulos

et al., 2014). A recent implementation of feature-based forecasting was proposed by Talagala

et al. (2018). They used 42 time series features to train a random forecast classifier to select

the best forecasting method. Montero-Manso et al. (2020) used the same set of features to

estimate optimal combination weights through an algorithm named eXtreme Gradient Boosting

(XGBoost, Chen and Guestrin, 2016). Their approach, FFORMA (Feature-based FORecast

Model Averaging), placed second in the M4 competition. Both of these approaches used meta-

learning, meaning that a group (reference set) of series is used to model the links between the

time series and the out-of-sample performance of the available forecasting models. Then, given

a new series and its features, the most suitable model is selected, or a set of weights for a

forecast combination is estimated.

Regardless of the task (model selection or model combination), a common challenge in

feature-based forecasting is the choice and estimation of time series features. Time series features

vary from tens to thousands (Fulcher and Jones, 2014; Hyndman et al., 2019), and choosing

different sets of features will inevitably result in different forecasts and varied performance.

Moreover, the studies reviewed above focus on extracting such features by using the historical,

observed data of each time series. For example, two commonly used features are the strength of

a trend and the strength of the seasonality. The estimation of these two features is not unique,

because of the existence of several approaches that are typically based on different assumptions.

However, even if there was one acceptable way to define them, it would become inadequate

because existing features are estimated based on observed historical patterns that are likely to

change over time. Moreover, the estimation of some of the features might not be feasible or

robust in the case of a limited number of available past observations. Finally, when the chosen

features involve large numbers, this might increase the computational time required to estimate

them.

In this paper, we suggest a change of the focus in producing forecasts from extraction of

time series features from historical data. Specifically, we suggest the use the out-of-sample

forecasts from a pool of models and measure their diversity, a feature that has been identified

as a crucial factor in improving the performance of forecast combinations (Thomson et al.,

2019; Lichtendahl and Winkler, 2020). Through meta-learning, we use a group of series to

model the diversity of their forecasts and the optimal combination weights by minimizing the

total forecasting loss. Once the model has been trained, and for any new series that needs to

be forecast, we can calculate the combination weights based on the diversity of their forecasts

produced by the models in the pool and produce both point forecasts and prediction intervals.

3



We empirically show that a single feature, the diversity of the forecasts, is sufficient to achieve

levels of postsample performance similar to those of large set of features derived from estimates

based on historical data.

Our study is in line with other studies that exploit information from the forecasts with-

out utilization of forecast diversity. For example, Petropoulos and Siemsen (2020) proposed

forecast representativeness and derived a new selection criterion that works remarkably well in

cases of low signal to noise ratios in comparison with other established selection criteria. The

ability of the representativeness criterion to more often than not select the best (and avoid the

worst) models leads to significant accuracy improvement both in selecting single models and

combinations across models. Zhao and Feng (2020) also used postsample forecasts as the input

in a machine learning model as a step toward enhancing the performance of standard statisti-

cal time series forecasting models. Although they also use forecasts as a feature, they do not

explicitly focus on a specific aspect of the forecasts (such as diversity), making it difficult to

obtain insights into why their approach performs well. They also did not discuss how prediction

intervals may be estimated.

Forecasting is vital for the efficient operation of supply chains (Tliche et al., 2020; Ali et al.,

2017) as well as other operations-related decisions. To support the efficacy of our proposition

for decision-making purposes, we offer not only large-scale empirical evaluations for the mean

(point) forecasts but also for the uncertainty around this mean, in terms of quantile forecasts.

We also provide trade-off curves based on upper coverage levels versus upper prediction intervals

that approximate utility functions related to inventory forecasting.

The rest of this paper is organised as follows. In Section 2, we describe the calculation

of forecast diversity for forecast combinations and present a framework of forecasts with fore-

casts. We demonstrates the superiority of the proposed approach via extensive experiments in

Section 3. Section 5 provides our discussions and Section 6 concludes the paper.

2. Forecast combination: diversity matters

2.1. Diversity of forecasts

Ambiguity Decomposition (Krogh and Vedelsby, 1994) indicates in the literature on machine

learning that accuracy and diversity are two main factors that should be taken into consideration

when designing ensembles. In the forecasting community, many studies have emphasized the

importance of the forecasting method’s diversity pool when constructing forecast combinations

(Bates and Granger, 1969; Batchelor and Dua, 1995; Thomson et al., 2019). Lichtendahl and

Winkler (2020), in exploring why some combinations performed better than others in the recent
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M4 competition (Makridakis et al., 2018), also identified diversity as an important factor for

efficient forecast combinations, along with the robustness of the individual models.

Ambiguity Decomposition can be easily applied to the forecast combination task. For a

given time series {yt, t = 1, 2, · · · , T}, we denote the h-th step forecast produced by the i-th

individual method as fih, where i = 1, 2, · · · ,M and h = 1, 2, · · · , H. Furthermore, M and H

are the number of algorithms in the forecast pools and the forecast horizon, respectively. Let

fch be the h-th step combined forecast given by
∑M

i=1wifih, where wi is the combination weight

for the i-th method. The overall mean squared error of a weighted forecast combination model

MSEcomb over the whole forecast horizon H can be written as follows.

MSEcomb =
1

H

H∑
i=1

(
M∑
i=1

wifih − yT+h

)2

=
1

H

H∑
i=1

[
M∑
i=1

wi(fih − yT+h)2 −
M∑
i=1

wi(fih − fch)2

]

=
1

H

H∑
i=1

 M∑
i=1

wi(fih − yT+h)2 −
M−1∑
i=1

M∑
j>i

wiwj(fih − fjh)2


=

M∑
i=1

wiMSEi −
M−1∑
i=1

M∑
j>i

wiwjDivi,j ,

(1)

where MSEi represents the mean squared error for the i-th method. Divi,j denotes the degree

of diversity between the i-th and j-th method in the forecast method pool, which is defined as

follows.

Divi,j =
1

H

H∑
i=1

(fih − fjh)2. (2)

Equation (1) says that the mean squared error of the combined forecast is guaranteed to be

less than or equal to the weighted mean squared error of the individual forecasts. The second

term in the last line of Equation (1) tells us how diverse the individual forecasts are. Out of

two combination methods with identical weighted mean squared error, the one with greater

diversity will have a lower overall squared error. That is, the more diversity existing in the

forecast method pool leads to overall better forecasting accuracy.

2.2. Diversity for forecast combination

How can we exploit the diversity information among different forecasting methods for fore-

cast combination? As Montero-Manso et al. (2020) and Kang, Hyndman and Li (2020) point

out, we can use a group of series to estimate the forecast combination weights by linking a set of

time series features with the forecasting performances of the individual methods. The key point

is to find a set of features that can represent the information affecting forecasting performance.
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We propose to use the pairwise diversity measures as a proper set of features to represent the

forecast diversity among different methods.

To make the diversity comparable between time series with different scales, we can scale the

diversity measure in Equation (2) by averaging across all pairs of methods. We use the scaled

diversity in Equation (3) for all the experiments in the following sections.

sDivi,j =

H∑
h=1

(fih − fjh)2

M−1∑
i=1

M∑
j=i+1

[
H∑
h=1

(fih − fjh)2
]
.

(3)

Figure 1 shows the diversity extraction procedure in the context of point forecasting. Given

a time series data set {y(n)t }Nn=1, for each time series y
(n)
t , its h-th step point forecast produced

by the m-th method is denoted as f
(n)
mh , where m = 1, 2, · · · ,M and h = 1, 2, · · · , H. Therefore,

we can get an M ×H matrix for each time series to forecast, thus, representing the forecasts

produced by the M methods for the entire forecasting horizon. Then the pairwise forecast

diversity among the M methods can be calculated by using Equation (3). Thus, for each

time series y
(n)
t , we get an M × M symmetric matrix. We then concatenate the diversity

measures in the lower diagonal into a vector. This can be used as a feature vector for time

series y
(n)
t when estimating the corresponding forecast combination weights based on the feature-

based forecasting framework. For a forecasting pool containing M methods, we can construct

M(M − 1)/2 pairwise diversity measures to extract the independent information in the pool.

The same procedure can be extended to the context of interval forecasting. For a forecasting

pool containing M methods, we can construct M(M−1)/2 pairwise diversity measures for both

the upper and lower prediction intervals.

Assuming that we need to forecast N time series, we obtain N × (M(M − 1)/2) matrices

(for the point forecasts and the upper and lower prediction intervals), where each row can be

viewed as a diversity (feature) vector for the corresponding series.

2.3. Forecast with forecasts: the framework

To construct a forecast model using diversity, we tailor the state-of-the-art feature-based

forecast model averaging (FFORMA) framework proposed by Montero-Manso et al. (2020) to

allow for the diversity of the forecasts as the inputs. Next, we estimate the combination weights

based on the diversity information of the out-of-sample forecasts produced by the pool of meth-

ods being combined.

In the original FFORMA framework, estimations of forecast combination weights is imple-

mented by finding a function to assign weights to each forecasting method. To forecast with
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Figure 1: Diversity extraction from forecasts.

FFORMA, one first needs to extract 42 features from the original time series and calculate the

overall weighted average (OWA) error of each forecast algorithm in the forecast pool. Then,

to obtain the optimal combination weights, features are linked with the OWA errors using the

XGBoost algorithm, which is an ensemble machine learning algorithm and can deal with re-

gression or classification problems by integrating plenty of decision tree models. We find that

FFORMA has the following drawbacks: (1) a manual selection of features is required, with spe-

cific features more appropriate than others in some applications and contextss, and (2) because

FFORMA extracts features based on historical data, it is not applicable to time series with an

inadequate length of historical data; in such cases the estimations of features may be unreliable.

To address the above problems, we propose a diversity-based forecast combination frame-

work. It consists of two phases, namely model-training and forecasting, as shown in Figure 2.

In the model-training phase, we take all the series in a given data set (for which forecasts are

required) as the reference data. Each time series in the reference data is split into training and

testing periods. The length of the testing period for each series is the same as its forecasting

horizon. We apply the forecasting methods in the pool by using the training periods, and ex-

tract the diversity matrix following Figure 1 from the forecasts produced by different forecasting

methods on the testing periods. We then calculate the forecasting errors of each method and

summarize them using an error metric. Finally, a forecast combination model is trained, by

minimizing the total forecasting loss, to estimate the combination weights for each series as a

function of its forecast diversity. Once the model has been trained, weights can be produced

for any target series given the diversity of its forecasts produced by the method pool.

We present a detailed procedure forf constructing diversity-based forecasting combinations

in Algorithm 1. Using the XGBoost algorithm, the following optimization problem is solved to
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Figure 2: The framework of forecast with forecasts.

obtain the combination weights:

arg min
w

N∑
n=1

M∑
i=1

w(Divn)i × Errni, (4)

where Divn indicates the forecast diversity of the n-th time series, w(Divn)i is the combination

weight assigned to method i for the n-th time series based on the diversity, and Errni is the error

produced by method i for the n-th time series. The combination weight w(Divn)i is obtained

by the output of XGBoost model after a soft-max transformation:

w(Divn)i =
exp{y(Divn)i}∑M
i=1 exp{y(Divn)i}

,

where y(divn)i is the regression results from XGBoost. In other words, the key point of the

combination model based on diversity is to search for the optimal weights that can minimize

the weighted error. After obtaining the combination weights, we can calculate the point and

interval forecasts as below.

fn =
1

M

M∑
i=1

wnifni,

fun =
1

M

M∑
i=1

wnif
u
ni,

f ln =
1

M

M∑
i=1

wnif
l
ni,

(5)
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where wni is the estimated weight for the n-th time series and the i-th method. And fni, f
u
ni,

f lni are the point, upper, and lower forecast values of the i-th algorithm for h-th forecast step,

respectively.

Algorithm 1 The framework of forecasts with forecasts.

Phase 1: Model training

Input: yref: a time series reference set; a forecasting pool consisting of M methods.

Output: Forecast combination model based on diversity.

1: for y
(n)
t ∈ yref do

2: Split time series y
(n)
t into training and testing periods.

3: Produce the forecasts using the M methods.

4: Extract the diversity vector: Divn (see Figure 1).

5: Calculate the forecasting errors of each method in the pool on the testing data.

6: end for

7: Estimate the combination model based on diversity with XGBoost, by minimizing the

weighted errors:

arg min
w

N∑
n=1

M∑
i=1

w(Divn)i × Errni.

// Finish building combination model.

Phase 2: Forecasting

Input: Pretrained model; ynew: a time series data set to be forecast.

Output: Final forecasts of new time series ynew.

8: for y
(m)
t ∈ ynew do

9: Produce forecasts using the methods in the forecasting method pool.

10: Extract the diversity vector: Divm (see Figure 1).

11: Use the pretrained model to produce the optimal weight w(Divm)i for method i.

12: Combine the individual forecasts using w(Divm)i and obtain the final forecasts.

13: end for// Obtain final results.

The merits of using diversity for forecast combinations are twofold. First, the process of

extracting diversity is straightforward and interpretable. The algorithm of measuring the di-

versity between different methods involves a simple calculation, and hence, it can reduce the

computational complexity when extracting features. Meanwhile, diversity-based forecast com-

binations require only the forecasts from individual methods, avoiding exploiting information

from other models as in Montero-Manso et al. (2020). Secondly, although traditional methods

of time series feature extraction (Fulcher and Jones, 2014; Hyndman et al., 2019; Christ et al.,
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2018) usually depend on the manual choice of an appropriate set of features, our approach can

be applied automatically without the need for expert knowledge and human interaction.

3. Empirical evaluation

3.1. Data

We used the M4 data set (Makridakis et al., 2020) to evaluate the forecasting performance of

the proposed diversity-based forecast combination method in terms of both point and interval

forecasting. The M4 data contains 100,000 time series with different seasonal periods from

different domains such as demographics, finance, and industries. The lengths of the yearly,

quarterly, monthly, weekly, daily, and hourly data lie in the ranges of [13, 835], [16, 866],

[42, 2794], [80, 2597], [93, 9919] and [700, 960], respectively. The corresponding forecasting

horizons are 6, 8, 18, 13, 14, and 48. The data set is publicly available in the M4comp2018 R

package (Montero-Manso et al., 2018). We optimized the combination weights separately for

each frequency by using the respective M4 series to form the reference data (see Section 2.3 for

more details).

3.2. The forecasting pool of methods

Our forecasting pool consists of eight individual forecast methods; they are described in

Table 1. Note that compared with the commonly used nine individual methods in recent forecast

combination studies (Talagala et al., 2021; Montero-Manso et al., 2020; Li et al., 2020; Kang,

Hyndman and Li, 2020), we do not include the neural network time series forecasting method

(nnetar) because it does not produce prediction intervals. The eight forecasting methods in our

pool are implemented in the forecast package in R (Hyndman et al., 2020).

3.3. Diversity extraction

Since we are producing both point and interval forecasts, we calculate the diversity features

based on the upper and lower prediction intervals. Considering the eight individual forecasting

methods in the pool, we have 28 diversity features for upper prediction intervals, and 28 features

for lower intervals. Therefore, in total, 56 diversity features are calculated for each time series.

Note here we are not using the diversity of point forecasts, which are the midpoints of the

prediction intervals for all the eight methods and do not contain more information than the

upper and lower intervals.
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Table 1: The methods used for forecast combination. All these methods are implemented using the forecast R

package.

Forecasting Method R implementation

auto arima: the ARIMA family of models (Hyndman and

Khandakar, 2008).

auto.arima()

ets: the exponential smoothing state space family of mod-

els (Hyndman et al., 2002).

ets()

tbats: the exponential smoothing state space model with a

Box-Cox transformation, ARMA errors, trend and seasonal

components (De Livera et al., 2011).

tbats()

stlm ar: seasonal and trend decomposition using Loess with

AR modeling of the seasonally adjusted series.

stlm() with modelf = ar

rw drift: random walk with drift. rwf() with drift=TRUE

thetaf : the theta method (Assimakopoulos and Nikolopoulos,

2000).

thetaf()

näıve: the näıve method. naive()

snäıve: the seasonal näıve method. snaive()

3.4. Forecasting evaluation metrics

We use the mean absolute scaled error (MASE, Hyndman and Koehler, 2006) to evaluate

the point forecasts produced by our proposed combination model. MASE compares the forecast

accuracy between a specific forecast algorithm and the näıve method. It is defined as

MASE =
1

H

∑H
h=1 |fh − yT+h|

1
T−m

∑T
t=m+1 |yt − yt−m|

,

where H is the forecasting horizon, T is the length of the historical data, m is the frequency of

the data, yT+h is the actual value of the time series at time T + h, and fh is the forecast value

at the h-th step.

To assess the performances of the generated prediction intervals, we use the mean scaled

interval score (MSIS, Gneiting and Raftery, 2007), as used in the M4 competition and other

recent studies on forecast uncertainty estimation (e.g., Spiliotis et al., 2020; Kang, Spiliotis,

Petropoulos, Athiniotis, Li and Assimakopoulos, 2020). The definition of MSIS is as follows.

MSIS =
1

H

∑H
h=1

{
(Uh − Lh) + 2

α(Lh − yT+h)1 {yTh < Lh}+ 2
α(yT+h − Uh)1 {yT+h > Uh}

}
1

T−m
∑T

t=m+1 |yt − yt−m|
,

where [Lh, Uh] are the generated (1−α)100% prediction intervals at the h-th step, and 1 is the
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indicator function, which equals to 1 when yT+h is within the postulated interval and returns 0

otherwise.

In the training process of Algorithm 1, we apply a new cost function that takes both point

and interval forecasting into consideration when optimizing the combination weights. It is

defined as

Err =
1

2

(
MASE

MASEnaive2
+

MSIS

MSISnaive2

)
, (6)

where MASEnaive2 and MSISnaive2 are the MASE and MSIS values of the naive2 forecasting

method, derived from the näıve method on the seasonally adjusted data (Makridakis et al.,

2018). In this way, we are using the same group of features for both point and interval forecasts

(see Section 3.3) and the same cost function for estimating the combination weights. The point

and interval forecasts are then calculated following Equation (5).

3.5. Point and interval forecasting performance

We compared the performance of point and interval forecasts of the proposed diversity-based

forecast combination approach as shown in Algorithm 1 against the FFORMA approach (Montero-

Manso et al., 2020) that uses XGBoost to link 42 statistical time series features with forecast

errors. We also benchmarked against a simple average (SA) approach, where the forecasts from

all methods in the forecasting pool are combined with equal weights. Table 2 depicts the mean of

the forecast errors across series from each frequency. Entries in bold highlight that our method

outperforms the FFORMA approach. We can see that both our proposed method (Diversity)

and FFORMA outperform SA. Overall, the mean values of MASE and MSIS of the proposed

approach are 18.71% and 19.92% lower, respectively, compared with SA. In other words, the

unequal weights produced by diversity-based modeling are effective and can help tackle the

“forecast combination puzzle.” More importantly, Diversity, without extracting and selecting

sophisticated times series features, outperforms FFORMA when we focus on the mean MASE

and MSIS values of the overall M4 data. Diversity outperforms FFORMA in most frequencies of

data, apart from the weekly and daily data.

To further verify the performance of Diversity, we consider an approach that combines the

features from Diversity and FFORMA. We combine the 42 statistical features and the 56 diversity

features into a single set of time series features and use them as the inputs into XGBoost to

obtain the optimal weights for the nine forecasting methods. The results for this approach, FD

(FFORMA + Diversity), are also represented in Table 2. We observe that FD performs similarly

with Diversity.

Note that in Table 2, FFORMA, Diversity and FD are using the same pool of forecasting

methods and cost functions as described in Section 3.2 and Section 3.4 to make them comparable.
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Table 2: Comparison of the mean MASE and MSIS values from our diversity-based forecast combination method

(Diversity), FFORMA and forecast combination with simple averaging (SA). Entries in bold highlight that our

method outperforms the FFORMA approach.

Method Overall Yearly Quarterly Monthly Weekly Daily Hourly

MASE

SA 1.9040 3.6907 1.2432 0.9813 6.3826 5.8921 3.3319

FFORMA 1.5586 3.0842 1.1220 0.8980 2.2309 3.2464 0.8822

Diversity 1.5478 3.0670 1.1095 0.8915 2.2744 3.2296 0.8540

FD 1.5507 3.0615 1.1096 0.8997 2.2639 3.2345 0.8574

MSIS

SA 17.5077 42.0776 9.9248 8.3012 22.4778 31.5910 11.4214

FFORMA 14.5934 32.0185 9.2388 7.8189 16.0496 27.7694 6.6161

Diversity 14.0197 30.3312 8.7805 7.6385 16.4015 28.0220 6.3587

FD 14.0254 30.3980 8.7995 7.6248 16.0936 27.8723 6.3145

Therefore, the results for FFORMA are slightly different from those in Montero-Manso et al.

(2020) where a different pool (including NNETAR) and cost functions (OWA) are used.

To investigate the statistical significance of the performance differences, we performed Mul-

tiple Comparisons from the Best (MCB) test (Koning et al., 2005) on each data frequency

separately but also over all the M4 series. The aim was to test whether the average ranks of

each forecasting method are significantly different from the others. The MCB test was applied

based on the MASE errors as shown in Figure 3. One can read the results as follows. Lower

average ranks are better, althouogh the performance differences between any two methods are

not significant if their confidence intervals overlap.

According to Figure 3, we observe:

• Although Diversity outperforms FFORMA on average, their differences are not significant

(see the top panel, “Overall”). However, Diversity is more intuitively appealing and easier

to compute.

• Overall, FD performs significantly better than Diversity, FFORMA, and SA. In other words,

the diversity features, focusing on future forecasts, could bring significant improvements

to combination forecasts based on traditional time-series statistical features, which only

represent information from time series historical values. That suggests that the two groups

of features could complement each other when used for estimating weights for forecast

combinations.
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Figure 3: MCB tests on the ranks of the MASE errors of SA, FFORMA, Diversity and FD for each data frequency

separately and across all frequencies (Overall).

• Looking at the MCB results for different frequencies, in most cases FD or Diversity outper-

forms FFORMA. SA is always significantly outperformed by the other three approaches.
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3.6. Trade-off curves

We approximate the performance of the proposed Diversity approach on inventory forecast-

ing by assuming that the prediction intervals produced are directly used for inventory-related

decisions. We produce prediction intervals for various confidence levels: 60%, 65%, 70%, 75%,

80%, 85%, 90%, 95% and 99%. We then consider two quantities. First, we measure the upper

coverage level (the percentage of times where the actual outcome is below the corresponding

upper prediction interval, i.e., the 97.5% percentile for prediction intervals produced at a 5%

confidence level). The average upper coverage level is a proxy of the average achieved service

level, as it effectively shows the percentage of times that a demanded product was in stock (see

also Svetunkov and Petropoulos, 2018) if the prediction intervals of the forecasts were directly

used for inventory decisions. Second, we calculate the average upper prediction interval across

time series after scaling with the mean value of the historical data for each series. This is a

proxy of the holding cost that would be required to achieve the respective service level (see

also Svetunkov and Petropoulos, 2018; Petropoulos and Siemsen, 2020). Rendering the upper

prediction interval scale-independent is required as the different series in our data set refer

to different quantities (hundreds versus thousands versus tens of thousands units) and we are

interested to explore the average effect across all series.

The trade-off curves for these two quantities (scaled upper prediction interval versus upper

coverage), for Diversity, SA and the eight individual forecasting methods in the pool, are pre-

sented in Figure 4. The results for each data frequency are presented in a different panel. One

can read these graphs as follows (Petropoulos et al., 2019). Assuming a vertical line (similar

upper prediction interval, i.e., holding cost), the methods that achieve higher upper coverage

levels (higher achieved service levels) should be preferred. Similarly, assuming a horizontal

straight line (similar upper coverage levels), the methods with lower scaled upper prediction

intervals (lower costs) are better. It can be seen that the Diversity approach offers a very com-

petitive trade-off between the two quantities considered that outperfroms all other methods for

all frequencies. The only exception is the yearly frequency where Theta method performs well

in terms of upper prediction interval values but cannot reach high upper coverage levels.

4. Case study: forecasting fast moving consumer goods

To highlight the usefulness of diversity in practice, we considered the forecasting of sales of

fast-moving consumer goods (FMCG) from a major North American food manufacturer. We

focused on the sales of stock keeping units (SKUs) in two countries, the USA and Canada. The

sales are recorded according to monthly frequency and consist of 51 periods, from April 2013 to
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Figure 4: The upper coverage versus the scaled upper prediction intervals across different confidence levels for

Diversity, SA and the eight individual methods, for each data frequency separately. Diversity is shown in solid

lines while the other methods are shown in dashed lines.

June 2017. We set the forecast horizon to 12 and split each series into a training (27 periods),

validation, and test sets (12 periods each). Some time series started with zero sales values,
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which we trimmed. In those cases in which this trimming process resulted in a training set of

fewer than two full seasonal cycles (less that 24 months), that time series was dropped from

the set because it would not be feasible to use to estimate any seasonal patterns. The above

process resulted in 955 unique combinations of SKU × location.

The model training part of our framework (see also Figure 2) was completed using the

forecasts corresponding to the observations in the validation set (observations 28 to 39). The

method pool, cost function, and the diversity extraction procedure used in the training process

were the same as those used in Section 3. Once we estimated the combination model based

on diversity, we then applied it to the forecasts for the test set (periods 40 to 51), where we

also used MASE and MSIS to measure the out-of-sample performance. The same approach was

used for the FFORMA and FD approaches, similar to the results in Section 3.5.

The results from our case study are presented in Table 3. Much like our main empirical

results, we observed that the proposed combination approaches based on the diversity of the

forecasts alone (Diversity) or on diversity combined with other times series features (FD) out-

performed FFORMA and SA, in both terms of point forecast accuracy and estimation of the

prediction intervals. It is important to highlight that the results of this case study were based

solely on the 955 FMCG series for both the model training and the forecasting phases of our

proposed framework (see also Algorithm 1), thus showcasing that Diversity does not require

massive reference data sets to estimate a diversity-based combination model.

Table 3: Comparison of the mean MASE and MSIS values from our diversity-based forecast combination method

(Diversity), FFORMA and forecast combination with simple averaging (SA) on the FMCG data. Entries in bold

highlight that our method outperforms the FFORMA approach.

Method SA FFORMA Diversity FD

MASE 0.9555 0.9599 0.9365 0.9367

MSIS 8.5085 8.1254 8.0066 7.9189

5. Discussion

Feature-based forecast model selection and combinations face the challenge of selecting an

appropriate set of time series features that vary according to different domains and forecasters

(Fulcher and Jones, 2014; Wang et al., 2021; Kang, Hyndman and Li, 2020). More importantly,

features’ estimation is unreliable when historical data is limited (e.g., for fast-moving products),

or even unavailable when there is no history at all (e.g., for new products). This study proposes

to forecast with forecasts without manually choosing time series features, yielding comparable
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performance with top contestants in the M4 competition data with regard to both point forecasts

and prediction intervals.

The performance of forecast combinations is potentially highly related to the degree of

diversity among the individual forecasts (Armstrong, 2001; Thomson et al., 2019). This study

explores how to further improve forecast combinations and attempts to tackle the forecast

combination puzzle by exploiting the forecast diversity in the forecasting method pool. The

proposed diversity-based forecast combination can automatically control the combination via

measuring the pairwise diversity between forecasts from different sources and linking them,

via a meta-learner, to the accuracy of a test set. If the pool of available forecasts has low

diversity, then our approach will approximate an equal-weight combination approach, which

is an appropriate strategy with a lack of additional information. However, if the diversity

across the candidate forecasts is high, then the combination weights will be modeled using two

important factors–diversity and accuracy–in arriving at efficient ensembles (Lichtendahl and

Winkler, 2020).

Our empirical results show that the diversity information among individual forecasts used

for combination is informative in allocating the combination weights. In fact, using forecast

diversity as the sole time-series feature results in performance that is equivalent to using an

array of time-series features calculated on historical (in-sample) data. Our approach is not

only faster to compute, but also simpler and more straightforward because it does not involve

decisions related to which features to include and how to compute them. As such, it is in-line

with the simplicity argument of Green and Armstrong (2015). In addition, forecast diversity

can be used in conjunction with other established time-series features to boost forecasting

performance.

Research on diversity-based regression/classifier ensembles in the machine learning literature

is in line with our findings. Specifically, Liu and Yao (1999) used negative correlation learning to

create an ensemble with negatively correlated networks and encourage their specialization and

cooperation. Kuncheva and Whitaker (2003) improve the ensemble accuracy by measuring the

diversity in classifier ensembles. Mendes-Moreira et al. (2012) reviewed the ensemble approaches

for regression and emphasized the importance of regression diversity. Our study aligns with this

line of research in the sense that it aims to improve forecast ensembles by exploiting forecast

diversity in the ensemble.

The good performance of our proposition is a result of two factors. First, we built on the

rich and established literature on forecast combinations and explicitly took into account one of

the critical elements in building effective forecast combinations: the diversity of the forecasts.
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Second, and in line with the arguments made in the study of Petropoulos and Siemsen (2020),

we explicitly considered the output of the forecasting models, i.e., the out-of-sample forecasts,

rather than simply focusing on information that relates to the features and characteristics of the

in-sample data (like in Montero-Manso et al., 2020) or how well forecasting models fit the in-

sample data. The use of the out-of-sample forecasts toward making forecast-related decisions is

crucial. In Petropoulos and Siemsen (2020), the evaluation of the representatives of the out-of-

sample forecasts to the actual situation enabled the acceptance or rejection of some forecasting

models (i.e., judging models by their outputs). In our context, out-of-sample forecasts informed

our algorithmic calculations for obtaining weights for forecast combinations by amplifying the

diversity of the final pool of methods being combined.

Another advantage of the proposed approach is its nonreliance on specific families of models.

In this study, we focused on linear statistical methods. However, nonlinear methods could be

part of the pool of models in other contexts. Moreover, our approach can be applied equally to

both statistical and judgemental forecasts or even to a combination of the two. Although in this

study we focused on exploring the benefits of forecast diversity in the context of statistically

produced forecasts, our approach could be extended toward combining forecasts from experts,

where prior research suggests that the performance of equal weights is hard to beat (Genre

et al., 2013). Our suggestion to test diversity-based forecast combinations also extends the

research of Grushka-Cockayne et al. (2017), who showed that combinations based on trimmed

means (excluding the top and bottom x% forecasts) could improve the accuracy of overfitted

and overconfident forecasts.

Although the proposed method improves point and interval forecasting, a possible future

research path is to extend it to probability density forecasting. Meta-learning can presumably

be used to produce a weighted mixture of the forecast distributions from multiple models or to

generate a weighted average of the forecast distributions. Diversity could be measured based

on probability distribution distances (e.g., Kullback–Liebler divergence). The loss function

in meta-learning could also be adapted to density forecasting principles (e.g., calibration and

sharpness).

One limitation of the current study is that it uses all the available individual forecasts with-

out pooling the most heterogeneous forecasts. Although, naturally, some combination weights

will be close to zero, excluding per series models with poor performance could further improve

the forecasting performance. Future research could examine how diversity-based forecast com-

binations can be extended to the whole spectrum of selection-pooling-combinations (Cang and

Yu, 2014; Kourentzes et al., 2019). Besides, the impact of adding, removing, and selecting
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different methods in the approach is also a valuable research topic.

Another limitation of our study is that our empirical results on the M4 data are, in theory,

not directly comparable with any of the original contestants of the M4 competition. Access to

the postsample data allows for experimentation, testing, and hyper-parametrization, none of

which were available to the original participants. Although we do not directly use future data

values to inform our forecasts, we still cannot claim that our approach would have performed

better than FFORMA in the M4 competition because our approach was never submitted. Even

if we had also applied the proposed approach to a real application, the same forecasting method

pool is used with most of the methods being drawn from results of societal activities and

being used with linear approaches of various types. As such, a final avenue for future research

would be to compare our framework against the performance of other established benchmarks

in more/new data sets, including data with nonlinear and intermittent patterns.

6. Conclusion

In this paper, we proposed to use forecasts to improve forecasting performance. In essence,

we measure the pairwise diversity among the forecasts from the methods in a pool for each

time series and use these measurements as a group of features linked with the out-of-sample

forecasting performances of the individual forecasting methods. We show that our approach–

simply using forecast diversity–achieves equivalent performance to the use of manually selected

time series features calculated from historical data. Combining diversity and other statistical

features (depicting future and historical information, respectively) can be further advantageous.

Our approach provides an automatic and flexible tool for forecasting practice. Our pro-

posed approach has the following merits. First, forecasters do not need to tackle the issue of

feature selection when carrying out feature-based forecasting. The calculation of diversity is

straightforward, easy to implement, and interpretable. Second, forecasts from any method (in-

cluding statistical methods, nonlinear techniques, and judgment) can be easily used within our

approach. Finally, our proposition offers improved point forecast accuracy coupled with better

performance for interval forecasts.
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