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a b s t r a c t 

This article presents a new Multi-Criteria Decision Aiding preference disaggregation method based on 

an asymmetric target-based model. The decision maker’s preferences are elicited considering the choices 

made given a set of comparisons among pairs of solutions (the stimuli). It is assumed that the decision 

maker has a reference value (target) for the stimulus. Solutions that do not comply with this reference 

value for some of the criteria dimensions considered will be penalized, and an inferred weight is as- 

sociated with each dimension to calculate a penalty score for each solution. One of the differentiating 

features of the proposed model when compared with other existing models is the fact that only solu- 

tions that do not meet the target are penalized. The target is not interpreted as an ideal solution, but as 

a set of threshold values that should be taken into account when choosing a solution. The proposed ap- 

proach was applied to the problem of choosing radiotherapy treatment plans, using a set of retrospective 

cancer cases treated at the Portuguese Oncology Institute of Coimbra. Using paired comparison choices 

made by one radiation oncologist, the preference model was built and was tested with in-sample and 

out-of-sample data. It is possible to conclude that the preference model is capable of representing the 

radiation oncologist’s preferences, presenting small mean errors and leading, most of the time, to the 

same treatment plan chosen by the radiation oncologist. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

In many situations a decision-maker (DM) has to take into ac- 

ount, simultaneously, a set of conflicting objectives. In this setting, 

he objective is no longer to calculate an optimal solution, but to 

each a compromise solution that is aligned with the DM’s prefer- 

nces. This compromise solution should be a Pareto-optimal solu- 

ion (non-dominated solution): no other solution can be better in 

t least one objective without being worse in some other(s). There 

re different ways of reaching a compromise solution ( Antunes, 

lves & Clímaco, 2016 ; Miettinen, 2012 ). The elicitation of the DM’s 

references can be done a priori , a posteriori or the search for this 

ompromise solution can be done interactively. The a priori meth- 

ds assume the DM has a value function, which is explicitly con- 
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tructed using preference information received from the DM. In a 

osteriori methods, a set of Pareto-optimal solutions is calculated 

rst, trying to approximate the diversity of solutions in the Pareto- 

ront. Then, the preference elicitation and choice of a solution take 

lace considering this set of already known solutions. Interactive 

ethods are based on the successive calculation of Pareto-optimal 

olutions according to the inputs received from the DM. Instead of 

ssuming the existence of a value function, trying to elicit pref- 

rences a priori , an initial small set of solutions is calculated. By 

nalyzing this set, the DM can have a better understanding of the 

ompromises that exist among the defined objectives and has the 

ossibility of driving the method towards the calculation of new 

olutions in search areas that are more aligned with his/her pref- 

rences. 

All these approaches present advantages and disadvantages. The 

M may not be able to express any kind of preferences over the 

et of conflicting objectives, as a priori approaches require, before 

ome solutions are calculated. Interactive methods can be compu- 
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ationally very demanding, especially if the problem to be solved 

n each iteration is non-linear or even non-convex. High compu- 

ational times (which is usually the case in radiotherapy treat- 

ent planning, for instance) are not compatible with an interactive 

rocedure. A posteriori methods can be a good alternative if it is 

ossible to find a good set of Pareto-optimal solutions to present to 

he DM. Even so, when the DM must take into account a significant 

umber of different objectives, choosing one solution out of a set 

f solutions can be an overwhelming task. This is one of the rea- 

ons why a posteriori methods can also use discrete Multi-Criteria 

ecision Aiding / Analysis (MCDA) methods (i.e., methods evalu- 

ting a given list of alternatives) to support the DM’s choice pro- 

ess. There are many examples of this combined use of approaches. 

adas and Nahum (2016) use both multiobjective and MCDA ap- 

roaches in the context of the selection of a network of public 

ransport priority lanes. A multiobjective evolutionary algorithm is 

sed to find a set of Pareto-optimal (or near optimal) solutions, 

ollowed by MCDA for the selection of the final solution. Cruz- 

eyes, Fernandez, Sanchez, Coello and Gomez (2017) consider the 

nclusion of decision-maker’s preferences in a multiobjective evo- 

utionary algorithm by using an MCDA classification method. This 

ombination, which was applied to a project portfolio optimization 

roblem, promotes the definition of regions of interest where the 

volutionary search will be more intensive. Laha and Chakraborty 

2021) develop a multiobjective optimization model for optimizing 

he capacity installation of renewable energy. The Pareto-optimal 

olutions are then ranked using a multimetric sustainability model. 

When decisions have to be made repeatedly, in similar situ- 

tions, and taking into account similar criteria, it is possible to 

licit the DM’s preferences by the choices he/she has made in a 

elected number of cases, and then use these elicited preferences 

n future decision-making situations. A preference model inferred 

rom known judgements made by the DM can be instrumental 

hatever process is followed for reaching a compromise solution, 

s discussed above. For an a priori approach, it can provide the 

alue function to be optimized. For an a posteriori approach, it al- 

ows suggesting a choice among several compromise solutions. If 

he DM does not agree with the suggested choice, then this new 

nformation can be used to update the inferred model ( Figueira, 

reco, Mousseau & Słowi ́nski, 2008 ). For an interactive approach, 

f the problem of finding new solutions can be solved in a times- 

an short enough to allow interactivity, the algorithm can adapt 

tself throughout successive iterations ( Belton et al., 2008 ). 

MCDA preference disaggregation methods ( Jacquet-Lagrèze & 

iskos, 2001 ) are promising tools to be used in this context. These 

ethods infer the parameters for a DM’s preferences model from a 

et of judgments provided by him or her. Such judgments are usu- 

lly a ranking or a classification of a set of examples of alternatives 

n accordance with the holistic appreciation of the DM, or in accor- 

ance with past decisions, or in accordance with already known 

utcomes. Pioneering preference disaggregation methods include 

he Euclidean distance model of Srinivasan and Shocker (1973) and 

he additive value function UTA methods ( Jacquet-Lagrèze & Siskos, 

982 ), which have evolved significantly during the last decades 

 Ghaderi & Kadzi ́nski, 2020 ; Kadzi ́nski, Ghaderi, W ̨asikowski & Ag-

ll, 2017 ; Liu, Kadzi ́nski, Liao, Mao & Wang, 2020 ; Matsatsinis, 

rigoroudis & Siskos, 2018 ; Siskos, Grigoroudis & Matsatsinis, 2016 ; 

obrie, Gillis, Mousseau & Pirlot, 2018 ) along with other types of 

CDA disaggregation models ( Angilella, Greco & Matarazzo, 2010 ; 

ousseau & Dias, 2004 ; Sobrie, Mousseau & Pirlot, 2019 ). 

This work contributes to the literature by developing an asym- 

etric version of Srinivasan and Shocker (1973) ’s seminal target- 

ased model, and applying it to a novel application field for MCDA 

isaggregation methods, meeting the needs of real-world practi- 

ioners. Rather than assuming that downward or upward devia- 

ions from the target are equally undesirable using an Euclidean 
2 
istance, the distance function developed in this work considers 

 preference direction. It grows quadratically for undesirable de- 

iations (the target is not being achieved) and equals zero if the 

arget is met or if the solution is better than the target. The un- 

nowns are the target value and the weights that the DM attaches 

o each different dimension (evaluation criterion). 

Considering the asymmetry in the Euclidean distance leads to 

 more complex problem, for which we propose the use of a 

iece-wise linear approximation. Recent methods capable of infer- 

ing a polynomial function, UTA-poly and UTA-splines ( Sobrie et 

l., 2018 ), do not require the piecewise linear approximation, but 

hese methods were not built for the target-based context con- 

idered here and require the use of nonlinear programming. The 

iecewise linear approximation can nevertheless be improved as 

uch as needed by increasing the number of line segments con- 

idered, and requires 0–1 linear programming tools only. 

This method was applied to the choice of radiotherapy treat- 

ent plans, aiming at learning the preference model of one expe- 

ienced radiation oncologist (RO) who compared a total of 40 pairs 

f treatment plans concerning 40 real retrospective cases treated 

t the Portuguese Oncology Institute of Coimbra. The choice of 

 given plan is inherently a multicriteria problem, since different 

nd conflicting objectives must be considered simultaneously (the 

eed of sparing healthy tissues is in contradiction with the need of 

roperly irradiating the volumes to treat). Compared to multiobjec- 

ive optimization applications for radiotherapy treatment planning, 

rior applications of MCDA to evaluate a discrete set of alternatives 

n this setting are much less common. The results are compared 

ith two benchmarks based on UTA. 

The Euclidean distance model is appealing in the context of 

reference elicitation since it uses the concept of a distance be- 

ween stimuli and a multidimensional ideal the DM would like to 

chieve, with a long tradition in psychology ( Srinivasan & Shocker, 

973 ). Yet, using the Euclidean distance model without any adap- 

ation, despite producing good results ( Ventura et al., 2020 ), has 

he limitation of treating deviations from the target (the ideal) 

n a symmetrical way, i.e., positive and negative deviations from 

he target value are considered to be equally undesirable. This the 

ain motivation for the method proposed in the present work, 

hich does not penalize deviations in those dimensions where the 

olution is better than the target. 

. Mathematical programming formulations 

The following models and mathematical programming formu- 

ations for multidimensional analysis of preferences infer a pref- 

rence model based on a given set of comparisons among pairs 

f solutions from a given set A. (the stimuli). Following Srinivasan 

nd Shocker’s (1973) model, we assume that the DMs have a ref- 

rence value (target) for the stimulus and we also assume that the 

enalty for any deviations grows with the square of the difference, 

eighted by a coefficient reflecting the importance of each dimen- 

ion. Considering a dimension g ∈ G , the weighted distance of so- 

ution y j ( j ∈ A ) to a target x is given by w g ( y jg − x g ) 2 , where w g 

enotes a scaling weight attached to dimension g , y jg denotes a 

timulus (performance of solution y j ) concerning dimension g , and 

 g is the g -dimension value for target x . This model is hereafter re- 

erred to as the SSED (Srinivasan and Shocker’s Euclidean Distance) 

odel. 

Our model differs from the SSED model in a crucial aspect: 

ather than assuming that any deviations are penalized, consider- 

ng the target as an ideal point, our model is asymmetrical, assum- 

ng the DM seeks to penalize only positive deviations (the excess 

f the stimulus in relation to the target). The target corresponds 

o an impact value the DM would not like to exceed, i.e., the DM 

ishes to minimize the impact of the solution if it lies above the 
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arget, being fully satisfied if it lies below the target. However, the 

ollowing equations and models can be easily adapted to consider 

he reverse perspective of penalizing negative deviations instead. 

Considering a dimension g ∈ G , the weighted disutility or penalty 

according to an asymmetric distance) of solution y j ( j ∈ A ) to a

arget x is given by: 

 g 

(
y jg , x g , w g 

)
= 

{
w g 

(
y jg − x g 

)2 
, if y jg > x g 

0 , if y jg ≤ x g 
(1) 

Following the SSED model, the global disutility (unwanted ex- 

ess of impact) of solution y j ( j ∈ A ) to a target x , considering all the

imensions, is given by an additive model: 

 

(
y j , x, w 

)
= 

∑ 

g∈ G 
d g 

(
y jg , x g , w g 

)
(2) 

According to this additive model, hereafter referred to as the 

ED (Asymmetric Euclidean Distance) model, the disutility main- 

ains the nature of a (squared) Euclidean distance, with the afore- 

entioned difference of being asymmetrical. 

In a preference disaggregation perspective, the goal is to infer 

n AED model from observed judgments. Consider that the judg- 

ents of a DM (or group of DMs) are represented by a set J such

hat ( j, k ) ∈ J ⇔ j, k ∈ A ∧ j � k (solution j is preferred to solution

 ). 

To be consistent with a judgment ( j, k ) ∈ J, the disutility of y j 
hould be less than the disutility of y k : 

 

j, k ) ∈ J ⇔ d 
(
y j , x, w 

)
< d ( y k , x, w ) (3) 

Following the method of Srinivasan and Shocker (1973) , judg- 

ents do not need to be fully consistent, which would be a strong 

equirement. Thus, an error term z jk can be accepted, but it should 

e minimized: 

 

j, k ) ∈ J ⇔ d ( y k , x, w ) − d 
(
y j , x, w 

)
+ z jk > 0 (4) 

Following Srinivasan and Shocker (1973) , the error associated 

ith ( j, k ) ∈ J is: 

 

−
jk 

= max 
{

0 , d 
(
y j , x, w 

)
− d ( y k , x, w ) 

}
(5) 

Analogously, one can define a desirable slack for the same pair: 

 

+ 
jk 

= max 
{

0 , d ( y k , x, w ) − d 
(
y j , x, w 

)}
(6) 

Summing over all the pairs compared by the decision makers 

esults in two indicators: 

F = poorness of fit = 

∑ 

( j,k ) ∈ J 
s −

jk 

F = good ness of fit = 

∑ 

( j,k ) ∈ J 
s + 

jk 

Moreover, 

F − BF = 

∑ 

( j,k ) ∈ J 
s + 

jk 
−

∑ 

( j,k ) ∈ J 
s −

jk 
= 

∑ 

( j,k ) ∈ J 

(
d ( y k , x, w ) − d 

(
y j , x, w 

))
(7) 

A mathematical formulation implementing these ideas, similar 

o ( Srinivasan & Shocker, 1973 )’s is: 

Minimize ∑ 

 

j,k ) ∈ J 
z jk (8a) 

Subject to the constraints: 
 

g∈ G 
d g 

(
y kg , x g , w g 

)
−

∑ 

g∈ G 
d g 

(
y jg , x g , w g 

)
+ z jk ≥ ε, ∀ ( j, k ) ∈ J (8b) 
3 
∑ 

 

j,k ) ∈ J 

( ∑ 

g∈ G 
d g 

(
y kg , x g , w g 

)
−

∑ 

g∈ G 
d g 

(
y jg , x g , w g 

)) 

≥ h (8c) 

 jk ≥ 0 , ∀ ( j, k ) ∈ J (8d) 

In this formulation, the decision variables are the error terms 

 jk (for all ( j, k ) ∈ J), the dimension weights vector w = { w 1 , …,

 t } and the targets vector x = { x 1 ,…, x t }. Vectors w and x de-

ne each disutility function d( y j , x, w ) = 

∑ 

g∈ G 
d g ( y jg , x g , w g ) . The ob- 

ective function ( 8a ) represents the minimization of the sum of 

he error terms. In constraints (8b), ε denotes an arbitrarily small 

ositive constant to enforce the strict inequality defined in Eq. 

4) ( ε = 0 . 001 in the present work). Constraint (8c) represents

F − BF ≥ h , as suggested by Srinivasan & Shocker, to prevent the 

alculation of trivial solutions and to require a minimum overall 

uality in the balance of goodness and poorness of fit (in our ex- 

eriments, h requires an average difference of 0.01 per pair in J , 

.e., h = 0 . 01 × | J| ) . 
Srinivasan and Shocker solve the nonlinear model (8a-d) by 

ransforming it into a linear program. Unfortunately, the asymmet- 

ical definition of the disutility function ( 1 ) in our AED model does 

ot allow the application of similar transformations. 

We will use a piece-wise linear approximation to the marginal 

isutility functions d g ( y jg , x g , w g ) , denoted d ∼g ( y jg , x g , w g ) , that can 

e made as accurate as desired by increasing the number of break- 

oints. Moreover, for the purpose of performing a comparison, 

e use alternative formulations in which the disutility function is 

ore general, not being constrained to the quadratic shape of eq. 

1) : in one case we accept any convex and nondecreasing function 

 

c 
g ( y jg , x g , w g ) ; in an even more general case, we accept any nonde- 

reasing function d nd 
g ( y jg , x g , w g ) . For all these functions, disutility 

s zero for any stimulus that does not surpass the respective target. 

Let B g = { b g, 0 ,…, b g,m(g) } denote breakpoints for the piecewise 

isutility function d ∼g , such that all the stimuli, as well as the tar- 

et, lie in [ b g, 0 , b g,m(g) ]. These m(g) + 1 breakpoints are fixed in ad-

ance and each dimension can be associated with as many break- 

oints as desired. Let d ∼
g,i 

(the same applies ceteris paribus for d c 
g,i 

nd d nd 
g,i 

) denote the disutility corresponding to stimulus b g,i . Let s g,i 

enote the slope of the line segment from point ( b g,i −1 , d ∼
g,i −1 

) to 

oint ( b g,i , d ∼
g,i 

) . Then, if y jg ∈ [ b g,i −1 , b g,i ] , for any i ∈ {1, m(g) }, we

onsider a linear interpolation: 

 

∼
g 

(
y jg , x g , w g 

)
= d ∼g,i −1 + 

(
y jg − b g,i −1 

)
s g,i (9) 

Since d ∼
g,i 

= d ∼
g,i −1 

+ ( b g,i − b g,i −1 ) s g,i and x g ≥ b g, 0 implies d ∼
g, 0 

= 

 , eq. (9) is equivalent to 

 

∼
g 

(
y jg , x g , w g 

)
= 

m ( g ) ∑ 

i =1 

τ jg,i s g,i (10) 

ith 

jg,i = 

{ 

b g,i − b g,i −1 , if y jg ≥ b g,i 

y jg − b g,i −1 if b g,i −1 < y jg < b g,i 

0 , if y jg ≤ b g,i −1 

(11) 

Considering B g and y jg ( g ∈ G , j ∈ A ) as given inputs, the positive

onstants τ jg,i can be readily determined and d ∼
g,i 

becomes a lin- 

ar function of s g,i , which will be the variables of the linear pro- 

rams replacing ( 8a - 8d ), together with the error terms. The differ-

nce of disutility that appears in ( 8b ) and ( 8c ) can then be written

s 
∑ 

g∈ G 

m (g) ∑ 

i =1 

( τkg,i − τ jg,i ) s g,i . 

The mathematical programs for d ∼g (AED model), d c 
g,i 

(convex 

isutilities) and d nd 
g,i 

(requiring only monotonicity), presented next, 

iffer in the constraints placed on the slopes s g,i . 
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.1. Monotonic (nondecreasing) function formulation 

The simplest formulation is a linear program that requires the 

isutility functions, d nd 
g , to be monotonic (non-decreasing). This re- 

uires only the slope of the function to be non-negative: 

Minimize 

 = 

∑ 

( j,k ) ∈ J 
z jk (12a) 

Subject to the constraints: 

 

g∈ G 

m ( g ) ∑ 

i =1 

(
τkg,i − τ jg,i 

)
s g,i + z jk ≥ ε, ∀ ( j, k ) ∈ J (12b) 

∑ 

 

j,k ) ∈ J 

( ∑ 

g∈ G 

m ( g ) ∑ 

i =1 

(
τkg,i − τ jg,i 

)
s g,i 

) 

≥ h (12c) 

 g,i ≥ 0 , ∀ g ∈ G, i ∈ { 1 , . . . , m ( g ) } (12d) 

 jk ≥ 0 , ∀ ( j, k ) ∈ J (12e) 

The optimal slopes define unequivocally a piecewise lin- 

ar function minimizing the sum of the error terms. For each 

imension g ∈ G , the disutility function is defined by points 

 b g,i , d nd 
g,i 

) , for i = 0 , . . . , m (g) , such that d ∼g, 0 = 0 and d nd 
g,i 

= d nd 
g,i −1 

+
 b g,i − b g,i −1 ) s g,i . This implicitly defines a target x g , which is the 

aximum b g,i such that d nd 
g,i 

= 0 , unless all such values are zero 

p to d nd 
g,m (g) 

= 0 . The latter situation would correspond to disre- 

arding this dimension in the appreciation of the overall utility. To 

ddress this situation and also other cases in which the DM is able 

o bound the location of the target, two additional constraints can 

e added: 

 g,i = 0 , ∀ g ∈ G, i ∈ { 1 , . . . , LB ( g ) } (12f) 

 

g∈ G 

UB ( g ) +1 ∑ 

i =1 

τkg,i s g,i ≥ ε, ∀ g ∈ G (12g) 

Constraints (12f) place a lower bound at breakpoint b g,LB (g) by 

orcing the slope before this breakpoint to be zero (in practice, the 

inear program can be simplified by omitting the respective vari- 

bles). Constraints (12g) place an upper bound at UB(g) by requir- 

ng that the value function at breakpoint b g,UB (g)+1 is at least ε (or 

ny other chosen constant). Due to the linear interpolation, this 

eans that the value function starts increasing after breakpoint 

 g,UB (g) . 

The maximum disutility on dimension g ∈ G is d nd 
g,m (g) 

. This im- 

licitly defines the weight of this dimension if the disutility func- 

ions were normalized so that their maximum value was the same 

e.g., 1): 

 g = 

d nd 
g,m ( g ) ∑ 

h ∈ G d 
nd 
h,m ( h ) 

(13) 

Linear program (12a-e) uses slopes as decision variables, re- 

embling other UTA formulations in this aspect ( Doumpos & Zo- 

ounidis, 2007 ; Ghaderi & Kadzi ́nski, 2020 ; Ghaderi, Ruiz & Agell, 

017 ). In this kind of disaggregation approaches the error terms 

an be associated with each alternative ( Doumpos & Zopounidis, 

007 ) or associated with each judgment ( Ghaderi et al., 2017 ). In

he present work this is equivalent as the DM does not evaluate 

he same alternative in different pairs. 
4 
.2. Convex function formulation 

The second formulation is a linear program that requires the 

isutility functions, d c g , to be non-decreasing and also convex, 

herefore being more general than the also convex AED model, 

ut not as general as the previous one. This only requires that the 

lope of the function does not decrease, replacing constraints ( 12d ) 

n linear program ( 12a - e ) by the following constraints: 

 g,m ( g ) ≥ . . . ≥ s g, 1 ≥ 0 , ∀ g ∈ G (14) 

As in the previous case, the optimal solution implicitly defines 

arget values and weights, and it is again possible to bound the 

ocation of the target using the additional constraints ( 12f - g ). 

.3. Asymmetric euclidean distance (AED) formulation 

The third formulation is a 0–1 linear program that requires the 

isutility functions d ∼g , to approximate d g as defined in (1), with a 

recision as good as the number of breakpoints used. The piece- 

ise linear function d ∼g will coincide with d g in all breakpoints for 

 = 0 , . . . , m (g) : 

 

∼
g,i = d ∼g 

(
b g,i , x g , w g 

)
= d g 

(
b g,i , x g , w g 

)
= 

{
w g 

(
b g,i − x g 

)2 
, if b g,i > x g 

0 , if b g,i ≤ x g 
(15) 

For any i , the slope between b g,i −1 and b g,i equals zero if b g,i ≤
 g , otherwise it equals 

w g ( b g,i −x g ) 
2 −w g ( b g,i −1 −x g ) 

2 

b g,i −b g,i −1 
, i.e. (after simplify- 

ng): 

 g,i = 

{
w g 

(
b g,i + b g,i −1 − 2 x g 

)
, if b g,i > x g 

0 , if b g,i ≤ x g 
(16) 

Let u ∈ { 1 , . . . , m (g) } be such that b g,u = x g . It then follows: 

 g, 1 = . . . = s g,u = 0 (extending our notation to consider d g, −1 = 0 if 

 = 0), s g,u +1 − s g,u = w g ( b g,u +1 + b g,u − 2 x g ) − 0 = w g ( b g,u +1 − b g,u ) 

since b g,u = x g ), and for k > 1, 

s g,u + k − s g,u + k −1 = w g 

(
b g,u + k + b g,u + k −1 − 2 x g 

)
−w g 

(
b g,u + k −1 + b g,u + k −2 − 2 x g 

)
 w g 

(
b g,u + k −1 − b g,u + k −2 

)
+ w g 

(
b g,u + k − b g,u + k −1 

)
In summary, for i > 1 , the difference between consecutive 

lopes can be written as: 

 g,i − s g,i −1 = v g,i −1 w g 

(
b g,i −1 − b g,i −2 

)
+ v g,i w g 

(
b g,i − b g,i −1 

)
(17) 

onsidering binary variables v g,i defined as: 

 g,i = 

{
1 , if b g,i > x g 
0 , if b g,i ≤ x g 

(18) 

If the weights w g are fixed (e.g. all equal to 1), then constraint 

 17 ) can be included in a 0–1 linear program without any transfor- 

ation. Otherwise, constraint ( 17 ) can be replaced by constraints 

 19d - f ), for a suitably large positive constant M . The full AED for-

ulation is then: 

Minimize 

 = 

∑ 

( j,k ) ∈ J 
z jk (19a) 

Subject to the constraints: 

 

g∈ G 

m ( g ) ∑ 

i =1 

(
τkg,i − τ jg,i 

)
s g,i + z jk ≥ ε, ∀ ( j, k ) ∈ J (19b) 
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∑ 

 

j,k ) ∈ J 

( ∑ 

g∈ G 

m ( g ) ∑ 

i =1 

(
τkg,i − τ jg,i 

)
s g,i 

) 

≥ h (19c) 

 g, 1 = p g, 1 (19d) 

 g,i = s g,i −1 + p g,i −1 + p g,i ( i = 2 , . . . , m (g) ) (19e) 

p g,i ≥ w g 

(
b g,i − b g,i −1 

)
− M + M v g,i 

p g,i ≤ w g 

(
b g,i − b g,i −1 

)
+ M − M v g,i 

p g,i ≥ 0 

p g,i ≤ M v g,i 

⎫ ⎪ ⎬ 

⎪ ⎭ 

∀ g ∈ G, i ∈ { 1 , . . . , m ( g ) } 

(19f) 

 g,m ( g ) ≥ . . . ≥ v g, 1 ≥ 0 , ∀ g ∈ G (19g) 

 g,i ∈ { 0 , 1 } , ∀ g ∈ G, i ∈ { 1 , . . . , m ( g ) } (19h) 

 g ∈ 

[
w 

min 
g , w 

max 
g 

]
, ∀ g ∈ G (19i) 

 jk ≥ 0 , ∀ ( j, k ) ∈ J (19j) 

In this formulation, the variables are the error terms z jk (one 

er judgment), the weights w g (one per dimension), the slope 

arcels p g,i (one per dimension and per breakpoint), and the binary 

ariables associated with the slopes v g,i (one per dimension and 

er breakpoint). The target is implicit in the solution: if v g,u = 0 

nd v g,u +1 = 1 then the target is b g,u . Constraints ( 19f ) ensure that

f v g,i = 1 then p g,i = w g ( b g,i − b g,i −1 ) , and if v g,i = 0 then p g,i = 0 .

onstraints ( 19g ) guarantee that, when the slope becomes greater 

han 0, it cannot decrease. Constraints ( 19i ) allow controlling the 

ange of weights considered. As in the previous formulations, it is 

gain possible to bound the location of the target using the addi- 

ional constraints ( 12f - g ). 

In this formulation, the weights w g have the same meaning as 

he weights in the SSED model, which is different from the weight 

f the disutility function if normalized so that their maximum 

alue was the same (e.g., 1). The latter normalized weights can 

evertheless be computed as ω g = 

d ∼
g,m (g) ∑ 

h ∈ G d ∼h,m (h ) 
. Constraints ( 19i ) al- 

ow, if desired, the definition of a lower bound and an upper bound 

or each weight w g . 

A final note, which applies to all the formulations a) to c), is 

hat the target will coincide with one of the breakpoints. After ob- 

aining an optimal solution, further breakpoints can be added in 

he vicinity of the target inferred, to allow for a more precise so- 

ution. This does not necessarily imply the use of a larger number 

f breakpoints, because the previous breakpoints below the target 

where the function equals zero) will no longer be needed. 

. Application to radiotherapy treatment planning 

The calculation of radiotherapy treatment plans is inherently a 

ultiobjective problem ( Breedveld, Craft, van Haveren & Heijmen, 

019 ). In this work, the treatment modality considered is Intensity 

odulated Radiation Therapy (IMRT). In IMRT, the radiation is ex- 

ernally delivered to the patient, who is laying on a coach, by a lin-

ar accelerator. The head of this linear accelerator has a mutlileaf 

ollimator with a set of right and left leaves that can move, mod- 

lating the radiation intensity to conform as well as possible to 

he volumes to treat (Planning Target Volumes – PTVs). The struc- 

ures of interest, namely PTVs and organs to spare (Organs at Risk 
5 
 OARs) are delineated in the patient’s medical images (Computed 

omography). Then, the medical prescription defines lower (for the 

TVs) and upper (for the OARs) dose radiation bounds, that should 

e respected as much as possible: it is desirable that the PTVs re- 

eive the prescribed radiation dose but, at the same time, it is also 

esirable that all normal tissues, and especially OARs, receive as 

ow radiation doses as possible. As the radiation is produced exter- 

ally to the patient body, it must traverse healthy tissues to reach 

he PTVs, so these objectives are conflicting with each other. The 

et of objectives that have to be considered in the decision-making 

rocess depends heavily on the disease site and the complexity 

f the case. In head-and-neck cancer cases, for instance, there are 

any OARs that need to be considered, so the RO has to take into 

ccount a large number of objectives in the decision-making pro- 

ess. 

Treatment plan optimization is carried out by a planner (usu- 

lly a medical physicist) that interacts with a Treatment Planning 

ystem (TPS). The planning of the treatment requires the defini- 

ion of all the treatment delivery settings. In IMRT this means 

eciding how many and which are the radiation incidences, and 

hat should the radiation intensity be from each one of those 

ncidences, defining what is usually known as the fluence map. 

he planner configures a given objective function in the TPS, that 

s related with the dosimetric measures established by the med- 

cal prescription, by defining some parameters (like weights and 

ower/upper bounds). Then, the TPS calculates the radiation inten- 

ity maps (fluence map optimization) that define the radiation to 

e delivered, as well as the sequencing process (the definition of 

he movement of the right and left leaves in the multileaf colli- 

ator from each of the radiation incidences). These optimization 

teps constitute a process usually known as inverse planning op- 

imization. Some examples of different mathematical models and 

ptimization algorithms used can be found in ( Dursun, Ta ̧s kın & 

ltınel, 2019 ; Lim, Kardar, Ebrahimi & Cao, 2020 ; Lin, Lim & Bard, 

016 ; Rocha, Dias, Ferreira & Lopes, 2013a , 2013b ; Zaghian, Lim & 

habazian, 2018 ). The planner must try different parameters, in a 

rial-and-error and time-consuming process, since different param- 

ters will originate different treatment plans, with different char- 

cteristics and presenting different com promises between existing 

bjectives. Some of the calculated treatment plans may be clini- 

ally unacceptable, by not respecting hard constraints that should 

e assured (considering tumor control and severe normal tissue 

omplication probabilities, for instance). These unacceptable plans 

ust be discarded. However, those plans that are clinically accept- 

ble are, most of the times, not easily comparable since they will 

enefit some objectives in detriment of others (they are Pareto- 

ptimal solutions, within the set of treatment plans calculated). 

After finding a set of high-quality Pareto-optimal treatment 

lans, the planner presents these alternatives to the RO, who will 

hoose a single one (the treatment that will be delivered to the pa- 

ient). Choosing a treatment plan is not an easy task, even if all the 

reatment plans are clinically acceptable and are of high quality, 

ecause many different criteria must be simultaneously taken into 

ccount. Different treatment plans will possibly impact in a differ- 

nt way the probability of controlling the disease and the proba- 

ility of treatment side-effects due to the irradiation of OARs. 

Some of the available methods that consider explicitly the 

ulticriteria dimension of radiotherapy treatment planning rely 

n lexicographic approaches ( Breedveld, Storchi, Voet & Heijmen, 

012 ; van Haveren et al., 2017 ), where priorities have to be de- 

ned a priori . Other methods have considered Pareto surface nav- 

gation interfaces, where the RO can interact with the system, un- 

erstanding the existing trade-offs and, in some situations, cal- 

ulating new treatment plans ( Craft & Monz, 2010 ; Dias, Rocha, 

entura, Ferreira & do Carmo Lopes, 2018 ; Ehrgott & Winz, 2008 ; 

tubington, Ehrgott, Shentall & Nohadani, 2019 ). These interactive 
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Table 1 

Groups of structures of interest. 

Groups Structures 

PTV Planning Target Volumes 

Critical Retinas 

Optical Nerves 

Chiasm 

Brainstem 

Spinal cord 

Temporal mandibular joint 

Mandible 

Salivary Parotids 

Other Brain 

Lens 

Pituitary gland 

Oral cavity 

Larynx 

esophagus 

Thyroid 

Lungs 
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ystems seem appealing but, from a practical point of view, they 

uffer from some important limitations. It is not simple, for the 

O, to understand the existing trade-offs, given the large num- 

er of existing criteria. Calculating new treatment plans is com- 

utationally simple only when the same set of radiation inci- 

ences is considered, because a new plan can be calculated by a 

imple linear combination of the radiation intensities defined by 

wo other plans ( Craft & Monz, 2010 ). To consider an interactive 

avigation system comprising plans generated with different radi- 

tion incidences is much more complex and computationally de- 

anding ( Dias et al., 2018 ). There are no available Pareto interac- 

ive based approaches for some treatment modalities, like Volu- 

etric Modulated Arc Therapy, because of the complexity of calcu- 

ating a Pareto front when the radiation incidences are defined by 

rcs and not by a set of a small number of incidences. 

Most of the times ROs have a set of implicit preferences, that 

hey are not able to express verbally, but that are inherently 

resent in the daily choices they make. It would be extremely 

eneficial if they could take advantage of a tool that would allow 

hese preferences to be elicited and to be incorporated in the treat- 

ent plan selection process. If these preferences could be known it 

ould be possible to better support the RO decision making pro- 

ess, either by incorporating these preferences a priori in the in- 

erse optimization procedures and/or by allowing a better selec- 

ion of a smaller set of plans for the RO to assess. This would 

ecrease the information overload ROs have to deal with. The re- 

ainder of this section describes the use of the preference infer- 

nce mathematical programs presented in Section 2 to address this 

ifficulty in verbalizing explicitly a preference model. 

.1. Experimental setup 

In a first stage, a sample of 40 retrospective nasopharynx cancer 

ases, treated by co-planar IMRT, were considered. For each case, 

wo plans were created. An experienced RO was invited to com- 

are each pair of plans, and to indicate her choice for each case. If

he plans were considered equivalent, both plans could be selected. 

t was also possible to reject plans that would be considered not 

linically acceptable. In clinical practice, this choice is usually sup- 

orted by resorting to the analysis of the dose distribution, dose 

tatistics, the dose volume histogram (that relates radiation dose to 

issue volume), for instance. This is a very complex process since 

he RO has to take simultaneously into account all the structures 

f interest. For this disease site, many OARs (typically 10–20) and, 

n many cases, more than one PTV needs to be considered ( Table 

 ). 
6 
In a second stage, the described methodology was applied in 

rder to elicit preferences from the paired comparisons made. This 

licitation of preferences was based on an existing graphical as- 

essment tool for radiotherapy treatment planning, SPIDERPLAN 

 Ventura, Lopes, Ferreira & Khouri, 2016 ), which uses a scoring 

pproach to assess and compare the quality of radiation therapy 

reatment plans. This graphical tool considers all the structures of 

nterest organized into groups, that can be defined based on the 

references of the RO or the clinical protocol of the health institu- 

ion. In the described case, the groups followed what is suggested 

y the Radiation Therapy Oncology Group (RTOG 0615 - Table 1 ). 

or each structure, a score is calculated that shows whether the 

lanning goals are or are not being satisfied. If, for a given struc- 

ure, the planning goal is being reached exactly at the threshold 

efined then the corresponding score is equal to 1. If it does not 

omply with the planning goal, then the score is greater than one. 

f the dose delivered not only fulfills the goal but goes beyond (un- 

er) the threshold defined, then the score is less than 1. The dosi- 

etric values that were considered for calculating this score, for 

ach one of the 40 cases, are presented as Supplementary Mate- 

ial. 

Suppose that the planning goal for a given PTV is to assure 

hat 98% of the PTV volume receives at least 95% of the pre- 

cribed dose ( D P 98 – this corresponds to one point in the dose- 

olume histogram). Then, the score for this structure will be given 

y D P 98 /D D 98 , where D D 98 represents the dose delivered to 98% of 

he PTV, for this treatment plan. This means that the score will 

e less than or equal to 1 if the planning goal is being achieved

nd it will be greater than 1 if the goal is not being achieved. For

he OARs, the less delivered dose the merrier, so similar scores are 

onsidered, but in the opposite direction: D D OAR /D P OAR . The global 

core for the plan is given by considering a weighted relative sum 

f the individual scores: the lower the score, the better the plan. 

lthough it is possible to consider different weights for different 

tructures within each group, in this work we assume that all the 

tructures within a group have the same weight (the group is as- 

essed as a whole, the score of a group is a simple average of the

cores of its structures). 

The fact that complying with a given planning goal corresponds 

o a score that is less than or equal to 1 does not mean that

he target value should be fixed at 1. Actually, the value of 1 is 

nly associated with an admissibility compliance, and not with 

hat the RO would like to obtain. This is particularly important 

or OARs: whilst a treatment plan achieving the planning goals can 

e considered as clinically acceptable, the RO will generally pre- 

er plans that spare as most as possible these structures. In some 

ases, however, significant overlaps between the volumes to treat 

nd structures that should be spared make it impossible to calcu- 

ate plans with scores less than or equal to 1 for all the groups: 

here may be structures where it is not possible to comply with 

he thresholds defined. Once again, compromises have to be ac- 

epted. 

SPIDERPLAN has already demonstrated to be a valuable tool for 

he assessment of plan quality ( Ventura et al., 2019 , 2016 ; Ventura,

opes, Rocha, da Costa Ferreira & Dias, 2020 ). However, weights 

ave to be defined a priori , and this can be a very difficult task

ecause they implicitly represent the importance the RO gives to 

ach structure, which is exactly what the RO has difficulties in 

aking explicit. The objective is, thus, to develop a tool that, based 

n the choices made by the RO in these paired comparisons, allows 

or a preference elicitation that can be used from that moment for- 

ard. 

The mathematical formulations presented in Section 2 were 

pplied to this dataset (|J| = 40). All the experiments used the 

ame parameter values ε = 0.001 and h = 0.01 ∗|J|. The set of break- 

oints was always the same for all the dimensions: B g = { b g, 0 ,…,
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Table 2 

Targets ( x g ), implicit weights ( ω g ), and quadratic weights ( w g ) according to 

each model. 

PTV Critical Salivary Other 

Monotonic x g 0.5 0.5 0.5 0.9 

ω g 0.005 0.933 0.005 0.057 

Convex x g 0.5 0.5 0.5 0.9 

ω g 0.066 0.021 0.002 0.911 

AED ( w g ∈ [ 0 . 01 , 100 ] ) x g 0.8 1 1.2 1.2 

ω g 0.273 0.027 0.007 0.692 

w g 0.182 0.026 0.011 1.038 

AED ( w g ∈ [ 0 . 1 , 10 ] ) x g 0.8 1 1.2 1.2 

ω g 0.314 0.120 0.077 0.489 

w g 0.182 0.100 0.100 0.636 

AED (Unweighted) x g 0.95 1.1 1.2 1.2 

ω g 0.345 0.254 0.200 0.200 

w g 1 1 1 1 
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Table 3 

Mean error and percentage of violations considering 

the entire sample. 

Model Mean Error Violations 

Monotonic 4.75E-4 5.0% 

Convex 6.19E-4 5.0% 

AED ( w g ∈ [ 0 . 01 , 100 ] ) 7.60E-4 5.0% 

AED ( w g ∈ [ 0 . 1 , 10 ] ) 1.95E-3 5.0% 

AED (Unweighted) 1.44E-2 7.5% 
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 g,m(g) } = {0, 0.5, 0.8, 0.9, 0.95, 1.0, 1.05, 1.1, 1.2, 1.5, 2}. The break-

oints are not equally distributed; they are concentrated around 

.0, which is the anticipated value for the target. The AED for- 

ulation c) ( Section 2 ) was applied three times, considering w g = 

 , ∀ g ∈ G (i.e., no weighting), considering w g ∈ [ 0 . 01 , 100 ] , ∀ g ∈ G ,

hich allows the weights to vary almost freely, and considering 

 g ∈ [ 0 . 1 , 10 ] , ∀ g ∈ G , as an intermediate situation. The more gen-

ral monotonic and convex formulations a) and b) ( Section 2 ) were 

lso applied as benchmarks. The targets were bounded to belong to 

he interval [0.5, 1.2], by inserting constraints such that the disutil- 

ty of 0.5 equals zero and the disutility of the first breakpoint after 

.2 (i.e., breakpoint 1.5) is at least ε = 0.001. 

The first experiment assessed the mean error (objective func- 

ion) of the different formulations for the given sample. A second 

xperiment consisted in measuring the mean error based on part 

f the sample (80%) of the patients, and assessing the mean out-of- 

ample error corresponding to applying the inferred model to the 

emaining 20% of the patients. This was done five times, taking 20% 

f the patients successively. Since the convex and especially the 

onotonic formulations place less constraints on the value func- 

ions, their ability to reproduce the examples is obviously higher 

lower in-sample error). However, it remains to be analyzed how 

hey compare in terms of out-of-sample error and in terms of the 

eadability of the resulting value functions. The possibility of easily 

nterpreting the obtained value functions is of the utmost impor- 

ance for guaranteeing the adoption of this methodology by medi- 

al physicists and ROs. 

.2. Results 

Fig. 1 depicts the value functions for the four groups of struc- 

ures according to each model, inferred from the RO’s choices. It 

an be observed that the monotonic model proposes abrupt in- 

reases in disutility, and these do not always occur near the tar- 

et (the point to the right of which disutility is no longer zero). In

ontrast, disutility increases more gradually in the remaining mod- 

ls. The corresponding targets and weights are presented in Table 

 . Targets and weights must be considered jointly: if a group has a 

arge weight but also a target greater than 1, the latter diminishes 

ts importance. 

Two fitness measures were considered to assess how well each 

odel could reproduce the DM’s choices: the mean error term, i.e. 

 /| J |, and also the percentage of pairs for which the value of the al-

ernative less preferred by the RO is greater than the value of the 

ore preferred alternative by a difference of ε or larger (% viola- 

ions). The division by | J | allows the comparison with the results of 

he out-of-sample analyses presented further below, in which one 

art of the sample is not used. Table 3 presents the results ob- 

ained considering the entire set (| J | = 40). In most of the cases the
7 
odel is capable of mimicking the choice of the RO, and the mean 

rror obtained is low. Remembering that ε = 0 . 001 represents an 

rbitrarily small positive constant to enforce a strict inequality, the 

ean error is within the order of magnitude of ε for all models 

xcept the unweighted AED. Since the objective functions of the 

athematical programs are minimizing the mean error, it is natu- 

al that the error increases for successively more constrained mod- 

ls. 

One of the advantages of performing a preference elicitation is 

o be able to use the elicited parameters in posterior choices of 

reatment plans, contributing to an automated selection or, at least, 

o a definition of a smaller set of treatment plans for the RO to 

hoose from. It is, thus, important to understand how the results 

btained by the described methodology behave in data not used 

n the inference process. With this in mind, the same formulations 

resented before were used, but considering 80% of the cases only. 

his can be seen as a learning set. Then, the models obtained are 

pplied to an out-of-sample test set that includes the remaining 

0% cases. Results (for the same metrics depicted in Table 3 ) are 

resented in Table 4 , after repeating the process for five different 

n-sample and out-of-sample sets. 

Concerning in-sample error and violations, these results corrob- 

rate the conclusions obtained from the entire sample. From the 

nalysis of these out-of-sample results, the best results are ob- 

ained by the convex and the AED ( w g ∈ [ 0 . 01 , 100 ] ) models. 

In summary: The monotonic model is able to reproduce in- 

ample choices with the lowest error, but this may cause overfit- 

ing, since it is not among the best in terms of out-of-sample re- 

ults and the inferred functions present drastic disutility increases. 

The convex model has very good results, being almost as good 

s the monotonic model in terms of in-sample results, and hav- 

ng more gradual disutility increases. This model was the best in 

erms of out-of-sample error, but not concerning out-of-sample vi- 

lations. 

The weighted AED model has also very good results, being al- 

ost as good as the monotonic and convex models in terms of 

n-sample results, and having gradual and smoother disutility in- 

reases. Model AED ( w g ∈ [ 0 . 01 , 100 ] ) was the second best in terms 

f out-of-sample error, and the best concerning out-of-sample vio- 

ations. 

The unweighted AED model performed poorly from every per- 

pective, being too rigid to fit well the DM’s judgment. 

.3. Feedback on results 

The development of a preference elicitation methodology in the 

resented context of radiotherapy treatment planning should be 

one understanding the multidisciplinary nature of the decision- 

aking process and involving, in all the development stages, the 

takeholders, namely medical physicists and ROs. The presented 

ethodology can be implemented in real practice only if these 

takeholders can understand the process, can easily interpret the 

esults, consider them as trustworthy and accept that the obtained 

odels are indeed representing their preferences and are capable 
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Fig. 1. Inferred value functions for the four groups. (Note: vertical scale changes from graph to graph). 

Table 4 

Mean error and percentage of violations considering 80% of the cases in the sample and 20% out- 

of-sample. The values presented are average values calculated over the five experiments. 

In-sample Out-of-sample 

Model Mean error Mean violations Mean error Mean violations 

Monotonic 4.61E-4 4.4% 2.78E-3 10.0% 

Convex 5.85E-4 5.6% 9.70E-4 10.0% 

AED ( w g ∈ [ 0 . 01 , 100 ] ) 7.18E-4 6.3% 2.37E-3 5.0% 

AED ( w g ∈ [ 0 . 1 , 10 ] ) 1.93E-3 5.6% 4.42E-3 5.0% 

AED (Unweighted) 1.44E-2 7.5% 1.54E-2 10.0% 
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f mimicking their choices. It is thus crucial to share the results 

ith them to obtain their feedback. 

Looking at the inferred value function representations ( Fig. 1 ), 

he models these stakeholders considered easier to interpret and 

loser to what they consider to be their own reasoning process 

re AED with the intervals [0.01, 100] and [0.1, 10]. The value 

unctions inferred by these two models clearly indicate the need 
8 
f choosing treatment plans that guarantee the compliance with 

he PTV and critical structures dosimetric thresholds. All the plans 

hat do not comply with these boundaries will be penalized. There 

s more flexibility in the target definition for Salivary and Other 

tructures, as would be expected. This flexibility is important es- 

ecially in complicated cases where it might not be possible to 

imultaneously comply with the desired threshold for all the con- 
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idered dimensions. The interpretation of the obtained weights, as 

lready mentioned, cannot be done independently of the target 

alues calculated. Although PTV and Critical groups are very im- 

ortant, and can be determinant in the assessment that is made, 

hey do not need to present the largest weights, since the calcu- 

ated targets are lower than the targets calculated for other groups 

meaning that the same value will lead to a higher deviation value 

or these groups than for the others). The weights associated with 

ach one of the groups do indeed make sense. The larger weight 

ssociated with Others group, for instance, can be explained by 

he large number of structures included in this group. If one of 

hese structures is being more irradiated than the RO considers it 

hould or could be, then this is enough to justify the choice of an-

ther plan, affecting the overall importance assigned to this group. 

he lower weights associated with the Salivary group can also be 

nterpreted by the fact that this group is composed of only two 

tructures (parotids) that, even if over irradiated, will not lead to 

ife-threatening situations for the patient (although considerably 

ffecting quality of life). The analysis of the corresponding target 

epresents this flexibility, but also the clear definition of a toler- 

nce bound, beyond which plans will be heavily penalized. 

Both models present very similar in-sample and out-of-sample 

esults. Considering the overall analysis of inferred value function 

harts, and the corresponding weights and targets, the final choice 

ould be the AED with the [0.1, 10] interval. 

. Discussion and conclusions 

In this work we have developed an asymmetric version of 

 Srinivasan & Shocker, 1973 )’s target-based model. This model al- 

ows the inference of the DM’s preferences, based on a given set 

f comparisons among pairs of solutions. One of the distinguishing 

eatures of the described methodology is the possibility of consid- 

ring the target as defining desired admissibility thresholds in each 

f the considered dimensions, instead of an ideal point. Thus, only 

olutions that present values greater than those targets (assuming 

inimization criteria) are penalized in the corresponding dimen- 

ions. 

To assess the feasibility of applying the proposed methodology 

n a real decision-making situation, an application of the work de- 

eloped to radiotherapy treatment planning considering a set of 

etrospective cancer cases treated at the Portuguese Oncology In- 

titute of Coimbra has also been described. The results were com- 

ared with two benchmarks based on UTA: a simple formulation 

o infer a monotonic piecewise linear approximation, and an adap- 

ation of the latter to consider only convex penalty functions. The 

onvex function can be considered an intermediate situation be- 

ween the formulation allowing any monotonic function and the 

ormulation imposing a specific asymmetric quadratic shape. 

It was possible to infer value functions that were easily in- 

erpretable and that could indeed represent the reasoning behind 

he choices made, something that is hard to make in an explicit 

ay. The weighted AED models were the preferred ones, given the 

chieved goodness of fit and the simple interpretation and legibil- 

ty of the results. Compared with the unweighted AED, it is pos- 

ible to conclude that weights can be useful, and contribute to a 

etter acceptance of the model as being an adequate representa- 

ion of the existing implicit preferences. 

The obtained results can be influenced by one important char- 

cteristic of the data sample used: all the paired comparisons were 

ade between high quality plans, as usually happens in clini- 

al practice. ROs do choose between high quality treatment plans, 

ince low quality plans are immediately discarded. It is expected 

hat the value functions inferred could be different if clinical plans 

ot complying whatsoever with minimal clinical standards were 

lso amongst the treatment plans considered. Thus, the value func- 
9 
ions inferred in this study cannot be interpreted as being repre- 

entative of the RO’s preferences in general. The current inverse 

reatment planning optimization algorithms available, and the ex- 

erience of most planner teams, contribute to the generation of 

ets of high-quality alternative plans. From a preference learning 

oint of view, a greater variation between the plans in terms of 

uality might be desirable in general, but this would not represent 

he type of decisions that actually are made in the clinical practice. 

The potential advantages of having available such a methodol- 

gy in the radiotherapy treatment planning context are numerous. 

t is possible to incorporate the elicited preferences in a score that 

an drive the inverse treatment planning optimization procedure, 

educing the computational time and avoiding the trial-and-error 

rocedure. As this method can also be applied considering the in- 

ut of multiple DMs (future work that we are planning on doing) 

t will be possible to guarantee an increased homogeneity in the 

hoice of the treatment plans within a given health institution. It 

ill also be able to support less experienced ROs. 

There are many developments that can be considered, based on 

he achieved results. In the presented application, weights and tar- 

et values were considered at the group level. It is also possible to 

ave more detailed information considering the individual struc- 

ures level. It would also be interesting to understand whether the 

alculated weights and targets allow for an inference of criteria in- 

eractions. This is especially interesting for some structures where 

ne of the structures is impaired, but it is still possible to use the 

ther. 

Other developments can address some of the limitations of 

he proposed models, which are inherited from Srinivasan and 

hocker’s SSED model. In these models, the inference results de- 

end on the number of preference judgments available, and there- 

ore might not be much robust if this number is small. This calls 

or experimental studies studying the interplay between the char- 

cteristics of the problem, namely the number of dimensions con- 

idered, and the number and diversity of judgments needed for 

aving stable results. Post-optimization formulations as performed 

n other methods (e.g., Kadzi ́nski et al., 2017 ; Siskos et al., 2016 )

an also be considered as future extensions to find extreme param- 

ter values compatible with the provided judgments, even though 

n our specific application the provided judgments were not per- 

ectly compatible. Other variants of these models can be consid- 

red to avoid the use of the parameter h (and corresponding con- 

traint) as done by Srinivasan and Shocker to avoid the trivial so- 

ution with all weights equal to zero, by explicitly placing other 

onstraints that can achieve the same purpose. 

This methodology can be used in many other settings where 

ome values may act as targets and the main objective of the DM 

s meeting all the targets as well as possible ( Bordley & Kirkwood, 

004 ). Examples might include satisfying safe operating conditions 

n a system, meeting management targets concerning several at- 

ributes or several projects, or competing in a market without los- 

ng to the market leader on important attributes. 
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