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Abstract

In assignment problems, decision makers are often interested in not only the
optimal assignment, but also the sensitivity of the optimal assignment to
perturbations in the assignment weights. Typically, only perturbations to
individual assignment weights are considered. We present a novel extension
of the traditional sensitivity analysis by allowing for simultaneous variations
in all assignment weights. Focusing on the bottleneck assignment problem,
we provide two different methods of quantifying the sensitivity of the optimal
assignment, and present algorithms for each. Numerical examples as well as
a discussion of the complexity for all algorithms are provided.
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1. Introduction

In the classic assignment problem, we seek a one to one matching of a
set of agents to a set of tasks which optimises some assignment cost. For ex-
ample, Nam and Shell (2015) consider a vehicle routing problem, assigning
destinations to vehicles in order to minimise the time taken for all vehicles to
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reach their destinations within a road network. Assignment problems have a
wide variety of applications, such as resource allocation (Harchol-Balter et al.
(1999)), scheduling (Carraresi and Gallo (1984), Adams et al. (1988)), and
the aforementioned autonomous vehicle routing (Shames et al. (2017), Nam and Shell
(2015), Arslan et al. (2007)). Pentico (2007) review a variety of assignment
objectives, such as the sum of all the assigned weights (linear assignment)
or the difference between the maximum and minimum weight assignment
(balanced assignment problem). Here we focus on the bottleneck assignment
problem (BAP), which minimises the maximum assigned weight within the
assignment. The BAP is particularly applicable in minimum time scenar-
ios, ensuring that a team of agents working in parallel complete their tasks
in minimum time. For the bottleneck assignment problem there are many
algorithms which provide solution in polynomial time, reviewed in Pentico
(2007) and Pferschy (1997).

In many applications the weight associated with the assignment of an
agent to a task carries with it some uncertainty. Measurement errors, commu-
nication delays, or a dynamic environment may contribute to an inaccurate
estimate of an assignment weight. If the uncertainty is known a priori a min-
imax approach may be used, identifying an assignment which minimises the
assignment cost for the worst case realisation of the uncertainty. However,
this is typically a conservative solution. In applications where such a priori
knowledge is unavailable/impractical, or a conservative solution undesirable,
we instead employ sensitivity analysis.

Sensitivity analysis characterises how perturbations to the inputs affect
the output. In the case of uncertainty in the assignment weights, a sensitivity
analysis informs the decision maker in which ways the optimal assignment
may change, given perturbations to the measured weights. We adopt Type
II sensitivity analysis from Koltai and Terlaky (2000), or equivalently the
sensitivity of the optimal basis as in Jansen et al. (1997). Type II sensitivity
analysis characterises the set of weight perturbations to which the optimal
assignment is invariant. In the sensitivity analysis of linear programs, as in
Jansen et al. (1997), the perturbations are restricted to an individual element
of the canonical weight vector, while the remaining elements are held fixed.
However, due to the additional structure of a BAP, we are able to extend
the sensitivity analysis to simultaneous perturbations in all of the weights.
We consider this a more applicable formulation of assignment sensitivity,
as perturbations to the measured weights occur simultaneously if tasks are
carried out in parallel.
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1.1. Literature Review
Due to the assignment problem’s popularity in network theory, there ex-

ist various methods incorporating uncertainty in the assignment weights.
Roughly characterised, we have those which compute robust assignments
with a priori knowledge of uncertainty, and those which characterise some
notion of sensitivity of the assignment to perturbations. Volgenant and Duin
(2010) presents several robust optimisation approaches to the bottleneck as-
signment problem, with interval assumptions on the possible weight values.
Fu et al. (2015) and Kasperski and Zieliński (2013) begin with a set of possi-
ble scenarios, and compute robust minimax assignment solutions by blending
those scenarios. Without a priori knowledge of the uncertainty, Lin and Wen
(2003) and Volgenant (2006) present the sensitivity of the linear assignment
to perturbations in a single weight, based on the dual variables arising from
a primal-dual optimisation. Ramaswamy et al. (2005) provide similar re-
sults in the shortest path and maximum cut network problems, which can
be shown to be equivalent formulations to the linear assignment problem.
However, they do not consider simultaneous weight perturbations in mul-
tiple edges. Both Nam and Shell (2015) and Lin and Wen (2007) present
sensitivity analysis algorithms for the linear assignment, allowing for per-
turbations in an assigned edge as well as in edges adjacent to the assigned
edge (i.e., a row/column of the weight matrix). However, these analyses do
not take into account simultaneous perturbations in multiple assigned edges.
Wood et al. (2020) present an assignment and collision avoidance algorithm,
which utilises a bottleneck assignment sensitivity estimation. However, they
consider only positive weight perturbations, and only in the edges which are
assigned.

Most similar to the analysis presented in this paper are the results from
Sotskov et al. (1995), which discusses the largest uniform bound on all of
the input weight perturbations to maintain optimality for both the linear
and bottleneck assignment problems. The results from Sotskov et al. (1995)
will coincide with the smallest magnitude perturbation bound in our results,
discussed in Section 2 and Section 5.

Previously, Michael et al. (2019) presented a preliminary sensitivity anal-
ysis which allowed for simultaneous perturbations in all assignment weights.
In this paper we build on these results, providing a complete theoretical
framework for understanding the sensitivity of the bottleneck assignment
problem, as well as improved algorithmic results. For a given bottleneck
assignment, the methods we provide construct intervals within which the
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assignment weights may vary while preserving the optimality of the assign-
ment. We further show these are the lexicographically largest set of allowable
perturbations, as defined in Section 2. We provide algorithms to compute
these intervals, as well as numerical examples and complexity analyses.

1.2. Organisation of Paper

Section 2 formalises the assignment problem, as well as the definitions of
sensitivity used in this work. Section 3 establishes the main theoretical tools
used, and applies them to solve the problem of bottleneck edge sensitivity.
Using these, the bottleneck assignment sensitivity problem is addressed in
Section 4. In Section 5, we discuss the complexities of the provided algo-
rithms. Conclusions are presented in Section 6.

2. Preliminaries and Problem Formulation

Let G = (V, E) be a bipartite graph with V = V1 ∪ V2 the set of vertices
such that V1 ∩V2 = ∅, and the edge set E ⊆ V1×V2. While formulating the
assignment problem, it is convenient to use the pair of vertices that an edge
connects to represent the edge, i.e. edge (i, j) ∈ E from vertex i to j. Define a

weight matrix W ∈ R
n×m

over the extended reals i.e., R := R∪ {−∞,+∞},
where n := |V1| and m := |V2| such that n ≥ m ≥ 1, and wij is the weight
associated with edge (i, j), or +∞ if (i, j) 6∈ E . We also define a set of
binary decision variables π := {πij | πij ∈ {0, 1}, (i, j) ∈ E}. The bottleneck
assignment problem can be formulated as

min
πij∈{0,1}

max
(i,j)∈E

πijwij (1a)

subject to
∑

i∈V1

πij = 1, j ∈ V2 (1b)

∑

j∈V2

πij ≤ 1, i ∈ V1. (1c)

If πij = 1 then we say that vertex i is assigned to vertex j or the edge (i, j)
is assigned. Constraints (1b) and (1c) ensure that every vertex is assigned to
at most one other vertex, and that all vertices from the smaller vertex set V2
are assigned. Along with the set of binary decision variables π, we define an
assignment Π = {(i, j) | πij = 1} to be the set of edges which are assigned
in π. We refer to an assignment which is an optimiser of (1) as a bottleneck
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assignment. In the remainder of the paper, we use e ∈ E to represent an
edge rather than the pair of vertices (i, j).

Definition 1 (Feasible Assignments Set). For a bipartite graph G with weights

W ∈ R
n×m

, define Pn×m as the set of all possible assignments Π satisfying
the constraints (1b)-(1c). Additionally, define Pe ⊆ P

n×m to be the subset of
assignments such that e ∈ Π for all Π ∈ Pe.

We define a mapping BAP : R
n×m
→ Pn×m which maps the weights to

the set of optimisers of (1). We briefly describe a simple algorithm which
solves the bottleneck assignment problem: Let Π be an assignment over the
graph. If there does not exist an assignment consisting of edges with strictly
lower weight than Π, then Π is optimal. If there does, replace Π with the
found assignment. Repeat until Π is optimal.

Definition 2 (Allowable Perturbation). For a given bipartite graph G with
weights W , let Π ∈ BAP(W ), i.e. Π is an optimiser of (1) over the

weights W . A perturbation P ∈ R
n×m

is allowable with respect to Π if
Π ∈ BAP(W + P ). If Π 6∈ BAP(W + P ), then P is not allowable with
respect to Π.

For a given graph G and weights W with optimiser Π ∈ BAP(W ), iden-
tifying if Π is an optimiser over the perturbed weights W + P is, in general,
equivalent to solving a new assignment problem. In this sensitivity analysis,
we provide a sufficient but not necessary condition for the invariance of the
optimal assignment, in the form of an interval test.

Let Λ ⊆ R
n×m

be an n × m array of intervals over the extended reals.
For each edge e ∈ E , let [−λe, λe] be the interval corresponding to edge e.

Remark 1. As Λ = ([−λe, λe])e∈E , we may access the upper and lower bound
values λe, λe by their edge indices.

For any perturbation P ∈ R
n×m

, we write P ∈ Λ if

∀e ∈ E : P [e] ∈ [−λe, λe],

where we have used P [e] to denote the perturbation element corresponding
to edge e. Finally, we label Λ allowable relative to Π if for all P ∈ Λ, P is
an allowable perturbation relative to Π as in Definition 2. Throughout this
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paper we will require that 0n×m ∈ Λ, or equivalently λe, λe are non-negative.
To order the arrays intervals we use the lexicographic ordering.

The lexicographic ordering is inspired by alphabetical ordering of words,

such as in a dictionary. Let Λ ⊆ R
n×m

be an array of intervals. Define a
mapping ρk(Λ) which returns the k-th minimum magnitude upper or lower
bound of any of the intervals in Λ, which will be used to order these arrays.

Definition 3 (Lexicographic Ordering of Interval Arrays). For two arrays

of intervals, Λa,Λb ⊆ R
n×m

, Λa ≻ Λb if there exists i ∈ [1, ..., nm] such that

ρi(Λa) > ρi(Λb), and ∀k < i : ρk(Λa) = ρk(Λb). (2)

Let the operator lexmax (I) return a lexicographic maximal element of I
denoted by Λ∗ ∈ I where I is a set of arrays of intervals and Λ∗ � Λ, for all
Λ ∈ I, with � denoting the lexicographic ordering.

Lexicographic maximisation thus maximises the minimum element, then
the second minimum, and so on.

Problem 1. For a given graph G = (V, E) with weights W and optimiser
Π ∈ BAP(W ), construct the lexicographically largest array of intervals Λ∗ :=
([−λ∗

e, λ
∗

e])∀e∈E such that ∀e ∈ E : λ∗
e, λ

∗

e ≥ 0 and any perturbation P ∈ Λ∗ is
allowable with respect to Π.

For a given graph G with weights W and Π ∈ BAP(W ), let

L0 := {Λ ⊆ R
n×m
| 0n×m ∈ Λ}, (3)

LA := {Λ ⊆ R
n×m
| ∀P ∈ Λ : Π ∈ BAP(W + P )}. (4)

Problem 1 is then equivalent to finding Λ∗ ⊂ R
n×m

such that

Λ∗ = lexmax (L0 ∩ LA) . (5)

Remark 2. Note that the set L0 enforces the constraint 0n×m ∈ Λ, as other-
wise the array of intervals could be shifted uniformly by a constant to become
arbitrarily “large”.

Problem 1 is the formal statement of the extension of previous work in
sensitivity analysis, as discussed in Section 1.1. Note that in general, a lexi-
cographically largest array of intervals will not be unique. However, we make
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assumptions in the following sections which guarantee that the lexicographic
maximum is unique. By constructing the array of intervals Λ∗, we find the
lexicographically largest bounds within which the edge weights may vary
while the given assignment Π ∈ BAP(W ) remains an optimiser. However,
the bottleneck assignment Π is quite often not unique. The bottleneck as-
signment problem is concerned only with the maximum weight edge in an
assignment, with no mechanism to differentiate between various assignments
with the same maximum weight edge. Motivated by this, we may define a re-
lated sensitivity problem, focusing only on the maximum weight edge rather
than the entire assignment.

Definition 4 (Bottleneck Edges). For a bipartite graph G with weights W ,
the maximum weight edges in all bottleneck assignments are the bottleneck
edges of G.

We define a new mapping E : R
n×m

→ E which takes the weights and

returns the bottleneck edges. We define a perturbation P ∈ R
n×m

as edge
allowable relative to a bottleneck edge e∗ ∈ E(W ) if e∗ ∈ E(W + P ). We
formulate the problem of the bottleneck edge sensitivity similarly to the
bottleneck assignment sensitivity.

Problem 2. For a given bipartite graph G = (V, E) with weights W and
e∗ ∈ E(W ), construct the lexicographically largest array of intervals Λ∗ :=
([−λ∗

e, λ
∗

e])∀e∈E such that ∀e ∈ E : λ∗
e, λ

∗

e ≥ 0 and any perturbation P ∈ Λ∗ is
edge allowable with respect to e∗.

For a bipartite graph G with weights W and e∗ ∈ E(W ), let

LE := {Λ ⊆ R
n×m
| ∀P ∈ Λ : e∗ ∈ E(W + P )}. (6)

Problem 2 is then equivalent to finding Λ∗ ⊂ R
n×m

such that

Λ∗ = lexmax (L0 ∩ LE) . (7)

This problem will be addressed in Section 3. We discuss Problem 2 first as
the theoretical tools are better motivated and easier to derive in the context
of bottleneck edge sensitivity, and will be central in the analysis of bottle-
neck assignment sensitivity. The problem of assessing the sensitivity of a
bottleneck edge is directly comparable to the sensitivity of the bottleneck
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assignment for the lexicographic assignment, see Burkard and Rendl (1991),
and the solution of Problem 2 is a conservative estimate of the sensitivity
from Problem 1.

2.1. Exclusive Sets

We begin by defining the central theoretical tool of this paper, which
we term the exclusive set with respect to some e ∈ E , denoted Se.

Definition 5 (Exclusive Set). For a bipartite graph G we define Se∗ to be
an exclusive set with respect to an edge e∗ ∈ E if it satisfies the following
properties:

1. Se∗ ⊂ E ;

2. e∗ 6∈ Se∗;

3. Pn×m = Pe∗ ∪e∈Se∗
Pe where Pe is defined in Definition 1.

For a bipartite graph G, define Se to be the set of all exclusive sets for e ∈ E .

The third property of an exclusive set Se∗ , as defined above, is critical
in connecting the exclusive set to the bottleneck assignment problem. In
words, we may rephrase the property as: All assignments over the graph
either contain the edge e∗, or an edge from the exclusive set. The connection
between the bottleneck assignment problem and the exclusive set is made
clear in Lemma 1.

Lemma 1. For a bipartite graph G with weights W , let e∗ ∈ E . There exists
an assignment Π ∈ Pe∗ and an exclusive set Se∗ ∈ Se∗ that satisfy

we∗ = max
e∈Π

we (8)

we∗ ≤ min
e∈Se∗

we (9)

if and only if e∗ ∈ E(W ), i.e., the edge e∗ is a bottleneck edge, and Π is a
bottleneck assignment.

Proof. First, assume that edge e∗ ∈ E(W ) is a bottleneck edge of the graph G
with associated weight matrix W . Then there exists at least one assignment
Π where e∗ is the maximum weight edge, so Π satisfies (8). Because e∗ is a
bottleneck edge of the graph, we have that there is no assignment in which
all edges have weight less than we∗ . Therefore, all assignments which do not
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assign e∗ contain at least one edge with weight greater than or equal to we∗ .
Let Se∗ be the set of all edges with weight greater than or equal to we∗ ,
excluding e∗. Thus, from Definition 5, Se∗ is an exclusive set corresponding
to e∗ and satisfies (9).

To prove the converse, let the assignment Π and the edge set Se∗ sat-
isfy (8)–(9), respectively. To obtain a contradiction, we assume there ex-
ists an assignment Π′ that does not assign e∗ and only assigns edges with
strictly lower weights. We have from the definition of an exclusive set that
Pn×m \ Pe∗ ⊆ ∪e∈Se∗

Pe, i.e., all assignments which do not include e∗, assign
at least one edge from Se∗ . Therefore, there is at least one edge within Se∗

which is assigned in Π′. However, as Se∗ satisfies (9), we conclude that Π′

must contain an edge with weight greater than the weight of e∗, which is a
contradiction.

Remark 3. The existence of an exclusive set Se∗ satisfying the inequality (9)
may be interpreted as proof that there does not exist any augmenting path
avoiding e∗ with strictly lower costs, see ? for more detail on augmenting
paths. There may be paths with equivalent costs, as the inequality in (9) is
not strict.

Lemma 1 establishes the equivalence of e∗ being a bottleneck edge and the
existence of an exclusive set and assignment Π satisfying (8) and (9) relative
to e∗. This tool allows a reformulation of (5) and (7), in which we replace
the sets LA and LE defined in (4) and (6), respectively, with sets redefined
by the conditions from Lemma 1.

3. Bottleneck Edge Sensitivity

We now apply Lemma 1 to reformulate and solve Problem 2. For a
bipartite graph G with weights W , let e∗ ∈ E(W ). By Lemma 1, there exist
an assignment Π and an exclusive set Se∗ satisfying (8) and (9), respectively,
relative to e∗. We define the following sets of interval arrays:

AΠ := {Λ ⊂ R
n×m
| ∀e ∈ Π : we∗ − λe∗ ≥ we + λe}, (10)

XSe∗
:= {Λ ⊂ R

n×m
| ∀e ∈ Se∗ : we∗ + λe∗ ≤ we − λe}. (11)

The definition of sets AΠ,XSe∗
is motivated by Lemma 1. Note that for all

perturbations in all arrays of intervals of AΠ, the assignment Π has greatest
weight edge e∗. Similarly, for all perturbations in all arrays of intervals of
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XSe∗
, we have that e∗ has lower weight than any of the edges in Se∗ . The

main result of this section is presented below.

Theorem 1. For a given bipartite graph G with weights W ∈ R
n×m

, let
e∗ ∈ E(W ). There exists an assignment Π ∈ Pe∗ and an exclusive set Se∗

satisfying (8) and (9), respectively, such that

lexmax(L0 ∩ XSe∗
∩ AΠ) = lexmax(L0 ∩ LE) (12)

where L0, LE, AΠ, XSe∗
are defined in (3), (6),(10), and (11), respectively.

Proof. Let Λ∗ = lexmax(L0 ∩ LE). We first prove there exist an assignment
Π and an exclusive set Se∗ such that Λ∗ ∈ (XSe∗

∩ AΠ). We then show that
(XSe∗

∩ AΠ) ⊆ LE, completing the proof.

Recall Λ∗ = ([−λ∗
e, λ

∗

e])e∈E is an array of intervals, corresponding to each
edge in E . For P [e] the perturbation corresponding to edge e, we select two
perturbations P1, P2 ∈ Λ∗ with elements

P1[e] :=

{
−λ∗

e if e 6= e∗

λ
∗

e if e = e∗
, P2[e] :=

{
λ
∗

e if e 6= e∗

−λ∗
e if e = e∗

.

Every edge perturbation in P1 is the lower bound of its corresponding interval
in Λ∗, except e∗ which is at the upper bound, and the opposite is true for P2.
By (6), we have that e∗ ∈ E(W +P ), for all P ∈ Λ∗, including perturbations
P1 and P2. By Lemma 1, we have that there exists an assignment and an
exclusive set satisfying (8) and (9) for each of the perturbations P1 and P2.
We let Se∗ be defined as the exclusive set satisfying (9) for W1 := W + P1,
and Π be defined as the assignment satisfying (8) for W2 := W +P2. By the
construction of P1, we have that

∀e ∈ Se∗ , ∀P ∈ Λ∗ : we∗ + P [e∗] ≤ we∗ + λ
∗

e∗ ≤ we − λ∗
e ≤ we − P [e].

Similarly for P2,

∀e ∈ Π \ {e∗}, ∀P ∈ Λ∗ : we + P [e] ≤ we + λ
∗

e ≤ we∗ − λ∗
e∗ ≤ we∗ − P [e∗].

Therefore, (8) and (9) are satisfied by Π and Se∗ for all P ∈ Λ∗, and thus
Λ∗ ∈ AΠ, Λ

∗ ∈ XSe∗
, and

Λ∗ = lexmax(L0 ∩ LE) � lexmax(L0 ∩ XSe∗
∩ AΠ).
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To complete the proof, note that for any Λ ∈ L0 ∩ XSe∗
∩ AΠ, we have

e∗ ∈ E(W + P ) for all P ∈ Λ by Lemma 1. Therefore,

lexmax(L0 ∩ XSe∗
∩AΠ) � lexmax(L0 ∩ LE),

which completes the proof.

Remark 4. In Theorem 1, we note that (10)-(11) are defined only by the
bounds λe for all e ∈ Se∗ ∪ {e

∗} and λe for all e ∈ Π. All other upper
and lower bounds are not involved in the set definitions, and are thus un-
bounded in the lexicographic maximisation. We use λe = ∞ to denote that
any positive perturbation is allowable, similarly using −λe = −∞ for negative
perturbations.

In Theorem 1 we reformulate Problem 2, using auxiliary variables Se∗ ∈
Se∗ and Π ∈ Pe∗ . In the following section we construct Λ∗ = lexmax(L0 ∩
XSe∗

∩ AΠ) for a given exclusive set Se∗ and assignment Π. Finally, we

conclude with algorithms to construct the particular exclusive set Ŝe∗ ∈ Se∗

and assignment Π̂ ∈ Pe∗ such that

∀Se∗ ∈ Se∗ , ∀Π ∈ Pe∗ : lexmax(L0 ∩ XŜe∗
∩AΠ̂) � lexmax(L0 ∩ XSe∗

∩AΠ),

completing the solution to Problem 2.

3.1. Constructing Edge Allowable Perturbation Intervals

In this section we construct lexmax(L0 ∩XSe∗
∩AΠ) for a given exclusive

set Se∗ and assignment Π. We first define two bounds based on these sets

λe∗ := min
e∈Se∗

we − we∗

2
, λe∗ := min

e∈Π\e∗

we∗ − we

2
. (13)

These bounds represent the weight gap between the bottleneck edge and the
“closest” edges from both Se∗ and Π, where we take closest here to mean
the minimum weight difference. With these bounds, we construct an array
of intervals Λ := ([−λe, λe])∀e∈E such that

∀e ∈ E : [−λe, λe] =





[we∗ + λe∗ − we,∞] if e ∈ Se∗

[−∞, we∗ − λe∗ − we] if e ∈ Π \ e∗

[−λe∗ , λe∗ ] if e = e∗

[−∞,∞] if e 6∈ Se∗ ∪ Π

. (14)
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Lemma 2. For a bipartite graph G with weights W , let Π ∈ Pe∗ and Se∗
be a given assignment and exclusive set satisfying (8) and (9), respectively,
relative to e∗ ∈ E(W ). Then Λ as defined in (14) satisfies

Λ = lexmax(L0 ∩ XSe∗
∩AΠ)

where AΠ and XSe∗
are given by (10)-(11).

Proof. The exclusive set Se∗ is used to construct a set of constraints in (11)
of the form

∀e ∈ Se∗ : we∗ + λe∗ ≤ we − λe. (15)

Note that the value λe∗ in (13) is less than or equal to the bounds λe for all
e ∈ Se∗ in (14). If all of the bounds were larger than λe∗ , then there would
exist an edge e ∈ Se∗ such that (15) is violated. Therefore, for Λ to be the
lexicographic max, we have λe∗ must be as defined in (13). Then, given that
λe∗ is determined, the bounds λe are trivially maximised by solving (15),
resulting in the bounds from (14).

For the edges in Π \ e∗, the proof is similar. The edges in Π \ e∗ are used
to construct a set of constraints in (10)

∀e ∈ Π \ e∗ : we∗ − λe∗ ≥ we + λe. (16)

The value of λe∗ in (13) is less than or equal to the bounds λe for all e ∈ Π\e∗

in (14). If all of the bounds were larger than λe∗ , then there would exist
an edge e ∈ Π \ e∗ such that (16) is violated. Therefore, for Λ to be the
lexicographically max, we have λe∗ must be as defined in (13). Then, given
that λe∗ is determined, the bounds λe are trivially maximised by solving (16),
resulting in the bounds from (14).

We have shown that the lower bounds λe for all e ∈ Se∗ ∪ {e
∗} and

the upper bounds λe for all e ∈ Π are lexicographically maximised. The
remaining bounds are set to ∞, so for a given assignment Π and exclusive
set Se∗ we have Λ = lexmax(L0∩XSe∗

∩AΠ) with Λ as constructed in (14).

Remark 5. For a bipartite graph G = (V, E), constructing Λ as defined
in (14) has computational complexity O(|E|).
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3.2. Constructing the Exclusive Set and Assignment
We now show how to select the exclusive set Ŝe∗ and bottleneck assign-

ment Π̂ such that

∀Se∗ ∈ Se∗ , ∀Π ∈ Pe∗ : lexmax(L0 ∩ XŜe∗
∩AΠ̂) � lexmax(L0 ∩ XSe∗

∩AΠ).

We begin with the bottleneck assignment Π̂.

Definition 6 (Lexicographic Assignment). For weight matrix W , an assign-
ment Π is a lexicographic assignment if there does not exist a Π′ such that

φi(Π
′,W ) < φi(Π,W ) and ∀j < i : φj(Π

′,W ) = φj(Π,W ),

where φi(Π,W ) returns the i-th largest element of the set {we|e ∈ Π}, i.e.
the i-th largest weight.

Informally, the assignment in which the largest weight is minimised,
the second largest weight is minimised, . . . is the lexicographic assignment.
The lexicographic assignment can be seen as a continuation of the bottle-
neck assignment objective, and can be computed in polynomial time as in
Burkard and Rendl (1991).

We now turn to the choice of the exclusive set Ŝe∗ which corresponds to
the lexicographically largest array of intervals. Note in Algorithm 1 we use
Se∗ ← Se∗ ∪ {e} to denote the addition of the edge e to the set of edges Se∗ .

Algorithm 1: Algorithm to Construct Ŝe∗

Data: W, e∗

Result: Ŝe∗

1 Ŝe∗ ← {} ;
2 we∗ ←∞ ; // ∞ may be any suitably large constant

3 e← E(W ) ;
4 while we 6=∞ do

5 Ŝe ← Ŝe∗ ∪ {e} ; // Add edge e to Se∗
6 we ←∞ ; // Remove e from the graph

7 e← E(W ) ; // Find the new bottleneck edge

8 return Ŝe∗

In Algorithm 1, the initial bottleneck edge is found, removed from the
graph by setting its weight to ∞, and the subsequent bottleneck edge is
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found. If the new bottleneck edge has finite weight, it is added to the set
Ŝe∗ . This repeats until the bottleneck edge has weight ∞, i.e. there are no
assignments left with the remaining edges of the graph. If, rather than setting
the weight to ∞, the edge is removed from the graph at each iteration, then
the algorithm terminates when no solution exists. We require the following
assumption.

Assumption 1. For the bipartite graph G with weights W , the bottleneck
edge e ∈ E(W ) at each iteration of Algorithm 1 is unique.

Assumption 1 is trivially satisfied if all edge weights are distinct. If As-
sumption 1 does not hold, Algorithm 1 will still return an exclusive set, but
we cannot certify that the resulting Λ from (14) will be the lexicographically
largest array of allowable perturbations.

Remark 6. Assumption 11 is necessary to certify the lexicographic optimality
of the resulting intervals. The non-uniqueness of the choice of bottleneck edge
at an iteration can affect the set of subsequent bottleneck edges. We provide
Example 1 to demonstrate this effect.

Example 1. Consider the following weight matrix

W =




0 10 0
100 1 5
0 5 0


 .

The unique bottleneck edge of this weight matrix is e∗ = (2, 2), with weight
1. The lexicographic assignment is Π = {(1, 1), (2, 2), (3, 3)}. Algorithm 1
begins by removing e∗ from the graph, yielding

W =




0 10 0
100 ∞ 5
0 5 0


 ,

in which there are two bottleneck edges e1 = (2, 3) and e2 = (3, 2) with
weight 5. Let cases 1, 2 be the removal of e1 and e2 in subsequent iterations
respectively. The exclusive sets computed for case 1, 2 are S1

e = {(2, 3), (2, 1)}
and S2

e = {(3, 2), (1, 2)}. The intervals Λ1 and Λ2 from (14) are shown in
Table 1. As is shown in Table 1, the choice between removing e1, e2 introduced

1This remark applies to Assumption 2 as stated later in the paper as well.
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Table 1: Ambiguous Bottleneck: Λ1 on left, Λ2 on right

(−∞, 0.5] (−∞,∞) (−∞,∞)
[−97,∞) [−0.5, 2] [−2,∞)
(−∞,∞) (−∞,∞) (−∞, 0.5]

(−∞, 0.5] [−7,∞) (−∞,∞)
(−∞,∞) [−0.5, 2] (−∞,∞)
(−∞,∞) [−2,∞) (−∞, 0.5]

an identical bound of magnitude 2. However, the choice also changed which
of edges (2, 1) or (1, 2) became the subsequent bottleneck edge, which lead to
the array of intervals Λ1 being lexicographically larger than Λ2.

Theorem 2. Given a weight matrix W with a bottleneck edge e∗ ∈ E(W ),

let Ŝe∗ , Π̂ be the set of edge returned from Algorithm 1 and the lexicographic
assignment as defined in Definition 6 respectively. Then Ŝe∗ is an exclusive
set relative to e∗, and if Assumption 1 holds, we have

∀Π ∈ Pe∗ , ∀Se∗ ∈ Se∗ : lexmax(L0 ∩ XŜe∗
∩AΠ̂) � lexmax(L0 ∩ XSe∗

∩AΠ).

Therefore, the array of intervals Λ = lexmax(L0 ∩ XŜe∗
∩ AΠ̂) defined as

in (14) relative to Ŝe∗ , Π̂ solves Problem 2.

Proof. As noted in the proof of Lemma 2, the bounds derived from Ŝe∗ and
Π̂ are entirely independent in (14). We begin with the analysis of the set

Ŝe∗ , and finish with Π̂. Let Λ′ = lexmax(L0 ∩ LE), for L0,LE defined in (3)
and (6) respectively. From Theorem 1, there exist S ′

e∗ ,Π
′ such that Λ′ =

lexmax(L0∩XS′

e∗
∩AΠ′). We will show that S ′

e∗ must be equal to Ŝe∗ and Π′

must be equal to Π̂.
We first show Ŝe∗ is an exclusive set relative to e∗, as defined in Defi-

nition 5. The set Ŝe∗ satisfies the first two properties from the definition
trivially. To see that Ŝe∗ satisfies the final property, note that each edge in
the set Ŝe∗ , as well as e∗, is assigned the weight ∞ in the course of Algo-
rithm 1. The algorithm terminates when the bottleneck edge of the graph
has weight ∞. Therefore, there are no assignments remaining in the graph
which do not assign either the bottleneck edge e∗ or an edge in e ∈ Ŝe∗ , which
is the final property.

To show that S ′
e∗ = Ŝe∗ , let {ê

(1), ê(2), ...} be the edges in Ŝe∗ ordered by

weight from least to greatest, i.e. wê(k) ≤ wê(k+1) for all k ∈ [1, 2, ..., |Ŝe∗|].

This ordering is also the order in which the edges are added to Ŝe∗ in Al-
gorithm 1. To see this, note that removing an edge from the graph can
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only increase the bottleneck edge weight. We similarly define {e′(1), e′(2), ...}
to be the weight ordered edges in S ′

e∗ . Assume there exists some k ∈

[0, 1, 2, ..., |Ŝe∗|] such that ê(j) = e′(j) for all j ≤ k, i.e. the sets S ′
e∗ , Ŝe∗

share the first k minimum weight edges, but may differ from k + 1 onwards.
Note that k can be zero. If k + 1 < |Ŝe∗|, then edge ê(k+1) is the bottleneck
edge of the graph at iteration k+1 in Algorithm 1. Further, by Assumption 1,
there exists an assignment Π(k+1) such that ê(k+1) is the unique maximum
weight edge. As S ′

e∗ is an exclusive set, at least one edge e ∈ Π(k+1) must
be in S ′

e∗ . All previously found edges ê(j) for all j < k have been removed
from the graph, so ê(j) 6∈ Π(k+1) for all j < k. From (14), we see that the
magnitude of the bound λ′

e for an edge e ∈ S ′
e increases as a function of we,

and because ê(k+1) is the unique maximum weight edge in Π(k+1), we must
have ê(k+1) ∈ S ′

e∗ and e′(k+1) = ê(k+1). Any other choice of e ∈ Π(k+1) would
result in a lexicographically smaller Λ′, which contradicts the assumptions
that Λ′ = lexmax(L0 ∩ LE). This argument holds until k + 1 > |Ŝe∗|, at

which point we have Ŝe∗ ⊆ S
′
e∗ . As Ŝe∗ is an exclusive set, adding any more

edges to S ′
e∗ would yield a lexicographically smaller Λ′, and thus S ′

e∗ = Ŝe∗ .

To show that Π′ = Π̂, we note that the bounds in (14) are strictly in-
creasing as a function of we∗ − we for e ∈ Π. Therefore, to lexicographically
maximise the bounds from Π̂, we must lexicographically minimise we for all
e ∈ Π̂. Therefore, by the definition of the lexicographic assignment, we have
Π′ = Π̂.

By assuming Λ′ = lexmax(L0 ∩ LE), we showed that Λ′ = lexmax(L0 ∩

XS′

e∗
∩ AΠ′) by Theorem 1 and that S ′

e∗ = Ŝe∗ and Π′ = Π̂. Therefore, the
array of intervals Λ∗ = lexmax(L0 ∩ XŜe∗

∩ AΠ̂) constructed as in (14) with

Ŝe∗ , Π̂ solves Problem 2.

We conclude this section by applying the results to a small numerical
example.

Example 2. Consider a scenario where the number of vertices in each set is
n = m = 3. We consider a case where all edges have finite weight, although
in general this is not necessary. Consider the following weight matrix

W =



2 91 63
26 89 93
48 60 71


 .
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The bottleneck edge of this weight matrix is e∗ = (1, 3), with weight 63. We

define the set Ŝe∗ as it is returned from Algorithm 1, Ŝe∗ = {(2, 2), (1, 2), (2, 3)}.

With the lexicographic assignment Π̂ = {(2, 1), (3, 2), (1, 3)} and the afore-

mentioned Ŝe∗, the lexicographically largest allowable perturbation intervals
array is given by

Λ∗ = lexmax(L0 ∩ XSe∗
∩AΠ),

where L0,XSe∗
,AΠ are defined as in Theorem 1. The elements of interval

array Λ∗ are presented in Table 2.

Table 2: Lexicographically Largest Allowable Perturbation Intervals, Λ∗

(−∞,∞) [−15,∞) [−1.5, 13]
(−∞, 35.5] [−13,∞) [−17,∞)
(−∞,∞) (−∞, 1.5] (−∞,∞)

It is simple to verify that any perturbation P ∈ Λ∗ satisfies e∗ ∈ E(W+P ).

4. Bottleneck Assignment Sensitivity

In this section we solve Problem 1 by providing Algorithm 2 to construct
Λ∗ = lexmax(L0 ∩ LA). In the previous section, we were able to separate
the construction of the exclusive set from the construction of the intervals.
However, for Problem 1, we must construct them simultaneously. We begin
with a similar result to Theorem 1, reformulating the bottleneck assignment
sensitivity problem.

Theorem 3. For a given graph G with weights W , let Π ∈ BAP(W ) be a
bottleneck assignment. There exist Se ∈ Se for all e ∈ Π such that

lexmax (L0 ∩e∈Π XSe
) = lexmax (L0 ∩ LA) (17)

for L0,XSe
,LA defined in (3),(11), and (4) respectively.

Proof. This proof is similar to the proof of Theorem 1. Assume Λ∗ =
lexmax (L0 ∩ LA), where LA is defined relative to a given assignment Π.
We define a set of perturbations Pei for all ei ∈ Π by

Pei[e] :=

{
−λ∗

e if e 6= ei

λ
∗

e if e = ei
(18)
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such that every edge perturbation is the lower bound of its corresponding
interval in Λ∗, except ei. By (4), we have that Π ∈ BAP(W + P ) for
all P ∈ Λ∗, and in particular, for any Pei . By Lemma 1, there exists an
exclusive set Sei relative to ei which satisfies (9) for Wei := W + Pei. By the
construction of Pei we have Λ∗ ∈ XSei

as

∀e ∈ Sei, ∀P ∈ Λ∗ : wei + P [ei] ≤ wei + λ
∗

ei
≤ we − λ∗

e ≤ we − P [e]

for all ei ∈ Π. Therefore,

lexmax (L0 ∩e∈Π XSe
) � lexmax (L0 ∩ LA) = Λ∗.

To show the converse, consider any perturbation P ∈ L0 ∩e∈Π XSe
. Let

ei ∈ Π be any of the edges in the assignment with maximum weight in the
perturbed weights, i.e. ei ∈ argmaxei∈Πwei +P [ei]. By the definition of XSei

,
the exclusive set Sei satisfies (9), and because it is a maximum weight edge of
the edges in Π, we have the Π satisfies (8). Therefore, by Lemma 1, we have
that ei is a bottleneck edge, and Π is a bottleneck assignment. Therefore,

lexmax (L0 ∩e∈Π XSe
) � lexmax (L0 ∩ LA) = Λ∗, (19)

completing the proof.

In Theorem 3, we reformulate Problem 1 using exclusive sets, similarly to
Theorem 1. Algorithm 2 constructs the exclusive sets Se for all e ∈ Π, from
Theorem 3. Similarly to Algorithm 1, in Algorithm 2 we find the bottleneck
edge of a graph and “remove” it, i.e. setting the weight to ∞. However, we
must do this in parallel for each edge e ∈ Π. The primary difference between
Algorithm 2 and Algorithm 1 is the construction of a new matrix of weights
Be with each element Be[e

′] := boundValue(we, we′, λe, λe′ for edges e ∈ Π at
each iteration.

To motivate the definition of function boundValue, assume that at some
iteration of the algorithm we have a set of determined upper and lower bounds
λe, λe, along with the sets of edges Se, which are not yet exclusive sets as the
algorithm has not terminated. Adding a new edge e′ to the set Se, by the
definition of (11), introduces a new constraint of the form

we + λe ≤ we′ − λe′. (20)
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Function boundValue(we, we′, λe, λe′)

// λ =∞ indicates an undetermined bound

1 if λe =∞∧ λe′ =∞ then

2 return
we′−we

2
;

3 else if λe =∞ then

4 return we′ − λe′ − we;
5 else if λe′ =∞ then

6 return we′ − we − λe;

7 else if we + λe ≤ we′ − λe′ then

8 return ∞;
9 else

10 return −∞;

Assuming the previously determined bounds are fixed, the values λe, λe′ re-
turn from boundValue(we, we′, λe, λe′) are the lexicographically largest values
which satisfy the constraint (20). Previously determined bounds are consid-
ered fixed as the algorithm determines them in non-decreasing order, proof
in Lemma 3. Lowering a previously determined bound to increase a sub-
sequent larger bound is lexicographically sub-optimal. Algorithm 2, which
solves Problem 1, is presented below. Note that Be[ej] is used to indicate the
element of Be corresponding to edge ej in Algorithm 2.

We make an assumption on the structure of the weighted graph, analogous
to Assumption 1.

Assumption 2. The bottleneck edges for all constructed weights in Algo-
rithm 2 are unique.

Algorithm 2 suffers from the same lack of tie-breaking mechanism as Algo-
rithm 1. For an example where Assumption 1 does not hold and Algorithm 1
is not guaranteed to work, see Example 1. Before proving that Algorithm 2
solves Problem 1, we establish the following lemma.

Lemma 3. Let B
(k)
e be the weights computed with respect to edge e ∈ Π on

iteration k in line 4 of Algorithm 2, and let b
(k)
e = E(B

(k)
e ) be the bottleneck

edge of these weights. Then the sequence {min
e∈Π

B
(k)
e [b

(k)
e ]} is non-decreasing.

Proof. See Appendix A.
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Algorithm 2: Constructing Λ = lexmax (L0 ∩ LA)

Data: G,W,Π
1 Λ← {[−λe, λe] | ∀e ∈ E : λe ←∞ , λe ←∞} ;
2 Forever

3 for e ∈ Π do

4 for e′ ∈ E \ {e} do

5 Be[e
′] = boundValue(we, we′, λe, λe′) ;

6 be ← E(Be) ;

7 ê← argmin
e∈Π

Be[be] ; // Edge ê ∈ Π has tightest bound Bê[bê]

8 if Bê[bê] =∞ then

9 return Λ ; // Algorithm terminates

10 if λê =∞ then

11 λê ← Bê[bê] ; // Bound λê has not been previously

set

12 if λbê
=∞ then

13 λbê
← Bê[bê] ; // Bound λbê

has not been previously

set

Lemma 3 enables the proof of Theorem 4 to work similarly to the proof
of Theorem 2.

Theorem 4. For a bipartite graph G with weights W , let Π ∈ BAP(W ). If
Assumption 2 holds, then the array of intervals Λ∗ returned from Algorithm 2
satisfies

Λ∗ = lexmax (L0 ∩ LA) ,

for LA defined in (4). Equivalently, Λ∗ is the solution to Problem 1.

Proof. We show that the array of intervals is lexicographically largest by
proving that at each iteration if the magnitude of the bound was larger then
the array of intervals would be unallowable.

Let Λ′ ∈ lexmax(L0∩LA) for the given assignment Π. By Theorem 3 there
exists a set of exclusive sets {S ′

e}e∈Π such that Λ′ = lexmax
(
L0 ∩e∈Π XS′

e

)
.

We will show that Λ′ = Λ∗ for Λ∗ the intervals returned from Algorithm 2.
For iteration k of Algorithm 2 let ê(k) = argmin

e∈Π
B

(k)
e [b

(k)
e ] represent the
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edge e ∈ Π for which the corresponding bottleneck edge b
(k)
ê has minimum

weight in B
(k)
e . These are the edges determined in Line 6 of Algorithm 2.

During iteration k, if the algorithm does not terminate, then one or both of
λ
∗

ê(k), λ
∗

b
(k)
ê

will be set. After iteration k, both of λ
∗

ê(k), λ
∗

b
(k)
ê

will be set and will

satisfy

wê(k) + λ
∗

ê(k) = w
b
(k)
ê

− λ∗

b
(k)
ê

. (21)

We therefore have that in subsequent iterations, the edge b
(k)
ê is removed

from Bê(k) or equivalently has weight ∞ (Line 8 in function boundValue).
Assume there exists some k ≥ 0 such that for all j ≤ k we have λ

∗

ê(j) =

λ
′

ê(j) and λ∗

b
(j)
ê

= λ′

b
(j)
ê

, i.e. Λ∗ from Algorithm 2 and Λ′ ∈ lexmax(L0 ∩ LA)

have the same k minimal bound values. Note that k can be zero. Then,
if edge b

(k+1)
ê has finite weight, it is the bottleneck edge of the graph with

weights Bê(k+1) at iteration k + 1. Further, by Assumption 2, there exists an

assignment Π(k+1) such that b
(k+1)
ê is the unique maximum weight edge over

Bê(k+1). By Theorem 3, S ′
ê(k+1) is an exclusive set, and thus at least one of

the edges in Π(k+1) must be in S ′
ê(k+1) and satisfy

wê(k+1) + λ
′

ê(k+1) ≤ w
b
(k+1)
ê

− λ′

b
(k+1)
ê

. (22)

By Lemma 3, all subsequent bounds in Λ∗ will be equal to or larger than the
weight of the bottleneck edge b

(k+1)
ê . Therefore, as Λ′ is the lexicographically

largest, we must have the same property. However, as b
(k+1)
ê is the unique

maximum over Bê(k+1), we must have that Λ′ shares the same bound as Λ∗

from the k + 1 iteration, i.e. λ
∗

ê(k+1) = λ
′

ê(k+1) and λ∗

b
(k+1)
ê

= λ′

b
(k+1)
ê

.

Eventually, Algorithm 2 reaches an iteration l such that b
(l)
ê has weight

∞, and the algorithm terminates. To see this, note that by Lemma 3
the bottleneck edges have non-decreasing weights at each iteration, and at
least one edge weight from one of Be for e ∈ Π is set to ∞ at each it-
eration, so the algorithm must terminate as there are only finitely many
edges. When Algorithm 2 terminates, for each of ei ∈ Π, we may con-
struct an exclusive set S∗

ei
such that Λ∗ ∈ XS∗

ei
by checking for which edges

boundValue(we, we′, λe, λe′) = ∞. These sets are exclusive sets as each Bei

has bottleneck edge weight ∞, implying there exists no assignment which
does not assign one of these edges. Further, we have Λ∗ ∈ XS∗

ei
as function
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boundValue assigns a weight of ∞ (Line 8) only when wei + λ
∗

ei
≤ we − λ∗

e.
Given that all bounds which are undetermined after Algorithm 2 terminates
remain at ∞, and Λ′ is the lexicographically largest allowable array of inter-
vals, we must have that Λ′ = Λ∗.

We conclude by demonstrating Algorithm 2 using the same example as
in Section 3, to highlight the differences between the measures of sensitivity.

Example 3. Using the same weight matrix as in Example 2, we perform a
sensitivity analysis for assignment Π = {(2, 1), (3, 2), (1, 3)}. The array of
intervals Λ returned from Algorithm 2 is shown in Table 2.

Table 3: Lexicographically Largest Allowable Perturbation Intervals

(−∞,∞) [−15,∞) (−∞, 13]
(−∞, 50] [−13,∞) [−17,∞)
(−∞,∞) (−∞, 16] (−∞,∞)

We can see in this case that either the allowable perturbation intervals are
identical to the ones in Example 2, or strictly larger. However, this will not
be true in general. Although the intervals Λ corresponding to the bottleneck
assignment sensitivity will be lexicographically larger, they may include more
bounded edges than the intervals for the bottleneck edge sensitivity. For com-
parison, we will show the results from Theorem 3.1 in Sotskov et al. (1995),
over the same example.

Table 4: Sensitivity Results using Sotskov et al. (1995)

[−13, 13] [−13, 13] [−13, 13]
[−13, 13] [−13, 13] [−13, 13]
[−13, 13] [−13, 13] [−13, 13]

5. Computational Complexity

In this section we will provide a brief accounting of the complexity of the
algorithms provided, as well as a comparison to the results from Sotskov et al.
(1995).
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We first note that, in the computation of the bottleneck edge sensitivity
as well as the bottleneck assignment sensitivity, we are iteratively running
a bottleneck assignment solver on a graph, removing or modifying one edge
weight at a time. Unsurprisingly, we can take advantage of the information
from the previous iteration, to dramatically reduce the computational com-
plexity. Using an augmenting path solver, such as from Punnen and Nair
(1994), we may “warm start” the solver with the previously optimal bottle-
neck assignment, removing only the modified edge. This is similar to the
concept used in Volgenant (2006). In this case, the algorithm needs to run
only a single augmenting path search with complexity O(|V|), instead of
finding bottleneck assignment solution with complexity O(|V|

√
|E||V|).

We begin with the computational complexity of the bottleneck edge sensi-
tivity. To compute the bottleneck edge sensitivity of a given e∗ ∈ BAP(W ),
we compute

• The lexicographic assignment Π̂.

• The exclusive set as returned from Algorithm 1.

• The lexicographically largest Λ∗ defined by the previous two steps, as
in (14).

For a bipartite graph G = (V1∪V2, E), let n = |V1|+ |V2| and m = |E|. Algo-
rithm 1 requires O(m) iterations of a bottleneck assignment solver, although
as noted previously, each iteration is only a single augmenting path search
with complexity O(n). The complexity of computing the intervals Λ∗ is then
O(L(n,m) + nm + m), where L(n,m) is the computational complexity of
constructing the lexicographic assignment. For a simple example, we assume
the graph is square and dense, i.e. |V1| = |V2| and E = V1×V2, and that the
bottleneck edge of each subgraph of G is unique. Then the lexicographic as-
signment may be computed as O(n) iterations of the augmenting path solver,
which yields a complexity of O(n2 + n3 + n2) = O(n3). This simplification
shows that the computation of the exclusive set in Algorithm 1, which re-
quires O(n2) iterations of the bottleneck assignment solver, dominates the
complexity.

For the complexity of the bottleneck assignment sensitivity, we note that
there are O(m) iterations in Algorithm 2, and at each iteration we update
O(n) of the constructed weight matrices Be for all e ∈ Π. The complexity is
then O(nB(n,m) + n2m), for B(n,m) the complexity of the bottleneck as-
signment solver over the given graph. Using the complexity of the bottleneck
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assignment algorithm from Punnen and Nair (1994), and assuming a square
and dense graph as before, this yields a complexity of O(n3.5 + n4) = O(n4).

In the introduction, we mentioned the most similar work found in the
literature to the presented was Sotskov et al. (1995). In their work, they
construct a “sensitivity radius” σ(G), which we may interpret in the notation
of this paper as the maximum scalar σ ∈ R

+ such that all perturbations Pσ :=
{Pσ[e] ∈ [−σ, σ] | e ∈ E} are allowable. Letting Λσ be the array of intervals
with lower and upper bound −σ, σ, we then have that ρ1(Λ

∗) = ρ1(Λσ) and
ρi(Λ

∗) ≥ ρi(Λσ) for all i ∈ {2, ..., m} for Λ
∗ the array of intervals computed

in Algorithm 2. The computation of the “sensitivity radius” requires solving
a single bottleneck assignment, and so has complexity O(B(n,m)) or O(n2.5)
with the same simplifications as previously discussed.

6. Conclusion

In this paper we propose two frameworks for assessing the sensitivity of
a bottleneck assignment problem, as well as algorithms for the computation
of the sensitivity within each framework. The analysis provided is driven
primarily by the characterisation of “exclusive sets”, and the connection of
these sets to the bottleneck assignment problem. The combination of the
theory of exclusive sets, along with recursive applications of the bottleneck
assignment problem, allow for these algorithms to be run with off the shelf
assignment solvers and a minimum of additional programming. The sensi-
tivity analysis provided can be used to certify the optimality of a solution,
if for example the true assignment weights can be shown to be contained by
the provided intervals, or as a measure of the robustness of an assignment
solution. Further research should concentrate on the expansion of this type
of sensitivity analysis to other formulations of the assignment problem, as
well as other formulations of the “largest” array of intervals besides the lex-
icographic ordering. Further, understanding the necessary modifications to
relax Assumptions 1 and 2 remains an open question. A weight scaling ap-
proach similar to Burkard and Rendl (1991) seems to be a viable way forward
to this end.
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Appendix A. Proof of Lemma 3

We refer to min
e∈Π

B
(k)
e [b

(k)
e ] as the bound determined on the k-th iteration

of Algorithm 2. To prove the sequence of these bounds is non-decreasing,
we show that the sequence of bottleneck edge weights from each of these
matrices Be is non-decreasing. Focusing on a single matrix Be∗ for some
e∗ ∈ Π, we can separate the iterations into two cases: either the minimum
weight bottleneck is from one of the other Be′ corresponding to an edge
e′ ∈ Π, with e′ 6= e∗, or it is from Be∗ .

We begin by assuming the minimum weight bottleneck edge is from one
of the other graphs b′ = E(B′

e) with bottleneck edge weight λ′ = Be′ [b
′]. If

setting λb′ = λ′ increases or leaves unchanged the value of Be∗ [b
′] then the

bottleneck edge weight is trivially non-decreasing, so we assume that setting
λb′ = λ′ results in a strict decrease of Be∗ [b

′] in the subsequent iteration. We
then have two cases, either λe∗ has been determined prior to this iteration, or
it has not. Assuming that λe∗ has not been determined prior to this iteration,
we have that the edge weight Be∗ [b

′] had value 0.5(we′−we∗) prior to updating
λb′, and has value we′−we∗−λb′ after updating λb′ . If this is a strict decrease,
we obtain λb′ > 0.5(we′−we∗), which may be restated as Be′ [b

′] > Be∗ [b
′] prior

to updating λb′ . Finally, given that Be∗ [b
∗] ≤ Be′[b

′] for b∗ = E(Be∗), we have
Be∗ [b

∗] > Be∗ [b
′], i.e. the weight of edge b′ was less than the bottleneck edge

b∗, and strictly decreased, therefore not changing the bottleneck edge weight
in Be∗ . The second case, assuming λe∗ was determined prior to the iteration,
follows nearly identical logic. If the weight of the edge Be∗ [b

′] decreases, it
must have began with weight less than the bottleneck edge weight, and thus
does not change the bottleneck edge weight in Be∗ .

We now assume the minimum weight bottleneck edge is in the graph
b∗ = E(Be∗) with weight λ∗ = Be∗ [b

∗]. Assume, previous to the i-th iteration,
we have λe∗ =∞, i.e. the upper bound on edge e∗ was undetermined. Then
for any edge e′ satisfying Be∗ [e

′] ≥ λ∗, we have that Be∗ [e
′] is increased or

remains constant after updating. The subsequent bottleneck edge of Be∗ is
drawn from this set of edge weights, so the subsequent bottleneck edge weight
is greater than or equal to λ∗. If instead we have λe∗ 6= ∞, then Be∗ [b

∗] is
set to∞ and nothing else changes, so the subsequent bottleneck edge weight
from Be is increases or remains constant. �
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