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Abstract

The refueling station location problem with routing (RSLP-R) is defined as a maximal coverage

problem that locates alternative fuel refueling stations (AFSs) on a road network to maximize the

refueled alternative fuel vehicle flows by considering the limited range of vehicles and the willing-

ness of drivers to deviate from their paths for refueling. In this study, we introduce the robust

counterpart of RSLP-R using a decision-dependent polyhedral uncertainty set. We model the flow

uncertainty set using a hybrid model that comprises a hose model and individual flow bounds. To

take into account the fact that vehicle flows are affected by AFS deployment decisions in their

neighborhoods, we incorporate the decision-dependency notion into the flow uncertainty set. We

propose two linear mixed integer programming formulations and a Benders reformulation. Our

computational experiments on instances based on the road network of Belgium confirm the effec-

tiveness of the reformulation in solving larger instances. We also report the results of experiments

to assess the value of incorporating uncertainty and decision-dependency into the problem.

Keywords: Location, Robust optimization, Decision-dependent uncertainty, Benders reformula-

tion, Alternative fuel vehicles

1 Introduction

Transportation is heavily dependent on fossil fuels, especially petroleum-based products. This strong

dependency has two main drawbacks. Firstly, consuming fossil fuels results in greenhouse gas emissions

that cause environmental problems such as air pollution, climate change, and global warming. The

transport sector accounts for a significant portion of total worldwide greenhouse gas emissions. The

amount of emissions from transportation constituted 27% of total Europe greenhouse gas emissions in

2017 and this amount increased in 2018 and 2019 (European Environment Agency (2019)). Secondly,

fossil fuels have limited reserves that may be depleted in the near future. By 2050, only 14% of

oil and 18% of gas reserves will remain if current fossil fuel energy consumption rates are maintained

(Martins et al. (2019)). Using alternative fuels is one of the solutions to deal with the problems caused

by fossil fuel consumption. In recent years, there has been a substantial increase in the promotion of

vehicles that need alternative fuels to break the transportation sector’s reliance on fossil fuels. These

cars commonly use biodiesel, electricity, ethanol, hydrogen, (renewable) natural gas, and propane as
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energy sources (Alternative Fuels Data Center (2021)). According to European Alternative Fuels

Observatory (EAFO) (2020) data, while the overall number of alternative fuel vehicles (AFVs) in use

in 2018 is 2.76 percent of total passenger cars in use, this percentage is 5.92 in 2020 for EU countries,

the UK, EFTA countries, and Turkey. These numbers show that the total number of AFVs on the

roads has more than doubled in two years. The AFVs considered in this survey are commonly used

vehicles like battery electric (BEV), compressed natural gas (CNG), hydrogen (H2), liquefied natural

gas (LNG), liquefied petroleum gas (LPG), and plug-in hybrid electric (PHEV) vehicles.

The lack of alternative fuel station (AFS) infrastructure and the rather limited range of AFVs are

two significant obstacles that are slowing down the introduction of AFVs and, as a result, the wide

adoption of these vehicles by drivers (Belgium National Policy Framework (2016)). In this regard,

the efficient deployment of the AFS infrastructure has recently started to be studied in the literature.

The refueling station location problem (RSLP) for AFVs was first introduced and a maximal covering

location model was presented by Kuby & Lim (2005). The problem aims to maximize the total amount

of AFV flows that can be refueled by locating a predetermined number of AFSs on a network. The

vehicle flows are defined on the shortest paths between their origins and destinations, and refueling

a flow may require more than one station because of the limited range of the vehicles. Kim & Kuby

(2012) extended the problem and considered the willingness of drivers to deviate from their shortest

paths to refuel their vehicles. The drivers can tolerate traversing other paths, rather than their shortest

paths, between their origin and destination (O-D) pairs if the total driving distance is within a certain

bound, namely tolerance. Yıldız et al. (2016) generalized the problem by including non-simple path

deviations as well, i.e., drivers are allowed to make cycles to refuel their vehicles. Therefore, a flow can

be refueled if a combination of AFSs on at least one of the paths, between its origin and destination,

satisfies the range and tolerance limits. Since the locations of stations and the routes of drivers are

determined simultaneously in this problem, the authors referred to this problem as the refueling station

location problem with routing (RSLP-R).

The majority of the RSLP studies in the literature assume that the decision maker has full knowl-

edge of AFV flows before locating AFSs. However, it is likely to observe uncertainties in the flows

because the rollout of AFVs and the development of the AFS network are still at their initial stages.

In this respect, employing deterministic flows may result in an inefficient deployment of the AFS in-

frastructure. Furthermore, because fostering the use of AFVs is in its early stages, there is not enough

historical data to predict a probability distribution for the flows. Consequently, robust optimization

can be an advantageous tool in designing AFS networks.

The relationship between the lack of AFS network design and the low level adoption of AFVs

is regarded as a “chicken-egg-problem” in the literature. The insufficient number of AFSs causes a

poor incentive for drivers to use AFVs and vice versa. This interplay between the number of AFSs

and the number of AFVs can be seen in the data provided by EAFO (2020) for Belgium. According

to the Belgium data, by 2020, the numbers of different types of AFVs in use are 64 H2 vehicles,

18,229 CNG vehicles, 33,703 BEVs, and 74,988 PHEVs, and there are 2 hydrogen, 168 natural gas,

and 8,482 electricity stations (most of these electricity stations are convenient for short-distance intra-

city trips). To analyze how facility location decisions affect the demands at customer sites, Jorge

& Correia (2013) made a study for the carsharing business and Erlenkotter (1977) made a study to

deploy warehouses. Both works ended up with the result that opening a facility increases customer

demand in the neighborhood. In the aspects of these remarks, it is thus important to consider that

the availability of AFSs in the neighborhood affects the proliferation of AFVs during the development
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of infrastructure.

In this study, we incorporate robustness and decision-dependency into the RSLP-R. The contri-

butions of the study are as follows:

• We introduce the robust RSLP-R under decision-dependent polyhedral vehicle flow uncertainty.

To the best of our knowledge, this is the first study that considers the effects of location decisions

on the uncertainty sets of the flow-based demands.

• We derive mathematical programming formulations and propose a Benders reformulation and a

branch-and-cut algorithm for the Benders reformulation.

• We generate data sets based on the road network and population distribution of Belgium for the

computational experiments.

• We perform the following computational experiments: We first compare the performances of the

proposed mathematical models and the Benders reformulation. Then, we investigate the changes

in station locations and total covered flows when the optimal solutions of the deterministic,

robust and decision-dependent robust problems are employed. We also analyze the changes

under different parameter settings. We observe that recognizing the uncertainty in flows and

the decision-dependency of uncertain flow realizations can lead to significant gains in the total

AFV flows covered.

The rest of the study is organized as follows. In Section 2, we review the related studies in the

literature. In Section 3, we define the deterministic version of the RSLP-R, introduce the decision-

dependent robust counterpart of the problem, and present formulations. We also derive a Benders

reformulation and describe a branch-and-cut algorithm to solve it. We report our computational

results in Section 4. We discuss possible extensions and conclude our study in Section 5.

2 Literature Review

In the context of location-allocation problems, Hakimi (1965) first introduces p-median and p-center

problems by extending the absolute median and absolute center problems described by Hakimi (1964).

These problems are based on locating p facilities on a network to minimize the sum of demand weighted

distances from customer nodes to facilities (p-median) and the maximum of total demand weighted

distances between a customer and facilities (p-center). Toregas et al. (1971) deal with a facility location

problem where each facility has a maximum service distance. They propose a set-covering model to

minimize the total number of facilities required to meet the total demand. Church & ReVelle (1974)

take into account the resource constraint as well as the maximum service distance. The resource

constraint may arise where there is an insufficient number of facilities to be located because of the

high capital cost of building a facility. They propose a maximal covering model to locate p facilities

maximizing the total demand covered. As a result, there are studies on the set-covering and maximal

covering versions of the RSLP. Although the major part of the RSLP literature contains the maximal

covering models, there are a few papers (Wang & Lin (2009); Wang & Wang (2010)) that consider

the set-covering notion.

Bapna et al. (2002) present the first RSLP formulation based on maximal covering and p-center

problems to locate AFSs. Nicholas et al. (2004) derive a p-median model that minimizes the total

average driving time from demand nodes to the stations. In both works, demands occur at the nodes
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of the road network and the population of the nodes determines the magnitude of their demands.

Unlike node-based studies, Kuby & Lim (2005) make a flow-based (path-based) analysis and assume

the demands as traffic flows on the shortest paths of their O-D pairs. They extend the flow-capturing

location model (FCLM) proposed by Hodgson (1990) and develop the flow-refueling location model

(FRLM), which is used interchangeably with RSLP in the literature, for AFS infrastructure. In FCLM,

a flow is regarded as covered if it passes at least one facility along its path. In FRLM, due to the limited

range of vehicles, one station on their paths does not always guarantee that the flows are refueled.

Kuby & Lim (2005) consider a traffic flow as refueled if a vehicle departing from its origin can reach

its destination and return to the origin without running out of fuel. The authors propose a two-stage

solution method to locate a given number of AFSs and develop a maximal covering model that requires

identifying all combinations of candidate AFS locations capable of serving each vehicle flow to make a

round trip on their paths beforehand. Upchurch & Kuby (2010) compare flow-based and node-based

formulations which are the FRLM and p-median model, respectively. They investigate how well these

formulations perform in each other’s objectives and conclude that the performance of the stations

located by the FRLM in the objective of the p-median model is better than the performance of the

stations located by the p-median in the FRLM’s objective.

The FRLM requires a pre-generation of all candidate station location combinations for refueling

the flow of each path before using a mixed integer programming model. Generating an enormous

number of feasible combinations is impractical and can be computationally burdensome for large-

sized networks. In this regard, Lim & Kuby (2010) propose heuristic methods. They adapt greedy

and genetic algorithms to solve the FRLM. Capar & Kuby (2012) reformulate the FRLM in such

a way that the pre-generation stage is no longer required. They used the logic that the flow is

refuelable if each node on the path is reachable without running out of fuel. Capar et al. (2013)

present a new reformulation based on covering all arcs, rather than nodes, that comprise each path.

Another reformulation is proposed by MirHassani & Ebrazi (2013). They use the idea of network

transformation, i.e., a given path is refuelable if all its intermediate nodes have AFSs. Tran et al.

(2018) employ the model proposed by Capar et al. (2013) and propose a heuristic algorithm that

outperforms the heuristic algorithms developed by Lim & Kuby (2010). The algorithm is based on

exploiting promising candidate station locations during the solution process, considering that the

optimal station locations obtained from the LP relaxation of the model can perform well for the

original problem.

In the FRLM, drivers are assumed to use a fixed path, generally the shortest path, between their

O-D pairs and the AFSs are located along this path to refuel the vehicle flow. However, in real-world

situations, drivers are likely to deviate from their shortest paths to refuel their vehicles if the provision

of refueling stations is sparse. Kim & Kuby (2012) accommodate the willingness of drivers to deviate

from their shortest paths into the FRLM and introduce a new version of the problem, which is the

deviation-FRLM. The authors develop a mixed integer linear programming model that takes all paths

and eligible combinations of refueling stations that can make a path between O-D pairs refuelable as

inputs and assigns the flows to the station combinations. For this model, computational efficiency is

a great concern because considering several paths instead of a fixed path for an O-D pair makes the

problem more complex. In this respect, Kim & Kuby (2013) propose a heuristic algorithm. Yıldız et

al. (2016) extend the problem where drivers can make cycles not only at either end of their paths, as

stated in Kim & Kuby (2013), but also within their paths to refuel their vehicles. The authors refer

to the problem as the RSLP-R and devise a mathematical model and a branch-and-price algorithm
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where the explicit pre-generation of each route between O-D pairs is not required. Finally, Arslan et

al. (2019) propose a branch-and-cut algorithm for a natural formulation of the RSLP-R, and improve

the solution times and the solvable problem sizes substantially.

Most studies assume that the capacity of AFSs is not a concern because of the small amount of

flows on the roads at the adoption stage of AFVs. There are a few studies that consider a restriction on

the amount of flows that can be refueled at each station. Upchurch et al. (2009) present the first work

that incorporates capacity constraints into the FRLM. Hosseini & MirHassani (2017) also study the

capacitated FRLM and propose a mathematical model by using the concept of network transformation

described in MirHassani & Ebrazi (2013). Based on the formulation proposed by Capar et al. (2013)

for the problem with uncapacitated stations, Hosseini et al. (2017) introduce the capacitated problem

where the drivers may deviate from their pre-determined paths while Zhang et al. (2017) address the

problem of locating capacitated stations considering a multi-period planning horizon. Zhang et al.

(2017) also draw attention to the fact that the state of the AFS infrastructure, i.e., the percentage

flow coverage of each path, in the previous period will affect the AFV flows in the future periods.

Although, like Hosseini et al. (2017) and Zhang et al. (2017), Rose et al. (2020) build their proposed

model upon the model in Capar et al. (2013), they define the objective with respect to the set-covering

notion. The authors assume that there is a limit on the number of stations located at each node as

well as a limit on the capacity of stations.

A number of extensions of the conventional deterministic FRLM, apart from the studies mentioned

before, have recently been studied in the literature. Kweon et al. (2017) use the idea, in Kuby & Lim

(2007), of employing additional candidate AFS sites along the arcs rather than regarding only the

vertices and apply it to the case in which there are multiple paths for the O-D pairs. Kang &

Recker (2015) incorporate the drivers’ out-of-home activities scheduling and routing decisions into

AFS location decisions. The authors propose a location-routing model based on the set-covering

problem for the AFS location decisions and the household activity pattern problem for the routing

decisions. Hwang et al. (2015) investigate the AFS location decisions on roads divided into opposite

directions by barriers, where single-access stations can only serve vehicles on one side of the road and

dual-access stations can serve vehicles on both sides. The problem in Hwang et al. (2015) is extended

by Hwang et al. (2017) and Hwang et al. (2020) to the cases with different vehicle ranges and driver

tolerances, respectively. Ventura et al. (2017) also base their proposed model upon the work of Hwang

et al. (2015) but consider two conflicting objectives, which are minimizing the cost of constructing

stations and maximizing the total trip distance that can be traveled. Honma & Kuby (2019) aim at

minimizing the total deviations that drivers must make to refuel their vehicles where there is a single

station that can refuel each path-based demand.

The uncertainty in AFV flow volumes is often incorporated into the decision-making process for

designing an AFS infrastructure using robust or stochastic optimization. Mak et al. (2013) present a

study that focuses on the demand uncertainty in the RSLP. They propose a distributionally robust

optimization model for the problem that aims to minimize the total cost of locating electrical battery

swapping stations. Hosseini & MirHassani (2015) also incorporate uncertainty into vehicle flows. They

propose a stochastic optimization model based on the formulation introduced by MirHassani & Ebrazi

(2013). Another work that handles vehicle flow uncertainty is by Miralinaghi et al. (2017). The authors

consider multiple time periods in which AFV flows fluctuate and present a robust optimization model

by using an uncertainty budget notion (Bertsimas & Sim (2004)). Most stochastic optimization works

propose two-stage stochastic programming formulations to solve the problem. Hosseini & MirHassani
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(2015) determine the locations of permanent AFSs in the first stage and portable AFSs after the

demands are realized. Other works focus specifically on EVs and thus aim at locating the recharging

stations. Faridimehr et al. (2018) consider the demand uncertainty depending on factors such as

time, driver behaviors, and remaining battery charges. The authors propose a model to locate semi-

rapid chargers for intra-city trips where drivers can only charge their cars once. MirHassani et al.

(2020) extend this work to the case for which there are two types of chargers and the drivers are

allowed to charge their vehicles two times. Wu & Sioshansi (2017) address the problem of locating

recharging stations for inter-city trips while assuming that the battery can only be recharged once

per trip, considering both the vehicle range and the driver tolerances. Instead of defining multiple

deviation paths for each trip, the authors employ a capturing circle for each station, i.e., the stations

are eligible to charge the vehicles within a pre-determined radius, to include the tolerances without

making the problem more complex. Yıldız et al. (2019) take into account the multiple deviation paths

and the limited capacity of the recharging stations. A multi-stage stochastic programming model is

proposed by Kadri et al. (2020) to locate the charging stations over a multi-period horizon. Some

studies regard the uncertainty in other parameters rather than in vehicle flows. For example, Xie et al.

(2018) incorporate the uncertainty into the waiting times of the drivers to find an available charging

station, Riemann et al. (2015) deal with the uncertainty in drivers’ route selection choices, and de

Vries & Duijzer (2017) and Kchaou-Boujelben & Gicquel (2020) consider the uncertainty in vehicle

ranges. Hosseini et al. (2021) simultaneously take into account the uncertainties in vehicle ranges and

flow volumes.

Depending on whether the decisions to be made play a role in the uncertain information resolution,

the uncertainty can be classified as exogenous or endogenous (Jonsbr̊aten (1998)). If the realization of

uncertain parameters is independent of decisions, the uncertainty is exogenous to the decision-making

process. The parameters in a problem with endogenous uncertainty, on the other hand, are affected

by the decisions. This effect, according to Goel & Grossmann (2006) can be observed in two ways:

the decisions can change the time when the uncertainty is revealed or favor the possibility of some

parameter realizations. In the former type of endogenous uncertainty framework, i.e., the uncertain

information is sequentially discovered by the decisions, there are studies on gas field investment and

operational planning with uncertain gas reserves (Goel & Grossmann (2004)), resource allocation for

projects with uncertain returns (Solak et al. (2010)), vehicle routing with uncertain customer demands

(Hooshmand Khaligh & MirHassani (2016)), and operating room scheduling with uncertain operation

durations (Hooshmand et al. (2018)). Novel formulations and solution methods for generic planning

problems are proposed by Vayanos et al. (2011), Goel & Grossmann (2005), Tarhan et al. (2013) and

Basciftci et al. (2019). The problems with the latter type of endogenous uncertainty, i.e., the decisions

taken can alter the known probability distribution or uncertainty set of parameters, are investigated

using stochastic and robust optimization approaches. Stochastic programming is applied by Shao et al.

(2006) to user equilibrium traffic assignment in which travel times depend on the route choice decisions

and by Basciftci et al. (2020) to power system management in which generator failures depend on their

degradation levels caused by the dispatch amount and maintenance scheduling decisions. Employing

robust programming for the decision-dependent uncertainty in which the decisions account for the

uncertainty sets, which is also the focus of this paper, has recently received attention in the literature.

The works within this framework address uncertainties in a software-partitioning problem (Spacey et

al. (2012)), a knapsack problem (Poss (2013)), a scheduling problem (Vujanic et al. (2016)), and a

newsvendor problem (Hu et al. (2019)). Several studies (Royset & Wets (2017); Noyan et al. (2018))
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represent the uncertainty set as a set of probability distributions where the partial information about

the distribution of parameters is known, i.e., distributionally robust optimization. In the context of

literature on facility location problems, in terms of node-based demands, Basciftci et al. (2021) and Luo

(2020) study the impact of facility decisions on demand uncertainty and model decision-dependent

distributionally robust formulations. Basciftci et al. (2021) integrate the decision-dependency into

the demand uncertainty set, formulate the problem using the decision-dependent uncertainty set and

perform polyhedral analysis on the formulation. Their results underline the computational efficiency

of their proposed approach and highlight the advantage of considering the impact of location decisions

on the demand uncertainty to obtain a well-planned network. Unlike Basciftci et al. (2021), Luo (2020)

decouples the decision-dependency of demand from the demand uncertainty set and asserts that the

decoupling makes the formulation more data-driven and computationally efficient.

3 Problem Definition and Mathematical Formulations

3.1 The deterministic setting

In this section, we first define the deterministic problem and then present the model proposed by

Arslan et al. (2019) for the sake of completeness.

The RSLP-R is defined on a directed network G = (N,A) with node set N = {1, . . . , n} and arc

set A ⊆ {(i, j) : i, j ∈ N, i ̸= j}. Set Q represents the set of demands. An AFV demand q ∈ Q is

defined as a five-tuple < oq, dq, fq, rq, wq > where oq is the origin node, dq is the destination node, fq

is the vehicle flow volume, rq is the range of vehicle, and wq is the total deviation tolerated by drivers.

The deviation can be defined as a fixed length or as a percentage of the shortest path length. We

represent the driver tolerances in percentages. We use the round trip notion proposed by Kuby & Lim

(2005) to consider a vehicle as refueled. In this regard, it is assumed that an AFV departs from its

origin with a half-full tank and arrives at its destination with at least a half-full tank if there is no

AFS at these nodes. If the origin node has an AFS, the AFV departs from the node with a full tank.

If there is an AFS at the destination node, the AFV can arrive at the node with an empty tank.

Consider flow q where oq = 1 and dq = 9 on the example road network illustrated in Figure 1.

There are 5 paths from node 1 to node 9: 1-2-7-9 with a length of 20, 1-2-6-9 with a length of 14,

1-2-5-9 with a length of 17, 1-3-4-5-9 with a length of 20, and 1-8-5-9 with a length of 15. The shortest

path length is 14. If the driver is willing to drive at most a length of 21, namely, 50% driver tolerance,

and the range of the vehicle is 40, a single facility at the origin or destination node makes each path

feasible to complete the round trip. Alternatively, a station at any node on one of these paths makes

the corresponding path feasible. If the range is 12, one station is not enough, so at least two stations

are required. In this case, path 1-2-7-9 is feasible if and only if two stations are located at nodes 2

and 7. If the range of the vehicle is 8, path 1-2-7-9 is no longer feasible regardless of the tolerance.

Let the total distance tolerated by the driver is equal to the shortest path length, in other words, the

driver is not willing to deviate from the shortest path to refuel the vehicle. In this case, if the range is

5, the flow cannot be covered since the only path that satisfies the range limitation is path 1-3-4-5-9,

which does not satisfy the tolerance.
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Figure 1: Example road network

While locating AFSs, we need to consider range and tolerance limitations to refuel flows. As seen in

the previous example, there may be nodes in the road network that cannot satisfy these limitations for

some flows. As a result, for these flows, network G can be reduced. This network transformation notion

is first proposed by MirHassani & Ebrazi (2013) where the stations can be located only on a fixed path

between an O-D pair. Arslan et al. (2019) adapt this notion to the case where each path between an

O-D pair can be selected to locate stations. We use the network transformation presented by Arslan et

al. (2019). Let δij be the shortest path distance between nodes i ∈ N and j ∈ N . Graph Gq = (Nq, Aq)

is called the transformed graph of flow q with Nq = {sq, tq} ∪ {i ∈ N : δoqi + δidq ≤ (1 + wq)δoqdq}
where sq and tq are dummy nodes and Aq = A1

q ∪A2
q ∪A3

q where

A1
q = {(sq, i) : δoqi ≤ rq/2, i ∈ Nq \ {sq, tq}},

A2
q = {(i, tq) : δidq ≤ rq/2, i ∈ Nq \ {sq, tq}},

A3
q = {(i, j) : δij ≤ rq, i, j ∈ Nq \ {sq, tq}, i ̸= j}.

Arcs (sq, i) ∈ A1
q , (i, tq) ∈ A2

q and (i, j) ∈ A3
q have lengths δoqi, δidq and δij , respectively. It is assumed

that an AFV departs from sq with a half-full tank. Traversing arc (sq, oq) represents that the AFV is

refueled at the origin node. The AFV should arrive at tq with at least a half-full tank, and traversing

arc (dq, tq) represents that the AFV is refueled at the destination node. Each node i ∈ Nq \ {sq, tq}
on a path from sq and tq is called an internal node, and traversing arc (i, j) represents that the AFV

is refueled at node j ∈ Nq \ {sq, tq}. Note that, if all internal nodes of a path from sq to tq have an

AFS, the round trip is guaranteed. Hence, a path on graph Gq is called feasible for demand q if it has

an AFS at each of its internal nodes and has a length of at most (1 + wq)δoqdq .

Let Pq be the set of all feasible paths for a demand q. Arslan et al. (2019) define a q-node-cut to

be subset S ⊆ Nq \ {sq, tq} if removing S from the node set Nq disconnects every path in Pq. Let Γq

be the set of all q-node-cuts. If no proper subset of set S ∈ Γq is a q-node-cut, then set S is called a

minimal q-node-cut for Pq.

As an example, the transformed graph of demand q with oq = 1 and dq = 9 is illustrated in

Figure 2 where rq = 8 and wq = 10%. For example, {2, 8} and {6, 8} are the minimal q-node-cuts for
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this demand. Note that there remain paths after removing nodes 6 and 8, e.g., s-1-2-5-9-t, s-2-5-9-t.

However, these remaining paths are not feasible and thus not in Pq because they have a length of 17,

which is greater than total tolerated distance 15.4.
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Figure 2: Transformed graph for demand q with oq = 1 and dq = 9 where rq = 8 and wq = 10%

Let the location and cover variables be

xi =

1, if there is an AFS at node i ∈ N

0, otherwise;

yq =

1, if a feasible path is constructed for q ∈ Q

0, otherwise.

Arslan et al. (2019) formulate the deterministic version of the problem as follows:

max
∑
q∈Q

fqyq (1a)

s.t.
∑
i∈N

xi ≤ p (1b)

yq ≤
∑
i∈S

xi ∀q ∈ Q,S ∈ Γq (1c)

xi ∈ {0, 1} ∀i ∈ N (1d)

yq ∈ {0, 1} ∀q ∈ Q. (1e)

The objective function (1a) maximizes the total AFV flows to be covered. Constraint (1b) allows to

locate at most p AFSs. To have a feasible path for demand q, there must be at least one AFS at one of

the sites in each q-node-cut S ∈ Γq. If there is a feasible path, then demand q can be refueled. On the

other hand, if there exists a q-node-cut S ∈ Γq where no AFS has been located at any sites in S, i.e.,∑
i∈S xi = 0, then Gq is not connected and there is no feasible path for demand q. Constraints (1c)

ensure that, in this case, demand q cannot be refueled. Note that these constraints are exponential

in number. To separate these constraints, we use the algorithm proposed by Arslan et al. (2019). We

briefly explain this algorithm for the sake of completeness. For given x = x̂ and y = ŷ, a support

graph Gq(N̂q) where N̂q = {sq, tq} ∪ {i ∈ Nq : x̂i = 1} is constructed for each q with ŷq = 1. If the

corresponding graph is not connected or the length of the shortest path between nodes sq and tq is

greater than (1+wq)δoqdq , then the inequality is violated for the q-node-cut Nq\N̂q. As this q-node-cut

may not be a minimal q-node-cut for path set Pq, if graph Gq(N̂q ∪ {i}) for a node i ∈ Nq \ N̂q is not

9



connected or the length of the shortest path between sq and tq in graph Gq(N̂q ∪ {i}) is greater than
(1 + wq)δoqdq , then node i is removed from the q-node cut. This process is repeated until a minimal

q-node-cut is obtained.

3.2 The decision-dependent uncertainty set and the robust counterpart

We introduce our uncertainty set using the hybrid model, which is proposed by Altın et al. (2011)

for the robust network loading problem and is also used by Meraklı & Yaman (2016) in the context

of the robust uncapacitated hub location problem. The hybrid model comprises a hose model and an

interval model. Duffield et al. (1999) and Fingerhut et al. (1997) introduce the hose model to model

demand uncertainty in telecommunication networks. The model limits the total traffic associated with

each node instead of estimating individual pairwise demands. The hose model has resource sharing

flexibility, but it may lead to conservative location decisions because of considering unlikely worst-case

flow realizations (Altın et al. (2011)), e.g., setting only one of the flows emanating from a node to the

aggregate bound and the other flows to zero. Restricting the hose model with bounds of individual

O-D pair flows alleviates the conservativeness of the hose model.

We define the hybrid uncertainty set of the vehicle flows under the impact of station location

decisions as

F(x) =

{
f ∈ R|Q|

+ :
∑

q∈Q:i=oq∨i=dq

fq ≥ bi(x) ∀i ∈ N, uq(x) ≥ fq ≥ lq(x) ∀q ∈ Q

}
(2)

where bi(x) is an aggregate bound for the incoming and outgoing flows of node i, lq(x) is a lower

bound and uq(x) is an upper bound for flow q under decision x. The set F(x) contains all flows such

that the total flow of the demands whose origin or destination is node i ∈ N is at least as large as

the aggregate bound bi(x) and the flow of each demand q ∈ Q is within its upper and lower bounds,

uq(x) and lq(x). Restricting the individual flow constraints uq(x) ≥ fq ≥ lq(x) for all q ∈ Q with

the aggregate flow constraints
∑

q∈Q:i=oq∨i=dq
fq ≥ bi(x) for all i ∈ N helps to eliminate conservative

solutions, i.e., if the uncertainty set is defined by only the box constraints, each individual flow is

set to its lower bound. We assume that F(x) is nonempty for all feasible x. This assumption may

seem restrictive, however, if there is no feasible flow for a given choice of AFS locations, then either

the aggregate bounds bi(x)’s and the upper bounds uq(x)’s or the upper and lower bounds for some

demands are not consistent and should be updated.

The robust RSLP-R under decision-dependent hybrid uncertainty aims at maximizing the total

AFV flows refueled under the worst-case flow realization scenario. The problem can be formulated as

max
(x,y)∈D

min
f∈F(x)

∑
q∈Q

fqyq (3)

where set D is defined by the constraints of the deterministic problem. Note that formulation (3)

is a max-min formulation. To obtain a monolithic formulation, since the inner problem is linear,

feasible and bounded, we can use the dual transformation (see, e.g., Bertsimas & Sim (2003); Meraklı

& Yaman (2016); Altın et al. (2011)). For given (x̂, ŷ) ∈ D, the inner problem is

min
∑
q∈Q

fqŷq
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s.t.
∑

q∈Q:i=oq∨i=dq

fq ≥ bi(x̂) ∀i ∈ N (βi)

lq(x̂) ≤ fq ∀q ∈ Q (θq)

fq ≤ uq(x̂) ∀q ∈ Q (ηq)

fq ≥ 0 ∀q ∈ Q.

Let β, θ and η be the dual variable vectors associated with the above constraints. Then, the dual of

inner problem is

max
∑
i∈N

βibi(x̂) +
∑
q∈Q

(θqlq(x̂)− ηquq(x̂))

s.t. βoq + βdq + θq − ηq ≤ ŷq ∀q ∈ Q

βi ≥ 0 ∀i ∈ N

θq, ηq ≥ 0 ∀q ∈ Q.

By strong duality, both problems have equal optimal values. Hence, problem (3) can be reformulated

as follows:

max
∑
i∈N

βibi(x) +
∑
q∈Q

(θqlq(x)− ηquq(x)) (4a)

s.t. βoq + βdq + θq − ηq ≤ yq ∀q ∈ Q (4b)

(x, y) ∈ D (4c)

βi ≥ 0 ∀i ∈ N (4d)

θq, ηq ≥ 0 ∀q ∈ Q. (4e)

We suppose that, when a new station is opened, vehicle flows in the neighborhood increase because

the drivers will be more willing to use AFVs if there are AFSs nearby. The impact of new stations

can be incorporated into the flow parameters in different ways. Basciftci et al. (2021) and Yu & Shen

(2020) study the decision-dependent distributionally robust problems. In both works, the authors

consider the interplay between moment (mean and variance) information of distributions and location

variables. Basciftci et al. (2021) interpret this relation using piecewise linear functions, whereas Yu &

Shen (2020) assume that the parameters are affinely dependent on the decisions. We investigate the

case where bi, lq and uq are affine functions of x:

bi(x) = bi0 +
∑
j∈N

bijxj i ∈ N,

lq(x) = lq0 +
∑
j∈N

lqjxj q ∈ Q,

uq(x) = uq0 +
∑
j∈N

uqjxj q ∈ Q.
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Then the objective function (4a) becomes:

max
∑
i∈N

βi

bi0 + ∑
j∈N

bijxj

+
∑
q∈Q

θq
lq0 + ∑

j∈N
lqjxj

− ηq

uq0 + ∑
j∈N

uqjxj

 (5)

which can be rewritten as

max
∑
i∈N

bi0βi +
∑
q∈Q

(lq0θq − uq0ηq) +
∑
j∈N

∑
i∈N

bijβi +
∑
q∈Q

(lqjθq − uqjηq)

xj . (6)

Note that there are nonlinear terms in this objective function. To linearize the bilinear terms, we use

McCormick envelopes (McCormick (1976)). If there is a bilinear term ν = υz where z is a binary

variable, and υu and υl are the upper and lower bounds of variable υ, McCormick inequalities

υ − (1− z)υu ≤ ν, (7a)

ν ≤ υ − (1− z)υl, (7b)

υlz ≤ ν, (7c)

ν ≤ υuz (7d)

can be used to represent ν. Linear formulation (7) guarantees that ν = υ if z = 1 and ν = 0 otherwise.

We linearize the bilinear terms in objective function (6) in two different ways leading to an aggregated

and a disaggregated formulation.

3.3 An aggregated formulation

First, we define a new decision variable ϕj =
(∑

i∈N bijβi +
∑

q∈Q(lqjθq − uqjηq)
)
xj for each j ∈ N .

Since ϕj , j ∈ N is an unrestricted variable (see Example 1), upper and lower bounds are taken as M l
j

and Mu
j for the McCormick inequalities where M l

j and Mu
j are arbitrarily large numbers. The mixed

integer linear programming model of the problem can be given as

(Decision-dependent Robust RSLP-R-Aggregated Model)

max
∑
i∈N

bi0βi +
∑
q∈Q

(lq0θq − uq0ηq) +
∑
j∈N

ϕj (8a)

s.t. βoq + βdq + θq − ηq ≤ yq ∀q ∈ Q (8b)

ϕj ≥
∑
i∈N

bijβi +
∑
q∈Q

(lqjθq − uqjηq)− (1− xj)M
u
j ∀j ∈ N (8c)

ϕj ≤
∑
i∈N

bijβi +
∑
q∈Q

(lqjθq − uqjηq)− (1− xj)M
l
j ∀j ∈ N (8d)

ϕj ≥M l
jxj ∀j ∈ N (8e)

ϕj ≤Mu
j xj ∀j ∈ N (8f)

(x, y) ∈ D (8g)

βi ≥ 0 ∀i ∈ N (8h)

θq, ηq ≥ 0 ∀q ∈ Q (8i)

ϕj is unrestricted ∀j ∈ N. (8j)
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2 5 2

Figure 3: Example network

Example 1 Consider the network in Figure 3. The lengths of edges are as shown in the figure. The

range of the vehicle is 4 and the drivers do not tolerate to deviate from their shortest paths. The

O-D pairs are as follows: (o1, d1) = (1, 2), (o2, d2) = (1, 3), (o3, d3) = (2, 3), (o4, d4) = (2, 4) and

(o5, d5) = (3, 4). The aggregated flow parameters are: b10 = b40 = 108, b20 = b30 = 126 and bij = 0 for

all i, j ∈ N , and the individual flow parameters are: l10 = l50 = 10, l20 = l30 = l40 = 2, u10 = u50 = 90,

u20 = u30 = u40 = 18, l21 = l22 = l23 = l42 = l43 = l44 = 5.4, u21 = u22 = u23 = u42 = u43 = u44 =

0.6, l24 = l41 = u24 = u41 = 0 and lqj = uqj = 0 for all j ∈ N and q ∈ {1, 3, 5}.
If model (8) is used to locate 2 AFSs for the given network, the optimal value is 178.8 with optimal

solution x1 = x4 = 1, y1 = y5 = 1, β1 = β4 = 1, η2 = η4 = 1, ϕ1 = ϕ4 = −0.6 and other decision

variables are 0. If we enforce all ϕ variables to be greater than or equal to 0, then the optimal value is

177.2. Hence, for this instance there is no optimal solution with nonnegative ϕ.

There are four constraints with big M values in model (8). The performance of the formulation

can be improved by strengthening the big M values. Since ϕ is dependent on β, θ and η, stronger

bounds for ϕ can be found if there exist upper bounds for variables β, θ and η.

Proposition 1 For an extreme point ξ = (x, y, β, θ, η, ϕ) of the convex hull of the set defined by

inequalities (8b)-(8j), the following hold:

βi ≤ 1 ∀i ∈ N, (9a)

θq ≤ 1 ∀q ∈ Q, (9b)

ηq ≤ 2 ∀q ∈ Q. (9c)

Proof. We first prove that for each extreme point ξ of the convex hull, θq and ηq cannot be positive at

the same time for all q ∈ Q. Assume the contrary that there exists an extreme point ξ̂ = (x̂, ŷ, β̂, θ̂, η̂, ϕ̂)

with θ̂q̃ > 0 and η̂q̃ > 0 for a flow q̃ ∈ Q. Let’s define, where ϵ > 0 is a very small number, a point ξ′

with θ′q̃ = θ̂q̃ + ϵ, η′q̃ = η̂q̃ + ϵ and ϕ′j = ϕ̂j + ϵ(lq̃j − uq̃j) for j ∈ N with x̂j = 1, and a point ξ′′ with

θ′′q̃ = θ̂q̃ − ϵ, η′′q̃ = η̂q̃ − ϵ and ϕ′′j = ϕ̂j − ϵ(lq̃j − uq̃j) for j ∈ N with x̂j = 1, and all other entries of ξ′

and ξ′′ are the same as the entries of ξ̂. Note that points ξ′ and ξ′′ are also in the convex hull and

ξ̂ can be written as a convex combination of points ξ′ and ξ′′, i.e., ξ̂ = 1
2ξ

′ + 1
2ξ

′′. Thus, ξ̂ is not an

extreme point of the convex hull. This contradicts with the assumption.

For q ∈ Q, if ηq = 0, then (9b) holds. If ηq > 0, then θq = 0. So (9b) is satisfied.

Next, we show that for each extreme point ξ of the convex hull, βi is less than or equal to 1 for

all i ∈ N . To the contrary, assume that there exists an extreme point ξ̂ = (x̂, ŷ, β̂, θ̂, η̂, ϕ̂) with β̂ĩ > 1

for a node ĩ ∈ N . Let Q̃ be the set of flows such that ĩ is their origin or destination. If β̂ĩ > 1, then

η̂q > 0 for all q ∈ Q̃. Consider the feasible points ξ′ and ξ′′ where β′
ĩ
= β̂ĩ + ϵ, η′q = η̂q + ϵ for all q ∈ Q̃

and ϕ′j = ϕ̂j + ϵ(bĩj −
∑

q∈Q̃ uqj) for all j ∈ N with x̂j = 1, and β′′
ĩ
= β̂ĩ − ϵ, η′′q = η̂q − ϵ for all q ∈ Q̃

and ϕ′j = ϕ̂j − ϵ(bĩj −
∑

q∈Q̃ uqj) for all j ∈ N with x̂j = 1. All other entries of ξ′ and ξ′′ are the same
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as the entries of ξ̂. Consequently, ξ̂ cannot be an extreme point because ξ̂ = 1
2ξ

′ + 1
2ξ

′′ and ξ′ and ξ′′

are also in the convex hull. So (9a) holds.

Finally, since (9a) and (9b) hold, we can conclude that inequality (9c) holds for each extreme

point. □

For an extreme point, βoq and βdq can be equal to 1 simultaneously. In this case, ηq may take a

value up to 2 as shown in Example 2.

Example 2 Consider the network in Figure 3 and the same individual flow parameters as in Example

1. Additionally, a new flow between nodes 1 and 4 is defined where l60 = 2, u60 = 18 and l6j = u6j = 0

for all j ∈ N . The aggregated flow parameters are bi0 = 70 for all i ∈ N , b1j = 7 for all j ∈ N and

bij = 0 for all i ∈ {2, 3, 4} and j ∈ N .

When the problem is solved for p = 2, the optimal value is 80.8 and the optimal solution is

x1 = x4 = 1, y1 = y5 = 1, β1 = β4 = 1, ϕ1 = ϕ4 = 6.4, η2 = η4 = 1 and η6 = 2. The optimal value

decreases to 73.8 when we impose an upper bound of 1 to η variables.

By Proposition 1, we can update the big M values in model (8) as Mu
j =

∑
i∈N bij +

∑
q∈Q lqj and

M l
j = −2

∑
q∈Q uqj for each j ∈ N .

3.4 A disaggregated formulation

Next, to linearize problem (4), we define three new vectors Φb, Φl and Φu where Φb
ij = xjβi for each

i, j ∈ N , Φl
qj = xjθq and Φu

qj = xjηq for each j ∈ N and q ∈ Q. Since the new bilinear terms are

nonnegative, their lower bounds are 0 and thus McCormick inequalities (7b)-(7d) are used to linearize

them. Inequalities (9a)-(9c) also hold for an extreme point of the convex hull of a polyhedron defined

by constraints (4b)-(4e) and the McCormick inequalities of the new bilinear terms (it can be proven

in the same way as Proposition 1). Accordingly, the upper bounds can be chosen as 1 for Φb
ij and

Φl
qj , and 2 for Φu

qj . Since the problem is a maximization problem and Φb and Φl have nonnegative

coefficients in the objective function, lower bounding constraints for the linearization of these terms can

be omitted. Similarly, since Φu has a nonpositive objective coefficient, its upper bounding constraints

can be omitted. Subsequently, problem (4) is rewritten as

(Decision-dependent Robust RSLP-R-Disaggregated Model)

max
∑
i∈N

bi0βi +
∑
q∈Q

(lq0θq − uq0ηq) +
∑
j∈N

∑
i∈N

bijΦ
b
ij +

∑
q∈Q

(lqjΦ
l
qj − uqjΦ

u
qj)

 (10a)

s.t. βoq + βdq + θq − ηq ≤ yq ∀q ∈ Q (10b)

Φb
ij ≤ xj ∀i ∈ N, j ∈ N (10c)

Φb
ij ≤ βi ∀i ∈ N, j ∈ N (10d)

Φl
qj ≤ xj ∀q ∈ Q, j ∈ N (10e)

Φl
qj ≤ θq ∀q ∈ Q, j ∈ N (10f)

Φu
qj ≥ ηq + 2(xj − 1) ∀q ∈ Q, j ∈ N (10g)

(x, y) ∈ D (10h)

βi ≥ 0 ∀i ∈ N (10i)

θq, ηq ≥ 0 ∀q ∈ Q (10j)
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Φb
ij ≥ 0 ∀i ∈ N, j ∈ N (10k)

Φl
qj ,Φ

u
qj ≥ 0 ∀j ∈ N, q ∈ Q. (10l)

3.5 A Benders reformulation

As the problem size grows, we encounter difficulties in solving the aggregated and disaggregated models

because of the big M constraints and the large number of variables, respectively. In this section, we

propose a Benders reformulation based on the disaggregated model.

Benders decomposition (Benders (1962)) has been used to solve various problems related to facility

location, transportation, vehicle routing, and network design (Rahmaniani et al. (2017)). Here we

provide a Benders reformulation and implement the decomposition algorithm in a branch-and-cut

framework. This reformulation has the advantage that we can characterize the optimality cuts and

separate them by inspection.

If we fix x = x̂, y = ŷ, β = β̂, θ = θ̂ and η = η̂ in the disaggregated model, then we obtain the

following Benders subproblem:

max
∑
j∈N

∑
i∈N

bijΦ
b
ij +

∑
q∈Q

(lqjΦ
l
qj − uqjΦ

u
qj)

 (11a)

s.t. Φb
ij ≤ x̂j ∀i ∈ N, j ∈ N (11b)

Φb
ij ≤ β̂i ∀i ∈ N, j ∈ N (11c)

Φl
qj ≤ x̂j ∀q ∈ Q, j ∈ N (11d)

Φl
qj ≤ θ̂q ∀q ∈ Q, j ∈ N (11e)

Φu
qj ≥ η̂q + 2(x̂j − 1) ∀q ∈ Q, j ∈ N (11f)

Φb
ij ≥ 0 ∀i ∈ N, j ∈ N (11g)

Φl
qj ,Φ

u
qj ≥ 0 ∀j ∈ N, q ∈ Q. (11h)

As x̂, β̂ and θ̂ are nonnegative and η̂q ≤ 2 for all q ∈ Q, this problem is always feasible. Hence,

we only need optimality cuts. The subproblem decomposes first for each j ∈ N and then for each

i ∈ N and q ∈ Q and can be solved by inspection: Φb
ij = min{x̂j , β̂i} for all i ∈ N and j ∈ N ,

Φl
qj = min{x̂j , θ̂q} and Φu

qj = max{0, η̂q + 2(x̂j − 1)} for all q ∈ Q and j ∈ N is an optimal solution.

Using this, we obtain the following Benders reformulation:

max
∑
i∈N

bi0βi +
∑
q∈Q

(lq0θq − uq0ηq) +
∑
j∈N

ϕj (12a)

s.t. ϕj ≤
∑
i∈Nj

bijxj +
∑

i∈N\Nj

bijβi +
∑
q∈Ql

j

lqjxj +
∑

q∈Q\Ql
j

lqjθq −
∑
q∈Qu

j

uqjηq

∀j ∈ N,Nj ⊆ N,Ql
j , Q

u
j ⊆ Q (12b)

βoq + βdq + θq − ηq ≤ yq ∀q ∈ Q (12c)

(x, y) ∈ D (12d)

βi ≥ 0 ∀i ∈ N (12e)

θq, ηq ≥ 0 ∀q ∈ Q (12f)

We solve this formulation using a branch-and-cut algorithm. We separate the optimality cuts (12b) at
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both fractional and integer solutions at the root node and only at integer solutions at the remaining

nodes of the branch-and-cut tree. The separation is done by inspection: For a given vector (x̂, ŷ, β̂, η̂, θ̂),

we let Nj = {i ∈ N : x̂j ≤ β̂i}, Ql
j = {q ∈ Q : x̂j ≤ θ̂q} and Qu

j = {q ∈ Q : 0 ≤ η̂q + 2(x̂j − 1)}. Note

that this separation is exact and polynomial.

4 Computational Experiments

In this section, we present the details of the instances used in the computational experiments and

analyze the computational results obtained. The computational results are given in two sections.

First, we set a one-hour time limit and evaluate the performances of the branch-and-cut algorithms

to solve the Benders reformulation and the aggregated and disaggregated formulations. Then, for

the second set of experiments, we solve the instances to optimality without time limitation because

some instances may take longer than an hour to solve. We compare the station location decisions

obtained by solving the deterministic, robust (without decision-dependency, i.e., the aggregated and

individual flow bounds are the same for all x) and decision-dependent robust problems. We assess the

importance of considering only uncertainty, and uncertainty and decision-dependency simultaneously.

In these experiments, we also examine the effect of different parameter settings on the results. Under

all settings, we highlight the gain of incorporating uncertainty and decision-dependency into strategic-

level decisions.

The experiments are performed on a 64-bit machine with AMD Ryzen 5 PRO 3500U 2.10 GHz

and 16 GB of RAM. The algorithms are coded in Java using CPLEX 12.9 and implemented using the

lazy and user constraint callback functions in CPLEX. For the settings, default strategies provided by

CPLEX are used.

4.1 Details of the instances

We use four data sets to perform our computational experiments. The first data set is the 25-node

network introduced by Simchi-Levi & Berman (1988) for the traveling salesman location problem.

Figure 4 depicts the network where the node sizes are proportional to their weights. This network is

commonly used in the RSLP literature (Hodgson (1990), Kuby & Lim (2005), Kim & Kuby (2012),

Capar et al. (2013), MirHassani & Ebrazi (2013)) where each pair of nodes is regarded as an O-D pair

and flow volumes are generated by using the node weights provided by Simchi-Levi & Berman (1988)

and the gravity model proposed by Hodgson (1990). According to the gravity model, the flow volume

of an O-D pair is directly proportional to the weights of its endpoints and inversely proportional to

the shortest path length between its endpoints. We generated the other data sets based on the road

network of Belgium (Figure 5). In these Belgium data sets, the nodes represent the municipalities, in

total 581, and the edges (two-way arcs) represent the roads (only highways are considered) between the

municipalities. The populations of municipalities are regarded as their weights. The total numbers of

nodes, edges, and O-D pairs for each data set are given in Table 1. For the BE-1 and BE-2 networks,

the most populous 83 municipalities whose populations are higher than 30,000, and for the BE-3

network, the most populous 115 municipalities whose populations are higher than 25,000, are used as

the endpoints of the O-D pairs. The most populous 83 municipalities are taken as the set of nodes

for the BE-1 network, whereas all municipalities are taken as the set of nodes for the BE-2 and BE-3

networks. For each data set, all nodes in the network are regarded as candidate refueling station sites.
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Data Set Nodes Edges O-D pairs

25-node 25 43 300
BE-1 83 236 3403
BE-2 581 911 3403
BE-3 581 911 6555

Table 1: Properties of the instances

Let f̄q and b̄i represent the nominal values of individual and aggregate flow bounds, respectively.

We set b̄i to κ
∑

q∈Q:i=oq∨i=dq
f̄q, κ ≥ 0. The nominal values of individual flows are calculated based

on the gravity model. To consider the whole Belgian population, while computing the flow volumes,

we add the population of a node that is not regarded as an origin or a destination to the nearest node

that is the origin or the destination of an O-D pair. The populations are obtained from STATBEL

(2020) and the road distances are taken from Google Maps (2021). The generated Belgian data sets

are available at https://github.com/OzlemMahmutogullari/BeData.

We define robustness parameter ψ, 0 ≤ ψ ≤ 1 to adjust the level of robustness. Moreover, we

define decision-dependency parameters λBij and λIqj to represent the effect of opening an AFS at node

j on the estimated aggregate flow bound of node i and the interval bounds of flow q, respectively. We

suppose that when a new station opens in the neighborhood, vehicle flows increase and individual flow

deviations diminish. Accordingly, we let

bi0 = b̄i, lq0 = f̄q(1− ψ), uq0 = f̄q(1 + ψ),

bij = λBij b̄i, lqj = f̄q(1 + ψ)λIqj , uqj = f̄q(1− ψ)λIqj .

It is noteworthy that if we set all decision-dependency parameters to zero, then we only consider the

uncertainty in the flow volumes and obtain the robust RSLP-R; if we set the robustness parameter to

zero as well as the decision-dependency parameters, then we obtain the deterministic RSLP-R because,

in this case, there is one possible realization for each flow.

We assume that the flow parameters are affine functions of the location decisions. The choices for

decision-dependency parameters λB and λI determine the degree of a station’s effect on vehicle flows.

As presented by Basciftci et al. (2021), we consider that the stations affect the flows by the magnitudes

of their proximities to the flows, i.e., the closer stations have more effect than the further ones, and

choose the decision-dependency parameters using nonincreasing functions of distances between stations

and flows. In this regard, the aggregate flow at node i is most affected by the nearest stations, while the

flow q is most affected by the stations on the shortest path between its endpoints. The nonincreasing

functions, e−δij/2 and e−(δoq,j+δj,dq )/2, are used to assign values to the decision-dependency parameters

λB and λI , respectively. By assumption,
∑

j∈N λIqj < 1 for each q so that lq(x) < uq(x) under all

station deployment plan. Moreover, we assume that
∑

j∈N λBij ≤ 0.5 for each i and select κ values

during the experiments without violating the feasibility of hybrid uncertainty set. κ is taken as 1 and

ψ is taken as 0.8 if they are not stated otherwise. The decision-dependency parameters are normalized

for each node i and flow q dividing each λBij by 2
∑

j∈N λBij and each λIqj by 1.05
∑

j∈N λIqj .

The ranges of the vehicles are selected based on the information provided by the report of the Eu-

ropean Commission (2016) for the experiments. According to this report, the recommended distances

between two consecutive AFSs are 60 km for EV, 195 km for CNG, 220 km for LPG, 290 km for LNG,

and 295 km for H2 vehicles. The driver tolerances are expressed in percentages of the shortest path
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Figure 4: 25-node network

Figure 5: Belgian network

lengths. We assume that all drivers have the same tolerance percentage. However, the models can

also tackle various tolerance percentages of the drivers who use the same endpoints.
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4.2 Comparison of exact approaches

First, we compare the computational performance of the three proposed exact solution approaches,

namely branch-and-cut algorithms for the two formulations and the Benders reformulation. For this

experiment, we use the 25-node data set with a range of 8 and a tolerance of 10%. Table 2 shows

the results for different numbers of stations. In the table, p is the given number of refueling stations,

# Cuts is the total number of Benders cuts added, # Nodes is the number of nodes explored in the

branch-and-cut tree, and CPU is the total time spent in seconds solving the instance set.

Benders Aggregated Disaggregated
p # Cuts # Nodes CPU # Nodes CPU # Nodes CPU

1 225 17 0.88 26 2.56 10 7.78
2 725 43 1.14 91 2.01 67 15.29
3 800 57 1.20 104 2.42 34 10.98
4 225 96 0.72 182 2.82 55 13.37
5 1450 179 2.58 203 3.08 122 17.67
6 1025 236 2.21 394 4.39 153 23.33
7 975 381 3.70 229 3.79 183 32.21
8 1150 414 7.18 277 4.78 182 32.66
9 1125 509 6.57 443 5.50 335 39.85
10 975 655 7.60 240 4.32 323 36.06
11 1475 346 7.91 265 4.26 182 34.24
12 1000 466 5.04 249 3.53 168 30.73
13 2075 372 12.47 437 3.97 198 34.40
14 325 499 2.01 161 2.68 99 26.60
15 375 470 2.19 94 1.86 194 36.21
16 725 146 1.93 102 1.73 133 26.13
17 1600 59 2.83 83 1.83 57 15.95
18 1850 38 2.82 33 1.20 62 13.99
19 1475 18 1.87 26 1.06 28 11.62
20 950 13 0.91 16 1.11 38 10.46
21 300 7 0.32 10 0.92 18 5.65
22 550 0 0.28 0 0.16 0 1.04
23 325 0 0.14 0 0.07 0 0.67
24 225 0 0.11 0 0.07 0 0.75
25 150 0 0.07 0 0.10 0 0.78

Table 2: Results for the 25-node network with range 8 and tolerance 10%

As shown in Table 2, all proposed approaches can solve the data set to optimality in one minute

for each p value. All methods can solve the problem instances in less time if the p value is small or

large, rather than medium. The total number of nodes explored is the least for the disaggregated

model, but the other methods outperform the disaggregated model in terms of CPU time. Since the

comparison between the results of the Benders reformulation and the aggregated formulation is not

clear for the 25-node network, we also investigate the performance of these approaches for larger-sized

networks. We set the time limit to one hour. Accordingly, for each BE data set with varying range and

tolerance values, the averages of results obtained for different numbers of stations (p = {1, . . . , 15})
are provided in Table 3. In the table, columns # Opt show the total number of instances that can

be solved to optimality within the time limit, and columns Opt. Gap represent the percentage gap

between the best upper bound (BUB) and the best lower bound (BLB) found within the time limit for

the instances that cannot be solved optimally within the time limit. This percentage gap is computed

as 100× BUB−BLB
BLB . Table 3 demonstrates that the Benders reformulation outperforms the aggregated

formulation for all measures under each parameter choice. The algorithm can solve a greater number

of instances in less time by exploring a smaller number of nodes in the branch-and-cut tree. When

both approaches fail to reach optimality within the time limit, the Benders reformulation ends up

with lower percentage gaps.
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Benders Aggregated
Data r w # Opt (/15) # Nodes CPU Opt. Gap # Opt (/15) # Nodes CPU Opt. Gap

BE-1
200

10% 15 837.67 762.40 0.00% 8 7366.40 1963.44 4.69%
20% 15 1013.07 926.10 0.00% 11 6099.33 1758.51 1.42%

250
10% 15 799.20 655.99 0.00% 10 8398.27 1643.64 3.15%
20% 15 867.07 612.82 0.00% 12 6719.33 1409.42 0.89%

BE-2
200

10% 13 527.47 808.69 0.48% 11 3594.33 1734.50 2.68%
20% 13 631.20 1028.21 0.48% 12 1876.20 1621.14 1.10%

250
10% 14 843.07 572.17 0.00% 11 3460.40 1584.99 2.32%
20% 13 570.93 1051.22 0.48% 12 1877.93 1444.63 1.01%

BE-3
60

10% 5 137.00 2519.86 15.14% 4 586.60 2879.92 39.83%
20% 4 155.73 2739.59 19.20% 3 223.87 3233.47 56.57%

100
10% 6 258.20 2515.22 5.95% 4 722.20 3121.89 30.10%
20% 5 136.40 2884.03 9.59% 3 207.67 3151.91 46.16%

Table 3: Average results for larger data sets

4.3 The changes in total covered flows

Next, we analyze how the station location decisions change considering uncertainty and decision-

dependency under different parameter settings. We present the results of the deterministic, robust, and

decision-dependent robust problems, how well the deterministic solution performs under uncertainty

and how well the robust solution performs under decision-dependent uncertainty. As stated before, the

robust problem refers to the decision-dependent robust problem with decision-dependency parameters

λI = 0 and λB = 0, and all instances for each problem are solved to optimality.

Tables 4 and 5 show the optimal values of the problems, the worst case total flows using the

deterministic solutions under the flow uncertainty set and using the robust solutions under the decision-

dependent flow uncertainty set, and the percentage increments in the total covered flows if the robust

and the decision-dependent robust solutions are used. In the tables, zdet, zr and zdd represent the

optimal values of the deterministic, robust, and decision-dependent robust problems, respectively,

zdet,r is the objective function value of the robust problem if the stations are selected according to

the optimal solution of the deterministic problem and zr,dd is the objective function value of the

decision-dependent problem where the station locations are as in the robust solution. The percentage

increments in the flows that can be covered when uncertainty and decision-dependency are taken into

account are given in column Extra. The value
zr−zdet,r
zdet,r

× 100 gives the percentage improvement in the

total flow covered if the robust solution is used instead of the deterministic solution under uncertainty.

The percentage of extra flow that can be covered in a decision-dependent environment, i.e., we consider

the decision-dependency as well as the uncertainty, can be computed as
zdd−zr,dd

zr,dd
× 100.

If the optimal station locations of the deterministic problem are compared with those of the robust

problem, it is seen that the locations change for 4 out of 15 instances in the 25-node network and

for 9 out of 15 instances in the BE-2 network. If we compare the optimal station locations of the

robust model with those of the decision-dependent robust model, we observe that there is a change in

the locations for 12 out of 15 instances in the 25-node network and for 10 out of 15 instances in the

BE-2 network. As examples, Figures 6 and 7 illustrate the optimal station locations for the instances

in Tables 4 and 5 with p = 5 and p = 7, respectively. In the deterministic case, the stations are

situated at cities 2, 14, 17, 20, and 23 as shown in Figure 6. The station in city 2 (red) is moved

to city 16 (yellow), which is closer to the big cities, under the uncertain flow realizations. If we

make the uncertainty set dependent on the location decisions, city 16 is replaced by city 18 (green),

which is one of the largest cities and close to high volumes of vehicle flows. The deterministic model

places 7 stations in Antwerp, Ghent, Liège, Brussels, Schaerbeek, Uccle, and Leuven in the BE-2
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Deterministic Robust Decision-Dependent Robust
p zdet zr zdet,r Extra (%) zdd zr,dd Extra (%)

1 17.13 8.10 8.10 0.00 14.68 14.68 0.00
2 32.58 17.40 17.40 0.00 32.51 32.51 0.00
3 44.41 31.95 31.95 0.00 46.35 45.11 2.76
4 55.96 46.56 46.56 0.00 59.96 59.96 0.00
5 63.52 49.86 48.86 2.05 69.06 65.28 5.79
6 68.08 56.31 51.88 8.54 77.93 71.96 8.30
7 72.32 59.75 58.61 1.93 87.02 84.51 2.97
8 77.86 67.54 67.54 0.00 95.97 94.80 1.24
9 82.77 74.71 74.49 0.29 104.13 102.06 2.03
10 90.06 83.33 83.33 0.00 113.50 112.31 1.06
11 94.41 90.25 90.25 0.00 123.25 119.54 3.10
12 96.80 94.45 94.45 0.00 132.63 126.22 5.08
13 97.77 96.21 96.21 0.00 140.24 128.54 9.10
14 98.43 97.23 97.23 0.00 150.00 128.85 16.42
15 98.74 97.79 97.79 0.00 157.45 134.49 17.07

Table 4: Total refueled vehicle flow analysis for the 25-node network with range 8 and tolerance 10%

Deterministic Robust Decision-Dependent Robust
p zdet zr zdet,r Extra (%) zdd zr,dd Extra (%)

1 34.74 17.26 17.26 0.00 23.88 23.88 0.00
2 44.26 26.27 26.27 0.00 38.09 38.09 0.00
3 50.19 31.56 31.56 0.00 45.69 45.69 0.00
4 55.42 36.14 36.14 0.00 52.86 52.74 0.23
5 60.52 40.55 40.36 0.48 59.83 59.83 0.00
6 64.85 44.40 43.44 2.21 65.52 65.52 0.00
7 68.80 48.68 48.02 1.37 70.58 69.52 1.52
8 72.13 53.18 52.05 2.19 75.17 72.71 3.39
9 75.04 57.63 57.08 0.97 79.72 77.18 3.28
10 77.65 61.75 61.73 0.03 84.35 82.02 2.85
11 79.62 64.68 64.48 0.33 87.97 85.00 3.49
12 81.56 67.39 67.03 0.53 91.05 87.13 4.49
13 83.21 70.06 69.95 0.16 93.92 90.02 4.33
14 84.69 72.62 72.62 0.00 96.62 92.28 4.70
15 86.10 75.16 75.16 0.00 99.37 97.50 1.92

Table 5: Total refueled vehicle flow analysis for the BE-2 network with range 250 and tolerance 10%

network, as shown in Figure 7. Dilbeek (population 94,033) replaces Leuven (195,679) if we switch

to the robust model, and Dilbeek is replaced by Charleroi (324,686) in response to considering the

decision-dependency of flow uncertainty sets.

Although the deterministic station locations are robust for most instances of the small network,

the extra flow that can be covered by employing the robust solution can be drastic for some instances,

such as 8.54%. Moreover, when the decision-dependent uncertainty is considered, the optimal station

locations are more likely to change, and the advantage of integrating decision-dependency in the flow

uncertainty sets grows for larger p values. These findings underline the need of incorporating decision-

dependent uncertainty into the strategic-level planning of locating stations, regardless of network size.

Table 6 presents the average percentage flow increments for the BE-1 and BE-2 data sets when

uncertainty and decision-dependency are taken into account for a variety of range and tolerance

combinations. The main difference between these two data sets is that the BE-2 network has a greater

number of candidate locations than the BE-1 network, as if the stations can be located at some points

on the edges, not only the endpoints, of the BE-1 network. In Table 6, # Ins represents the number

of instances that have different optimal solutions for the corresponding problems, and Mean is the
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Figure 6: Optimal locations for the 25-node network with p = 5

Figure 7: Optimal locations for the BE-2 network with p = 7

average of extra flows and Max is the maximum of extra flows if we apply the formulation that is

suitable for the environment. Mean and Max are given in percentages. For each range and tolerance
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Uncertainty Decision-Dependency
Data r w # Ins (/45) Mean (%) Max (%) # Ins (/15) Mean (%) Max (%)

BE-1

200
10% 19 1.84 5.37 10 4.69 10.45
20% 16 0.59 4.69 10 4.95 10.55

250
10% 18 1.02 7.56 10 5.38 11.07
20% 16 0.51 2.04 11 5.09 11.00

300
10% 16 0.87 3.27 11 4.84 11.29
20% 14 0.72 2.34 11 5.11 11.04

BE-2

200
10% 16 0.56 2.63 8 3.07 4.33
20% 10 1.01 2.54 9 3.16 5.61

250
10% 15 0.59 2.21 10 3.02 4.70
20% 11 0.37 1.45 10 2.86 4.61

300
10% 17 0.53 2.70 10 3.32 5.54
20% 10 0.51 2.09 10 2.79 4.73

Table 6: Average extra flows that can be covered considering the uncertainty and
decision-dependency for the BE-1 and BE-2 networks under different parameter settings

setting, the problems are solved to locate p = {1, . . . , 45} stations for the uncertainty and to locate

p = {1, . . . , 15} stations for the decision-dependency. We can deduce, from the table, that the station

locations are more likely to change under uncertain flow volumes as the tolerance decreases for both

data sets. The effects of station location changes under uncertainty are greater in the BE-1 network

than in the BE-2 network. This argument is also true for the decision-dependent case. Additionally,

under decision-dependent uncertainty, changes in the station locations are common in all instances

and the percentage of extra flows can be up to 11.29%.

4.3.1 The effects of robustness parameter values

We examine how total covered flows change under different robustness parameter values. The results

are reported in Tables 7 and 8 when considering uncertainty and decision-dependency, respectively. As

expected, when we compare the station locations of the deterministic model with those of the robust

model under hybrid flow uncertainty sets with robustness parameters of 0.5 and 0.8, we observe

that the gain of considering uncertainty declines as the uncertainty level gets smaller. On the other

hand, incorporating decision-dependency into uncertainty sets provides a significant benefit for each

uncertainty level.

ψ = 0.5 ψ = 0.8
r w # Ins (/45) Mean (%) Max (%) # Ins (/45) Mean (%) Max (%)

200
10% 15 1.03 2.35 19 1.84 5.37
20% 9 0.34 1.93 16 0.59 4.69
50% 9 1.08 3.18 10 2.86 10.67

250
10% 16 0.49 3.61 18 1.02 7.56
20% 12 0.25 0.71 16 0.51 2.04
50% 6 0.86 3.93 9 1.79 8.51

300
10% 14 0.34 1.61 16 0.87 3.27
20% 10 0.36 1.21 14 0.72 2.34
50% 7 0.76 4.18 8 1.99 8.72

Table 7: Average extra flows that can be covered considering the uncertainty for the BE-1 network
with different ψ values

It is also observed that, in Table 7, employing the robust model under uncertain flows benefits

a greater number of instances with different p values when the tolerance is reduced. However, the
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ψ = 0.5 ψ = 0.8
r w # Ins (/15) Mean (%) Max (%) # Ins (/15) Mean (%) Max (%)

200
10% 11 4.85 10.17 10 4.69 10.45
20% 10 5.44 10.12 10 4.95 10.55
50% 13 5.76 11.13 11 5.23 10.44

250
10% 11 5.22 10.63 10 5.38 11.07
20% 11 5.52 10.70 11 5.09 11.00
50% 10 7.37 11.15 13 5.50 10.46

300
10% 11 5.49 10.84 11 4.84 11.29
20% 11 5.49 10.77 11 5.11 11.04
50% 12 6.87 11.07 13 5.41 10.40

Table 8: Average extra flows that can be covered considering the decision-dependency for the BE-1
network with different ψ values

percentage increase in total covered flows on average increases when the tolerance is raised. As seen in

Table 8, the advantage of recognizing the decision-dependency by using the decision-dependent robust

station locations increases as the range and tolerance increase.

4.3.2 The effects of aggregated flow bound values

We further analyze the effects of κ values, i.e., the aggregated flow bound estimations, on the optimal

station locations. In Tables 9 and 10, we present the performances of the deterministic station loca-

tions under the uncertain flow realizations and of the robust locations under the decision-dependent

uncertain flows for κ = {0.8, 1.0, 1.2}. In the tables, it can be seen that the problem instances become

more sensitive to the changes in the flows as the aggregate bounds of the nodes decrease. It is worth

noting that, for the robust problem, this pattern is not followed when κ converges to 0. If κ = 0, the

hybrid flow uncertainty set is defined only by the individual flow volumes, and the worst case real-

izations of all pairwise flows are equal to (1 − ψ) proportion of their nominal values, i.e., their lower

bounds. Consequently, when κ = 0, the deterministic and robust locations are the same. However,

the gain of incorporating decision-dependency remains and continues to increase as κ decreases.

κ = 0.8 κ = 1.0 κ = 1.2
r w # Ins (/45) Mean (%) Max (%) # Ins (/45) Mean (%) Max (%) # Ins (/45) Mean (%) Max(%)

200
10% 28 1.74 4.98 19 1.84 5.37 13 1.20 4.98
20% 23 1.39 5.02 16 0.59 4.69 6 0.69 2.09
50% 17 1.60 5.54 10 2.86 10.67 7 1.05 3.28

250
10% 26 1.65 7.34 18 1.02 7.56 10 0.13 0.51
20% 23 1.21 3.92 16 0.51 2.04 8 0.71 2.70
50% 17 1.14 2.97 9 1.79 8.51 5 0.84 3.76

300
10% 23 1.84 6.14 16 0.87 3.27 5 0.27 0.76
20% 19 1.76 5.23 14 0.72 2.34 8 0.57 3.21
50% 16 1.14 3.16 8 1.99 8.72 3 1.23 3.64

Table 9: Average extra flows that can be covered considering the uncertainty for the BE-1 network
with different κ values

In Table 9, although the average percentage changes in the objective function values become

smaller as κ gets larger, we observe that recognizing uncertainty can still be quite valuable for some

instances. For example, average percentage flow increments are generally around 1% if κ = 1.2, but

4.98% increment can be obtained for an instance. As seen in Table 10, employing decision-dependent

uncertainty sets provides benefits for all instances under each parameter setting, and the gain can be

up to 22.74% when κ = 0.8.
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κ = 0.8 κ = 1.0 κ = 1.2
r w # Ins (/15) Mean (%) Max (%) # Ins (/15) Mean (%) Max (%) # Ins (/15) Mean (%) Max(%)

200
10% 12 13.59 20.51 10 4.69 10.45 13 2.99 6.51
20% 12 12.05 21.13 10 4.95 10.55 13 3.08 6.36
50% 13 12.62 21.08 11 5.23 10.44 12 1.74 3.96

250
10% 12 13.15 21.53 10 5.38 11.07 11 2.90 5.79
20% 13 12.21 22.59 11 5.09 11.00 12 2.36 4.00
50% 12 14.67 21.32 13 5.50 10.46 13 1.51 3.71

300
10% 12 14.31 21.84 11 4.84 11.29 12 3.01 5.37
20% 12 13.88 22.74 11 5.11 11.04 12 2.29 3.72
50% 12 15.58 21.17 13 5.41 10.40 11 1.69 3.17

Table 10: Average extra flows that can be covered considering the decision-dependency for the BE-1
network with different κ values

5 Conclusion

In this study, we introduced the robust RSLP-R under decision-dependent flow uncertainty using

a hybrid uncertainty model that restricts the hose model by imposing lower and upper bounds on

the pairwise flows. We proposed two mixed integer programming formulations as well as a Benders

reformulation. We generated new benchmark instances based on the real Belgium road network. Our

computational experiments showed that the Benders reformulation outperforms the other formulations

for larger instances and that the gains obtained by recognizing the uncertainty and the decision-

dependency of AFV flows can be significant.

The current study suggests some exciting future research directions: One such direction is to extend

the problem by incorporating refueling station capacities and then time-dependent vehicle flows (rush

hours, weekends, etc.). Another is to apply the idea of the Benders reformulation to model other

problems with a decision-dependent hybrid uncertainty set.
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Rose, P. K., Nugroho, R., Gnann, T., Plötz, P., Wietschel, M., & Reuter-Oppermann, M. (2020).

Optimal development of alternative fuel station networks considering node capacity restrictions.

Transportation Research Part D: Transport and Environment , 78 , 102189.

29



Royset, J. O., & Wets, R. J.-B. (2017). Variational theory for optimization under stochastic ambiguity.

SIAM Journal on Optimization, 27 (2), 1118–1149.

Shao, H., Lam, W. H., & Tam, M. L. (2006). A reliability-based stochastic traffic assignment model for

network with multiple user classes under uncertainty in demand. Networks and Spatial Economics,

6 (3), 173–204.

Simchi-Levi, D., & Berman, O. (1988). A heuristic algorithm for the traveling salesman location

problem on networks. Operations Research, 36 (3), 478–484.

Solak, S., Clarke, J.-P. B., Johnson, E. L., & Barnes, E. R. (2010). Optimization of R&D project

portfolios under endogenous uncertainty. European Journal of Operational Research, 207 (1), 420–

433.

Spacey, S. A., Wiesemann, W., Kuhn, D., & Luk, W. (2012). Robust software partitioning with

multiple instantiation. INFORMS Journal on Computing , 24 (3), 500–515.

STATBEL. (2020). Population density by municipality. Retrieved from https://statbel.fgov.be/

en/themes/population/population-density. Accessed February 01, 2021.

Tarhan, B., Grossmann, I. E., & Goel, V. (2013). Computational strategies for non-convex multistage

MINLP models with decision-dependent uncertainty and gradual uncertainty resolution. Annals of

Operations Research, 203 (1), 141–166.

Toregas, C., Swain, R., ReVelle, C., & Bergman, L. (1971). The location of emergency service facilities.

Operations Research, 19 (6), 1363–1373.

Tran, T. H., Nagy, G., Nguyen, T. B. T., & Wassan, N. A. (2018). An efficient heuristic algorithm for

the alternative-fuel station location problem. European Journal of Operational Research, 269 (1),

159–170.

Upchurch, C., & Kuby, M. (2010). Comparing the p-median and flow-refueling models for locating

alternative-fuel stations. Journal of Transport Geography , 18 (6), 750–758.

Upchurch, C., Kuby, M., & Lim, S. (2009). A model for location of capacitated alternative-fuel

stations. Geographical Analysis, 41 (1), 85–106.

Vayanos, P., Kuhn, D., & Rustem, B. (2011). Decision rules for information discovery in multi-stage

stochastic programming. In 2011 50th IEEE conference on decision and control and european control

conference (pp. 7368–7373).

Ventura, J. A., Kweon, S. J., Hwang, S. W., Tormay, M., & Li, C. (2017). Energy policy consid-

erations in the design of an alternative-fuel refueling infrastructure to reduce GHG emissions on a

transportation network. Energy Policy , 111 , 427–439.

Vujanic, R., Goulart, P., & Morari, M. (2016). Robust optimization of schedules affected by uncertain

events. Journal of Optimization Theory and Applications, 171 (3), 1033–1054.

Wang, Y.-W., & Lin, C.-C. (2009). Locating road-vehicle refueling stations. Transportation Research

Part E: Logistics and Transportation Review , 45 (5), 821–829.

30

https://statbel.fgov.be/en/themes/population/population-density
https://statbel.fgov.be/en/themes/population/population-density


Wang, Y.-W., & Wang, C.-R. (2010). Locating passenger vehicle refueling stations. Transportation

Research Part E: Logistics and Transportation Review , 46 (5), 791–801.

Wu, F., & Sioshansi, R. (2017). A stochastic flow-capturing model to optimize the location of fast-

charging stations with uncertain electric vehicle flows. Transportation Research Part D: Transport

and Environment , 53 , 354–376.

Xie, F., Liu, C., Li, S., Lin, Z., & Huang, Y. (2018). Long-term strategic planning of inter-city fast

charging infrastructure for battery electric vehicles. Transportation Research Part E: Logistics and

Transportation Review , 109 , 261–276.

Yıldız, B., Arslan, O., & Karaşan, O. E. (2016). A branch and price approach for routing and refueling

station location model. European Journal of Operational Research, 248 (3), 815–826.
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