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Abstract 

A stagewise decomposition algorithm called “value function gradient learning” (VFGL) is proposed for 

large-scale multistage stochastic convex programs. VFGL finds the parameter values that best fit the 

gradient of the value function within a given parametric family. Widely used decomposition algorithms 

for multistage stochastic programming, such as stochastic dual dynamic programming (SDDP), 

approximate the value function by adding linear subgradient cuts at each iteration. Although this 

approach has been successful for linear problems, nonlinear problems may suffer from the increasing 

size of each subproblem as the iteration proceeds. On the other hand, VFGL has a fixed number of 

parameters; thus, the size of the subproblems remains constant throughout the iteration. Furthermore, 

VFGL can learn the parameters by means of stochastic gradient descent, which means that it can be 

easily parallelized and does not require a scenario tree approximation of the underlying uncertainties. 

VFGL was compared with a deterministic equivalent formulation of the multistage stochastic 

programming problem and SDDP approaches for three illustrative examples: production planning, 

hydrothermal generation, and the lifetime financial planning problem. Numerical examples show that 

VFGL generates high-quality solutions and is computationally efficient. 
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1. Introduction 

Multistage stochastic programming (MSP) problems arise in a broad range of areas where 

decisions should be made under uncertain environments. Such optimization problems include capacity 

expansion planning, asset liability management, and hydropower production planning (Shiina & Birge, 

2003; Cariño et al., 1994; Fleten & Kristoffersen, 2008). The stochastic process, which models the 

uncertain environment, is generally approximated by a set of finite scenarios, which is called a “scenario 

tree.” Then, the problem can be replaced by a single large deterministic equivalent problem. However, 

the deterministic equivalent problem often becomes computationally intractable because the number of 

scenarios grows exponentially with respect to the number of stages. This “curse of dimensionality” is a 

critical issue for MSP problems with long-term planning horizons.  

In this study, a novel stagewise decomposition algorithm called “value function gradient 

learning” (VFGL) is proposed. It approximates value functions as parametric convex functions and 

learns parameters that closely approximate the gradient of the true value functions. To be more specific, 

the proposed algorithm minimizes the stagewise estimation error of the gradient of the approximated 

value function based on stochastic gradient descent to find the best parameters within a given parametric 

form. We show under mild regularity conditions that the approximated solution converges to the optimal 

solution. Furthermore, we introduce a metric called KKT deviation to measure the suitability of the 

given parametrization. In our numerical examples, we show that VFGL can efficiently find good quality 

solutions with the appropriate parameterization of the value function. 

There are three unique characteristics of VFGL compared with the traditional stagewise 

decomposition method. First, VFGL approximates the value function using a fixed parametric 

functional form. The main advantage of this value function approximation approach is that the size of 

the subproblems remains constant for every iteration. However, the piecewise linear approximation of 

the value function results in an increasing size of the subproblems in every iteration because of the 

increasing number of linear cuts. This makes VFGL computationally suitable for stochastic programs 

that require many iterations for the value function approximation.  

Second, VFGL directly samples a random process from its distribution without the scenario tree 

approximation. A scenario tree approximation of the distribution of continuous random variables is a 

nontrivial task. There are many reports in which various scenario tree generation algorithms are 

discussed (Pflug, 2001; Gülpınar et. al., 2004; Heitsch & Römisch, 2009). However, they are rather 

heuristic, and the choice of the scenario tree generation algorithm for a particular problem is an open-

ended question. Therefore, MSP problems are often solved multiple times under various scenario trees 

to check the distributional approximation error indirectly. VFGL, by contrast, is free of this issue. 

However, VFGL might involve the extra step of verifying the suitability of the chosen parametric form 

of the value function for a specific problem.  
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Finally, VFGL is an online learning algorithm that learns the parameters online during the 

exploration of feasible paths. A parallel computation is easy for VFGL because forward explorations 

can be computed in parallel. An iteration of SDDP involves a forward pass that samples stagewise trial 

solutions and backward pass that solves all possible stagewise subproblems in a reverse stagewise 

order. However, an iteration of VFGL involves only forward simulation to sample stagewise trial 

solutions and update the value function by adjusting parameters in a stagewise order. Therefore, each 

iteration of VFGL tends to be much faster than that of the traditional stagewise decomposition 

algorithms. However, one drawback of online learning is that the value function update information is 

passed on to only the prior stage. Therefore, the number of iterations should be greater than the number 

of stages so that the final stage information is passed onto the first-stage value function 

Three illustrative examples are provided to compare the MSP, SDDP, and VFGL approaches: 

production optimization, a hydrothermal scheduling problem, and a discretized lifetime portfolio 

optimization problem. The numerical experiment clearly shows the numerical potential of VFGL 

compared with SDDP, which is considered a state-of-the-art stagewise decomposition algorithm. The 

numerical study further shows that the parametric value function form can be recycled to a limited 

extent for the perturbation problem depending on the problem and perturbation. The performance 

evaluation of VFGL includes a comparison of various parametric value function forms, where the 

usefulness of KKT deviation is illustrated. 

The remainder of this article is organized as follows. Section 2 reviews literatures on various 

methods for sequential decision making problems under uncertainty to clarify the difference between 

the VFGL and existing algorithms. In Section 3, the considered problem is mathematically defined, and 

the VFGL is derived. Three illustrative examples are shown in Section 4. The conclusions are provided 

in Section 5. 

2. Literature review 

Stochastic optimization encompasses a broad range of problems involving optimal decision 

making over a period in an uncertain environment. Powell (2019) classified diverse studies of stochastic 

optimization into fifteen categories in terms of key modelling characteristics, including the problem 

statement regarding optimality, state variable, interaction between uncertainty and decision variables, 

system dynamics modelling, and objective functions. In this study, we focused on discrete time 

sequential stochastic optimization models, which discretize time to achieve finite or countable time 

transitions. Powell (2019) classified discrete time models into the following two major streams. 1) From 

the operations research community. Herein, the multistage stochastic programming (MSP) is developed 

from deterministic optimization; subsequently, the MSP is extended to Markov decision process (MDP) 

to handle large-scale problems. 2) From the computer science community. Herein, MDP models are 

directly addressed using reinforcement learning (RL). 
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2.1. Multi-stage stochastic programming (MSP) approach 

The MSP framework deals with the optimization of sequential linear/convex/nonconvex 

programming problems, where parameters of each program depend on the realization of random 

variables and decisions from the prior stage(s). An MSP problem is solved approximately using its 

deterministic equivalent problem, which is constructed by a finite scenario tree that represents the 

evolution of the underlying stochastic process. However, it often becomes computationally intractable 

because the number of scenarios increases exponentially with respect to the number of stages and/or 

the number of nodes per stage. To manage this “curse of dimensionality”, various decomposition-based 

algorithms have been proposed for solving large-scale stochastic programs. 

2.1.1. Scenario decomposition methods 

Scenario decomposition methods decompose stochastic programs in a scenario-wise manner by 

relaxing the nonanticipativity constraints, which prevent the use of information unavailable at the time. 

The two most popular examples for this are the dual decomposition algorithm (Carøe & Schultz, 1999) 

and progressive hedging algorithm (Rockafellar & Wets, 1991). 

The dual decomposition algorithm was proposed to solve linear multistage stochastic integer 

programming problems. It relaxes the nonanticipativity constraints to derive the Lagrangian dual 

problem and employs a branch-and-bound method to obtain the optimal solution using the lower bound 

information obtained from the dual problem. In contrast, the progressive hedging algorithm introduces 

modified scenario-wise subproblems by relaxing the nonanticipativity constraints through an 

augmented Lagrangian function that incorporates a multiplier term and quadratic penalty terms. The 

algorithm iteratively adjusts the solutions to determine implementable and admissible solutions that 

satisfy the nonanticipativity constraints and lie within the scenario-wise feasible region.1 

However, scenario decomposition algorithms visit all scenarios during every iteration; 

otherwise, the solutions may violate the nonanticipativity constraints. Therefore, the scenario 

decomposition approach may be inappropriate for MSP problems with extremely large scenario trees. 

2.1.2. Stagewise decomposition methods 

Stagewise decomposition algorithms break down the stochastic program into stagewise 

subproblems and subsequently determine solutions by sequentially solving the subproblems. The 

objective function of each subproblem incorporates a special function called a “value function” (often 

referred to as a recourse function or a cost-to-go function), which reflects the future consequences of 

an immediate decision.  

The stochastic dual dynamic programming (SDDP) algorithm, which is a sampling-based 

variant of a nested Benders decomposition, was introduced by Pereira and Pinto (1991). SDDP iterates 

                                           
1 Rockafellar and Wets (1991) showed that the progressive hedging algorithm converges to the optimal value for convex 
optimization problems. For nonconvex cases, although convergence is not guaranteed, the algorithm is shown to produce 
high-quality solutions (Watson et al., 2011).  
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between the forward and backward passes. In a forward pass, the algorithm samples a bundle of 

scenarios to obtain feasible policies, whereas in a backward pass, the value functions are improved by 

constructing subgradient cuts around each of the stagewise solutions of the feasible policies.2 However, 

the size of the stagewise subproblems increases as the algorithm proceeds because the number of 

subgradient cuts increases with each iteration. This is one of the major drawbacks of SDDP. 

The stagewise decomposition approach is analogous to addressing MSP problems under the 

MDP context. A stagewise decomposition method finds an optimal policy under Markovian state 

transitions, which significantly reduces computational costs. However, state transitions in scenario trees 

of MSP are often not Markovian because they can depend on the historical state path. Therefore, the 

stagewise decomposition approach incorporates Markovian state transitions by employing scenario 

lattices instead of scenario trees. Essentially, for any node, its transition probability distribution is 

shared among all nodes in the same stage; thus, a value function can be shared among nodes within the 

stage. 

2.2. Reinforcement learning (RL) approach 

Recently, reinforcement learning (RL) algorithms have gained considerable attention as a 

solution to MDP problems. RL algorithms use a data-driven approach; essentially, they find an optimal 

policy with trial-and-error under the simulated environment. In particular, numerous RL algorithms 

fix the parametric form of value/policy functions because it is advantageous for learning from large, 

simulated data sets (Geist and Pietquin, 2013; Mnih et al., 2013; Mnih et al., 2016). In addition to the 

development of deep learning models, some RL models have exhibited impressive performances that 

overwhelm human experts in numerous applications, such as Go and video games. However, they face 

difficulties in handling continuous action spaces with complex state-dependent restrictions. 

Although both RL models and stagewise decomposition algorithms (for MSP) solve sequential 

stochastic optimization problems under the MDP framework, they exhibit the following two distinct 

differences. First, MSP considers continuous action spaces that are constrained by linear equalities and 

convex inequalities. Furthermore, these constraints are dependent on the current state. However, RL 

usually considers finite or locally unconstrained action spaces. Second, immediate reward structure 

and state transition dynamics are explicitly known in MSP. Hence, MSP problems can be directly 

solvable using optimization solvers. On the other hand, RL models employ the trial-and-error approach, 

which would require considerable amount of data and time. 

3. Value function gradient learning 

                                           
2 The convergence of SDDP was shown for risk-neutral multi-stage stochastic linear programs by Chen et al. (1999) and 
Philpott et al. (2008) and for risk-averse multi-stage stochastic linear programs by Guigues et al. (2012). Recent studies 
applied SDDP to multistage stochastic convex programs and investigated its convergence for risk-neutral and risk-averse 
cases (Girardeau et al., 2015; Guigues, 2016). 
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The purpose of the value function gradient learning (VFGL) algorithm is to find optimal policies 

for large-scale MSP problems. We tackle the problem with a stagewise decomposition approach, with 

the main focus on approximating the value functions efficiently. The SDDP approximates value 

functions using piece-wise linear functions, whereas VFGL approximates value functions with 

parametric functions as in numerous RL algorithms. However, the parameter learning process of VFGL 

is very different from those of RL algorithms. RL algorithms sample costs/rewards based on trial-and-

error, and parameters are updated from those cost/reward signals. In contrast, VFGL samples actions 

based on simulation, but it learns the parameters using the stagewise gradient information of the true 

value function by fully exploiting the duality theory in optimization. 

In this section, we present the value function gradient learning (VFGL) algorithm, which is a 

new stagewise decomposition algorithm for large-scale multistage stochastic programming problems. 

First, we define the problem setting for stagewise decomposition algorithms (including VFGL and 

SDDP) in Section 3.1. In Section 3.2, we describe the main idea of VFGL and why it will work. Section 

3.3 details the learning procedure of the optimal parameters based on a stochastic gradient descent. 

Finally, we discuss how to choose the appropriate parameterization in Section 3.4. 

3.1. Problem setting 

A sequence of decision-making over multiple periods is considered, where the relevant 

stochastic process is gradually realized. There is a stochastic process 𝜉𝜉[𝑇𝑇] = (𝜉𝜉1, … , 𝜉𝜉𝑇𝑇),  with 𝜉𝜉1 

deterministic, and a decision process 𝑥𝑥[𝑇𝑇] = (𝑥𝑥1, … , 𝑥𝑥𝑇𝑇), where 𝑥𝑥𝑡𝑡 ∈ ℝ𝑛𝑛𝑡𝑡 in which 𝑛𝑛𝑡𝑡 is the number 

of dimensions of the decision variable at stage 𝑡𝑡. It is further assumed that each 𝜉𝜉𝑡𝑡 has a finite moment. 

Each decision was made using only the information available at that time. In particular, the following 

sequence of decisions and observations is assumed (Shapiro et al., 2009): 

 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥1) ⇝ 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝜉𝜉2) ⇝ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥2) … ⇝ 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝜉𝜉𝑇𝑇) ⇝ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥𝑇𝑇) 

 

 Here, the decision process 𝑥𝑥𝑡𝑡 is ℱ𝑡𝑡 -measurable, where ℱ𝑡𝑡 is the sigma algebra generated 

by a stochastic process (𝜉𝜉1, … , 𝜉𝜉𝑡𝑡).  A 𝑇𝑇 -stage stochastic program in nested form is formulated as 

follows: 

 min
𝑥𝑥1∈𝒳𝒳1

𝑓𝑓1(𝑥𝑥1) + 𝔼𝔼 � min
𝑥𝑥2∈𝒳𝒳2(𝑥𝑥1,𝜉𝜉2)

𝑓𝑓2(𝑥𝑥2, 𝜉𝜉2) + 𝔼𝔼∙|𝜉𝜉[2] �… + 𝔼𝔼∙|𝜉𝜉[𝑇𝑇−1] � min
𝑥𝑥𝑇𝑇∈𝒳𝒳𝑇𝑇(𝑥𝑥𝑇𝑇−1,𝜉𝜉𝑇𝑇)

𝑓𝑓𝑇𝑇(𝑥𝑥𝑇𝑇 , 𝜉𝜉𝑇𝑇)���  (1) 

 

where 𝔼𝔼∙|𝜉𝜉[𝑡𝑡]  is a conditional expectation operator with respect to 𝜉𝜉[𝑡𝑡], the history of the data process 

up to stage 𝑡𝑡. For 𝑡𝑡 = 1, 𝑓𝑓1(𝑥𝑥1) is a deterministic objective function that is convex in 𝑥𝑥1, and 𝜒𝜒1 =

{𝑥𝑥1:𝑔𝑔1,𝑖𝑖(𝑥𝑥1) ≤ −ℎ1,𝑖𝑖, 𝑖𝑖 = 1, … ,𝑝𝑝1 and 𝑙𝑙1,𝑗𝑗(𝑥𝑥1) = 𝑏𝑏1,𝑗𝑗, 𝑗𝑗 = 1, … , 𝑞𝑞1}  is defined by a deterministic 

convex feasible region for 𝑥𝑥1, where 𝑔𝑔1,𝑖𝑖 is a twice-differentiable convex function in 𝑥𝑥1, 𝑙𝑙1,𝑗𝑗 is a 
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linear function in 𝑥𝑥1, and ℎ1,𝑖𝑖 and 𝑏𝑏1,𝑗𝑗 are deterministic coefficients. For 𝑡𝑡 = 2, … ,𝑇𝑇, 𝑓𝑓𝑡𝑡(𝑥𝑥𝑡𝑡, 𝜉𝜉𝑡𝑡) is 

an objective function that is convex in 𝑥𝑥𝑡𝑡 and dependent on 𝜉𝜉𝑡𝑡, and 𝜒𝜒𝑡𝑡(𝑥𝑥𝑡𝑡−1, 𝜉𝜉𝑡𝑡) is a convex feasible 

region for 𝑥𝑥𝑡𝑡 given 𝑥𝑥𝑡𝑡−1 and 𝜉𝜉𝑡𝑡. In particular, 𝜒𝜒𝑡𝑡(𝑥𝑥𝑡𝑡−1, 𝜉𝜉𝑡𝑡) ≔ {𝑥𝑥𝑡𝑡:𝑔𝑔𝑡𝑡,𝑖𝑖(𝑥𝑥𝑡𝑡 , 𝜉𝜉𝑡𝑡) ≤ −ℎ𝑡𝑡,𝑖𝑖(𝑥𝑥𝑡𝑡−1, 𝜉𝜉𝑡𝑡), 𝑖𝑖 =

1, …𝑝𝑝𝑡𝑡  and 𝑙𝑙𝑡𝑡,𝑗𝑗(𝑥𝑥𝑡𝑡, 𝜉𝜉𝑡𝑡) = 𝑏𝑏𝑡𝑡,𝑗𝑗(𝑥𝑥𝑡𝑡−1, 𝜉𝜉𝑡𝑡), 𝑗𝑗 = 1, … , 𝑞𝑞𝑡𝑡} , where 𝑔𝑔𝑡𝑡,𝑖𝑖  is a twice-differentiable convex 

function in 𝑥𝑥𝑡𝑡, 𝑙𝑙𝑡𝑡,𝑗𝑗 is a linear function in 𝑥𝑥𝑡𝑡 , ℎ𝑡𝑡,𝑖𝑖 is a twice-differentiable convex function in 𝑥𝑥𝑡𝑡−1, 

and 𝑏𝑏𝑡𝑡,𝑗𝑗 is a linear function in 𝑥𝑥𝑡𝑡−1.  

The usual MSP approach solves Eq. (1) in two steps: 1) approximating the distribution of the 

stochastic process 𝜉𝜉[𝑇𝑇] by a scenario tree with a finite number of realizations, and 2) solving a large 

deterministic equivalent convex optimization problem under the approximated scenario tree. However, 

the deterministic equivalent problem often becomes intractable; hence, the problem is decomposed into 

subproblems in a stagewise manner. 

In this study, the following assumptions are made, which are common in stagewise 

decomposition approaches, such as SDDP, for sequential decision-making problems. 

 (A1) Stagewise independence: For each stage 𝑡𝑡 = 1, … ,𝑇𝑇, 𝜉𝜉𝑡𝑡 is independent of 𝜉𝜉[𝑡𝑡−1]. 

(A2) Relatively Complete Recourse: For each stage 𝑡𝑡 = 1, … . ,𝑇𝑇, for any feasible 𝑥𝑥𝑡𝑡−1, and for any 

realization 𝜉𝜉𝑡𝑡𝑠𝑠 of 𝜉𝜉𝑡𝑡, 𝜒𝜒𝑡𝑡(𝑥𝑥𝑡𝑡−1, 𝜉𝜉𝑡𝑡𝑠𝑠) is bounded and nonempty. 

Under (A1), the nested structure of Eq. (1) yields the following Bellman equation.  

For 𝑡𝑡 = 𝑇𝑇, … ,2 

𝒱𝒱𝑡𝑡(𝑥𝑥𝑡𝑡−1, 𝜉𝜉𝑡𝑡) = inf
𝑥𝑥𝑡𝑡∈𝒳𝒳𝑡𝑡(𝑥𝑥𝑡𝑡−1,𝜉𝜉𝑡𝑡)

{𝑓𝑓𝑡𝑡(𝑥𝑥𝑡𝑡, 𝜉𝜉𝑡𝑡) + 𝑉𝑉𝑡𝑡+1(𝑥𝑥𝑡𝑡)}  

𝑉𝑉𝑡𝑡(𝑥𝑥𝑡𝑡−1) ≔ 𝔼𝔼[𝒱𝒱𝑡𝑡(𝑥𝑥𝑡𝑡−1, 𝜉𝜉𝑡𝑡)] (2) 
with 𝑉𝑉𝑇𝑇+1 ≡ 0. 

Under the Bellman equation Eq. (2), the optimal policy is obtained by solving the following convex 

problem. 

Problem (1) 

For 𝑡𝑡 = 1, 

𝑥𝑥1∗ ∈ arg min
𝑥𝑥1∈𝒳𝒳1

𝑓𝑓1(𝑥𝑥1) + 𝑉𝑉2(𝑥𝑥1) 

For 𝑡𝑡 = 2, … ,𝑇𝑇. 

𝑥𝑥𝑡𝑡∗ ∈ arg min
𝑥𝑥𝑡𝑡∈𝒳𝒳𝑡𝑡(𝑥𝑥𝑡𝑡−1,𝜉𝜉𝑡𝑡)

𝑓𝑓𝑡𝑡(𝑥𝑥𝑡𝑡, 𝜉𝜉𝑡𝑡) + 𝑉𝑉𝑡𝑡+1(𝑥𝑥𝑡𝑡) 

with 𝑥𝑥𝑡𝑡∗ being a function of 𝑥𝑥𝑡𝑡−1 and 𝜉𝜉𝑡𝑡 
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3.2. Loss function 

The main idea of VFGL is to approximate the value function 𝑉𝑉𝑡𝑡 with a fixed convex parametric 

function 𝑉𝑉𝑡𝑡�  with parameter 𝜃𝜃𝑡𝑡 ∈ ℝ𝑚𝑚𝑡𝑡. Hence, VFGL solves a sequential decision-making problem by 

learning the parameters 𝜃𝜃𝑡𝑡, 𝑡𝑡 = 2, … ,𝑇𝑇 . The revised decomposed subproblems can be described as 

follows. 

The current policy is obtained by solving the following convex problem. 

Problem (2) 

For 𝑡𝑡 = 1, 

𝑥𝑥1∗ ∈ arg min
𝑥𝑥1∈𝒳𝒳1

𝑓𝑓1(𝑥𝑥1) + 𝑉𝑉�2(𝑥𝑥1;𝜃𝜃2) 

For 𝑡𝑡 = 2, … ,𝑇𝑇, 

𝑥𝑥𝑡𝑡∗ ∈ arg min
𝑥𝑥𝑡𝑡∈𝒳𝒳𝑡𝑡(𝑥𝑥𝑡𝑡−1,𝜉𝜉𝑡𝑡)

𝑓𝑓𝑡𝑡(𝑥𝑥𝑡𝑡, 𝜉𝜉𝑡𝑡) + 𝑉𝑉�𝑡𝑡+1(𝑥𝑥𝑡𝑡;𝜃𝜃𝑡𝑡+1) 

with 𝑥𝑥𝑡𝑡∗ being a function of 𝑥𝑥𝑡𝑡−1 and 𝜉𝜉𝑡𝑡 

 

The KKT optimality conditions of the stage 𝑡𝑡 subproblem for 𝑡𝑡 = 2, … ,𝑇𝑇 of Problem (2) are given 

below. 
 

Stationarity: 

𝛻𝛻𝑥𝑥𝑡𝑡𝑓𝑓𝑡𝑡(𝑥𝑥𝑡𝑡, 𝜉𝜉𝑡𝑡) + 𝛻𝛻𝑥𝑥𝑡𝑡𝑉𝑉�𝑡𝑡+1(𝑥𝑥𝑡𝑡;  𝜃𝜃𝑡𝑡+1) + ∑ 𝜇𝜇𝑡𝑡,𝑖𝑖𝛻𝛻𝑥𝑥𝑡𝑡 �𝑔𝑔𝑡𝑡,𝑖𝑖(𝑥𝑥𝑡𝑡 , 𝜉𝜉𝑡𝑡) + ℎ𝑡𝑡,𝑖𝑖(𝑥𝑥𝑡𝑡−1, 𝜉𝜉𝑡𝑡)�𝑝𝑝𝑡𝑡
𝑖𝑖=1 + ∑ 𝜆𝜆𝑡𝑡,𝑖𝑖𝛻𝛻𝑥𝑥𝑡𝑡�𝑙𝑙𝑡𝑡,𝑗𝑗(𝑥𝑥𝑡𝑡 ,𝑞𝑞𝑡𝑡

𝑗𝑗=1

𝜉𝜉𝑡𝑡) − 𝑏𝑏𝑡𝑡,𝑗𝑗(𝑥𝑥𝑡𝑡−1, 𝜉𝜉𝑡𝑡)� = 0  
 

Primal Feasibility: 

𝑔𝑔𝑡𝑡,𝑖𝑖(𝑥𝑥𝑡𝑡 , 𝜉𝜉𝑡𝑡) ≤ −ℎ𝑡𝑡,𝑖𝑖(𝑥𝑥𝑡𝑡−1, 𝜉𝜉𝑡𝑡)  𝑖𝑖 = 1, … ,𝑝𝑝𝑡𝑡                                    

𝑙𝑙𝑡𝑡,𝑗𝑗(𝑥𝑥𝑡𝑡 , 𝜉𝜉𝑡𝑡) = 𝑏𝑏𝑡𝑡,𝑗𝑗(𝑥𝑥𝑡𝑡−1, 𝜉𝜉𝑡𝑡)  𝑗𝑗 = 1, … , 𝑞𝑞𝑡𝑡  
 

Dual Feasibility: 

𝜇𝜇𝑡𝑡,𝑖𝑖 ≥ 0, 𝑖𝑖 = 1, … ,𝑘𝑘                             

Complementary Slackness: 

𝜇𝜇𝑡𝑡,𝑖𝑖𝛻𝛻𝑥𝑥𝑡𝑡 �𝑔𝑔𝑡𝑡,𝑖𝑖(𝑥𝑥𝑡𝑡 , 𝜉𝜉𝑡𝑡) + ℎ𝑡𝑡,𝑖𝑖(𝑥𝑥𝑡𝑡−1, 𝜉𝜉𝑡𝑡)� = 0, 𝑖𝑖 = 1, … ,𝑘𝑘t 
 

  Let �𝑥𝑥�𝑡𝑡∗, 𝜇̂𝜇t∗, 𝜆̂𝜆𝑡𝑡∗� be the optimal primal-dual triple that satisfies the above KKT conditions of 

the stage 𝑡𝑡 subproblem in Problem (2). Then, this optimal triple of the approximated problem satisfies 

Proposition 1. 
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Proposition 1 (perturbed KKT condition for a subproblem with approximated value function)  

Let �𝑥𝑥�𝑡𝑡∗, 𝜇̂𝜇t∗, 𝜆̂𝜆𝑡𝑡∗�  be an optimal primal-dual triple that satisfies the KKT condition of the stage 𝑡𝑡 

subproblem of Problem (2). Then, �𝑥𝑥�𝑡𝑡∗, 𝜇̂𝜇t∗, 𝜆̂𝜆𝑡𝑡∗� satisfies the primal feasibility, dual feasibility, and 

complementary slackness of the KKT condition of the stage 𝑡𝑡 subproblem of Problem (1), while the 

stationarity condition is perturbed as follows. 
 

∇𝑥𝑥𝑡𝑡𝑓𝑓𝑡𝑡(𝑥𝑥�𝑡𝑡
∗, 𝜉𝜉𝑡𝑡) + ∇𝑥𝑥𝑡𝑡𝑉𝑉𝑡𝑡+1(𝑥𝑥�𝑡𝑡∗) + � 𝜇̂𝜇𝑡𝑡,𝑖𝑖

∗ ∇𝑥𝑥𝑡𝑡 �𝑔𝑔𝑡𝑡,𝑖𝑖(𝑥𝑥�𝑡𝑡∗, 𝜉𝜉𝑡𝑡) + ℎ𝑡𝑡,𝑖𝑖(𝑥𝑥𝑡𝑡−1, 𝜉𝜉𝑡𝑡)�
𝑝𝑝𝑡𝑡

𝑖𝑖=1
 

+� 𝜆̂𝜆𝑡𝑡,𝑗𝑗
∗ ∇𝑥𝑥𝑡𝑡�𝑙𝑙𝑡𝑡,𝑗𝑗(𝑥𝑥�𝑡𝑡∗, 𝜉𝜉𝑡𝑡)− 𝑏𝑏𝑡𝑡,𝑗𝑗(𝑥𝑥𝑡𝑡−1, 𝜉𝜉𝑡𝑡)�

𝑞𝑞𝑡𝑡

𝑗𝑗=1
= ∇𝑥𝑥𝑡𝑡𝑉𝑉𝑡𝑡+1(𝑥𝑥�𝑡𝑡∗)− ∇𝑥𝑥𝑡𝑡𝑉𝑉�𝑡𝑡+1(𝑥𝑥�𝑡𝑡∗;  𝜃𝜃𝑡𝑡+1)  

 

Proof. See Appendix A. 

 

The KKT perturbation from the value function estimation error described in Proposition 1 is denoted 

with 𝐷𝐷𝑡𝑡(𝜃𝜃𝑡𝑡+1;  𝑥𝑥𝑡𝑡) as follows. 
 

𝐷𝐷𝑡𝑡(𝜃𝜃𝑡𝑡+1; 𝑥𝑥𝑡𝑡) ≔ ||∇𝑥𝑥𝑡𝑡𝑉𝑉𝑡𝑡+1(𝑥𝑥𝑡𝑡)− ∇𝑥𝑥𝑡𝑡𝑉𝑉�𝑡𝑡+1(𝑥𝑥𝑡𝑡; 𝜃𝜃𝑡𝑡+1)|| 
 

Herein, ‖∙‖ indicates the Euclidean norm, and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(∙,∙) refers to the distance measure induced by the 

Euclidean norm. Let (𝑥𝑥𝑡𝑡∗, 𝜇𝜇𝑡𝑡∗,𝜆𝜆𝑡𝑡∗) be the true optimal solution under the KKT optimality conditions of 

Problem (1). It is assumed that the second-order sufficiency condition (SOSC) is satisfied for 

(𝑥𝑥𝑡𝑡∗, 𝜇𝜇𝑡𝑡∗, 𝜆𝜆𝑡𝑡∗). The SOSC is a regularity condition on the derivative of the KKT stationarity condition — 

the detailed definition of “SOSC” can be found in Appendix B. Then, one has the following proposition 

(Izmailov and Solodov, 2003; Izmailov et al., 2013). 

 

Proposition 2 (upper Lipschitz stability of the solutions of KKT system under canonical perturbations) 

It is supposed that the SOSC is satisfied for the optimal solution (𝑥𝑥𝑡𝑡∗, 𝜇𝜇𝑡𝑡∗, 𝜆𝜆𝑡𝑡∗) of the KKT system of 

Problem (1). Then, there exists a neighborhood 𝒰𝒰 of (𝑥𝑥𝑡𝑡∗, 𝜇𝜇𝑡𝑡∗, 𝜆𝜆𝑡𝑡∗) and 𝑙𝑙 > 0, such that, for any σ =

(𝜎𝜎1,𝜎𝜎2,𝜎𝜎3) close enough to (0,0,0), any solution �𝑥𝑥𝑡𝑡(𝜎𝜎),𝜇𝜇𝑡𝑡(𝜎𝜎), 𝜆𝜆𝑡𝑡(𝜎𝜎)� ∈ 𝒰𝒰 of the perturbed KKT 

system 

∇𝑥𝑥𝑡𝑡𝑓𝑓𝑡𝑡(𝑥𝑥�𝑡𝑡
∗, 𝜉𝜉𝑡𝑡) + ∇𝑥𝑥𝑡𝑡𝑉𝑉𝑡𝑡+1(𝑥𝑥�𝑡𝑡∗) + � 𝜇̂𝜇𝑡𝑡,𝑖𝑖

∗ ∇𝑥𝑥𝑡𝑡 �𝑔𝑔𝑡𝑡,𝑖𝑖(𝑥𝑥�𝑡𝑡∗, 𝜉𝜉𝑡𝑡) + ℎ𝑡𝑡,𝑖𝑖(𝑥𝑥𝑡𝑡−1, 𝜉𝜉𝑡𝑡)�
𝑝𝑝𝑡𝑡

𝑖𝑖=1
 

+� 𝜆̂𝜆𝑡𝑡,𝑗𝑗
∗ ∇𝑥𝑥𝑡𝑡�𝑙𝑙𝑡𝑡,𝑗𝑗(𝑥𝑥�𝑡𝑡∗, 𝜉𝜉𝑡𝑡) − 𝑏𝑏𝑡𝑡,𝑗𝑗(𝑥𝑥𝑡𝑡−1, 𝜉𝜉𝑡𝑡)�

𝑞𝑞𝑡𝑡

𝑗𝑗=1
= 𝜎𝜎1,  

𝑔𝑔𝑡𝑡(𝑥𝑥𝑡𝑡 , 𝜉𝜉𝑡𝑡) + ℎ𝑡𝑡(𝑥𝑥𝑡𝑡−1, 𝜉𝜉𝑡𝑡) = 𝜎𝜎2 

𝑙𝑙𝑡𝑡(𝑥𝑥𝑡𝑡, 𝜉𝜉𝑡𝑡)− 𝑏𝑏𝑡𝑡(𝑥𝑥𝑡𝑡−1, 𝜉𝜉𝑡𝑡) = 𝜎𝜎3 
 

satisfies the estimate 

‖𝑥𝑥𝑡𝑡(𝜎𝜎)− 𝑥𝑥𝑡𝑡∗‖ + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ��𝜇𝜇𝑡𝑡(𝜎𝜎),𝜆𝜆𝑡𝑡(𝜎𝜎)�, (𝜆𝜆𝑡𝑡∗,𝜇𝜇𝑡𝑡∗)� ≤ 𝑙𝑙‖𝜎𝜎‖ 
 

Proof. See Property 1 of Izmailov et al. (2013). 
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Proposition 2 leads to the following theorem. 

 

Theorem 1 (optimal convergence of solutions from the approximated value function)  

It is supposed that the SOSC is satisfied for the true optimal solution (𝑥𝑥𝑡𝑡∗, 𝜇𝜇𝑡𝑡∗, 𝜆𝜆𝑡𝑡∗) of the KKT system. 

Let 𝜖𝜖 > 0 be close enough to 0 ∈ 𝑅𝑅𝑛𝑛𝑡𝑡 and with an associated 𝒰𝒰, 𝑙𝑙 > 0 from Proposition 2. Then, 

for sufficiently small 𝜖𝜖1 > 0 and a solution �𝑥𝑥�𝑡𝑡∗, 𝜇̂𝜇t∗, 𝜆̂𝜆𝑡𝑡∗, � ∈ 𝒰𝒰 from the approximated value function, 

 ∃𝜖𝜖2 > 0 such that 
 

𝐷𝐷𝑡𝑡(𝜃𝜃𝑡𝑡+1;  𝑥𝑥𝑡𝑡) < 𝜖𝜖2  
 
⇒  ‖𝑥𝑥�𝑡𝑡∗ − 𝑥𝑥𝑡𝑡∗‖+ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ��𝜇̂𝜇t∗, 𝜆̂𝜆𝑡𝑡∗�, (𝜇𝜇𝑡𝑡∗, 𝜆𝜆𝑡𝑡∗)� < ϵ1 

 

Proof. See Appendix C.  

Under the specified regularity condition in Theorem 1, the approximated solution 𝑥𝑥�𝑡𝑡∗  is 

guaranteed to converge to the true optimal solution 𝑥𝑥𝑡𝑡∗  as the stagewise KKT perturbation 

𝐷𝐷𝑡𝑡(𝜃𝜃𝑡𝑡+1;  𝑥𝑥𝑡𝑡)  approaches zero. Hence, VFGL should satisfy an additional condition (SOSC) for its 

theoretical convergence to the optimal solution, compared to those of well-known decomposition 

algorithms such as progressive hedging and SDDP. Because the MSLP has piecewise linear value 

functions that are not differentiable, they do not satisfy the SOSC. However, in Section 3, we show that 

the VFGL algorithm demonstrates a remarkable performance on MSLP problems even without the 

theoretical guarantee of convergence to the optimal solution. 

Minimizing 𝐷𝐷𝑡𝑡(𝜃𝜃𝑡𝑡+1; 𝑥𝑥𝑡𝑡) is equivalent to minimizing its squared term {𝐷𝐷𝑡𝑡(𝜃𝜃𝑡𝑡+1;  𝑥𝑥𝑡𝑡)}2. For 

computational reasons, the loss function 𝐽𝐽𝑡𝑡+1(𝜃𝜃𝑡𝑡+1;𝑥𝑥𝑡𝑡) to minimize the estimation error 𝐷𝐷𝑡𝑡(𝜃𝜃𝑡𝑡+1; 𝑥𝑥𝑡𝑡) 

is defined as 
 

𝐽𝐽𝑡𝑡+1(𝜃𝜃𝑡𝑡+1;𝑥𝑥𝑡𝑡) = �∇𝑉𝑉𝑡𝑡+1(𝑥𝑥𝑡𝑡) −  ∇𝑉𝑉�𝑡𝑡+1(𝑥𝑥𝑡𝑡;  𝜃𝜃𝑡𝑡+1)�2   

 = ∑ � 𝜕𝜕
𝜕𝜕𝑥𝑥𝑡𝑡,𝑛𝑛

𝑉𝑉𝑡𝑡+1(𝑥𝑥𝑡𝑡) −
𝜕𝜕

𝜕𝜕𝑥𝑥𝑡𝑡,𝑛𝑛
𝑉𝑉�𝑡𝑡+1(𝑥𝑥𝑡𝑡;  𝜃𝜃𝑡𝑡+1)�

2
𝑛𝑛𝑡𝑡
𝑛𝑛=1    

 = ∑ � 𝜕𝜕
𝜕𝜕𝑥𝑥𝑡𝑡,𝑛𝑛

𝔼𝔼𝜉𝜉𝑡𝑡+1[𝒱𝒱𝑡𝑡+1(𝑥𝑥𝑡𝑡, 𝜉𝜉𝑡𝑡+1)]− 𝜕𝜕
𝜕𝜕𝑥𝑥𝑡𝑡,𝑛𝑛

𝑉𝑉�𝑡𝑡+1(𝑥𝑥𝑡𝑡;  𝜃𝜃𝑡𝑡+1)�
2

𝑛𝑛𝑡𝑡
𝑛𝑛=1    

 

The notation 𝔼𝔼𝜉𝜉𝑡𝑡+1[∙] is used to emphasize that the expectation operator is taken with respect to 𝜉𝜉𝑡𝑡+1.  

The Leibnitz integral rule is applied to change the order of the partial derivative and expectation as 

follows. 

𝐽𝐽t+1(𝜃𝜃𝑡𝑡+1; 𝑥𝑥𝑡𝑡) = ∑ �𝔼𝔼ξt+1 �
𝜕𝜕

𝜕𝜕𝑥𝑥𝑡𝑡,𝑛𝑛
𝒱𝒱𝑡𝑡+1(𝑥𝑥𝑡𝑡, 𝜉𝜉𝑡𝑡+1)� − 𝜕𝜕

𝜕𝜕𝑥𝑥𝑡𝑡,𝑛𝑛
𝑉𝑉�𝑡𝑡+1(𝑥𝑥𝑡𝑡;  𝜃𝜃𝑡𝑡+1)�

2
𝑛𝑛𝑡𝑡
𝑛𝑛=1    

which is equivalent to  
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� 𝔼𝔼𝜉𝜉𝑡𝑡+1 ��𝑟𝑟𝑡𝑡+1,𝑛𝑛(𝜃𝜃𝑡𝑡+1; 𝑥𝑥𝑡𝑡 , 𝜉𝜉𝑡𝑡+1)�2� − 𝑉𝑉𝑉𝑉𝑟𝑟𝜉𝜉𝑡𝑡+1(𝑟𝑟𝑡𝑡+1,𝑛𝑛(𝜃𝜃𝑡𝑡+1; 𝑥𝑥𝑡𝑡 , 𝜉𝜉𝑡𝑡+1))
𝑛𝑛𝑡𝑡

𝑛𝑛=1
 (4) 

 

where 𝑟𝑟𝑡𝑡+1,𝑛𝑛(𝜃𝜃𝑡𝑡+1;𝑥𝑥𝑡𝑡 , 𝜉𝜉𝑡𝑡+1) = 𝜕𝜕
𝜕𝜕𝑥𝑥𝑡𝑡,𝑛𝑛

𝒱𝒱𝑡𝑡+1(𝑥𝑥𝑡𝑡, 𝜉𝜉𝑡𝑡+1) − 𝜕𝜕
𝜕𝜕𝑥𝑥𝑡𝑡,𝑛𝑛

𝑉𝑉�𝑡𝑡+1(𝑥𝑥𝑡𝑡;  𝜃𝜃𝑡𝑡+1) is the residual between the 

true and estimated gradients, and 𝑉𝑉𝑉𝑉𝑉𝑉 is the variance operator. 

With elementary statistics, one can estimate Eq. (4) with 𝑆𝑆 samples 𝜉𝜉𝑡𝑡𝑠𝑠, 𝑠𝑠 = 1, … , 𝑆𝑆. 

 

� �
1
𝑆𝑆
� �𝑟𝑟𝑡𝑡+1,𝑛𝑛(𝜃𝜃𝑡𝑡+1; 𝑥𝑥𝑡𝑡 , 𝜉𝜉𝑡𝑡+1𝑠𝑠 )�

2𝑆𝑆

𝑠𝑠=1
−

1
𝑆𝑆 − 1

� �𝑟𝑟𝑡𝑡+1,𝑛𝑛(𝜃𝜃𝑡𝑡+1; 𝑥𝑥𝑡𝑡 , 𝜉𝜉𝑡𝑡+1𝑠𝑠 ) − 𝑟̅𝑟𝑡𝑡+1,𝑛𝑛(𝜃𝜃𝑡𝑡+1; 𝑥𝑥𝑡𝑡�
2𝑆𝑆

𝑠𝑠=1
�

𝑛𝑛𝑡𝑡

𝑛𝑛=1
  

≈
1
𝑆𝑆
� �� 𝑟𝑟𝑡𝑡+1,𝑛𝑛�𝜃𝜃𝑡𝑡+1; 𝑥𝑥𝑡𝑡, 𝜉𝜉𝑡𝑡+1

𝑠𝑠 �2𝑛𝑛𝑡𝑡

𝑛𝑛=1
− �𝑟𝑟𝑡𝑡+1,𝑛𝑛�𝜃𝜃𝑡𝑡+1; 𝑥𝑥𝑡𝑡, 𝜉𝜉𝑡𝑡+1

𝑠𝑠 � − 𝑟𝑟�𝑡𝑡+1,𝑛𝑛(𝜃𝜃𝑡𝑡+1; 𝑥𝑥𝑡𝑡�
2�

𝑆𝑆

𝑠𝑠=1
 (5) 

 

where 1
𝑆𝑆−1

≈ 1
𝑆𝑆
 is used for sufficiently large 𝑆𝑆, and  

𝑟̅𝑟𝑡𝑡+1,𝑛𝑛(𝜃𝜃𝑡𝑡+1; 𝑥𝑥𝑡𝑡) = 1
𝑆𝑆
∑ 𝑟𝑟𝑡𝑡+1,𝑛𝑛(𝜃𝜃𝑡𝑡+1;𝑥𝑥𝑡𝑡 , 𝜉𝜉𝑡𝑡+1𝑠𝑠 )𝑆𝑆
𝑠𝑠=1  is denoted as the sample mean of 

𝑟𝑟𝑡𝑡+1,𝑛𝑛(𝜃𝜃𝑡𝑡+1; 𝑥𝑥𝑡𝑡, 𝜉𝜉𝑡𝑡+1). 

The last term in Eq. (5) is defined as the approximated loss function 𝒥𝒥𝑡𝑡+1(𝜃𝜃𝑡𝑡+1;𝑥𝑥𝑡𝑡) at 𝑥𝑥𝑡𝑡. Then, 

 

𝒥𝒥𝑡𝑡+1(𝜃𝜃𝑡𝑡+1;𝑥𝑥𝑡𝑡) = 1
𝑆𝑆
∑ �∑ 2𝑟̅𝑟𝑡𝑡+1,𝑛𝑛(𝜃𝜃𝑡𝑡+1; 𝑥𝑥𝑡𝑡)𝑟𝑟𝑡𝑡+1,𝑛𝑛(𝜃𝜃𝑡𝑡+1;𝑥𝑥𝑡𝑡 , 𝜉𝜉𝑡𝑡+1𝑠𝑠 ) − 𝑟̅𝑟𝑡𝑡+1,𝑛𝑛(𝜃𝜃𝑡𝑡+1;𝑥𝑥𝑡𝑡)2𝑛𝑛𝑡𝑡

𝑛𝑛=1 �𝑆𝑆
𝑠𝑠=1    

 = 1
𝑆𝑆
∑ 𝒿𝒿𝑡𝑡+1(𝜃𝜃𝑡𝑡+1; 𝑥𝑥𝑡𝑡, 𝜉𝜉𝑡𝑡𝑠𝑠)𝑆𝑆
𝑠𝑠=1    

 

where 𝒿𝒿𝑡𝑡+1(𝜃𝜃𝑡𝑡+1; 𝑥𝑥𝑡𝑡, 𝜉𝜉𝑡𝑡𝑠𝑠) = ∑ 2𝑟̅𝑟t+1,n(𝜃𝜃𝑡𝑡+1; 𝑥𝑥𝑡𝑡)𝑟𝑟𝑡𝑡+1,𝑛𝑛(𝜃𝜃𝑡𝑡+1;𝑥𝑥𝑡𝑡 , 𝜉𝜉𝑡𝑡+1𝑠𝑠 ) − 𝑟̅𝑟𝑡𝑡+1,𝑛𝑛(𝜃𝜃𝑡𝑡+1; 𝑥𝑥𝑡𝑡)2𝑛𝑛𝑡𝑡
𝑛𝑛=1  

Note that  

𝛻𝛻𝜃𝜃𝑡𝑡+1𝑟̅𝑟𝑡𝑡+1,𝑛𝑛(𝜃𝜃𝑡𝑡+1;𝑥𝑥𝑡𝑡) =
1
𝑆𝑆
� 𝛻𝛻𝜃𝜃𝑡𝑡+1𝑟𝑟𝑡𝑡+1,𝑛𝑛(𝜃𝜃𝑡𝑡+1;𝑥𝑥𝑡𝑡 , 𝜉𝜉𝑡𝑡+1𝑠𝑠 )

𝑆𝑆

𝑠𝑠=1
  

 =
1
𝑆𝑆
� 𝛻𝛻𝜃𝜃𝑡𝑡+1(

𝜕𝜕
𝜕𝜕𝑥𝑥𝑡𝑡,𝑛𝑛

𝒱𝒱𝑡𝑡+1(𝑥𝑥𝑡𝑡, 𝜉𝜉𝑡𝑡+1𝑠𝑠 ) −
𝜕𝜕

𝜕𝜕𝑥𝑥𝑡𝑡,𝑛𝑛
𝑉𝑉�𝑡𝑡+1(𝑥𝑥𝑡𝑡;  𝜃𝜃𝑡𝑡+1))

𝑆𝑆

𝑠𝑠=1
  

 = −
1
𝑆𝑆
� 𝛻𝛻𝜃𝜃𝑡𝑡+1

𝜕𝜕
𝜕𝜕𝑥𝑥𝑡𝑡,𝑛𝑛

𝑉𝑉�𝑡𝑡+1(𝑥𝑥𝑡𝑡;  𝜃𝜃𝑡𝑡+1)
𝑆𝑆

𝑠𝑠=1
  

 = −𝛻𝛻𝜃𝜃𝑡𝑡+1
𝜕𝜕

𝜕𝜕𝑥𝑥𝑡𝑡,𝑛𝑛
𝑉𝑉�𝑡𝑡+1(𝑥𝑥𝑡𝑡; 𝜃𝜃𝑡𝑡+1)  

which is identical to the theta gradient on 𝑟𝑟𝑡𝑡+1,𝑛𝑛 as follows. 

𝛻𝛻𝜃𝜃𝑡𝑡+1𝑟𝑟𝑡𝑡+1,𝑛𝑛(𝜃𝜃𝑡𝑡+1; 𝑥𝑥𝑡𝑡 , 𝜉𝜉𝑡𝑡+1𝑠𝑠 ) = −𝛻𝛻𝜃𝜃𝑡𝑡+1
𝜕𝜕

𝜕𝜕𝑥𝑥𝑡𝑡,𝑛𝑛
𝑉𝑉�𝑡𝑡+1(𝑥𝑥𝑡𝑡;  𝜃𝜃𝑡𝑡+1) 

 

 

Therefore, the gradient of 𝒿𝒿𝑡𝑡+1(𝜃𝜃𝑡𝑡+1;𝑥𝑥𝑡𝑡 , 𝜉𝜉𝑡𝑡+1𝑠𝑠 ) with respect to 𝜃𝜃𝑡𝑡+1 is given by 
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𝛻𝛻𝜃𝜃𝑡𝑡+1 𝒿𝒿𝑡𝑡+1(𝜃𝜃𝑡𝑡+1;𝑥𝑥𝑡𝑡 , 𝜉𝜉𝑡𝑡+1𝑠𝑠 ) = −2� 𝑟𝑟𝑡𝑡+1,𝑛𝑛(𝜃𝜃𝑡𝑡+1;𝑥𝑥𝑡𝑡 , 𝜉𝜉𝑡𝑡+1𝑠𝑠 )𝛻𝛻𝜃𝜃𝑡𝑡+1
𝜕𝜕

𝜕𝜕𝑥𝑥𝑡𝑡,𝑛𝑛
𝑉𝑉�𝑡𝑡+1(𝑥𝑥𝑡𝑡; 𝜃𝜃𝑡𝑡+1)

𝑛𝑛𝑡𝑡

𝑛𝑛=1
   

 

Because 𝑥𝑥𝑡𝑡 is adapted to history 𝜉𝜉[𝑡𝑡], the stage 𝑡𝑡 + 1 loss function is defined by the 

expectation of 𝐽𝐽𝑡𝑡+1(𝜃𝜃𝑡𝑡+1; 𝑥𝑥𝑡𝑡) with respect to 𝑥𝑥𝑡𝑡 as follows. 
 

𝐽𝐽𝑡𝑡+1(𝜃𝜃𝑡𝑡+1) = 𝔼𝔼𝑥𝑥𝑡𝑡[𝐽𝐽𝑡𝑡+1(𝜃𝜃𝑡𝑡+1;𝑥𝑥𝑡𝑡)]   

 ≈ 1
𝑁𝑁
∑ 𝒥𝒥𝑡𝑡+1�𝜃𝜃𝑡𝑡+1;𝑥𝑥𝑡𝑡𝑖𝑖�𝑁𝑁
𝑖𝑖=1   (6) 

 

where 𝑁𝑁 is the number of samples of 𝑥𝑥𝑡𝑡, and 𝑥𝑥𝑡𝑡𝑖𝑖 is the 𝑖𝑖th sample of 𝑥𝑥𝑡𝑡. 

The loss function in the form of Eq. (6) makes it possible to find a theta that minimizes the loss online 

based on the stochastic gradient descent (SGD). The application of the SGD is discussed in Section 3.3.  

3.2.1. Sampling gradient of loss function 

In this section, the process of sampling 𝒥𝒥𝑡𝑡+1�𝜃𝜃𝑡𝑡+1;𝑥𝑥𝑡𝑡𝑖𝑖�  is described. Because 
𝜕𝜕

𝜕𝜕𝑥𝑥𝑡𝑡,𝑛𝑛
𝑉𝑉�𝑡𝑡+1(𝑥𝑥𝑡𝑡;  𝜃𝜃𝑡𝑡+1) and 𝛻𝛻𝜃𝜃𝑡𝑡+1

𝜕𝜕
𝜕𝜕𝑥𝑥𝑡𝑡,𝑛𝑛

𝑉𝑉�𝑡𝑡+1(𝑥𝑥𝑡𝑡;  𝜃𝜃𝑡𝑡+1) can be easily computed, it remains to sample the 

target gradient 𝛻𝛻𝑥𝑥𝑡𝑡𝒱𝒱𝑡𝑡+1(𝑥𝑥𝑡𝑡, 𝜉𝜉𝑡𝑡+1𝑠𝑠 ). For a given pair of (𝑥𝑥𝑡𝑡 , 𝜉𝜉𝑡𝑡+1𝑠𝑠 ), 𝛻𝛻𝑥𝑥𝑡𝑡𝒱𝒱𝑡𝑡+1(𝑥𝑥𝑡𝑡, 𝜉𝜉𝑡𝑡+1𝑠𝑠 ) can be found by 

differentiating the KKT optimality conditions of simulated subproblems (Kuhn & Tucker, 1950; Barratt, 

2018). It is supposed that there is a primal dual optimal solution (𝑥𝑥𝑡𝑡+1∗ ,𝜆𝜆𝑡𝑡+1∗ ,𝜇𝜇𝑡𝑡+1∗ ) for the stage 𝑡𝑡 + 1 

subproblem defined in Problem (1) at the prior stage decision variable 𝑥𝑥𝑡𝑡 and realization 𝜉𝜉𝑡𝑡+1𝑠𝑠 . Then, 

one can readily check from the Lagrangian 

 

𝐿𝐿�𝑥𝑥𝑡𝑡+1
∗ ,𝜆𝜆𝑡𝑡+1

∗ ,𝜇𝜇𝑡𝑡+1
∗ |𝑥𝑥𝑡𝑡, 𝜉𝜉𝑡𝑡+1

𝑠𝑠 � = 𝑓𝑓𝑡𝑡�𝑥𝑥𝑡𝑡+1
∗ ,𝜉𝜉𝑡𝑡+1

𝑠𝑠 � + 𝑉𝑉𝑡𝑡+2�𝑥𝑥𝑡𝑡+1
∗ �  

 +� 𝜇𝜇𝑡𝑡+1,𝑖𝑖
∗ �𝑔𝑔𝑡𝑡+1,𝑖𝑖�𝑥𝑥𝑡𝑡+1

∗ ,𝜉𝜉𝑡𝑡+1
𝑠𝑠 � + ℎ𝑡𝑡+1,𝑖𝑖�𝑥𝑥𝑡𝑡, 𝜉𝜉𝑡𝑡+1

𝑠𝑠 ��
𝑝𝑝𝑡𝑡+1

𝑖𝑖=1
  

 +� 𝜆𝜆𝑡𝑡+1,𝑗𝑗
∗ �𝑙𝑙𝑡𝑡+1,𝑗𝑗�𝑥𝑥𝑡𝑡+1

∗ ,𝜉𝜉𝑡𝑡+1
𝑠𝑠 � + 𝑏𝑏𝑡𝑡+1,𝑗𝑗(𝑥𝑥𝑡𝑡,𝜉𝜉𝑡𝑡+1

𝑠𝑠 )�
𝑞𝑞𝑡𝑡+1

𝑗𝑗=1
 (7) 

 

that the local sensitivity of the subproblem objective with respect to 𝑥𝑥𝑡𝑡 , at 𝜉𝜉𝑡𝑡+1𝑠𝑠  is the following: 

 

 ∇𝑥𝑥𝑡𝑡𝒱𝒱𝑡𝑡+1(𝑥𝑥𝑡𝑡, 𝜉𝜉𝑡𝑡+1𝑠𝑠 ) = ∑ 𝜇𝜇𝑡𝑡+1,𝑖𝑖
∗ ∇𝑥𝑥𝑡𝑡ℎ𝑡𝑡,𝑖𝑖(𝑥𝑥𝑡𝑡 , 𝜉𝜉𝑡𝑡+1𝑠𝑠 )𝑝𝑝𝑡𝑡+1

𝑖𝑖=1 + ∑ 𝜆𝜆𝑡𝑡+1,𝑗𝑗
∗ ∇𝑥𝑥𝑡𝑡𝑏𝑏𝑡𝑡,𝑗𝑗(𝑥𝑥𝑡𝑡 , 𝜉𝜉𝑡𝑡+1𝑠𝑠 )𝑞𝑞𝑡𝑡+1

𝑗𝑗=1   (8) 
 

Unfortunately, Eq. (8) is not available because finding the optimal solution of Eq. (7) requires 

the next stage value function 𝑉𝑉𝑡𝑡+2. Therefore, Eq. (8) is approximated with bootstrapping by replacing 

𝑉𝑉𝑡𝑡+2(𝑥𝑥𝑡𝑡+1)  with the current best approximation of it, 𝑉𝑉�𝑡𝑡+2(𝑥𝑥𝑡𝑡+1; 𝜃𝜃𝑡𝑡+1) , which is analogous to the 

Benders cut approximation of SDDP. 

3.2.2. Objective weighting 
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The loss function of VFGL is defined as a norm of multidimensional errors, which implies that 

the error from each dimension is treated equally in magnitude. However, each decision variable might 

have a different scale of sensitivity to the value function. For example, one can consider the asset 

liability management of public pension plans, minimizing the contribution rate while maximizing the 

wealth of the terminal stage. Typically, pension plan problems include decision variables of the 

contribution rate and allocation of wealth in various asset classes. A marginal increment in the 

contribution rate leads to an additional employee’s total wage, whereas a similar nominal increment of 

allocation on Treasury securities affects the growth of wealth based on the risk-free rate. Apparently, 

the sensitivity of the value function with respect to Treasury securities allocation would be much lower 

than that of the contribution rate. A loss function without consideration of a decision variable sensitivity 

scale might lead to poor performance because decision variables with low sensitivity can be easily 

neglected in learning. In this regard, a weighted loss function is defined as 

𝒥𝒥𝑡𝑡+1𝑤𝑤 (𝜃𝜃𝑡𝑡+1;𝑥𝑥𝑡𝑡) =  ∑ �
𝜕𝜕

𝜕𝜕𝑥𝑥𝑡𝑡,𝑛𝑛
𝑉𝑉𝑡𝑡+1(𝑥𝑥𝑡𝑡)− 𝜕𝜕

𝜕𝜕𝑥𝑥𝑡𝑡,𝑛𝑛
𝑉𝑉�𝑡𝑡+1(𝑥𝑥𝑡𝑡; 𝜃𝜃𝑡𝑡+1)

𝑤𝑤𝑡𝑡+1,𝑛𝑛
�
2

𝑛𝑛𝑡𝑡
𝑛𝑛=1 ,  

where 𝑤𝑤𝑡𝑡+1,𝑛𝑛 = 𝔼𝔼𝑥𝑥𝑡𝑡 �
𝜕𝜕

𝜕𝜕𝑥𝑥𝑡𝑡,𝑛𝑛
𝑉𝑉𝑡𝑡+1(𝑥𝑥𝑡𝑡)� ,𝑛𝑛 = 1, … , 𝑛𝑛𝑡𝑡. 

Subsequently, one obtains a scaled loss gradient as follows. 
 

∇𝜃𝜃𝑡𝑡+1𝒿𝒿𝑡𝑡+1
𝑤𝑤 (𝜃𝜃𝑡𝑡+1; 𝑥𝑥𝑡𝑡 , 𝜉𝜉𝑡𝑡+1𝑠𝑠 ) = −2�

1
𝑤𝑤𝑡𝑡+1,𝑛𝑛
2 �

𝜕𝜕
𝜕𝜕𝑥𝑥𝑡𝑡,𝑛𝑛

𝒱𝒱𝑡𝑡+1(𝑥𝑥𝑡𝑡, 𝜉𝜉𝑡𝑡+1𝑠𝑠 ) −
𝜕𝜕

𝜕𝜕𝑥𝑥𝑡𝑡,𝑛𝑛
𝑉𝑉�𝑡𝑡+1(𝑥𝑥𝑡𝑡;  𝜃𝜃𝑡𝑡+1)�𝛻𝛻𝜃𝜃

𝜕𝜕
𝜕𝜕𝑥𝑥𝑡𝑡,𝑛𝑛

𝑉𝑉�𝑡𝑡+1(𝑥𝑥𝑡𝑡;  𝜃𝜃𝑡𝑡+1)
𝑛𝑛𝑡𝑡

𝑛𝑛=1
 

 

However, the value of 𝑤𝑤𝑡𝑡+1,𝑛𝑛 cannot be computed directly. Therefore, the value 𝑤𝑤𝑡𝑡+1,𝑛𝑛 is replaced 

with its sample mean 𝑤𝑤�𝑡𝑡+1,𝑛𝑛, and this approximation is improved as the iteration continues — that is, 

whenever 𝜕𝜕
𝜕𝜕𝑥𝑥𝑡𝑡,𝑛𝑛

𝑉𝑉�𝑡𝑡+1(𝑥𝑥𝑡𝑡;𝜃𝜃𝑡𝑡+1) is sampled at iteration 𝑖𝑖, the following is updated: 

𝑤𝑤�𝑡𝑡+1,𝑛𝑛 ←
𝑖𝑖

𝑖𝑖 + 1
𝑤𝑤�𝑡𝑡+1,𝑛𝑛 +

1
𝑖𝑖 + 1

�
𝜕𝜕

𝜕𝜕𝑥𝑥𝑡𝑡,𝑛𝑛
𝑉𝑉�𝑡𝑡+1(𝑥𝑥𝑡𝑡;𝜃𝜃𝑡𝑡+1)�  

Because the major purpose of 𝑤𝑤�𝑡𝑡+1,𝑛𝑛  is scaling, an inaccurate approximation of 𝑤𝑤𝑡𝑡+1,𝑛𝑛  is not a 

serious concern as long as it reflects the average scale. 

3.3. Parameter optimization 

Parameters 𝜃𝜃𝑡𝑡+1  that minimize the weighted loss functions 𝐽𝐽𝑡𝑡+1𝑤𝑤 (𝜃𝜃𝑡𝑡+1)  for 𝑡𝑡 = 1, …𝑇𝑇 − 1 

are optimized with the SGD algorithm. The SGD algorithm for VFGL is described in Algorithm 1. 

Algorithm 1: Stochastic Gradient Descent for VFGL 
 Require: 𝑁𝑁 (maximum iteration), 𝛼𝛼𝑖𝑖 for 𝑖𝑖 = 1, … ,𝑁𝑁 (step size), 𝑆𝑆 (sample size) 
 Initialize: 𝑖𝑖 ← 1 (iteration count), 𝜃𝜃𝑡𝑡  𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 = 1, … ,𝑇𝑇 (parameter values) 
1 while 𝑖𝑖 ≤ 𝑁𝑁 do 
2 for 𝑡𝑡 = 1, … ,𝑇𝑇 do 
3  if 𝑡𝑡 = 1 do 
4    Solve the first stage subproblem of Problem (2). Save optimal solution 𝑥𝑥1𝑖𝑖 . 
5   else if 𝑡𝑡 > 1 do 
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6    for 𝑠𝑠 = 1, . . . 𝑆𝑆 do 
7     Sample 𝜉𝜉𝑡𝑡𝑠𝑠 
8     Solve the stage 𝑡𝑡 subproblem of Problem (2). Save optimal solution (𝑥𝑥𝑡𝑡𝑠𝑠, 𝜆𝜆𝑡𝑡𝑠𝑠 , 𝜇𝜇𝑡𝑡𝑠𝑠). 
9     Compute ∇𝜃𝜃𝑡𝑡𝒿𝒿𝑡𝑡

𝑤𝑤(𝜃𝜃𝑡𝑡; 𝑥𝑥𝑡𝑡−1𝑖𝑖 , 𝜉𝜉𝑡𝑡𝑠𝑠) 
10    end for 
11    Compute ∇𝜃𝜃𝑡𝑡𝒥𝒥t

𝑤𝑤�𝜃𝜃𝑡𝑡;𝑥𝑥𝑡𝑡−1𝑖𝑖 � = 1
𝑆𝑆
∑ ∇𝜃𝜃𝑡𝑡𝒿𝒿𝑡𝑡

𝑤𝑤(𝜃𝜃𝑡𝑡; 𝑥𝑥𝑡𝑡−1𝑖𝑖 , 𝜉𝜉𝑡𝑡𝑠𝑠)𝑆𝑆
𝑠𝑠=1  

12    Update 𝜃𝜃𝑡𝑡 ← 𝜃𝜃𝑡𝑡 − 𝛼𝛼𝑖𝑖∇𝜃𝜃𝑡𝑡𝒥𝒥t
𝑤𝑤�𝜃𝜃𝑡𝑡; 𝑥𝑥𝑡𝑡−1𝑖𝑖 � 

13    𝑥𝑥𝑡𝑡𝑖𝑖 ←randomly chosen from {𝑥𝑥𝑡𝑡1, … , 𝑥𝑥𝑡𝑡𝑘𝑘} 
14   end if 
15  end for 
16  𝑖𝑖 ← 𝑖𝑖 + 1 
17 end while 

 

Here, the step size (or learning rate) 𝛼𝛼𝑖𝑖 satisfies  

� 𝛼𝛼𝑖𝑖
∞

𝑖𝑖=1
= ∞,� 𝛼𝛼𝑖𝑖2

∞

𝑖𝑖=1
< ∞ 

for the convergence (Robbins & Monro, 1951). 

SGD is widely used in the parameter optimization of artificial intelligence algorithms, and there 

are a number of variants of SGD to address problem-specific issues. One variant of SGD that can be 

particularly useful for this problem is implicit stochastic gradient descent (ISGD). ISGD involves the 

extra step of calculating the updated parameter implicitly defined by the following equation. 

𝜃𝜃𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛 = 𝜃𝜃𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜 − 𝛼𝛼𝑖𝑖∇𝜃𝜃𝑡𝑡𝒥𝒥𝑡𝑡
𝑤𝑤(𝜃𝜃𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛;𝑥𝑥𝑡𝑡−1) 

Despite the additional computational burden, the ISGD is known to have a stable convergence 

regardless of the choice of learning rate 𝛼𝛼𝑖𝑖. The ISGD is suitable for VFGL because the unstable scale 

of gradients of VFGL tends to require a careful selection of the learning rate for convergence, which is 

cumbersome.  

In Algorithm 1, ∇𝜃𝜃𝑡𝑡𝒥𝒥𝑡𝑡
𝑤𝑤(𝜃𝜃𝑡𝑡; 𝑥𝑥𝑡𝑡−1

𝑖𝑖 )  is approximated with 𝑆𝑆  samples. One can employ some 

variance reduction techniques (Hammersley & Morton, 1956; Siegmund, 1976; Rubinstein & Marcus, 

1985; Haghighat & Wagner, 2003) to enhance the sample approximation. In particular, moment 

matching is used. The moment matching algorithms vary the values of finite samples and/or probability 

assigned to them so that the moments of the samples are matched to that of their original distribution.  

The following procedure can be considered one of the most naïve forms of the moment 

matching algorithm. For 𝑆𝑆 samples 𝑦𝑦1, … ,𝑦𝑦𝑆𝑆 drawn from their true distribution 𝑌𝑌 with mean 𝜇𝜇 and 

covariance 𝛴𝛴, each 𝑦𝑦𝑠𝑠 is transformed as follows. 

𝑧𝑧𝑠𝑠 = 𝜇𝜇 + 𝛴𝛴
1
2𝐶𝐶−

1
2(𝑦𝑦𝑠𝑠 − 𝑦𝑦�), 

where 𝑦𝑦� is the sample mean, and C is the sample covariance matrix. One can easily check that the 
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mean and variance of 𝑧𝑧𝑠𝑠 exactly match those of 𝑌𝑌. However, matching up to the second moment might 

not be sufficient, depending on the underlying distribution and structure of the problems. For more 

details of moment matching algorithms, see Høyland et al. (2003), Ji et al. (2005), Ponomareva et al. 

(2015), Staino & Russo (2015), and Radhakrishnan et al. (2018). 

3.3.1. Stopping criterion 

The convergence of parameter values can be used as the stopping criterion of VFGL. One cannot 

employ the expected optimality gap for the stopping criterion as in SDDP because a first stage problem 

in VFGL no longer provides a lower bound of the problem. However, one can observe the change in 

parameters of the value function. In particular, a total parameter change for the 𝑖𝑖-th iteration is defined 

as follows. 

 ∆𝜃𝜃𝑖𝑖 = � ∆𝜃𝜃𝑡𝑡𝑖𝑖
𝑇𝑇

𝑡𝑡=2
,  

where ∆𝜃𝜃𝑡𝑡𝑖𝑖 = �𝜃𝜃𝑡𝑡𝑖𝑖 − 𝜃𝜃𝑡𝑡𝑖𝑖−1�2  is the parameter change for the stage 𝑡𝑡  value function 𝑉𝑉𝑡𝑡  in the 𝑖𝑖 -th 

iteration. When ∆𝜃𝜃𝑖𝑖 is sufficiently small, one can conclude that the value function converges. The 

entire procedure of VFGL is presented in Algorithm 2. 

 

Algorithm 2: VFGL 
 Require: 𝑁𝑁 (maximum iteration), 𝛼𝛼𝑖𝑖 for 𝑖𝑖 = 1, … ,𝑁𝑁 (step size), 

𝑆𝑆 (sample size), 𝜖𝜖 (minimum theta update threshold),  
𝑉𝑉�𝑡𝑡+1 for 𝑡𝑡 = 1, … ,𝑇𝑇 − 1 (parametric value function),  
 

 Initialize: 𝑖𝑖 ← 1 (iteration counter) 
         ∆𝜃𝜃 ← ∞ (total theta update level) 

          𝑝𝑝𝑡𝑡𝑠𝑠 ←
1
𝑆𝑆
 

  𝜃𝜃𝑡𝑡1 for 𝑡𝑡 = 2, … ,𝑇𝑇 − 1 (parameter values) 
 

1 while ∆𝜃𝜃𝑖𝑖 > 𝜖𝜖 and 𝑖𝑖 < 𝑁𝑁 do 
2 ∆𝜃𝜃𝑖𝑖 ← 0 
3 for 𝑡𝑡 = 1, … ,𝑇𝑇 do 
4   if  𝑡𝑡 = 1do 
5    Solve the first stage subproblem of Problem (2). 
6    Save optimal solution 𝑥𝑥1𝑖𝑖 . 
7   else if 𝑡𝑡 > 1do 
8    Sample random variables 𝜉𝜉𝑡𝑡𝑠𝑠 for 𝑠𝑠 = 1, … , 𝑆𝑆 
9    (optional) Match moments of sampled 𝜉𝜉𝑡𝑡𝑠𝑠 with the corresponding probability 𝑝𝑝𝑡𝑡𝑠𝑠 
10    for s= 1, … , 𝑆𝑆 do 
11     Solve the corresponding subproblem of Problem (2) 
12     Compute the loss gradient ∇𝜃𝜃𝑡𝑡𝒿𝒿𝑡𝑡

𝑤𝑤(𝜃𝜃𝑡𝑡𝑖𝑖; 𝑥𝑥𝑡𝑡−1𝑖𝑖 , 𝜉𝜉𝑡𝑡𝑠𝑠) 
13    Compute the minibatch loss gradient ∇𝜃𝜃𝑡𝑡𝒥𝒥t

𝑤𝑤�𝜃𝜃𝑡𝑡𝑖𝑖; 𝑥𝑥𝑡𝑡−1𝑖𝑖 � = ∑ 𝑝𝑝𝑡𝑡𝑠𝑠∇𝜃𝜃𝑡𝑡𝒿𝒿𝑡𝑡
𝑤𝑤(𝜃𝜃𝑡𝑡𝑖𝑖; 𝑥𝑥𝑡𝑡−1𝑖𝑖 , 𝜉𝜉𝑡𝑡𝑠𝑠)𝑆𝑆

𝑠𝑠=1  
14    Update 𝜃𝜃𝑡𝑡+1 by ISGD on 𝜃𝜃𝑡𝑡+1𝑖𝑖+1 = 𝜃𝜃𝑡𝑡+1𝑖𝑖 − 𝛼𝛼𝑖𝑖∇𝜃𝜃𝑡𝑡𝒥𝒥t

𝑤𝑤�𝜃𝜃𝑡𝑡𝑖𝑖; 𝑥𝑥𝑡𝑡−1𝑖𝑖 � 
    Sample 𝜉𝜉𝑡𝑡𝑖𝑖 solve the stage 𝑡𝑡 subproblem of Problem (2) and save 𝑥𝑥𝑡𝑡𝑖𝑖 
15    ∆𝜃𝜃𝑖𝑖 ← ∆𝜃𝜃𝑖𝑖 + �𝜃𝜃𝑡𝑡𝑖𝑖+1 − 𝜃𝜃𝑡𝑡𝑖𝑖�2 
16   end if  
17  end for 
18  𝑖𝑖 ← 𝑖𝑖 + 1 
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19 end for 
 

3.4. Quality measure of parametric form: KKT deviation 

The biggest hurdle of the proposed algorithm is finding an appropriate parametric form of the 

value function. As pointed out by Agrawal et al. (2020), the tractable form of the true value function 

can be found only in a few cases. Fortunately, the choice of the parametric approximation of the value 

function 𝑉𝑉�𝑡𝑡 need not be exact. If the modeling capacity of 𝑉𝑉�𝑡𝑡 is strong enough that its gradients can 

be sufficiently close to the gradients of the true value, VFGL can find a solution that is sufficiently close 

to the true optimal solution. There may be multiple parametric forms of the value function that can well 

approximate the true value function, and they must be compared.  

In this regard, a measure is proposed to evaluate the performance of various parametric 

approximations to choose the best one among them. The solution of VFGL converges to the true solution 

as 𝐷𝐷𝑡𝑡 goes to 0 by Theorem 1. Let 𝐷𝐷 be the expected value of the sum of 𝐷𝐷𝑡𝑡 over stages as follows. 
 

𝐷𝐷(𝜃𝜃2, … ,𝜃𝜃𝑇𝑇) = 𝔼𝔼 �� 𝐷𝐷𝑡𝑡(𝜃𝜃𝑡𝑡+1; 𝑥𝑥𝑡𝑡)
𝑇𝑇−1

𝑡𝑡=1
� 

 

One forward simulates solution 𝑥𝑥𝑡𝑡𝑖𝑖 , 𝑡𝑡 = 1, … ,𝑇𝑇 𝑖𝑖 = 1, … ,𝑁𝑁 based on the current approximation 

𝑉𝑉�𝑡𝑡+1, 𝑡𝑡 = 1, …𝑇𝑇 − 1 to obtain the estimator of 𝐷𝐷 as follows. 
 

𝐷𝐷�(𝜃𝜃2, … ,𝜃𝜃𝑇𝑇) =
1
𝑁𝑁
� � �

1
𝑆𝑆
� ∇𝑥𝑥𝑡𝑡𝒱𝒱𝑡𝑡+1�𝑥𝑥𝑡𝑡

𝑖𝑖, 𝜉𝜉𝑡𝑡+1𝑠𝑠 �
𝑆𝑆

𝑠𝑠=1
− ∇𝑥𝑥𝑡𝑡𝑉𝑉�𝑡𝑡+1(𝑥𝑥𝑡𝑡𝑖𝑖;  𝜃𝜃𝑡𝑡+1)�

2

𝑇𝑇−1

𝑡𝑡=1
 

𝑁𝑁

𝑖𝑖=1
 

 

where each ∇𝑥𝑥𝑡𝑡𝒱𝒱𝑡𝑡+1�𝑥𝑥𝑡𝑡
𝑖𝑖 , 𝜉𝜉𝑡𝑡+1𝑠𝑠 � is sampled from the bootstrapping described in Section 2.2.1. 

Here, 𝐷𝐷� is referred to as KKT deviation, and it indicates the performance of the value function 

gradient approximation based on the current parametric form. A better quality of the solution would be 

expected for a low KKT deviation, but a high KKT deviation does not necessarily lead to an erroneous 

solution. Instead, the KKT deviation can be regarded as a confidence level of the solution. Illustrative 

examples of the relationship between the KKT deviations and solution qualities are presented in Section 

4. 

 

Remark 1. A good candidate for the initial choice of the parametric form of the value function is the 

functional form of the stagewise objective function or the indefinite integral form of the stagewise 

objective function. Such a claim is based on the observation that the past stage decision variables of the 

decomposed multistage stochastic programming problems are frequently used as a resource constraint. 

Furthermore, the stagewise objective function is frequently a function of such available resources. 

However, sometimes the analytical form of the indefinite integral of the objective function might not 

be available. In such a case, one can approximate the indefinite integral form with sampling. More 

detailed illustrations and discussions can be found in Section 4. 
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4. Illustrative examples 

In this section, three illustrative examples with different application domains are presented to 

demonstrate the empirical performance of VFGL. The three examples are financial planning, production 

planning, and hydrothermal energy planning, where they have different types of decision variables, 

objectives, and constraints. These problems have been extensively studied within the optimization 

community.  

In the numerical experiments, seven to eleven stage multistage stochastic convex problems are 

considered to compare the results from MSP, SDDP, and VFGL. Here, MSP is a deterministic equivalent 

of the multistage stochastic convex problems. MSP was used as a benchmark to assess the solution 

quality of SDDP and VFGL because MSP finds a global optimum given a finite scenario tree. The 

stopping criteria for SDDP and VFGL are different. Therefore, the two algorithms were run until 

solution convergence, and their first stage solution, elapsed time, and degree of convergence at each 

iteration were compared. For SDDP, 20 scenarios for upper bound calculation in the forward pass were 

sampled, but the backward pass was performed on only one sampled path. All the experiments were 

performed using an Intel i5-7500 processor with 32 GB of RAM. For each stagewise subproblem, 

MOSEK3 solver 12.9.0 was used to solve the linear and convex problems by means of CVXPY 1.0.28, 

a Python-based modeling framework (Diamond & Boyd, 2016). 

4.1 Lifetime financial planning  

Merton (1969) solved a continuous-time portfolio optimization problem, where the objective is 

to maximize the total utility of consumption and terminal wealth by appropriately deciding the level of 

consumption and the allocation of wealth in stocks and bonds. See Appendix E for the full problem 

definition and its analytical solution. For the numerical experiment, the time period is discretized into 

𝑇𝑇 stages, and the problem is approximated using an MSP formulation. The approximated problem is 

solved with MSP, SDDP, and VFGL. The variables, parameters, and parameter value for the discretized 

lifetime financial planning problem case study are described in Table 1. 

Table 1. Decision variables and parameters for discretized lifetime financial planning 

Decision variables Description  
𝐶𝐶𝑡𝑡 Consumption at stage 𝑡𝑡 
𝑊𝑊𝑡𝑡 Wealth in the beginning of stage 𝑡𝑡 
𝑆𝑆𝑡𝑡 Amount invested into stock at stage 𝑡𝑡  
𝐵𝐵𝑡𝑡  Amount invested into bond at stage 𝑡𝑡 

  

Parameters Description  Value 
𝜌𝜌 Discount rate.  0 

                                           
3 See http://www.mosek.com 
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𝛾𝛾 Utility risk aversion coefficient 1 
𝜇𝜇,  𝜎𝜎 Mean return, volatility respectively, of stock 1.06, 0.20 
𝑟𝑟 Risk-free rate of bond 1.03 
𝜖𝜖 Scaling coefficient of bequest utility 1 
𝜉𝜉𝑡𝑡  Random variable following a standard normal 

distribution 
- 

The total cost is as follows. 

−𝔼𝔼��𝑒𝑒−𝜌𝜌𝜌𝜌𝑈𝑈(𝐶𝐶𝑡𝑡) + 𝜖𝜖𝛾𝛾𝑒𝑒−𝜌𝜌𝜌𝜌𝑈𝑈(𝑊𝑊𝑇𝑇)
𝑇𝑇

𝑡𝑡=1

� 

Stagewise subproblems are defined as follows. 

Stage 1 subproblem 

 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 −𝑈𝑈(𝐶𝐶1) + 𝑉𝑉2(𝑆𝑆1,𝐵𝐵1)   

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 𝑆𝑆1 + 𝐵𝐵1 + 𝐶𝐶1 = 1  Initial wealth 

 𝑆𝑆1,  𝐵𝐵1 ,  𝐶𝐶1 ≥ 0  Non-negativity 

Stage t subproblem (𝑡𝑡 = 2, … ,𝑇𝑇 − 1) 

 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 −𝑈𝑈(𝐶𝐶𝑡𝑡) + 𝑉𝑉𝑡𝑡+1(𝑆𝑆𝑡𝑡 ,𝐵𝐵𝑡𝑡)   

s𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑡𝑡𝑡𝑡 
𝑆𝑆𝑡𝑡 + 𝐵𝐵𝑡𝑡 + 𝐶𝐶𝑡𝑡 = 𝑟𝑟Δ𝑡𝑡𝐵𝐵𝑡𝑡−1 + 𝑒𝑒�𝜇𝜇−

𝜎𝜎2
2 �𝛥𝛥𝛥𝛥+𝜎𝜎√𝛥𝛥𝛥𝛥∗𝜉𝜉𝑡𝑡𝑆𝑆𝑡𝑡−1  

Inventory balance 

 𝑆𝑆𝑡𝑡 ,  𝐵𝐵𝑡𝑡 ,  𝐶𝐶𝑡𝑡 ≥ 0  Non-negativity 

Stage T subproblem 

 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 −𝑈𝑈(𝑊𝑊𝑇𝑇)   

s𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑡𝑡𝑡𝑡 
𝑊𝑊𝑇𝑇 = 𝑟𝑟Δ𝑡𝑡𝑡𝑡𝑇𝑇−1 + 𝑒𝑒�𝜇𝜇−

𝜎𝜎2
2 �Δt+𝜎𝜎√Δt∗𝜉𝜉𝑇𝑇𝑆𝑆𝑇𝑇−1  

Inventory balance 

 

From the special structure of the terminal stage problem, 𝑉𝑉𝑇𝑇(𝑆𝑆𝑇𝑇−1,𝐵𝐵𝑇𝑇−1) can be calculated as follows. 

𝑉𝑉𝑇𝑇(𝑆𝑆𝑇𝑇−1,𝐵𝐵𝑇𝑇−1) = � − ln�𝑟𝑟Δ𝑡𝑡𝑡𝑡𝑇𝑇−1 + 𝑒𝑒�𝜇𝜇−
𝜎𝜎2
2 �𝑑𝑑𝑑𝑑+𝜎𝜎√Δ𝑡𝑡∗𝜉𝜉𝑇𝑇𝑆𝑆𝑇𝑇−1�

𝜉𝜉𝑇𝑇

𝜑𝜑(𝜉𝜉𝑇𝑇)𝑑𝑑𝜉𝜉𝑇𝑇  

where 𝜑𝜑(𝜉𝜉𝑇𝑇)  is a probability density function of 𝜉𝜉𝑇𝑇 . Finding an exact parametric form of 

𝑉𝑉𝑇𝑇(𝑆𝑆𝑇𝑇−1,𝐵𝐵𝑇𝑇−1)  above is extremely difficult. Instead, the parametric form of 𝑉𝑉𝑇𝑇(𝑆𝑆𝑇𝑇−1,𝐵𝐵𝑇𝑇−1)  is 

approximated with finite sampling as follows. 

�− ln�𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑇𝑇−1 + 𝑒𝑒�𝜇𝜇−
𝜎𝜎2
2 �𝑑𝑑𝑑𝑑+𝜎𝜎√𝑑𝑑𝑑𝑑∗𝜉𝜉𝑇𝑇𝑆𝑆𝑇𝑇−1�

 

𝜉𝜉𝑇𝑇

𝜑𝜑(𝜉𝜉𝑇𝑇)𝑑𝑑𝜉𝜉𝑇𝑇 ≈
1
𝑏𝑏𝑇𝑇
� −𝑙𝑙𝑙𝑙�𝑟𝑟𝐵𝐵𝑇𝑇−1 + 𝛽𝛽𝑖𝑖, 𝑇𝑇𝑆𝑆𝑇𝑇−1�

𝑏𝑏𝑇𝑇

𝑖𝑖=1
 

where 𝛽𝛽𝑖𝑖, 𝑇𝑇 is a sampled value of 𝑒𝑒�𝜇𝜇−
𝜎𝜎2

2 �Δ𝑡𝑡+𝜎𝜎√Δ𝑡𝑡∗𝜉𝜉𝑇𝑇, and 𝑏𝑏𝑇𝑇 is the sampling number. Therefore, the 

parametric value function is set to include the parametric term as follows.  
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𝜃𝜃𝑡𝑡1� −𝑙𝑙𝑙𝑙�𝑟𝑟𝐵𝐵𝑇𝑇−1 + 𝛽𝛽𝑖𝑖, 𝑇𝑇𝑆𝑆𝑇𝑇−1�
𝑏𝑏𝑇𝑇

𝑖𝑖=1
 

A negative utility term is added for flexibility by −𝜃𝜃𝑡𝑡2𝑙𝑙𝑙𝑙(𝜃𝜃𝑡𝑡3𝐵𝐵𝑡𝑡 + 𝜃𝜃𝑡𝑡4𝑆𝑆𝑡𝑡) to increase the model capacity. 

Therefore, the parametric value function for stage 𝑡𝑡 = 2, … ,𝑇𝑇 is defined as follows. 

𝑉𝑉�𝑡𝑡�𝑆𝑆𝑡𝑡−1,𝐵𝐵𝑡𝑡−1;  𝜃𝜃𝑡𝑡 = (𝜃𝜃𝑡𝑡1,𝜃𝜃𝑡𝑡2,𝜃𝜃𝑡𝑡3,𝜃𝜃𝑡𝑡4)� = −𝜃𝜃𝑡𝑡1� 𝑙𝑙𝑙𝑙�𝑟𝑟𝐵𝐵𝑡𝑡−1 + 𝛽𝛽𝑖𝑖, 𝑡𝑡𝑆𝑆𝑡𝑡−1�
𝑏𝑏𝑡𝑡

𝑖𝑖=1
− 𝜃𝜃𝑡𝑡2𝑙𝑙𝑙𝑙(𝜃𝜃𝑡𝑡3𝐵𝐵𝑡𝑡−1 + 𝜃𝜃𝑡𝑡4𝑆𝑆𝑡𝑡−1) 

where 𝑏𝑏𝑡𝑡 is the sampling number. Moreover, 𝑏𝑏𝑡𝑡 = 30 is set for all t, and the parameters are initialized 

as follows. 

𝜃𝜃𝑡𝑡1,𝜃𝜃𝑡𝑡2,𝜃𝜃𝑡𝑡3,𝜃𝜃𝑡𝑡4 = �
1
𝑏𝑏𝑡𝑡

,
1
𝑏𝑏𝑡𝑡

, 1,  1�  

An 11-stage scenario tree is constructed using three samples per stage, where the samples are 

normalized to match the first and second moments of the true distribution perfectly. The constructed 

scenario tree is shared between MSP and SDDP. The experimental results for MSP, SDDP, and VFGL 

are summarized in Table 2. It presents the averaged first stage solutions over 20 independently generated 

instances of MSP, SDDP, and VFGL. The results from Table 2 verifies that the MSP solution matches 

well with the analytical solution, and VFGL provides more accurate solutions than SDDP. 

Table 2. Comparison of objective value, first stage solution, and computation time between 
algorithms for lifetime financial planning problem 

Algorithm Objective 
value 

Risky 
asset 
portion 

Risk-free 
asset 

Risky 
asset Consumption 

Average 
computation 
time (s) 

Analytical - 0.7500 0.2292 0.6875 0.0833 - 

MSP 29.5508 0.7510 0.2282 0.6885 0.0833 - 
 (0.0000) (0.000) (0.000) (0.000) (0.000) 

SDDP 29.4377 0.7694 0.2114 0.7053 0.0833 4552 
(15) (0.0577) (0.012) (0.012) (0.012) (0.000) 

VFGL 
29.5112 0.7508 0.2284 0.6883 0.0833 354 

(1) (0.0305) (0.000) (0.000) (0.000) (0.000) 

The evolution of the first stage solutions of (a) SDDP and (b) VFGL for a randomly generated 

instance is depicted in Figure 1. While the first stage solution of VFGL quickly converges, almost within 

20 iterations, the solution of SDDP is not stabilized within 200 iterations. SDDP was further run for 

1000 iterations, which took approximately 28,000 s, but the first stage solution was still not fully 

stabilized. The SDDP algorithm shows a particularly slow convergence of this example. 
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(a) SDDP  (b) VFGL  

Figure 1. Comparison of evolution of the first stage solution between SDDP and VFGL for 
discretized lifetime financial planning problem 

 

 The computation time per iteration is illustrated in Figure 2. Figures 1 and 2 clearly show that 

VFGL is not only faster in convergence but also faster in each iteration than SDDP. Furthermore, SDDP 

shows increasing computation time with iteration. Because SDDP requires a high number of iterations 

for convergence, the computational advantage of VFGL over SDDP is significant in this sample. 

 
 

(a) SDDP (b) VFGL 

Figure 2. Comparison of computation time per iteration between SDDP and VFGL for discretized 
financial planning problem 

 

The stopping criteria of SDDP and VFGL are displayed in Figure 3. The dashed upper bound 

of Figure 3(a) refers to the conservative upper bound estimation with 95% confidence (Shapiro, 2011). 

Figure 3(b) describes the total 𝜃𝜃 change in VFGL at each iteration. The convergence of the parameter 

for VFGL is apparent in Figure 3(b) after approximately 10 iterations, which coincides with the solution 

convergence shown in Figure 1. However, the approximated SDDP bound of Figure 3(a) provides little 

information about the solution convergence. 
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(a) SDDP bounds (b) VFGL parameter update history 

Figure 3. Comparison of stopping criteria between SDDP and VFGL for discretized lifetime financial 
planning problem 

Different parametric forms of the value function are applied to this example, and the result 

changes are analyzed. By constructing the parametric form of the value function for this example, one 

can easily change the parametric family by changing the sampling number 𝑏𝑏𝑡𝑡. The KKT deviation, 

solution error, and objective value for different 𝑏𝑏𝑡𝑡 values are described in Table 3. The KKT deviation 

tends to decrease as 𝑏𝑏𝑡𝑡 increases. While a negative correlation between the KKT deviation and the first 

stage solution error is evident, a negative correlation between the KKT deviation and the objective value 

is not very clear in Table 3. An extremely flat objective function and objective approximation error may 

be the causes. Therefore, one can argue that the KKT deviation is a valid metric that indicates the 

possible appropriateness of the parametric form of the value function. 

Table 3. Comparison of KKT deviation, first stage solution error, and objective value between 
various sampling numbers for discretized financial planning problem (* indicates the baseline case 
for the comparison) 

Sampling number 𝒃𝒃𝒕𝒕 
KKT 
deviation 

First stage solution 
error Objective value 

2 6.7044 0.3258 29.6344 
3 3.0451 0.3217 29.5369 
4 1.0743 0.3155 29.5102 
5 0.2846 0.2990 29.4814 
10 0.0128 0.0399 29.5106 
15 0.0103 0.0062 29.5396 
20 0.0157 0.0013 29.4975 
25 0.0159 0.0008 29.4246 
*30 0.0075 0.0001 29.5112 

 

Finally, the risk-free return and standard deviation of the risky asset of the original problem 

are perturbed, and whether the given parametric form of the value function can be robustly recycled 

with respect to the perturbation is determined. The results of the perturbed problem are reported in Table 

4. The table shows that both the solution and the objective from VFGL and MSP for any perturbation 

coincide within an approximation error. It can be concluded that the given parametric family of the 

value function can be recycled for a small perturbation of the asset distribution for this example.  
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Table 4. Comparison of perturbed problems with a fixed parametric value function form for discretized 
lifetime financial planning problem (* indicates the baseline case for the comparison) 
Parameter VFGL MSP 
Risk-free 
return 

Risky 
return 

Risky 
volatility 

KKT 
deviation Objective Risk 

free Risky Consumption Objective Risk 
free Risky Consumption 

0.04 0.060 0.20 0.0114 29.5281 0.4567 0.4600 0.0833 29.5266 0.4564 0.4603 0.0833 
0.034 0.060 0.26 0.0105 29.5245 0.5122 0.4045 0.0833 29.5458 0.5120 0.4046 0.0833 
0.031 0.060 0.29 0.0107 29.5399 0.5367 0.3799 0.0833 29.5565 0.5372 0.3795 0.0833 
*0.030 *0.060 *0.20 0.0075 29.5112 0.2284 0.6883 0.0833 29.5508 0.6885 0.2282 0.0833 
0.028 0.060 0.32 0.0106 29.5429 0.5571 0.3596 0.0833 29.5667 0.5580 0.3587 0.0833 
0.025 0.060 0.35 0.0108 29.5567 0.5746 0.3421 0.0833 29.5768 0.5755 0.3412 0.0833 
0.022 0.060 0.38 0.0109 29.5703 0.5900 0.3267 0.0833 29.5867 0.5910 0.3257 0.0833 
0.019 0.060 0.41 0.0110 29.5791 0.6036 0.3130 0.0833 29.5966 0.6047 0.3119 0.0833 
0.016 0.060 0.44 0.0110 29.5905 0.6159 0.3008 0.0833 29.6065 0.6171 0.2996 0.0833 
0.013 0.060 0.47 0.0111 29.5993 0.6270 0.2897 0.0833 29.6163 0.6282 0.2884 0.0833 
0.01 0.060 0.5 0.0112 29.6081 0.6371 0.2795 0.0833 29.6261 0.6384 0.2783 0.0833 

 

4.2 Production planning  

A simple 𝑇𝑇-stage factory production/storage planning problem was considered. Specifically, a 

dynamic lot size problem was solved to find an optimal way of satisfying stochastic demand while 

minimizing the cost incurred by manufacturing, ordering, or carrying inventory. The problem is 

regarded as a standard production planning problem and has been widely studied (e.g., Wagner & 

Whitin, 1958; Shapiro, 1993; Karimi et al., 2003).  

In the example, the factory can produce and store each product 𝑖𝑖 ∈ 𝐼𝐼 while facing uncertain 

demand. In the first stage, there is no demand, and the factory manager must only decide how much to 

produce and store. It is assumed that the available resource for the production is fixed and cannot be 

transferred to the next stage. In addition, there is no ordering cost for production. In the second stage 

and forward, the manager observes realized demand and adjusts the production level to meet the demand. 

Any products left after demand are stored in the next stage with storage cost. When the demand exceeds 

the sum of supply and initial storage, the shortage is outsourced at a relatively high cost. An optimal 

production policy is sought that minimizes the sum of the expected storage and outsourcing costs. The 

example involves three products for seven stages. The demand is independent and identically distributed 

over stages with three possible values with equal probability. The decision variables and parameters, 

and values for parameters are listed in Table 5. 

Table 5. Decision variables and parameters for production planning problem 
Decision 
variables Description 

𝑥𝑥𝑡𝑡, 𝑖𝑖 Quantity of product 𝑖𝑖 produced at stage 𝑡𝑡 
𝑦𝑦𝑡𝑡, 𝑖𝑖 Quantity of product 𝑖𝑖 outsourced at stage 𝑡𝑡 
𝑠𝑠𝑡𝑡, 𝑖𝑖 Quantity of product 𝑖𝑖 stored at the end of stage 𝑡𝑡 
Parameters Description Value 
𝑎𝑎𝑡𝑡, 𝑖𝑖 Production cost of product 𝑖𝑖 at stage 𝑡𝑡 (1, 2, 5) 
𝑏𝑏𝑡𝑡, 𝑖𝑖 Outsourcing cost of product 𝑖𝑖 at stage 𝑡𝑡 (6, 12, 20) 
𝑐𝑐𝑡𝑡, 𝑖𝑖 Storage cost of product 𝑖𝑖  from the end of stage 𝑡𝑡  to 

beginning of stage 𝑡𝑡 + 1 (3, 7, 10) 
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𝑟𝑟𝑡𝑡 Maximum production resource available at stage 𝑡𝑡 10 
𝑑𝑑𝑡𝑡, 𝑖𝑖 Random demand of product 𝑖𝑖 at stage 𝑡𝑡 {(5, 3, 1), (6, 2, 1), (1, 2, 2)} 

 

The total cost is as follows. 

𝔼𝔼 ����𝑦𝑦𝑡𝑡,𝑖𝑖𝑏𝑏𝑡𝑡,𝑖𝑖 + 𝑠𝑠𝑡𝑡,𝑖𝑖𝑐𝑐𝑡𝑡,𝑖𝑖�
𝑖𝑖∈𝐼𝐼

𝑇𝑇−1

𝑡𝑡=1

+ 𝑦𝑦𝑇𝑇,𝑖𝑖𝑏𝑏𝑇𝑇,𝑖𝑖� 

The stagewise subproblems at the first stage, middle stages, and final stage are defined as follows. 

Stage 1 subproblem 

 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∑ 𝑦𝑦1, 𝑖𝑖𝑏𝑏1, 𝑖𝑖𝑖𝑖∈𝐼𝐼  + ∑ 𝑠𝑠1, 𝑖𝑖𝑐𝑐1, 𝑖𝑖𝑖𝑖∈𝐼𝐼 + 𝑣𝑣2(𝑠𝑠1)  

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 ∑ 𝑥𝑥1, 𝑖𝑖𝑎𝑎1, 𝑖𝑖𝑖𝑖∈𝐼𝐼 ≤ 𝑟𝑟1  For 𝑖𝑖 ∈ 𝐼𝐼 Resource limit 

 𝑠𝑠1, 𝑖𝑖 = 𝑥𝑥1, 𝑖𝑖 + 𝑦𝑦1, 𝑖𝑖 For 𝑖𝑖 ∈ 𝐼𝐼 Storage balance 

 𝑥𝑥1, 𝑖𝑖 , 𝑦𝑦1, 𝑖𝑖 , 𝑠𝑠1, 𝑖𝑖 ≥ 0 For 𝑖𝑖 ∈ 𝐼𝐼 Non-negativity 

Stage t subproblem (𝑡𝑡 = 2, … ,𝑇𝑇− 1) 

 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∑ 𝑦𝑦𝑡𝑡, 𝑖𝑖𝑏𝑏𝑡𝑡, 𝑖𝑖𝑖𝑖∈𝐼𝐼  + ∑ 𝑠𝑠𝑡𝑡, 𝑖𝑖𝑐𝑐𝑡𝑡, 𝑖𝑖𝑖𝑖∈𝐼𝐼 + 𝑣𝑣𝑡𝑡+1(𝑠𝑠𝑡𝑡)   

s𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑡𝑡𝑡𝑡 ∑ 𝑥𝑥𝑡𝑡, 𝑖𝑖𝑎𝑎𝑡𝑡, 𝑖𝑖𝑖𝑖∈𝐼𝐼 ≤ 𝑟𝑟𝑡𝑡  For 𝑖𝑖 ∈ 𝐼𝐼 Resource limit 

 𝑠𝑠𝑡𝑡, 𝑖𝑖 = 𝑠𝑠𝑡𝑡−1, 𝑖𝑖 + 𝑥𝑥𝑡𝑡, 𝑖𝑖 + 𝑦𝑦𝑡𝑡, 𝑖𝑖  − 𝑑𝑑𝑡𝑡,𝑖𝑖 For 𝑖𝑖 ∈ 𝐼𝐼 Storage balance 

 𝑥𝑥𝑡𝑡, 𝑖𝑖 ,𝑦𝑦𝑡𝑡, 𝑖𝑖 , 𝑠𝑠𝑡𝑡, 𝑖𝑖 ≥ 0   For 𝑖𝑖 ∈ 𝐼𝐼 Non-negativity 

Stage T subproblem 

 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∑ 𝑦𝑦𝑇𝑇, 𝑖𝑖𝑏𝑏𝑇𝑇, 𝑖𝑖𝑖𝑖∈𝐼𝐼     

s𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑡𝑡𝑡𝑡 ∑ 𝑥𝑥𝑇𝑇, 𝑖𝑖𝑎𝑎𝑇𝑇, 𝑖𝑖𝑖𝑖∈𝐼𝐼 ≤ 𝑟𝑟𝑡𝑡  For 𝑖𝑖 ∈ 𝐼𝐼 Resource limit 

 𝑠𝑠𝑇𝑇, 𝑖𝑖 = 𝑠𝑠𝑇𝑇−1, 𝑖𝑖 + 𝑥𝑥𝑇𝑇, 𝑖𝑖 + 𝑦𝑦𝑇𝑇, 𝑖𝑖  − 𝑑𝑑𝑇𝑇,𝑖𝑖 For 𝑖𝑖 ∈ 𝐼𝐼 Storage balance 

 𝑥𝑥𝑇𝑇, 𝑖𝑖 , 𝑦𝑦𝑇𝑇, 𝑖𝑖 , 𝑠𝑠𝑇𝑇, 𝑖𝑖 ≥ 0 For 𝑖𝑖 ∈ 𝐼𝐼 Non-negativity 

Note that the stagewise value functions of this problem are convex piecewise linear because 

each stagewise subproblem is linear programming. Since a piecewise linear function is not 

differentiable, the convergence of VFGL to the optimal is not guaranteed by the Theorem 1. Through 

this example, we limitedly check the viability of VFGL to multistage stochastic convex programming 

without the SOSC condition. 

For all products, the outsourcing cost is significantly higher than the production resource cost 

and storage cost. Therefore, one obtains a crude insight that the optimal solution would avoid 

outsourcing products, which is likely to be achieved by creating nonempty storage. Furthermore, the 

storage cost is paid in advance. Therefore, one can expect that the value function would decrease with 

storage to some extent. However, the disutility of storage increases after a certain point because there 

exists a certain level of storage sufficient for providing a buffer for uncertain demands. From these 

points of view, one can use the following form of the parametric value function: 
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𝑉𝑉�𝑡𝑡�𝑠𝑠𝑡𝑡−1;  𝜃𝜃𝑡𝑡 = (𝜃𝜃𝑡𝑡1,𝜃𝜃𝑡𝑡2)� = 𝑠𝑠𝑡𝑡−1 ∙ 𝜃𝜃𝑡𝑡1 + � 𝑒𝑒−𝜃𝜃𝑡𝑡,𝑖𝑖
2 𝑠𝑠𝑡𝑡−1,𝑖𝑖

3

𝑖𝑖=1
    for  𝑡𝑡 = 2, … ,𝑇𝑇 

Here, 𝜃𝜃𝑡𝑡1,𝜃𝜃𝑡𝑡2 ∈ 𝑹𝑹3. The first linear term represents the overall decreasing disutility of storage, while 

the exponential term is added to reflect the increasing disutility of storage after a certain point. The 

parameters are initialized first using the following values. 

𝜃𝜃𝑡𝑡1 = (−1,  − 1,  − 1),𝜃𝜃𝑡𝑡2 = (0,  0,  0) for 𝑡𝑡 = 2, … ,𝑇𝑇 

 Table 6. Comparison of objective value, first stage solution, and computation time between algorithms 
for production planning problem 

Algorithm Objective 
value 

Production Outsource Computation 
time (s) Product 1 Product 2 Product 3 Product 1 Product 2 Product 3 

Optimal 
(MSP) 

178 1.00 0.00 1.00 0.00 0.00 0.00 - 
 (0.0) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

SDDP 179 1.00 0.00 1.02 0.00 0.00 0.00 1016 
(5) (0.4) (0.00) (0.00) (0.06) (0.00) (0.00) (0.00) 

VFGL 
178 0.99 0.00 1.01 0.00 0.00 0.00 157 

(1) (0.2) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Table 6 presents the first stage solution of the MSP model and the averaged first stage solutions 

over 20 generated instances of SDDP and VFGL. SDDP took approximately 100 iterations for the first 

stage solution convergence, while VFGL took around 200 iterations. Parentheses in Table 6 indicate the 

standard deviation of each solution. Both SDDP and VFGL show accurate solutions and objective 

values within an acceptable standard deviation. However, there is a striking difference in the 

computation time between the two. The computation time for SDDP is seven times longer than that of 

VFGL, even with 100 fewer iterations. Figure 4 shows the first stage solution of (a) SDDP and (b) 

VFGL. Only production decision variables are shown because the first stage outsourcing decision 

variable always turned out to be 0, making the storage decision identical to the production decision. 

One can see that the first stage solution has been stabilized for both algorithms. Regarding the 

computation time and stopping criterion, similar findings to Section 3.1 can be seen in Appendix F. 

  

a) SDDP (b) VFGL 
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Figure 4. Comparison of evolution of the first stage solution between SDDP and VFGL for 
production planning problem 

To see the effect of the choice of parametric form in VFGL, a few more parametric forms were 

tested. The KKT deviation and first stage solution error for each parametric form of the value function 

are described in Table 7. The KKT deviations are calculated using 50 forward simulated solutions, and 

the number of iterations of VFGL is set to 200. The initial choice of parametric form has the best KKT 

deviation and solution error values. Table 7 shows that both the first stage solution error and objective 

value are inversely related to KKT deviation in the proposed parametric forms, which verifies the use 

of KKT deviation for the performance measure of parametric family choice. 

Table 7. Comparison of KKT deviation, first stage solution error, and objective value between various 
parametric forms for production planning problem (* indicates the baseline case for the comparison) 
Parametric form KKT deviation First stage 

solution error Objective value 

*𝑠𝑠𝑡𝑡−1 ∙ 𝜃𝜃𝑡𝑡1 + ∑ 𝑒𝑒−𝜃𝜃𝑡𝑡,𝑖𝑖
2 𝑠𝑠𝑡𝑡−1,𝑖𝑖3

𝑖𝑖=1   
2.53 
(0.32) 

0.01 
(0.01) 

178.40 
(0.06) 

𝑠𝑠𝑡𝑡−1 ∙ 𝜃𝜃𝑡𝑡1 + 𝑠𝑠𝑡𝑡−12 ∙ 𝜃𝜃𝑡𝑡2  49.14 
(0.32) 

0.52 
(0.00) 

180.19 
(0.06) 

𝑠𝑠𝑡𝑡−1 ∙ 𝜃𝜃𝑡𝑡1 + 𝑒𝑒𝑠𝑠𝑡𝑡−1∙𝜃𝜃𝑡𝑡
2
  

98.33 
(0.32) 

1.36 
(0.07) 

188.74 
(0.06) 

𝑠𝑠𝑡𝑡−1 ∙ 𝜃𝜃𝑡𝑡1  110.30 
(0.32) 

1.41 
(0.000) 

188.74 
(0.06) 

0  137.6 
(0.32) 

1.41 
(0.000) 

188.40 
(0.06) 

 

The value of the parameter is slightly perturbed to check whether the same parametric form of 

the value function is still reusable. In particular, the maximum amount of resources 𝑟𝑟𝑡𝑡 is perturbed 

using the initial parametric form, and the result is summarized in Table 8. The result corresponding to 

the original experimental value (𝑟𝑟𝑡𝑡 = 10) is marked in the table. The parametric form of the experiment 

is applicable to the perturbation of the original problem. The parametric form of the experiment gives 

an accurate first stage solution and objective values for the upward perturbation of the maximum 

resource. However, downward perturbation of the maximum resource with a magnitude greater than 

0.5 results in an erroneous first stage solution. Despite the error in the first stage solution, the objective 

value for the VFGL solution seems to remain accurate, which implies that either the solution from 

VFGL is optimal or the suboptimality of the VFGL solution is not substantial.   

Table 8. Comparison of perturbed problems with a fixed parametric value function form for 
production planning problem (* indicates the baseline case for the comparison) 
Maximum 
resource 

VFGL MSP 
KKT 
deviation Objective Product 1 Product 2 Product 3 Objective Product 1 Product 2 Product 3 

8 1.22 227.63 1.63 0.33 1.07 227.22 2.00 0.00 1.20 
8.5 1.85 215.83 1.61 0.09 1.07 214.65 2.50 0.00 1.10 
9 0.98 202.38 1.58 0.00 1.02 202.44 2.00 0.00 1.00 
9.5 1.35 190.08 1.49 0.00 1.01 190.39 1.50 0.00 1.00 
*10 2.50 177.51 0.99 0.00 1.01 178.33 1.00 0.00 1.00 
10.5 2.75 167.59 0.49 0.00 1.01 167.50 0.50 0.00 1.00 
11 2.55 156.63 0.00 0.00 1.00 156.67 0.00 0.00 1.00 
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11.5 2.24 147.74 0.00 0.00 0.90 147.67 0.00 0.00 0.90 
12 1.78 138.50 0.00 0.00 0.81 138.67 0.00 0.00 0.80 
12.5 2.00 130.38 0.00 0.00 0.71 129.67 0.00 0.00 0.70 
13 2.03 121.94 0.00 0.00 0.61 120.67 0.00 0.00 0.60 
13.5 2.17 111.65 0.00 0.00 0.51 111.67 0.00 0.00 0.50 
14 4.16 102.90 0.00 0.00 0.40 102.67 0.00 0.00 0.40 
14.5 2.76 94.51 0.00 0.00 0.20 94.00 0.00 0.00 0.20 
15 4.70 85.08 0.00 0.00 0.00 85.33 0.00 0.00 0.00 

 

4.3 Hydrothermal generation  

 In this example, the aim is to find an optimal electricity generation level for hydro and thermal 

plants while maintaining a desirable reservoir level. This example is a slightly modified and simplified 

version of the example given by Guigues (2014). For each stage 𝑡𝑡 , the deterministic demand of 

electricity has to be met. The electricity system contains hydro plants and thermal plants for generation. 

Hydro plants can produce electricity at a lower price, but the resource is limited by the reservoir level. 

In a hydro plant, the water inflow to the reservoir is uncertain. It is assumed that thermal plants have 

unlimited capacity in electricity generation but require a higher generation cost. In addition to the cost 

of electricity generation, there is a disutility cost with respect to each stage of the final water reservoir 

level. The disutility reflects the environmental concern while draining the reservoir. The objective is to 

minimize the sum of the expected generation cost and disutility. For the case study, a model with seven 

stages is considered. We assume that the water inflow to the reservoir follows independent and identical 

normal distributions over different stages. The decision variables, parameters with their values for this 

example are described in the Table 9.  

Table 9. Decision variables and parameters for hydrothermal 
generation problem 

 

Decision variables Description  

𝑟𝑟𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  Water reservoir level in the beginning of stage 𝑡𝑡 

𝑟𝑟𝑡𝑡
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  Water reservoir level in the end of stage 𝑡𝑡 

𝑊𝑊𝑡𝑡 Hydro electricity generation level at stage 𝑡𝑡 
𝐻𝐻𝑡𝑡  Thermal electricity generation level at stage 𝑡𝑡 
Parameters Description Value 

𝑟𝑟0𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  Initial water reservoir level  40 

𝑐𝑐𝑡𝑡𝑊𝑊 Cost of hydro electricity production per 
unit at stage 𝑡𝑡 

2 

𝑐𝑐𝑡𝑡𝐻𝐻 Cost of thermal electricity production per 
unit at stage 𝑡𝑡 

7 

𝑑𝑑𝑡𝑡 Electricity demand at stage 𝑡𝑡 20 
𝑎𝑎𝑡𝑡 Reservoir level utility coefficient 0.1 
𝑏𝑏𝑡𝑡 Reservoir level utility scaling constant 5 
𝐼𝐼𝑡𝑡 Water inflow to reservoir in the beginning 

of stage 𝑡𝑡 
Normally distributed with mean 20, 
standard deviation 5 

The total cost is as follows. 
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𝔼𝔼 ��𝑐𝑐𝑡𝑡𝑊𝑊𝑊𝑊𝑡𝑡 + 𝑐𝑐𝑡𝑡𝐻𝐻𝐻𝐻𝑡𝑡 + 𝑒𝑒−𝑎𝑎𝑡𝑡𝑟𝑟𝑡𝑡
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑇𝑇

𝑡𝑡=1

� 

The stagewise subproblems are given below. Here, the third term of the objective function is 

a disutility on the reservoir level, which can be considered a negative of scaled exponential utility.  

Stage 1 subproblem 

 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐1𝑊𝑊𝑊𝑊1+ 𝑐𝑐1𝐻𝐻𝐻𝐻1 + 𝑒𝑒−𝑎𝑎1𝑟𝑟1
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓+𝑏𝑏1 + 𝑉𝑉2(𝑟𝑟1

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)  

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 𝑟𝑟1𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑟𝑟0  Initial reservoir 

 𝑟𝑟1
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑟𝑟1𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑊𝑊1  Reservoir balance 

 𝑊𝑊1 + 𝐻𝐻1 ≥ 𝑑𝑑1  Demand 

 𝑟𝑟1
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ,𝑊𝑊1,𝐻𝐻1 ≥ 0  Non-negativity 

Stage t subproblem (𝑡𝑡 = 2, … ,𝑇𝑇− 1) 

 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑡𝑡𝑊𝑊𝑊𝑊𝑡𝑡+ 𝑐𝑐𝑡𝑡𝐻𝐻𝐻𝐻𝑡𝑡 + 𝑒𝑒−𝑎𝑎𝑡𝑡𝑟𝑟𝑡𝑡
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓+𝑏𝑏𝑡𝑡 + 𝑉𝑉𝑡𝑡+1(𝑟𝑟𝑡𝑡

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)  

s𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑡𝑡𝑡𝑡 𝑟𝑟𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑟𝑟𝑡𝑡−1
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝐼𝐼𝑡𝑡   Initial reservoir 

 𝑟𝑟𝑡𝑡
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑟𝑟𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑊𝑊𝑡𝑡   Reservoir balance 

 𝑊𝑊𝑡𝑡 + 𝐻𝐻𝑡𝑡 ≥ 𝑑𝑑𝑡𝑡   Demand 

 𝑟𝑟𝑡𝑡
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ,𝑊𝑊𝑡𝑡 ,𝐻𝐻𝑡𝑡 ≥ 0  Non-negativity 

Stage T subproblem  

 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑇𝑇𝑊𝑊𝑊𝑊𝑇𝑇+ 𝑐𝑐𝑇𝑇𝐻𝐻𝐻𝐻𝑇𝑇 + 𝑒𝑒−𝑎𝑎𝑇𝑇𝑟𝑟𝑇𝑇
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓+𝑏𝑏𝑇𝑇  

s𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑡𝑡𝑡𝑡 𝑟𝑟𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑟𝑟𝑇𝑇−1
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝐼𝐼𝑡𝑡   Initial reservoir 

 𝑟𝑟𝑇𝑇
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑟𝑟𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑊𝑊𝑇𝑇  Reservoir balance 

 𝑊𝑊𝑇𝑇 + 𝐻𝐻𝑇𝑇 ≥ 𝑑𝑑𝑇𝑇  Demand 

 𝑟𝑟𝑡𝑡
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ,𝑊𝑊𝑇𝑇 ,𝐻𝐻𝑇𝑇 ≥ 0  Non-negativity 

Next, the parametric value function form 𝑉𝑉�𝑡𝑡  must be determined. The parametric utility 

function is set as follows.  

𝑉𝑉�𝑡𝑡 �𝑟𝑟𝑡𝑡−1
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓;  𝜃𝜃𝑡𝑡 = (𝜃𝜃𝑡𝑡1,𝜃𝜃𝑡𝑡2)� = 𝜃𝜃𝑡𝑡1𝑟𝑟𝑡𝑡−1

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑒𝑒−𝜃𝜃𝑡𝑡2𝑟𝑟𝑡𝑡−1
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓+𝑏𝑏𝑡𝑡 , 𝑡𝑡 = 2, … ,𝑇𝑇 

where the first linear term is added to capture the cost reduction by increasing the portion of hydro plant 

generation, and the second term is added to capture the decreased disutility from the increased reservoir 

level. The second term is the indefinite integral form of the stagewise objective function proposed in 

Remark 1. The initial parameter values are set as follows. 

(𝜃𝜃𝑡𝑡1,𝜃𝜃𝑡𝑡2) = (−1,−1) ,   𝑡𝑡 = 2, … ,𝑇𝑇 
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The scaling term of the parametric value function is fixed by 𝑏𝑏𝑡𝑡, which is the scaling constant of the 

utility function from the original problem. Therefore, it is advisable to try first a parametric value 

function with minimal parameter flexibility and then increase the parameter flexibility if the result is 

not satisfactory.  

Table 10. Comparison of objective value, first stage solution, and computation time between 
algorithms for hydrothermal generation problem 

Algorithm Objective 
value 

Hydro plant 
generation 

Thermal plant 
generation 

Computation 
time (s) 

Optimal 

(MSP) 

397 9.90 10.10 - 

 (0.1) (0.05) (0.05) 

SDDP 
397 9.78  10.22 978 

(0.20) (2) (0.41) (0.41) 

VFGL 
400 10.45 9.55 337 

(3.15) (1) (0.15) (0.15) 

The experimental results of MSP, SDDP, and VFGL are summarized in Table 10. It presents the first 

stage solution of the true MSP model, and the averaged first stage solutions from 20 generated instances 

of SDDP and VFGL. The table shows that the MSP and SDDP give similar solutions, whereas the result 

from VFGL is slightly different. A slight suboptimality of VFGL in the objective value compared to 

those of MSP and SDDP is also observed.  
 

 

 

 

 

 

 

 

 

(a) SDDP (b) VFGL 

Figure 5. Comparison of evolution of the first stage solution between SDDP and VFGL for 
hydrothermal generation problem 

 

Figure 5 displays a sample of the first-stage solution convergence for SDDP and VFGL among 

20 trials. It shows that SDDP and VFGL seem to converge after 100 and 500 iterations, respectively. 

Table 10 and Figure 5 indicate that the VFGL tends to underappreciate slightly the thermal electric 
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generation compared with SDDP and MSP. The applicability of VFGL may depend on the tolerance 

level.  

However, two interesting properties of VFGL can be found in this experiment. First, the 

evolution of solutions from VFGL tends to fluctuate less than that of SDDP. It is true that the solutions 

from the SDDP algorithm quickly converged after approximately 10 iterations. However, during the 

early learning phase, the solutions fluctuated drastically with every iteration. This implies that it is 

extremely dangerous to use the result from the SDDP algorithm that has not sufficiently converged 

because it might yield extremely different results after more iterations. However, the degree of solution 

fluctuation is much smaller for the VFGL algorithm. There may be a gradual update of the value 

function for the stability of the solution convergence of VFGL. In other words, a small update of the 

value function parameters is smoother and less drastic than adding a linear cut to the value function 

approximation. Second, the computation time for VFGL is approximately one third that of SDDP, even 

with a five times greater number of iterations. Similar to the first two examples, the computation time 

of SDDP increases in every iteration, while that of VFGL remains relatively consistent (see Appendix 

G). Therefore, the VFGL algorithm would be more computationally robust for large-scale problems that 

require a very large number of iterations.  

This example is solved with different parametric forms of the value function, and the results 

are reported in Table 11. A lower KKT deviation leads to less solution error. However, the first four 

parametric forms give a comparable objective. Therefore, the suboptimality of solutions from the first 

four parametric forms is likely to be small. The quadratic parametric function includes a linear term, 

implying that its model capacity is greater than that of the linear function. However, there are a higher 

KKT deviation and solution error for the quadratic form compared with the linear one. This implies that 

the trained parameters for the quadratic function fell into local optimality. The suboptimality of the 

parameters occurs owing to the nonconvexity of the loss function with respect to the parameters. 

Nevertheless, the quadratic form gives a better objective value. For this reason, it is suspected that there 

are a flat objective value and approximation error.  

Table 11. Comparison of KKT deviation, first stage solution error, and objective value between various 
parametric forms for hydrothermal generation problem (* indicates the baseline case for the 
comparison) 
Parametric form KKT deviation First stage 

solution error 
Objective value 

*𝜃𝜃𝑡𝑡1𝑟𝑟𝑡𝑡−1
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑒𝑒−𝜃𝜃𝑡𝑡

2𝑟𝑟𝑡𝑡−1
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓+𝑏𝑏𝑡𝑡  

3.56 
(1.27) 

0.8 
(0.8) 

400 
(0.8) 

𝜃𝜃𝑡𝑡1𝑟𝑟𝑡𝑡−1
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓   3.65 

(1.27) 
1.1 
(0.7) 

400.8 
(0.1) 

𝜃𝜃𝑡𝑡1𝑟𝑟𝑡𝑡−1
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝜃𝜃𝑡𝑡2�𝑟𝑟𝑡𝑡−1

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�
2
  

3.50 
(1.68) 

1.3 
(0.7) 

399.0 
(0.1) 

𝜃𝜃𝑡𝑡1𝑟𝑟𝑡𝑡−1
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − log�𝜃𝜃𝑡𝑡2𝑟𝑟𝑡𝑡−1

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�  
5.98 
(1.06) 

4.2 
(1.7) 

400.1 
(0.4) 
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0  14.02 
(2.07) 

14.2 
(0.0) 

451.1 
(0.0) 

 

The original problem parameters are perturbed to determine whether the parametric value 

function is still applicable. In particular, the costs of hydro and thermal generation vary. For most of the 

perturbations in Table 12, VFGL gives a slightly suboptimal objective value with a noticeable difference 

in the first stage solution compared with the results of MSP. The suboptimality of VFGL seems to be 

greater for the thermal generation cost perturbation than for the hydro generation cost perturbation. 

Depending on the tolerance level, the suboptimality of VFGL with a given parametric form might be 

acceptable or unacceptable. To make the VFGL solution more accurate for the perturbed problems, 

more suitable parametric families of the value function should be explored. 

Table 12. Comparison of perturbed problems with a fixed parametric value function form for 

hydrothermal generation problem (* indicates the baseline case for the comparison) 

Parameter VFGL MSP 

𝒄𝒄𝒕𝒕𝑾𝑾 𝒄𝒄𝒕𝒕𝑯𝑯 KKT 
deviation 

Objective 

value 

Hydro 

plant generation 

Thermal 

plant generation 

Objective 

value 

Hydro plant 

generation 

Thermal  

plant generation 

2 5 2.24 365.00 5.06 14.94 370.74 5.39 14.61 

2 5.5 2.68 374.01 6.26 13.74 378.38 7.53 12.47 

2 6 2.45 382.01 7.68 12.32 378.99 8.36 11.64 

2 6.5 3.24 389.62 8.91 11.09 392.04 9.8 10.2 

*2 *7 3.66 396.64 9.90 10.10 400.39 10.45 9.55 

2 7.5 3.6 402.68 10.91 9.09 404.15 10.88 9.12 

2 8 4.52 408.99 11.61 8.39 417.47 13.18 6.82 

3 7 2.66 521.85 7.67 12.33 523.37 8.68 11.32 

3.5 7 2.44 583.90 6.49 13.51 585.67 6.89 13.11 

4 7 1.87 645.08 4.88 15.12 644.56 5.11 14.89 

4.5 7 1.89 705.74 2.78 17.22 711.22 3.91 16.09 

5 7 1.35 764.90 0.81 19.19 765.76 1.54 18.46 

 

4.4 Discussion  

Throughout the experiment, the VFGL algorithm successfully solved the problems with an 

accuracy comparable to that of the SDDP, given the right parametric form for the value function 

approximation. A key characteristic of the VFGL is an almost constant computation time per iteration, 

which is shown to be a clear computational advantage compared to SDDP.  

As a critical drawback of the algorithm, the parametric form of the value function must be 

determined prior to the problem solving. However, this is not a specific problem with our algorithm. 

Ghadimi, Perkins, and Powell (2020) noted that the choice of appropriate parameterization is often 

considered an art of modeling for engineering problems, particularly within the machine learning 

domain. Indeed, it was shown to be a vital part of the proposed VFGL algorithm, as such choices had a 
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significant impact on the solution quality. Therefore, we introduced a measure for evaluating the fitness 

of a given parametric form called the KKT deviation, which was proven to be useful for evaluating 

different parameterizations. One rule of thumb for the choice of parametric form would be to start from 

the same functional form of the objective function or the indefinite integral form of the objective 

function. 

5. Conclusion 

A novel learning-based stagewise decomposition algorithm, VFGL, was proposed to solve 

large-scale multistage stochastic programs approximately. The algorithm approximates the value 

functions by a convex parametric form of functions, which is distinguished from the Benders 

decomposition based algorithms that use piecewise linear approximation. Three illustrative examples 

demonstrated the computational advantages of VFGL compared with the deterministic equivalent 

formulation approach and widely used stagewise decomposition algorithm called SDDP. The choice of 

appropriate parametric form would require some effort; thus, the KKT deviation was proposed to 

measure the suitability of different parametric forms. Finally, numerical experiments indicated that 

VFGL can recycle the same parametric form for the same optimization problem with slightly different 

parameters, which can be useful for real-world applications (Bertsimas & Stellato, 2020).  

Future studies on VFGL should focus on finding an appropriate parametric form of the value 

function. One possible approach would be to construct a general parametric function approximation 

with a large modeling capacity, similar to artificial neural networks. Another possible method is directly 

parametrizing the gradient of the value function, which may greatly increase the modeling capacity. 
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