
Precedence-Constrained Arborescences

Xiaochen Chou Mauro Dell’Amico Jafar Jamal
Roberto Montemanni∗

University of Modena and Reggio Emilia, Italy

Abstract

The minimum-cost arborescence problem is a well-studied problem in
the area of graph theory, with known polynomial-time algorithms for solv-
ing it. Previous literature introduced new variations on the original prob-
lem with different objective function and/or constraints. Recently, the
Precedence-Constrained Minimum-Cost Arborescence problem was pro-
posed, in which precedence constraints are enforced on pairs of vertices.
These constraints prevent the formation of directed paths that violate
precedence relationships along the tree. We show that this problem is
NP-hard, and we introduce a new scalable mixed integer linear program-
ming model for it. With respect to the previous models, the newly pro-
posed model performs substantially better. This work also introduces a
new variation on the minimum-cost arborescence problem with precedence
constraints. We show that this new variation is also NP-hard, and we pro-
pose several mixed integer linear programming models for formulating the
problem.

1 Introduction

The Minimum-Cost Arborescence problem (MCA) is a well-known problem that
consists in finding a directed minimum-cost spanning tree rooted at some vertex
r called the root in a directed graph. The first polynomial time algorithm for
solving the problem was proposed independently by Yoeng-Jin Chu and Tseng-
Hong Liu [8], and Jack Edmonds [11]. The problem can be formally described
as follows. A directed graph G = (V,A) is given where V = {1, · · · , n} is the
set of vertices, r ∈ V is the root of the arborescence, and A ⊆ V × V is the
set of arcs with a cost ca associated with every arc a ∈ A. The goal is to find
a minimum-cost directed spanning tree in G rooted at r, i.e. a set T ⊆ A of
n− 1 arcs, such that there is a unique directed path from r to any other vertex
j ∈ V \{r} in the subgraph induced by T . A different polynomial time algorithm
for solving the MCA that operates directly on the cost matrix was discussed by
Bock [4].

∗Corresponding author: roberto.montemanni@unimore.it

1

ar
X

iv
:2

20
8.

02
32

7v
2

 [
m

at
h.

O
C

]
 1

4
O

ct
 2

02
2

Since the MCA was first proposed, different variations have been introduced
such as the Resource-Constrained Minimum-Weight Arborescence problem [15],
where finite resources are associated with each vertex in the input graph. The
objective of the problem is to find an arborescence with minimum total cost
where the sum of the costs of outgoing arcs from each vertex is at most equal to
the resource of that vertex. The problem is categorized as NP-hard as it gen-
eralizes the Knapsack problem [15]. The Capacitated Minimum Spanning Tree
problem [19] is another variation, where non-negative integer node demands qj
is associated with each node j ∈ V \{r}, and an integer Q is given. The objec-
tive is to find a minimum spanning tree rooted at r such that the sum of the
weights of the vertices in any subtree off the root is at most Q. The problem is
shown to be NP-hard as the particular case with zero cost arcs is a bin packing
problem [19]. The p-Arborescence Star problem [30] is a relevant problem that is
described as follows. Given a weighted directed graph G = (V,A), a root vertex
r ∈ V , and an integer p, the objective of the problem is to find a minimum-cost
reverse arborescence rooted at r, such that the arborescence spans the set of
vertices H ⊆ V \{r} of size p, and each vertex v ∈ V \{H ∪ r} must be assigned
to one of the vertices in H. The problem is NP-hard [29] in the general case
by a reduction from the p-median problem [20]. Frieze and Tkocz [16] study
the problem of finding a minimum-cost arborescence such that the cost of the
arborescence is at most c0. The problem is studied on randomly weighted di-
graphs where each arc in the graph has a weight w and a cost c, each being an
independent uniform random variable Us where 0 < s ≤ 1, and U is uniform
[0, 1]. The problem is NP-hard [16] through a reduction from the knapsack
problem. Another problem is the Maximum Colorful Arborescence problem [14]
which can be described as the following. Given a weighted directed acyclic graph
with each vertex having a specified color from a set of colors C, the objective
is to find an arborescence of maximum weight, in which no color appears more
than once. The problem is known to be NP-hard [5] even when all arcs have
a weight of 1. The Constrained Arborescence Augmentation problem [25] is a
different variation that can be described as follows. Given a weighted directed
graph G = (V,A), and an arborescence T = (V,Ar) in G rooted at vertex r ∈ V ,
the objective of the problem is to find an arc subset A′ from A− Ar such that
there still exists an arborescence in the new graph G′ = (V,Ar ∪ A′ − a) for
each arc a ∈ Ar, where the sum of the weights of the arcs in A′ is minimized.
The problem is an extension on the augmentation problem [13], and is shown
to be NP-hard [25]. The Minimum k Arborescence with Bandwidth Constraints
[6] is another variation, where every arc a ∈ A has an integer bandwidth b(a)
that indicates the number of times such an arc can be used. The objective of
the problem is to find k arborescences of minimum-cost rooted at the k given
root vertices, covering every arc a ∈ A at most b(a) times. It has been shown
that the problem can be solved in polynomial time [6]. The Degree-Constrained
Minimal Spanning Tree problem with unreliable links and node outage costs [23]
is modeled as a directed graph with the root vertex being the central node of
a network, and all other vertices being terminal nodes. The problem consists
in finding links in a network to connect a set of terminal nodes to a central

2

node, while minimizing both link costs and node outage costs. Node outage
cost is the economic cost incurred by the network user whenever that node is
disabled due to failure of a link. The problem is shown to be NP-hard by
reducing the problem to an equivalent Traveling Salesman problem [18]. The
Minimum Changeover Cost Arborescence [17] is another variation, where each
arc is labeled with a color out of a set of k available colors. A changeover cost
is defined on every vertex v in the arborescence other than the root. The cost
over a vertex v is paid for each outgoing arc from v and depends on the color
of its outgoing arcs, relative to the color of its incoming arc. The costs are
given through a k × k matrix C, where each entry Cab specifies the cost to be
paid at vertex v when its incoming arc is colored a and one of its outgoing
arcs is colored b. A change over cost at vertex v is calculated as the sum of
costs paid for every outgoing arc at that vertex. The objective of the problem
is to find an arborescence T with minimum total change over cost for every
vertex j ∈ V other than the root. The problem is shown to be NP-hard and
very hard to approximate [17]. Finding a pair of arc-disjoint in-arborescence
and out-arborescence is another problem, with the objective of finding a pair of
arc-disjoint r-out-arborescence rooted at r1 and r-in-arborescence rooted at r2
where r1, r2 ∈ V . An r-out-arborescence has all its arcs directed away from the
root, and an r-in-arborescence has all its arcs directed towards the root. The
problem was studied by Bérczi et al. [3] where a linear-time algorithm for solving
the problem in directed acyclic graphs is proposed. The problem is shown to be
NP-Complete in general graphs even if r1 = r2 [2]. Yingshu et al. [26] studied
the problem of constructing a strongly connected broadcast arborescence with
bounded transmission delay, where they devise a polynomial time algorithm
for constructing a broadcast network with minimum energy consumption that
respects the transmission delays of the broadcast tree simultaneously. The Min-
imum Spanning Tree Problem with Conflict Pairs is a variation of the minimum
spanning tree problem where given an undirected graph and a set S that con-
tains conflicting pairs of edges called a conflict pair, the objective of the problem
is to find a minimum-cost spanning tree that contains at most one edge from
each conflict pair in S [7]. The problem is shown to be NP-hard [9]. The Least-
Dependency Constrained Spanning Tree problem [34] is another variation that
can be defined as follows. Given a connected graph G = (V,E) and a directed
graph D = (E,A) whose vertices are the edges of G, the directed graph D is a
dependency graph for E, and e1 ∈ E is a dependency of e2 ∈ E if (e1, e2) ∈ A.
The objective of the problem is to decide whether there is a spanning tree T of
G such that each edge in T has either an empty dependency or at least one of
its dependencies is also in T . The All-Dependency Constrained Spanning Tree
problem [34] is a similar problem that consists in deciding whether there is a
spanning tree T of G such that each of its edges either has no dependency or all
of its dependencies are in T . The two problems are shown to be NP-Complete
[34].

The Precedence-Constrained Minimum-Cost Arborescence problem
(PCMCA) was first introduced by Dell’Amico et al. [10], where a set of prece-
dence constraints is included as follows. Given a set R of ordered pairs of ver-

3

tices, then for each precedence (s, t) ∈ R any path of the arborescence covering
both vertices s and t must visit s before visiting t. The objective of the problem
is to find an arborescence of minimum total cost that satisfies the precedence
constraints. By definition of the PCMCA, we always assume that if (s, t) ∈ R
then (t, s) /∈ A. The PCMCA has applications in infrastructure design such as
designing a commodity distribution network. As an example, assume we have
a commodity distribution network, where the distribution starts from a main
vertex (root of the arborescence), and the distribution travels in a single direc-
tion away from the root to every other vertex in the graph. Such a structure
follows the definition of an arborescence. Now assume that transit duties that
are higher than the travel costs have to be paid by vertex s in the graph, if the
commodity passes through vertex t on its way to vertex s. To avoid for such
duties to be paid by vertex s, we can impose a precedence relationship between
the vertex pair s and t, i.e. (s, t) ∈ R. This will guarantee that no directed
path from t to s will appear in the distribution network, and vertex s can avoid
paying the transit duties (see [10] for more details).

A new variation on the MCA named the Precedence-Constrained
Minimum-Cost Arborescence problem with Waiting Times (PCMCA-WT) is
introduced in this work. The problem is an extension on the PCMCA charac-
terized by an additional constraint. Given a spanning arborescence rooted at
vertex r, with arc costs indicating the time required to traverse an arc, assume
there is a flow which starts at the root vertex r and traverses each path of the
arborescence. For each precedence (s, t) ∈ R, we must guarantee that the time
at which the flow enters s is smaller than or equal to the time at which the flow
enters t. As an example, assume that (b, a), (c, a), (d, a) ∈ R, and the flow enters
vertex b at time step 5, vertex c at time step 10, and vertex d at time step 15.
Therefore, the flow must enter vertex a at a time step greater than or equal to
15, and if the cost of the path from r to a is equal to 10, then this will result
in a waiting time of 5 at vertex a. The objective of the problem is to find an
arborescence T that has a minimum total cost, plus total waiting times, where
the flow never enters t earlier than entering s for all (s, t) ∈ R.

The contributions of this paper can be summarized as:

1. Introducing a scalable and efficient integer linear programming model for
the PCMCA.

2. Introducing the PCMCA-WT as a new variation of the MCA.

3. Proving that both the PCMCA and the PCMCA-WT are NP-hard.

The rest of the paper is organized as follows. Section 2 presents a proof of
complexity and a new mixed integer linear programming model (MILP) for the
PCMCA. Section 3 presents a proof of complexity and several mixed integer
linear programming models for the PCMCA-WT. Section 4 discusses computa-
tional results, while some conclusions are summarized in Section 5.

4

r

1 2

3

1 3

2

1

3

1

3 3

r

1

2

3

1

1

1

R

r

1

2

3

1 2

1

Figure 1: Comparing a MCA and a PCMCA solution. The graph on the left
shows the instance graph with its respective arc costs, with the precedence
relationship (3, 1) ∈ R highlighted in red. The graph in the middle shows the
optimal MCA, and the graph on the right shows the optimal PCMCA. The
MCA solution is not a feasible PCMCA solution since vertex 1 precedes vertex
3 on the same directed path and (3, 1) ∈ R.

2 The Precedence-Constrained Minimum-Cost
Arborescence Problem

The Precedence-Constrained Minimum-Cost Arborescence problem can be
formally described as follows. Let G = (V,A) be a directed graph, r ∈ V , and
P = (V,R) be a precedence graph. Let cij be a cost associated with every arc
(i, j) ∈ A. An arc (s, t) ∈ R is a precedence relationship between the two vertices
s, t ∈ V . The objective of the problem is to find a minimum-cost arborescence
T rooted at vertex r ∈ V such that, for each (s, t) ∈ R, t must not belong to
the unique path in T that connects r to s. For simplicity, we always assume
that for the root r ∈ V , (s, r) /∈ A for all s ∈ V \{r}, as by definition none of
these arcs would be part of an arborescence rooted at r, and (s, r) /∈ R for all
s ∈ V \{r} as the problem would be infeasible otherwise.

Figure 1 presents an example that shows the difference between the classic
MCA and the PCMCA. The example instance graph with its respective arc
costs is shown in the figure on the left, with the precedence relationship (3, 1)
highlighted in red. The figure in the middle shows a feasible MCA solution with
a cost of 3. The MCA solution is infeasible for the PCMCA since (3, 1) ∈ R,
and vertex 1 belongs to the directed path connecting r to vertex 3. To make the
solution feasible for the PCMCA, vertex 1 must succeed vertex 3 on the same
directed path, or the two vertices must reside on two disjoint paths. A feasible

5

r s

s′

v11

v12

v13

. . .

. . .

. . .

vm1

vm2

vm3

t

Figure 2: A PCMCA instance reduced from 3-SAT. The set of vertices vij ⊂ V
are the literals of the 3-SAT problem, where each layer is a clause that is
completely connected only to the clause in the next layer. Dashed arcs show the
precedence constraints R between pairs of vertices. As an example, we assume
literal v11 is the negation of vm1, therefore there is a precedence relationship
(vm1, v11) ∈ R which will enforce that no literal and its negation can belong to
the same path.

solution with a cost of 4 is shown in the figure on the right.

2.1 Computational Complexity

Some of the Minimum-Cost Arborescence variations mentioned in Section 1
belong to the NP-hard complexity class. In this section we show that the
Precedence-Constrained Minimum-Cost Arborescence Problem is also NP-hard.
The proof is inspired by the one introduced in [24] for the Path Avoiding For-
bidden Pairs problem.

Theorem 1. The PCMCA is NP-hard.

Proof. By reduction from 3-SAT: Let X = {x1, x2, . . . , xt} be a set of variables.
Let Φ = C1 ∧ C2 ∧ · · · ∧ Cm be a boolean expression in 3-conjunctive normal
form, such that each clause Ci, i = 1, . . . ,m, is denoted by (vi1∨vi2∨vi3), where
each literal vik, 1 ≤ k ≤ 3, is associated to one variable in X or its negation.
We will construct a graph G and a set of precedence constraints R such that
there exists a feasible solution of the PCMCA problem in G if and only if Φ is
satisfiable.

Let G = (V,A) where V = {r} ∪ {s} ∪ {s′} ∪ {t} ∪ C, with C, A and R

6

defined as follows.

C = {vik : 1 ≤ i ≤ m, 1 ≤ k ≤ 3}
A = {(r, s), (r, s′)} ∪ {(s, v1j), 1 ≤ j ≤ 3)} ∪ {(vmj , t), 1 ≤ j ≤ 3}
∪ {(vij , vi+1,k), 1 ≤ i < m, 1 ≤ j, k ≤ 3} ∪ {(s′, vij), 1 ≤ i ≤ m, 1 ≤ j ≤ 3}

R = {(t, s′)} ∪ {(vhk, vij) : h > i, vhk and vij refer to the same variable, but

exactly one of the two literals is negated}

Note that C contains 3m vertices, one for each literal of each clause Ci, with
all arcs having an equal positive cost. The three sets C, A, and R induce the
graph shown in Figure 2. The set of precedence constraints, besides (t, s′), is
between two vertices that refer to the same literal, but exactly one of the two
literals is negated. If a feasible solution T of the PCMCA problem can be found
in G, this implies that:

1. no path from s′ to t exists in T

2. in any (rooted) path there is no pair of vertices corresponding to a variable
and its negation

3. there is a unique path P from r to t which passes through s and through
a vertex of each clause

The formula can be satisfied by assigning true values to all the literals corre-
sponding to the vertices in P ∩C, and assigning false values to all the variables
not associated with these literals. This satisfies all the clauses.

Conversely, if the formula is satisfied then each clause has at least one literal
with true value, and no variable is assigned to both true and false (in different
clauses). We construct a PCMCA feasible solution as follows. We start by
building a path P from r to t which includes s and exactly one vertex from each
clause, corresponding to a literal with true value. We complete the arborescence
by adding (r, s′) and (s′, v) for each v 6∈ P .

2.2 A Set-Based Model

The MILP previously proposed in [10] suffers from scalability issues because
of the cubic number of variables (relative to the number of vertices and the
precedence relationships) used to model the precedence relationships between
vertex pairs. A new integer linear program for the PCMCA is introduced in
this section.

We extend the classic connectivity constraints for the MCA [22] in such
a way to take precedences into account. When considering a set S ⊆ V \{r}
we add a constraint for each j ∈ S, and we force that at least one active arc
must enter S coming from the set of vertices allowed to precede j on the path
connecting j to r.

Let xij be a variable associated with every arc (i, j) ∈ A such that xij = 1
if (i, j) ∈ T and 0 otherwise, where T is the resulting optimal arborescence.

7

Let Vj = {i ∈ V : (j, i) /∈ R} be the set of vertices that can precede j on a
directed path from the root without introducing precedence violations or, in
turn, a violating path, which is a directed path that violates some precedence
relationship in R.

minimize
∑

(i,j)∈A

cijxij (1)

subject to
∑

(i,j)∈A

xij = 1 ∀j ∈ V \{r} (2)

∑
(i,k)∈A:

i∈Vj\S, k∈S

xik ≥ 1 ∀j ∈ V \{r},∀S ⊆ Vj\{r} : j ∈ S (3)

xij ∈ {0, 1} ∀(i, j) ∈ A (4)

Constraints (2) implies the first property of an arborescence namely that
every vertex v ∈ V \{r} must have a single parent. Constraints (3) model the
connectivity constraints, that is every vertex j ∈ V \{r} must be reachable
from the root. Note that Vj\S contains at least r, while S contains at least j.
The set of constraints (3) reduces to the classical connectivity constraints for
the MCA which are

∑
(i,k)∈A: i/∈S, k∈S xik ≥ 1 ∀S ⊆ V \{r} when the set R of

precedence relationships is empty. This is because when R is an empty set, Vj =
V for all j ∈ V \{r}. Constraints (3) also impose the precedence relationships.
Inequality (3) implies that the resulting arborescence will not include vertex t
in the directed path connecting r to s when (s, t) ∈ R. Note that this is the
same inequality named weak σ-inequality considered by Ascheuer, Jünger &
Reinelt [1] for the Sequential Ordering Problem. Finally, constraints (4) define
the domain of the variables. The MILP model proposed has O(|A|) variables,
and O(|A|) constraints, plus an exponential number of connectivity constraint
(3). Although the number of constraints of the Set-Based Model is exponential,
it is more efficient at solving the problem than the model introduced in [10].
This is because in practice the number of constraints that are dynamically added
to the model is small. Moreover, the model uses a smaller number of variables.
An experimental validation for these considerations will be provided by the
experiments in Section 4.

One approach to solve a linear relaxation model (LR-model) that has an
exponential number of constraints is to start by solving the LR-model without
including a large set of constraints (such as (3)), then iteratively adding a con-
straint once it is violated, then solving the new LR-model again. A procedure
for finding a violated constraint is called a separation procedure. The optimal
solution of the LR-model is found as soon as there are no violated constraints.
When solving a MILP, the optimality gap needs to be closed to find the optimal
solution even if no violated inequality is found.

In the literature, the large set of constraints that are necessary to model the
problem, but are added dynamically to the model only when they are violated,

8

are known as lazy constraints. Note that using this approach, the separation
procedure must also be used to check the feasibility of integer solutions found
by the linear relaxation or primal heuristics.

Algorithm 1 Separation Procedure for Inequalities (3)

1: G = (V,A) is a directed graph, x̄ is a fractional LP-solution
2: procedure Find Violated Inequality(G, x̄)
3: for j ∈ V \{r} do
4: Construct a directed graph Dj = (Vj , A

′) such that:
5: Vj = {i ∈ V : (j, i) /∈ R}
6: A′ = {(i, k) ∈ A | i, k ∈ Vj}
7: cik = x̄ik ∀ (i, k) ∈ A′
8: Calculate a minimum (r, j)-cut C in Dj

9: if the cost of C < 1 then
10: return the violated inequality

∑
(i,k)∈C xik ≥ 1

11: end if
12: end for
13: end procedure

Algorithm 1 describes the separation procedure for inequalities (3). Let x̄ be
a solution of the linear relaxation or a candidate primal solution. An inequality
(3) that is violated by the solution x̄ can be detected by computing a minimum
(r, j)-cut C in a directed graph Dj = (Vj , A

′), where A′ is equal to the set of arcs
A minus the arcs incident to the immediate successors of j in the precedence
graph. The cost cik of an arc (i, k) ∈ A′ is equal to x̄ik. The value of the
minimum (r, j)-cut C in Dj can tell us the following about the given fractional
solution:

1. If the cost of a minimum cut is equal to 0, then vertex j is not reachable
from r in Dj . In this case, the solution does not contain a path from r
to j, or contains a single or multiple paths from r to j, all of which pass
through a successor of j.

2. If the cost of a minimum cut is in the range (0, 1), then vertex j is reachable
from r in Dj . In this case, the solution contains multiple paths from r to
j, and at least one of them passes through a successor of j.

3. If the cost of a minimum cut is equal to 1, then vertex j is reachable from
r through a single or multiple paths in Dj , although possibly some of them
pass through a successor of j.

In the first two cases, the minimum cut C defines an inequality (3) violated
by x̄, however in the last case a violated inequality (3) does not exist even if the
fractional solution x̄ contains a violating path. Therefore, although inequalities
(3) are valid inequalities for that PCMCA, there are fractional LP-solutions that
contain violating paths, but satisfy inequalities (3).

9

r

t

1 2 3

s

1.0

0.5

1.0

0.5

0.5

0.5

0.5 0.5

r

1 2 3

s

0.5 1.0

0.5

0.5 0.5

Figure 3: An example of a fractional solution of the Set-Based model that
contains a violating path, and does not violate an inequality (3). Every arc
cost is associated with the value of its respective variable xij . For this solution
we have the violated precedence (s, t) ∈ R. The figure on the left shows the
solution, and the figure on the right shows the graph Dj which has a minimum
(r, s)-cut of value 1 indicated by the red dashed line.

Figure 3 shows an example on how the separation procedure works. The
figure also shows a fractional solution of the Set-Based model that contains
a violating path, but does not violate any inequality (3). Another example,
showing how the Path-Based model introduced in [10] fails to detect a violating
path in a fractional solution, is presented in A.

A drawback of the Set-Based model is the high computational complexity of
the separation procedure of inequalities (3), which has a complexity of O(n4),
assuming it uses an O(n3) algorithm for computing a minimum (s, t)-cut in Dj

[21].

3 The Precedence-Constrained Minimum-Cost
Arborescence Problem with Waiting Times

In the Precedence-Constrained Minimum-Cost Arborescence Problem with
Waiting Times (PCMCA-WT) a flow starts from the root r at time 0, and
traverses each path of the arborescence. The cost cij of an arc (i, j) ∈ A
represents the time required to traverse that arc. Let dj be the time at which
the flow enters vertex j ∈ V . For any (s, t) ∈ R, dt ≥ ds, which means that
the flow must enter vertex t at the same time step or after entering vertex s.
Let wj be the waiting time before the flow enters vertex j required to respect
the aforementioned constraint. The objective is to find an arborescence T that
has a minimum total cost plus total waiting time, where the flow never enters

10

r

1 2

3

1 3

1

1

4

2

32

r

0

11

22

31

1 1

1

R

r

0

1 1

22

3 2w3 = 1

1 1

1

R

Figure 4: Comparing an instance solved as a PCMCA, and solved as a PCMCA-
WT. The graph on the left shows the instance with its respective arc costs, and
the precedence relationship (2, 3) ∈ R highlighted in red. The graph in the
middle shows the optimal PCMCA solution of cost 3, and the graph on the
right shows the optimal PCMCA-WT solution of cost 4. The PCMCA solution
is not a feasible PCMCA-WT solution since the flow enters vertex 3 before
entering vertex 2 and (2, 3) ∈ R.

t earlier than entering s for all (s, t) ∈ R. For simplicity, we always assume
that for the root r ∈ V , (i, r) /∈ A for all i ∈ V \{r}, as by definition none of
these arcs would be part of an arborescence rooted at r, and (s, r) /∈ R for all
s ∈ V \{r}, as the problem would be infeasible otherwise.

Figure 4 presents an example that shows the difference between the PCMCA
and the PCMCA-WT. Next to each vertex we have its corresponding dt value.
In this example we have the precedence relationship (2, 3) highlighted in red.
The two solutions depicted are valid solutions for the PCMCA, since they both
satisfy the precedence constraints, that is t never precede s on the same directed
path for all (s, t) ∈ R. The solution in the middle shows the optimal PCMCA
solution with a total cost of 3 (sum of all the arcs). We can see that the solution
in the middle is not a feasible PCMCA-WT solution since (2, 3) ∈ R but d3 < d2.
The solution on the right shows an optimal PCMCA-WT solution with a cost
of 4 (sum of all the arcs plus waiting time at each vertex). The solution results
in a waiting time of 1 at vertex 3, since the time from r to 2 is 2, and the time
from r to 3 is 1.

3.1 Computational Complexity

In this section we show that the PCMCA-WT is NP-hard.
The Rectilinear Steiner Arborescence (RSA) Problem [32] is an NP-hard

problem formally defined as follows. Let P = {p1, p2, . . . , pn} be a set of points
in the first quadrant of the Cartesian plane, where pi = (xi, yi) with xi, yi ≥ 0,
and p1 = (0, 0). A complete grid can be created, where the points in P are on the
intersections of vertical and horizontal lines. A set S of Steiner vertices can be
added, corresponding to the O(|P |2) intersection points not overlapping with the

11

p1 p2

p3

p4p5

s1

s2

s3

s4 s5

s6

s7

s8

s9

s10

Figure 5: The figure shows an RSA instance with 5 points and 10 Steiner
vertices, while the dashed lines represent the arcs of the instance.

points in P . The arcs of the problem are the right-directed horizontal segments
and the up-directed vertical segments between two adjacent points of the grid
P ∪S. The cost associated with each arc (pi, pj) is defined as |xi−xj |+ |yi−yj |.
Figure 5 shows an example of an RSA instance with 5 points, and the relative
Steiner vertices.

Given a positive value k, the decision version of the RSA problem consists
in deciding whether there is an arborescence with total length not greater than
k such that the arborescence is rooted at p1 and it contains a unique path from
p1 to pi for all i ∈ {1, 2, . . . , n}. Note that the length of each path from p1 to
pi is xi + yi by construction.

Theorem 2. The PCMCA-WT is NP-hard.

Proof. By a reduction from the decision version of the RSA problem: we con-
struct a graph G = (V,A) and a set R of precedence constraints such that there
exist a PCMCA-WT solution of cost at most k if and only if a RSA of cost at
most k exists. Given an instance of the RSA problem with a set of points P and
a set of Steiner points S, consider the PCMCA-WT instance defined as follows:

V = P ∪ S
A′ = {(i, j) : j is immediately on the top of i in the grid, or j is im-

mediately on the right of i in the grid}
A = A′ ∪ {(PFAR, si), si ∈ S}, with PFAR ∈ argmax

pi∈P
{xi + yi}

R = {(p, PFAR) : p ∈ P \ {PFAR}}
cij = (xj − xi) + (yj − yi) for (i, j) ∈ A′

cPFAR,si = 0 for si ∈ S

If the instance of RSA has a solution of cost k, then a solution of cost k for
the instance of PCMCA-WT can be obtained. Starting from the solution of the

12

p1 p2

p3

p4p5

s1

s2

s3

s4 s5

s6

s7

s8

s9

s10

Figure 6: The PCMCA-WT instance associated with the RSA instance depicted
in Figure 5. A RSA solution of minimum cost is given by the blue arcs. The red
arcs have cost 0 and, together with the blue ones, form an optimal PCMCA-WT
solution.

RSA problem, it is possible to complete the solution of the associated PCMCA-
WT problem by adding 0-cost arcs (red arcs) to connect the node PFAR to the
Steiner nodes not used in the RSA solution. The solution of an RSA instance
and a solution of the associated PCMCA-WT problem are depicted in Figure
6.

Conversely, assume that there is a feasible solution of PCMCA-WT with cost
at most k. Without loss of generality suppose that such a solution is optimal.
Note that a path starting at PFAR and passing through a vertex in P cannot
exist due to the precedence constraints. Besides, every leaf of the arborescence
that is in S must have PFAR as parent; otherwise, making PFAR its parent
would reduce the cost. Therefore, removing all the leaves of the PCMCA-WT
arborescence connected through PFAR results in a tree that uses only arcs in
A′ and whose leaves are all in P . It follows that the resulting tree is a feasible
solution for the RSA.

3.2 MILP Models

This section introduces three different MILP models for formulating the Precedence-
Constrained Minimum-Cost Arborescence Problem with Waiting Times. For all
the models, let dj be a variable associated with every vertex j ∈ V to repre-
sent the time at which the flow enters vertex j, with dr = 0. The value of
dj is bounded from below by summing the time from r to the parent i of j
and the cost of the arc (i, j) ∈ A that is part of the arborescence. To ensure

13

that the resulting arborescence satisfies the precedence constraints, we enforce
that the time from r to t is greater than or equal to the time from r to s for all
(s, t) ∈ R. A variable xij is associated with every arc (i, j) ∈ A such that xij = 1
if (i, j) ∈ T and 0 otherwise, where T is the resulting optimal arborescence.

In all the models proposed for the PCMCA-WT, the value of M , which is an
upper bound on the value of an optimal solution, is equal to the solution cost
of solving the instance as a Sequential Ordering Problem (SOP) [28] using a
nearest neighbor algorithm [33]. This is a valid upper bound on the solution for
the PCMCA-WT, since a valid solution for the SOP consists of a simple directed
path that includes all the vertices of the graph such that t never precede s for
all (s, t) ∈ R, which implies that dt ≥ ds for all (s, t) ∈ R, and the waiting time
on each vertex is equal to zero.

3.2.1 A Multi-Commodity Flow Model

The model introduced in this section extends the one introduced in [10] for the
PCMCA, and formulates the sub-problem of finding an arborescence rooted at
r that does not violate precedence relationships in R as a multi-commodity flow
problem. The model uses a polynomial set of constraints instead of inequalities
(3) to ensure that every vertex in the graph is reachable from the root, and
that for any (s, t) ∈ R there is no path from r to s that passes through t in the
resulting arborescence. This can be ensured by having a flow value of 1 that
enters every vertex k in the graph, and that for any vertex k the flow to that
vertex does not pass through a successor of k. Let ykij be a variable associated

with every vertex k ∈ V \{r} and every arc (i, j) ∈ A, such that ykij = 1 if arc
(i, j) ∈ A is part of the path from the root r to vertex k, and 0 otherwise. Let
wi be the waiting time at vertex i ∈ V .

(MCF) minimize
∑

(i,j)∈A

cijxij +
∑
i∈V

wi (5)

subject to
∑

(i,j)∈A

xij = 1 ∀j ∈ V \{r} (6)

∑
(i,j)∈A:
(k,j)/∈R

ykij −
∑

(j,i)∈A:
(k,j)/∈R

ykji =

 1 if i = r
−1 if i = k

0 otherwise

∀k ∈ V \{r},
∀i ∈ V : (k, i) /∈ R (7)

dr = 0 (8)

dj ≥ di −M + (M + cij)xij ∀(i, j) ∈ A (9)

wj ≥ dj − di −M + (M − cij)xij ∀(i, j) ∈ A (10)

dt ≥ ds ∀(s, t) ∈ R (11)

ykij ≤ xij ∀k ∈ V \{r}, (i, j) ∈ A (12)

xij ∈ {0, 1} ∀(i, j) ∈ A (13)

ykij ∈ {0, 1} ∀k ∈ V \{r}, (i, j) ∈ A (14)

14

di, wi ≥ 0 ∀i ∈ V (15)

Constraints (6) impose the first property of an arborescence namely that
every vertex v ∈ V \{r} must have a single parent. Constraints (7) are the
multi-commodity flow constraints: every vertex k ∈ V must be reachable from
the root, and any path from r to k must not pass through the successors of k
in the precedence graph P (otherwise this would violate a precedence relation).
Constraint (8) sets the distance from the root r to itself to be equal to 0. Con-
straints (9) impose that when arc (i, j) is selected to be part of the arborescence,
then the time at which the flow enters vertex j is greater than or equal to the
time at which the flow enters vertex i plus cij . Constraints (10) enforce that the
waiting time at each vertex j is greater than or equal to the difference between
the time at which the flow enters vertex j and the time at which the flow enters
vertex i plus cij , where i is the parent of j in the arborescence. Constraints
(11) enforce that the time at which the flow enters vertex t must be greater
than or equal to the time at which the flow enters vertex s, for all (s, t) ∈ R.
Finally, constraints (12)-(15) define the domain of the variables. The MILP
model proposed has O(|V ||A|) variables, and O(|V ||A|) constraints.

The major drawback of this model is the large number of variables used
which might result in memory issues when solving large-sized instances, similar
to what happens in the model proposed in [10] for the PCMCA.

3.2.2 A Distance-Accumulation Model

The model introduced in this section extends the model introduced in Section
2.2 for the PCMCA. As mentioned earlier, the time from the root r to vertex j
in the arborescence is bounded from below by summing the time from r to the
parent i of j and the cost of the arc (i, j) ∈ A, with dr = 0. To ensure that the
resulting arborescence satisfies the precedence constraints, we enforce that the
time from r to t is greater than or equal to the time from r to s for all (s, t) ∈ R.
We recall that wi is the waiting time at vertex i ∈ V .

(DA) minimize
∑

(i,j)∈A

cijxij +
∑
i∈V

wi (16)

subject to
∑

(i,j)∈A

xij = 1 ∀j ∈ V \{r} (17)

∑
(i,k)∈A:

i∈Vj\S, k∈S

xik ≥ 1 ∀j ∈ V \ {r},∀S ⊆ Vj\{r} : j ∈ S (18)

dr = 0 (19)

dj ≥ di −M + (M + cij)xij ∀(i, j) ∈ A (20)

wj ≥ dj − di −M + (M − cij)xij ∀(i, j) ∈ A (21)

dt ≥ ds ∀(s, t) ∈ R (22)

xij ∈ {0, 1} ∀(i, j) ∈ A (23)

15

di, wi ≥ 0 ∀i ∈ V (24)

Constraints (17) impose the first property of an arborescence, namely that
every vertex v ∈ V \{r} must have a single parent. Constraints (18) model the
connectivity constraint, that is every vertex v ∈ V \{r} must be reachable from
the root, and they also impose the precedence constraints where the resulting
arborescence should not include vertex t in the directed path connecting r to
s when (s, t) ∈ R. This will lead to an arborescence such that the flow never
enters t before entering s, if s precedes t on the same directed path. Constraint
(19) sets the distance from the root r to itself to be equal to 0. Constraints (20)
impose that when arc (i, j) is selected to be part of the arborescence, then the
time at which the flow enters vertex j is greater than or equal to the time at
which the flow enters vertex i plus cij . Constraints (21) enforce that the waiting
time at vertex j is greater than or equal to the difference between the time at
which the flow enters vertex j and the time at which the flow enters vertex i
plus cij . Constraints (22) enforce that the time at which the flow enters vertex
t is greater than or equal to the time at which the flow enters vertex s for all
(s, t) ∈ R. Finally, constraints (23) and (24) define the domain of the variables.
The MILP model proposed, without constraints (18), has O(|A|) variables, and
O(|A|) constraints. Constraints (18) are dynamically added to the model using
the same separation procedure described in Section 2.2.

3.2.3 An Adjusted Arc-Cost Model

The model introduced in this section is originated by removing inequalities (21)
from the model introduced in Section 3.2.2 and representing the value of wj by
the nonlinear term

wj =
∑

i:(i,j)∈A

(dj − di − cij)xij (25)

A different linear model is then derived as follows.

Proposition 1. The waiting time at vertex j ∈ V can be expressed by the
nonlinear equality (25).

Proof. Inequalities (21) can be rewritten as wj ≥ dj − di − cij −M(1 − xij)
∀(i, j) ∈ A. If xij = 0 then wj has to be greater than or equal to a negative
value, however the value of wj should be greater than or equal to zero by
definition. Accordingly, the inequality would be active and affect the solution
only when xij = 1. Therefore, we can represent the waiting time at vertex j
using equality (25).

Based on Proposition 1, we can replace the second term in the objective
function (16) as follows:∑

j∈V
wj =

∑
j∈V

∑
i:(i,j)∈A

(dj − di − cij)xij =
∑

(i,j)∈A

(dj − di − cij)xij

16

This means that inequalities (21) are no longer necessary as the objective func-
tion no longer depends on w, which results in the following nonlinear model.

minimize
∑

(i,j)∈A

cijxij +
∑

(i,j)∈A

(dj − di − cij)xij (26)

subject to
∑

(i,j)∈A

xij = 1 ∀j ∈ V \{r} (27)

∑
(i,k)∈A:

i∈Vj\S, k∈S

xik ≥ 1 ∀j ∈ V \ {r},∀S ⊆ Vj\{r} : j ∈ S (28)

dr = 0 (29)

dj ≥ di −M + (M + cij)xij ∀(i, j) ∈ A (30)

dt ≥ ds ∀(s, t) ∈ R (31)

xij ∈ {0, 1} ∀(i, j) ∈ A (32)

di ≥ 0 ∀i ∈ V (33)

Proposition 2. Using a new set of |A| variables z and 2|A| new constraints,
the objective function (26) can be linearized as follows:

minimize
∑

j∈V \{r}

dj −
∑

(i,j)∈A

zij

Proof. The objective function (26) can be rewritten as follows:∑
(i,j)∈A

cijxij +
∑

(i,j)∈A

(dj − di − cij)xij =

∑
(i,j)∈A

djxij −
∑

(i,j)∈A

dixij =
∑

j∈V \{r}

dj −
∑

(i,j)∈A

dixij
(34)

We use the fact that
∑

(i,j)∈A djxij =
∑

j∈V \{r} dj as each j ∈ V \{r} has

exactly one xij assigned to 1 in an arborescence, as imposed by (27).
Since the term dixij is summed over each arc (i, j) ∈ A, then we need at least
2|A| constraints to linearize the product. We can substitute each term dixij by
a new continuous variable zij and the following two inequalities:

zij ≤Mxij ∀(i, j) ∈ A (35)

zij ≤ di ∀(i, j) ∈ A (36)

Inequalities (35) ensure that if xij = 0 then zij = 0. On the other hand, if
xij = 1, then inequalities (35) ensure that zij is less than the upper bound
on the optimal solution which is further tightened by inequalities (36). This
results in a total of 2|A| new constraints and (26) can now be expressed as∑

j∈V \{r} dj −
∑

(i,j)∈A zij by elaborating on (34).

17

Based on Proposition 2, we can derive the following MILP model that con-
tains O(|A|) variables, and O(|A|) constraints, plus an exponential number of
constraints (28).

(AAC) minimize
∑

j∈V \{r}

dj −
∑

(i,j)∈A

zij (37)

subject to
∑

(i,j)∈A

xij = 1 ∀j ∈ V \{r} (38)

∑
(i,k)∈A:

i∈Vj\S, k∈S

xik ≥ 1 ∀j ∈ V \ {r},∀S ⊆ Vj\{r} : j ∈ S (39)

dr = 0 (40)

dj ≥ di −M + (M + cij)xij ∀(i, j) ∈ A (41)

dt ≥ ds ∀(s, t) ∈ R (42)

zij ≤ di ∀(i, j) ∈ A (43)

zij ≤Mxij ∀(i, j) ∈ A (44)

xij ∈ {0, 1} ∀(i, j) ∈ A (45)

zij ≥ 0 ∀(i, j) ∈ A (46)

di ≥ 0 ∀i ∈ V (47)

Proposition 3. The following inequalities are valid for the (AAC) model:∑
i∈V :(i,j)∈A

zij ≤ dj −
∑

(i,j)∈A

cijxij ∀j ∈ V \{r} (48)

Proof. Since for each vertex j ∈ V \{r} there is only one active arc (i, j) ∈ A
entering j (from inequalities (38)), from inequalities (41) we can derive the
following new quadratic inequalities:

dj ≥
∑

i∈V :(i,j)∈A

dixij +
∑

(i,j)∈A

cijxij ∀j ∈ V \{r} (49)

From inequalities (43) and (44) we have zij ≤ dixij (see Proposition 2), then
inequality (48) can be derived from inequality (49) as follows.

dj ≥
∑

i∈V :(i,j)∈A

dixij +
∑

(i,j)∈A

cijxij =⇒
∑

i∈V :(i,j)∈A

dixij ≤ dj −
∑

(i,j)∈A

cijxij

=⇒
∑

i∈V :(i,j)∈A

zij ≤ dj −
∑

(i,j)∈A

cijxij

=⇒ dj ≥
∑

i∈V :(i,j)∈A

zij +
∑

(i,j)∈A

cijxij

18

It should be noted that inequalities (48) are not an integral part of the AAC
model, but are added to have a stronger linear relaxation. If the inequalities
are not included in the model, then the value of the zijs can be substantially
larger than the value of the djs in order to minimize the value of the objective
function. This could result in feasible solutions of the linear relaxation with a
negative objective function. This would make the MILP much harder to solve.
Therefore, inequalities (48) are considered for all the experiments reported in
this paper.

4 Experimental Results

The computational experiments for evaluating the proposed models are based
on the benchmark instances of TSPLIB [31], SOPLIB [27] and COMPILERS
[33] originally proposed for the SOP [12]. The benchmark instances are the
same instances previously adopted in [10].

All the experiments are performed on an Intel i7 processor running at 1.8
GHz with 8 GB of RAM. CPLEX 12.81 is used for solving the MILPs. CPLEX
is run with its default parameters, and single threaded standard Branch-and-
Cut (B&C) algorithm is applied for solving the MILP models, with BestBound
node selection, and MIP emphasis set to MIPEmphasisOptimality. A time
limit of 1 hour is set for the computation time for each computational (new)
method/instance. No time limit was instead considered for the computational
time of the Path-Based Model (see [10]).

In all the tables that follow, Name and Size columns report the name and
size of the instance, Density of P reports the density of arcs in the precedence

graph computed as
2·|R|

|V |(|V |−1) , z∗ reports the value of the optimal solution for

that instance. For each model we report the following columns. Cuts column
reports the number of model-dependent cuts (inequalities) that are dynamically
added to the model, Nodes column reports the number of nodes in the search
decision-tree, Time (s) reports the solution time in seconds. The same set of
columns is reported for both the results of the model’s linear relaxation (grouped
under LR), and for the mixed integer linear programming model (grouped under
IP).

4.1 Computational Results for the PCMCA

A MILP model for the PCMCA was previously proposed in [10], where prece-
dence constraints are imposed by propagating a value along every path with
end-points s and t for (s, t) ∈ R in order to detect a precedence violation. This
results in a cubic number of variables (a variable for each precedence relationship
and vertex), and a quadratic number of constraints for the value propagation.
The model is known to suffer from scalability and performance issues [10]. Ta-
bles 1-3 report the overall results of the model proposed in Section 2, that will

1IBM ILOG CPLEX Optimization Studio: https://www.ibm.com/products/

ilog-cplex-optimization-studio

19

https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio

be named Set-Based Model, and compare its results with the results obtained by
the model previously proposed in [10], that is here named Path-Based Model. In
Tables 1-3, the Gap column indicates the percentage relative difference between
the optimal solution (z∗) of the PCMCA instance and the objective function
value of the model’s linear relaxation (CostLR), computed as 100 · z

∗−CostLR

z∗ .
An overview of the results for the Path-Based Model shows that its linear

relaxation optimally solves 47% of the instances with a 2.1% average optimality
gap. On the other hand, the linear relaxation of the Set-Based Model optimally
solves 68% of the instances (a 44% improvement compared to Path-Based Model)
with an average optimality gap of 1.7% (a 23% improvement compared to the
Path-Based Model). The solution times for the integer Path-Based Model range
between milliseconds and 2.5 hours (the maximum computing time allowed was
longer in [10]), with an average of 276 seconds, a median of 3 seconds, and
standard deviation of 1116 seconds. The solution times for the integer Set-
Based Model range between milliseconds and 15 minutes, with an average of 27
seconds, a median of 0.8 seconds, and standard deviation of 129 seconds (this
is on average a 90% improvement compared to the Path-Based Model). In the
integer Set-Based Model, the number of cuts generated by exploring the whole
branch-decision-tree increases by 80% on average, compared to the root of the
branch-decision-tree itself, and the solver explores 77 nodes on average. On the
other hand, for the integer Path-Based Model the solver explores 5588 nodes on
average (a 98% increase).

By inspecting Tables 1-3 we can observe that the Path-Based Model from [10]
optimally solves a subset of the instances faster than the Set-Based Model. We
can see that those instances (underlined in the tables) are relatively large in size
and have either a very sparse or very dense precedence graph. More specifically,
in terms of size the Path-Based Model is faster at solving 54% of the instances
that have a size larger than 500. In terms of precedence graph density, the
Path-Based Model is faster at solving 62% of the instance with density smaller
than 0.005 and is faster at solving 57% of the instances with density larger than
0.990. Considering the two factors simultaneously, the Path-Based Model is
faster at solving 57% of the instances with size larger than 500 and precedence
graph density that is smaller than 0.008 or larger than 0.940. A low density
precedence graph implies a small number of variables and constraints used to
model the precedence relationships in the Path-Based Model, and since finding a
violated precedence inequality is much faster in that model, it is sometimes more
efficient at solving those instances. In other instances, the increase in solution
time is justified by the time it takes to find a violated inequality in the Set-Based
Model. In general, if we look at Figure 7, which shows the distribution of solution
times for each model, we see that the Set-Based Model is much faster at solving
the instances, even when we consider or exclude outliers. The large solution
time in the Set-Based Model for the two instances prob.100 and R.700.100.1,
compared to the Path-Based Model, can be explained by the number of cuts
generated while solving the LR, which also increases the overall solution time.
We can verify that by observing the solution time of the LR for the first instance.

In conclusion, the Set-Based Model is a significant improvement over previ-

20

Figure 7: A box plot showing the distribution of solution times (in seconds)
of all the 116 instances for the Path-Based Model from [10] and the Set-Based
Model. The box plot on the right excludes outliers.

ous methods. Indeed, it provides optimal solutions in substantially less time,
and memory usage for the majority of the instances considered. The same
cannot be said about the Set-Based Model when linear relaxations only are
considered, as the Path-Based Model can be solved much faster in most cases
because of the fewer number of constraints, although it sometimes generates a
looser estimate on the value of the optimal integer solution. In terms of mem-
ory usage, the Set-Based Model consumes approximately an average of 95MB,
with a standard deviation of 132 and median of 41 when solving the instances
considered. On the other hand, the Path-Based Model consumes approximately
an average of 363MB, with a standard deviation of 486 and median of 116.
For considerably large sized instances such as R.700.100.30 and R.700.100.60,
the Path-Based Model consumes 1841MB and 1097MB for each of those two
instances, whereas the Set-Based Model consumes 263MB and 286MB for the
same instances. The two instances considered are solved at the root node of the
branch-decision tree by both models.

4.2 Computational Results for the PCMCA-WT

For the computational experiments of the PCMCA-WT, we omit the detailed
results for SOPLIB benchmark instances. However, we can draw the following
conclusions on these instances. The Multi-Commodity Flow (MCF) model is un-
able to solve large sized instances because of memory issues (building the model
consumes around 5GB of memory on average) or time out while solving the
model’s linear relaxation. Since the linear relaxation of MCF model was unable
to solve any single instance from SOPLIB benchmark set, we concluded that it
is highly unsuitable for solving such instances. The characteristics of SOPLIB
instances are summarized in Table 2. The Distance-Accumulation (DA) model
and the Adjusted Arc-Cost (AAC) model are able to optimally solve SOPLIB
instances with low density precedence graphs within the time limit, with an
average of 800 seconds, and achieve an average optimality gap of 63.8% for the
LR models and 63.3% for the IP models before timing out for the remaining
instances. These figures are much higher compared to the other two benchmark

21

sets as will be shown later. The computational experiments have shown that
large-sized instances with a highly dense precedence graph are outside the reach
of the models proposed due to the intrinsic complexity of the problem.

22

Table 1: Overall computational results for comparing the Path-Based Model from [10] and the Set-Based Model for the PCMCA
for TSPLIB instances

Instance
Path-Based Model [10] Set-Based Model

LR IP LR IP

Name Size Density of P z∗ Time (s) Gap Nodes Time (s) Cuts Time (s) Gap Nodes Cuts Time (s)
br17.10 18 0.314 25 0.032 0.000 3 0.060 21 0.015 0.000 0 21 0.015
br17.12 18 0.359 25 0.047 0.000 3 0.063 22 0.016 0.000 0 22 0.016
ESC07 9 0.611 1531 0.031 0.000 0 0.031 13 0.031 0.000 0 13 0.031
ESC11 13 0.359 1752 0.031 0.000 0 0.031 1 0.031 0.000 0 1 0.031
ESC12 14 0.396 1138 0.016 0.000 0 0.016 1 0.016 0.000 0 1 0.016
ESC25 27 0.177 1041 0.062 0.000 0 0.062 31 0.063 0.000 0 31 0.063
ESC47 49 0.108 703 0.484 0.284 5 0.469 142 0.547 0.000 0 142 0.547
ESC63 65 0.173 56 0.329 0.000 0 0.329 42 0.218 0.000 0 42 0.218
ESC78 80 0.139 502 0.094 0.000 0 0.094 1 0.047 0.000 0 1 0.047
ft53.1 54 0.082 3917 1.172 0.408 7 1.172 78 0.328 0.230 5 84 0.375
ft53.2 54 0.094 3978 0.281 7.642 104 0.688 57 0.188 2.765 55 211 0.547
ft53.3 54 0.225 4242 1.890 5.587 122 2.547 96 0.453 0.000 0 96 0.453
ft53.4 54 0.604 4882 0.156 2.663 9 0.250 13 0.047 0.000 0 13 0.047
ft70.1 71 0.036 32846 2.891 0.000 1 2.828 158 2.750 0.000 0 158 2.750
ft70.2 71 0.075 32930 2.985 0.035 2 3.016 163 2.719 0.000 0 163 2.719
ft70.3 71 0.142 33431 0.750 2.423 954 63.171 66 0.265 2.034 145 2077 38.250
ft70.4 71 0.589 35179 13.015 0.584 53 13.438 30 0.094 2.146 369 1070 6.281
rbg048a 50 0.444 204 0.047 0.000 0 0.047 5 0.031 0.000 0 5 0.031
rbg050c 52 0.459 191 0.313 0.000 0 0.313 11 0.047 0.000 0 11 0.047
rbg109 111 0.909 256 11.578 0.000 0 11.578 14 0.094 0.000 0 14 0.094
rbg150a 152 0.927 373 2.485 0.000 0 2.485 14 0.187 0.000 1 14 0.219
rbg174a 176 0.929 365 29.610 0.274 2 29.609 22 0.297 0.000 1 22 0.313
rbg253a 255 0.948 375 13.985 0.000 0 13.985 22 1.125 0.000 0 22 1.125
rbg323a 325 0.928 754 1.547 0.000 0 1.547 26 1.047 0.000 0 26 1.047
rbg341a 343 0.937 610 23.344 3.279 376 278.859 89 3.031 0.000 0 89 3.031
rbg358a 360 0.886 595 0.312 0.000 0 0.312 67 5.812 0.000 0 67 5.812
rbg378a 380 0.894 559 16.079 3.936 543 178.515 21 1.829 4.472 36 282 19.047
kro124p.1 101 0.046 32597 0.734 5.997 47 1.844 95 1.782 0.000 0 95 1.782
kro124p.2 101 0.053 32851 0.578 6.929 1433 11.203 109 1.828 0.568 27 238 3.281
kro124p.3 101 0.092 33779 8.672 2.680 258648 6599.140 69 0.844 3.486 98 656 7.469
kro124p.4 101 0.496 37124 41.828 1.375 198 59.359 128 1.672 0.000 0 128 1.672
p43.1 44 0.101 2720 0.594 12.684 238 4.203 68 0.187 10.409 128 692 1.765
p43.2 44 0.126 2720 1.016 8.364 119 1.781 33 0.079 11.029 237 1164 4.359
p43.3 44 0.191 2720 0.547 14.407 283 2.829 77 0.188 7.537 134 598 1.437
p43.4 44 0.164 2820 1.218 8.688 198 3.516 11 0.047 8.333 353 1065 2.797
prob.100 100 0.048 650 11.766 1.308 1428 36.594 1840 622.437 0.240 4 1962 743.969
prob.42 42 0.116 143 0.125 0.000 0 0.125 2 0.032 0.000 0 2 0.032
ry48p.1 49 0.091 13095 0.828 0.886 879 1.656 31 0.094 1.894 54 177 0.609
ry48p.2 49 0.103 13103 1.031 0.551 220 1.593 58 0.235 0.000 0 58 0.235
ry48p.3 49 0.193 13886 2.109 3.657 123233 638.344 34 0.078 6.852 146 634 2.156
ry48p.4 49 0.588 15340 2.531 7.210 8610 24.156 65 0.172 5.847 32 153 0.313
Average 4.808 2.484 9700 194.923 94 15.878 1.655 45 300 20.855

23

Table 2: Overall computational results for comparing the Path-Based Model from [10] and Set-Based Model for the PCMCA
for SOPLIB instances

Instance
Path-Based Model [10] Set-Based Model

LR IP LR IP

Name Size Density of P z∗ Time (s) Gap Nodes Time (s) Cuts Time (s) Gap Nodes Cuts Time (s)
R.200.100.1 200 0.020 29 0.219 0.000 0 0.219 11 0.875 0.000 0 11 0.875
R.200.100.15 200 0.847 454 3235.391 5.740 382 4034.859 85 1.079 13.877 177 2395 64.812
R.200.100.30 200 0.957 529 12.922 11.153 59 54.828 39 0.266 9.263 10 77 0.875
R.200.100.60 200 0.991 6018 3.593 0.000 0 3.593 0 0.094 0.000 0 0 0.094
R.200.1000.1 200 0.020 887 0.203 0.000 0 0.203 3 0.656 0.000 0 3 0.656
R.200.1000.15 200 0.876 5891 203.234 4.261 132 329.313 35 0.766 5.568 87 557 7.860
R.200.1000.30 200 0.958 7653 56.000 0.026 2 57.141 9 0.234 0.000 0 9 0.297
R.200.1000.60 200 0.989 6666 3.797 0.000 0 3.797 0 0.094 0.000 0 0 0.094
R.300.100.1 300 0.013 13 0.500 0.000 0 0.500 14 2.250 0.000 0 14 2.250
R.300.100.15 300 0.905 575 3.985 10.261 87859 2220.656 20 1.171 7.652 139 1111 55.734
R.300.100.30 300 0.970 756 1.672 0.000 0 1.672 27 0.562 0.000 0 27 0.562
R.300.100.60 300 0.994 708 1.531 0.000 2 2.469 2 0.297 0.000 0 2 0.375
R.300.1000.1 300 0.013 715 10.546 0.000 0 10.546 8 2.094 0.000 0 8 2.515
R.300.1000.15 300 0.905 6660 0.812 5.983 3304 91.938 136 2.610 0.811 73 819 16.531
R.300.1000.30 300 0.965 8693 1.531 0.000 0 1.531 6 0.391 0.000 0 6 0.453
R.300.1000.60 300 0.994 7678 23.234 0.000 0 23.234 2 0.297 0.000 0 2 0.297
R.400.100.1 400 0.010 6 0.391 0.000 0 0.391 42 5.781 0.000 2 45 9.750
R.400.100.15 400 0.927 699 0.328 10.837 52858 2021.813 24 0.906 10.014 109 548 44.922
R.400.100.30 400 0.978 712 10.156 0.000 0 10.156 14 1.656 0.000 0 14 2.031
R.400.100.60 400 0.996 557 0.219 0.000 0 0.219 0 0.328 0.000 0 0 0.328
R.400.1000.1 400 0.010 780 6.734 0.000 0 6.734 4 2.797 0.000 0 4 2.797
R.400.1000.15 400 0.930 7382 0.625 8.467 56018 8935.188 78 5.375 2.181 91 362 24.000
R.400.1000.30 400 0.977 9368 34.531 1.057 4797 209.593 20 1.140 4.366 38 97 6.563
R.400.1000.60 400 0.995 7167 2.016 0.000 0 2.016 1 0.500 0.000 0 1 0.500
R.500.100.1 500 0.008 3 217.172 0.000 0 217.172 29 11.812 0.000 0 29 11.812
R.500.100.15 500 0.945 860 1.016 8.488 9879 443.125 100 7.406 3.895 38 286 21.156
R.500.100.30 500 0.980 710 14.453 3.099 11490 696.922 19 0.797 6.620 15 51 3.562
R.500.100.60 500 0.996 566 0.687 0.000 0 0.687 1 0.844 0.000 0 1 0.844
R.500.1000.1 500 0.008 297 0.609 0.000 0 0.609 0 4.469 0.000 0 0 4.469
R.500.1000.15 500 0.940 8063 82.015 0.000 57 100.640 119 15.063 0.000 0 119 15.063
R.500.1000.30 500 0.981 9409 11.141 0.000 0 11.141 11 3.125 0.000 0 11 3.125
R.500.1000.60 500 0.996 6163 0.671 0.000 0 0.671 1 0.875 0.000 0 1 0.875
R.600.100.1 600 0.007 1 659.156 0.000 0 659.156 1455 733.375 0.000 0 1455 733.375
R.600.100.15 600 0.950 568 31.516 0.000 1 34.985 23 5.312 0.000 0 23 5.312
R.600.100.30 600 0.985 776 13.484 1.675 659 298.109 24 2.375 0.000 0 24 2.375
R.600.100.60 600 0.997 538 0.359 0.000 0 0.359 0 0.906 0.000 0 0 0.906
R.600.1000.1 600 0.007 322 0.844 0.000 0 0.844 0 8.625 0.000 0 0 8.625
R.600.1000.15 600 0.945 9763 17.984 2.192 31 159.515 69 12.766 0.000 0 69 12.766
R.600.1000.30 600 0.984 9497 7.219 0.000 0 7.219 13 2.969 0.000 0 13 2.969
R.600.1000.60 600 0.997 6915 0.406 0.000 0 0.406 0 0.922 0.000 0 0 0.922
R.700.100.1 700 0.006 2 1.250 0.000 0 1.250 616 314.875 0.000 0 616 314.875
R.700.100.15 700 0.957 675 41.000 0.000 0 41.000 23 6.875 0.000 0 23 6.875
R.700.100.30 700 0.987 590 3.984 0.000 0 3.984 1 1.25 0.000 0 1 1.250
R.700.100.60 700 0.997 383 0.500 0.000 0 0.500 0 1.422 0.000 0 0 1.422
R.700.1000.1 700 0.006 611 1.625 0.000 0 1.625 0 13.891 0.000 0 0 13.891
R.700.1000.15 700 0.956 2792 1.500 0.000 0 1.500 4 1.875 0.000 0 4 1.875
R.700.1000.30 700 0.986 2658 0.360 0.000 0 0.360 0 0.828 0.000 0 0 0.828
R.700.1000.60 700 0.997 1913 0.515 0.000 0 0.515 0 1.375 0.000 0 0 1.375
Average 98.409 1.526 4740 431.352 64 24.714 1.338 16 184 29.494

24

Table 3: Overall computational results for comparing the Path-Based Model from [10] and Set-Based Model for the PCMCA
for COMPILERS instances

Instance
Path-Based Model [10] Set-Based Model

LR IP LR IP

Name Size Density of P z∗ Time (s) Gap Nodes Time (s) Cuts Time (s) Gap Nodes Cuts Time (s)
gsm.153.124 126 0.970 185 0.578 0.000 0 0.578 49 0.125 1.081 3 53 0.140
gsm.444.350 353 0.990 1542 0.078 0.000 0 0.078 0 0.094 0.000 0 0 0.094
gsm.462.77 79 0.840 292 3.422 0.000 17 4.047 14 0.031 0.000 0 14 0.031
jpeg.1483.25 27 0.484 71 0.234 0.000 43 0.266 21 0.031 0.000 4 34 0.047
jpeg.3184.107 109 0.887 411 14.640 0.487 24 16.844 32 0.093 0.000 0 32 0.093
jpeg.3195.85 87 0.740 13 278.844 38.462 4041 1366.985 45 0.125 38.462 5674 16979 897.312
jpeg.3198.93 95 0.752 140 252.734 2.857 2204 529.781 29 0.141 3.571 401 1686 9.704
jpeg.3203.135 137 0.897 507 47.578 0.394 31 56.703 18 0.094 2.170 7 41 0.125
jpeg.3740.15 17 0.257 33 1.782 3.030 231 0.234 17 0.031 0.000 0 17 0.031
jpeg.4154.36 38 0.633 74 0.641 5.405 1462 2.500 43 0.063 0.000 0 43 0.063
jpeg.4753.54 56 0.769 146 2.766 0.685 11 2.984 38 0.062 0.685 6 59 0.109
susan.248.197 199 0.939 588 76.329 0.340 22 106.672 21 0.125 0.000 0 21 0.125
susan.260.158 160 0.916 472 12.156 1.695 570 123.594 33 0.141 0.000 0 33 0.141
susan.343.182 184 0.936 468 194.188 1.068 776 474.391 47 0.203 0.962 19 89 0.359
typeset.10192.123 125 0.744 241 4.859 10.373 5565 297.859 93 0.500 0.000 0 93 0.500
typeset.10835.26 28 0.349 60 0.063 0.000 0 0.063 14 0.031 0.000 0 14 0.031
typeset.12395.43 45 0.518 125 0.531 0.800 10 0.437 27 0.078 0.000 0 27 0.078
typeset.15087.23 25 0.557 89 0.297 1.124 32 0.297 24 0.047 0.000 0 24 0.047
typeset.15577.36 38 0.555 93 0.031 0.000 0 0.031 4 0.015 0.000 0 4 0.015
typeset.16000.68 70 0.658 67 21.891 0.000 0 21.891 643 3.281 8.955 144 1316 7.172
typeset.1723.25 27 0.245 54 0.203 5.556 7660 4.094 19 0.031 5.556 21 99 0.110
typeset.19972.246 248 0.993 979 0.110 0.000 0 0.110 0 0.062 0.000 0 0 0.062
typeset.4391.240 242 0.981 837 378.172 0.119 46 6.250 18 0.094 0.000 0 18 0.094
typeset.4597.45 47 0.493 133 0.437 0.000 0 0.437 7 0.031 0.000 0 7 0.031
typeset.4724.433 435 0.995 1819 4.000 0.000 0 4.000 8 0.172 0.000 0 8 0.172
typeset.5797.33 35 0.748 93 0.234 0.000 0 0.234 9 0.032 0.000 0 9 0.032
typeset.5881.246 248 0.986 979 191.813 0.306 191 356.218 52 0.343 0.000 0 52 0.343
Average 55.134 2.693 849 125.095 49 0.225 2.276 233 769 33.965

25

4.2.1 Computational Results for LR Models

Tables 4-5 show the overall results for the linear relaxation of the MILP mod-
els proposed for the PCMCA-WT. In all the tables the Cost column reports
the value of the objective function. The Gap column indicates the percentage
relative difference between the cost of the best known integer solution of the
instance (CostBest), and the objective function cost of the model’s linear relax-
ation (CostLR), computed as 100 · CostBest−CostLR

CostBest
. The Cuts column indicates

the number of inequalities that are dynamically added to the model, that is
inequalities (18) and (39) for each model. The solution information are not
reported for instances where the solver times out or runs out of memory before
finding the optimal solution.

The linear relaxation of the MCF model has an average optimality gap of
20.22%, and the solver times out before finding the optimal solution for the
model’s linear relaxation for instances that are larger than 240. Comparing the
results for the DA and AAC models, the first model’s linear relaxation has an
average optimality gap of 23.96%, whereas the second model has an average
optimaility gap of 23.99% across all the instances. Comparing the number
of generated cuts, the AAC model generates 6% less cuts compared to the
DA model. We can notice that the DA model finds higher estimates for the
optimal integer solution compared to the other two models, however the AAC
model finds better estimates on the symmetrical COMPILERS instances which
have symmetric costs. Instances where the AAC model and MCF model found
tighter estimates are underlined in the tables.

A major problem that we can notice in the MCF model is that the solution
times are much larger when compared to the other two models. For example,
the MCF model finds the optimal solution of ESC78 instance within 9 min-
utes compared to 4 and 6 seconds of computing time by the other two models.
The same increased solution time can be noticed in other instances, sometimes
reaching almost an hour to solve the linear relaxation compared to few seconds.
For the instances that are optimally solved by all three LR models, the solu-
tion time is on average 889 seconds for the MCF model, 19 seconds for the DA
model, and 38 seconds for the AAC model.

In general, it is hard to decide which linear relaxation would perform better
on some instances, however the DA model seems to be the most suitable, as its
linear relaxation is much easier to solve compared to the other two, and its result
exhibits a lower average optimality gap compared to the other two models.

26

Table 4: LR Models computational results for PCMCA-WT for TSPLIB instances

Instance MCF DA AAC

Name Size Density of P Cost Time (s) Gap Cost Cuts Time (s) Gap Cost Cuts Time (s) Gap
br17.10 18 0.314 25.08 1.437 42.996 25.17 15 0.265 42.795 25.15 18 0.203 42.841
br17.12 18 0.359 25.12 1.032 42.917 25.17 15 0.265 42.795 25.15 18 0.203 42.841
ESC07 9 0.611 1887.50 0.204 0.971 1890.75 3 0.110 0.800 1782.07 7 0.031 6.502
ESC11 13 0.359 2127.00 0.297 2.162 2067.00 10 0.187 4.922 2040.30 8 0.312 6.150
ESC12 14 0.396 1138.00 0.109 0.000 1138.00 0 0.063 0.000 1138.00 1 0.078 0.000
ESC25 27 0.177 1043.05 3.297 9.927 1082.41 37 0.672 6.528 1064.20 40 0.890 8.100
ESC47 49 0.108 703.14 36.969 5.872 703.12 257 9.250 5.874 703.14 80 3.625 5.871
ESC63 65 0.173 56.00 266.610 0.000 56.00 6 1.594 0.000 56.00 67 20.937 0.000
ESC78 80 0.139 502.16 523.810 58.014 721.93 8 4.453 39.638 718.00 6 5.969 39.967
ft53.1 54 0.082 3953.05 188.391 3.325 3962.45 34 5.594 3.095 3949.66 25 8.297 3.408
ft53.2 54 0.094 3997.50 180.250 6.688 3998.74 40 5.531 6.659 3993.84 52 8.547 6.773
ft53.3 54 0.225 4286.90 171.203 21.442 4388.35 69 7.640 19.583 4249.72 97 13.562 22.124
ft53.4 54 0.604 5026.27 52.062 21.940 5149.40 18 4.875 20.028 5010.26 21 5.250 22.189
ft70.1 71 0.036 32801.04 1021.590 1.492 32980.40 148 16.610 0.954 32851.51 130 39.453 1.341
ft70.2 71 0.075 32895.06 1523.523 4.514 33016.60 160 22.235 4.161 32939.71 171 48.172 4.384
ft70.3 71 0.142 33441.93 2048.220 21.740 33641.84 402 47.500 21.272 33672.54 264 63.344 21.201
ft70.4 71 0.589 35433.67 113.969 12.302 35805.55 132 18.188 11.381 35427.98 156 31.813 12.316
rbg048a 50 0.444 231.57 335.875 11.277 228.06 11 1.703 12.621 221.84 11 3.985 15.004
rbg050c 52 0.459 215.12 124.781 4.393 214.35 36 2.485 4.733 217.24 26 3.422 3.449
rbg109 111 0.909 293.13 590.328 29.196 314.83 19 8.609 23.954 314.79 5 13.531 23.964
rbg150a 152 0.927 373.34 1417.090 30.991 417.14 12 10.969 22.895 416.17 7 32.969 23.074
rbg174a 176 0.929 365.40 2096.480 37.000 405.03 10 21.984 30.167 401.07 9 65.828 30.850
rbg253a 255 0.948 - - - 458.28 11 60.750 40.714 467.20 7 248.812 39.560
rbg323a 325 0.928 - - - 920.95 23 210.250 77.176 892.63 19 719.109 77.878
rbg341a 343 0.937 - - - 677.73 52 365.250 82.165 672.90 44 725.343 82.292
rbg358a 360 0.886 - - - 699.25 77 429.547 78.785 666.92 29 1395.735 79.766
rbg378a 380 0.894 - - - 644.63 107 422.203 76.635 605.73 61 1787.078 78.045
kro124p.1 101 0.046 32597.08 3482.940 7.476 32657.90 106 47.765 7.304 32603.69 123 89.266 7.457
kro124p.2 101 0.053 32761.06 3482.630 13.687 33053.63 135 48.688 12.916 32922.44 171 134.109 13.262
kro124p.3 101 0.092 33715.31 3490.750 37.550 33951.74 270 76.703 37.112 33826.66 303 212.000 37.344
kro124p.4 101 0.496 37386.23 2552.250 32.255 38025.91 132 35.250 31.096 37233.59 174 88.859 32.532
p43.1 44 0.101 2825.00 864.844 36.801 2825.00 49 2.140 36.801 2797.37 53 3.797 37.419
p43.2 44 0.126 2759.38 1036.547 35.453 2825.00 98 2.672 33.918 2722.91 140 9.422 36.306
p43.3 44 0.191 2759.53 573.968 48.660 2845.00 113 3.469 47.070 2722.79 197 10.407 49.343
p43.4 44 0.164 2925.07 11.937 40.305 2930.08 115 2.984 40.202 2822.27 93 4.968 42.403
prob.100 100 0.048 643.00 3484.390 36.210 668.13 1225 598.594 33.717 657.65 1009 999.453 34.757
prob.42 42 0.116 148.90 57.672 12.927 153.18 107 4.813 10.421 148.26 52 5.469 13.298
ry48p.1 49 0.091 13134.08 99.141 4.285 13133.93 62 4.953 4.286 13115.36 54 8.391 4.421
ry48p.2 49 0.103 13195.09 95.937 9.986 13243.77 48 4.703 9.654 13206.48 34 5.203 9.909
ry48p.3 49 0.193 13926.14 136.859 14.700 13979.71 207 12.469 14.371 13925.41 191 19.016 14.704
ry48p.4 49 0.588 16168.48 16.781 17.713 16316.13 60 5.344 16.962 16186.84 93 9.406 17.620
Average 835.671 19.921 108 61.691 24.784 99 166.982 25.626

27

Table 5: LR Models computational results for PCMCA-WT for COMPILERS instances

Instance MCF DA AAC

Name Size Density of P Cost Time (s) Gap Cost Cuts Time (s) Gap Cost Cuts Time (s) Gap
gsm.153.124 126 0.97 221.14 135.500 29.348 222.23 15 0.610 29.000 223.41 15 3.312 28.623
gsm.444.350 353 0.99 - - - 1914.83 6 4.531 33.351 2042.75 4 5.156 28.898
gsm.462.77 79 0.84 377.54 231.625 22.636 384.41 27 6.016 21.227 380.96 29 5.375 21.934
jpeg.1483.25 27 0.484 84.00 1.844 3.446 78.97 17 0.406 9.230 76.89 16 0.719 11.621
jpeg.3184.107 109 0.887 419.22 254.187 38.710 441.65 60 2.875 35.431 451.07 76 16.047 34.054
jpeg.3195.85 87 0.74 13.04 3595.590 47.837 9.00 126 7.875 64.000 13.00 195 9.130 48.000
jpeg.3198.93 95 0.752 140.26 3594.700 31.244 151.87 214 9.296 25.554 152.79 152 11.730 25.103
jpeg.3203.135 137 0.897 524.22 1217.125 30.104 564.03 58 3.234 24.796 568.97 122 21.063 24.137
jpeg.3740.15 17 0.257 33.00 0.313 0.000 33.00 5 0.093 0.000 33.00 3 0.125 0.000
jpeg.4154.36 38 0.633 86.88 7.843 3.469 85.06 26 2.125 5.489 84.01 21 0.765 6.656
jpeg.4753.54 56 0.769 150.20 76.875 8.413 153.08 30 3.500 6.659 150.19 40 2.250 8.421
susan.248.197 199 0.939 613.41 3519.028 48.192 658.84 108 9.672 44.355 682.70 138 34.656 42.340
susan.260.158 160 0.916 494.65 1681.391 43.533 519.01 116 7.796 40.752 534.43 244 55.359 38.992
susan.343.182 184 0.936 469.79 1488.110 45.500 539.47 72 6.156 37.416 554.04 94 20.234 35.726
typeset.10192.123 125 0.744 246.52 3579.440 40.599 264.30 131 22.078 36.313 260.60 90 23.328 37.205
typeset.10835.26 28 0.349 93.55 2.187 16.470 81.83 7 0.328 26.938 92.34 9 0.625 17.554
typeset.12395.43 45 0.518 139.02 57.437 4.784 137.85 110 3.094 5.582 137.27 107 4.484 5.979
typeset.15087.23 25 0.557 92.27 2.046 4.878 93.00 13 0.157 4.124 93.00 30 0.516 4.124
typeset.15577.36 38 0.555 120.01 4.141 3.995 120.69 21 0.531 3.448 120.01 14 1.015 3.992
typeset.16000.68 70 0.658 70.00 2051.330 12.500 70.07 121 4.062 12.413 69.48 486 32.735 13.150
typeset.1723.25 27 0.245 56.00 5.516 6.667 55.33 93 1.062 7.783 55.50 90 2.047 7.500
typeset.19972.246 248 0.993 - - - 1229.52 4 1.891 36.261 1234.43 11 4.328 36.007
typeset.4391.240 242 0.981 - - - 1006.12 31 2.812 28.745 1057.66 64 10.281 25.095
typeset.4597.45 47 0.493 144.01 23.484 7.094 143.13 89 3.282 7.658 141.18 169 9.281 8.916
typeset.4724.433 435 0.995 - - - 2351.03 29 12.016 31.517 2351.76 33 21.531 31.495
typeset.5797.33 35 0.748 105.93 2.843 6.258 106.00 9 0.625 6.195 104.21 21 0.891 7.779
typeset.5881.246 248 0.986 - - - 1204.29 27 5.234 29.159 1229.51 28 9.422 27.676
Average 978.753 20.713 58 4.495 22.718 85 11.348 21.518

28

4.2.2 Computational Results for IP Models

Tables 6-7 show the overall results of the MILP models proposed for the PCMCA-
WT. In Tables 6-7, the Cost column reports the lower bound (LB) and upper
bound (UB) on the value of the objective function obtained from solving the re-
spective model. The IP Gap column measures the percentage relative difference
between the upper and lower bound obtained from solving the respective model,
calculated as 100 · UB−LB

UB . Cuts column indicates the number of inequalities
that are dynamically added to the model, that is inequalities (18) and (39) for
each model. The solution time is not reported in the tables for the instances
that are not optimally solved within the time limit. Moreover, the solution in-
formation is not reported for instances where it was not possible to solve the
model’s linear relaxation (see Tables 4-5).

The MCF model achieves an optimality gap of 29% on average across all
the instances it is able to solve, compared to 14% for the DA model, and 15%
for the AAC model. We can notice that the solver is finding it difficult to solve
the linear relaxation of the MCF model by observing the small number of nodes
generated in the time limit for some of the instances, compared to the other two
models. However, the MCF model is able to provide the best known solution
(underlined in the tables) for 1 out of 68 instances, and the best lower bound
for 1 instance.

Comparing the results of the DA and AAC models, we can see that the
DA model has an average optimality gap of 19% compared to 21% across all
the instances. Furthermore, the DA model solves three extra instances for
the TSPLIB instances, while the AAC model solves one extra instance for the
COMPILERS instances. For the instances (marked bold in the tables) that are
optimally solved by both models, the DA model is 119% faster at solving those
instances on average, computed as 100 · TDA−TAAC

TDA
, where TDA and TAAC is the

average solution time for solving those instances using the DA model and AAC
model. Comparing the number of branch-decision-tree nodes generated by the
two models, the DA model generates 36% more nodes on average across all the
instances, and 10% more nodes on average for the instances that are optimally
solved by the two models, The DA model found the best lower bound for 55
out of 68 instances, and better upper bounds for 51 out of 68 instances. On
the other hand, the AAC model found tighter lower bounds for 12 out of 68
instances, and better upper bounds for 16 of those instances (underlined in the
tables). In general, the DA model performs better than the AAC model, except
on symmetrical instances and/or instances with extreme high densities larger
than 0.9.

We can conclude that the AAC model is more suitable for symmetrical
instances with extreme densities, while the DA model is more suitable for general
instances. The MCF finds better bounds compared to the other two models for
some instances, however it is not suitable for instances with size larger than 200.

29

Table 6: IP Models computational results for PCMCA-WT for TSPLIB instances

Instance MCF DA AAC

Name Size Density of P Cost IP Gap Nodes Time (s) Cost IP Gap Nodes Cuts Time (s) Cost IP Gap Nodes Cuts Time (s)
br17.10 18 0.314 [35, 44] 20.455 192505 [34, 44] 22.727 2767833 3799 [34, 44] 22.727 2074173 3893
br17.12 18 0.359 [35, 44] 20.455 291653 [35, 45] 22.222 3376744 2519 [35, 44] 20.455 2845672 2265
ESC07 9 0.611 1906 0.000 7 0.109 1906 0.000 17 5 0.078 1906 0.000 0 3 0.078
ESC11 13 0.359 2174 0.000 20 0.265 2174 0.000 22 13 0.172 2174 0.000 33 12 0.219
ESC12 14 0.396 1138 0.000 0 0.078 1138 0.000 0 0 0.063 1138 0.000 0 1 0.078
ESC25 27 0.177 1158 0.000 1158 26.625 1158 0.000 1450 698 3.922 1158 0.000 1098 452 4.812
ESC47 49 0.108 747 0.000 2776 3154.14 747 0.000 750 31743 2230.171 [704, 783] 10.089 2 37495
ESC63 65 0.173 [56, 61] 8.197 165 56 0.000 4100 287 53.281 56 0.000 3177 14118 1223.313
ESC78 80 0.139 [922, 1346] 31.501 920 1196 0.000 11177 267 159.093 1196 0.000 15734 943 301.625
ft53.1 54 0.082 [3984, 4089] 2.568 790 4089 0.000 134416 2932 1430.797 4089 0.000 56905 1433 1195.875
ft53.2 54 0.094 [4054, 4659] 12.986 1055 [4135, 4284] 3.478 200163 6053 [4112, 4318] 4.771 57840 8393
ft53.3 54 0.225 [4472, 6071] 26.338 1030 [4623, 5457] 15.283 168357 6749 [4545, 5734] 20.736 92513 5778
ft53.4 54 0.604 [5409, 6871] 21.278 6531 [5657, 6439] 12.145 564462 2361 [5559, 6668] 16.632 340573 1588
ft70.1 71 0.036 [32937, 37078] 11.168 807 [33117, 33298] 0.544 23240 11362 [33128, 33714] 1.738 27834 6322
ft70.2 71 0.075 [33084, 43282] 23.562 408 [33357, 34450] 3.173 11000 13238 [33297, 34713] 4.079 11474 10171
ft70.3 71 0.142 [33693, 66153] 49.068 287 [33914, 42732] 20.636 8574 15867 [33830, 49116] 31.122 9040 11611
ft70.4 71 0.589 [35912, 44507] 19.312 1969 [36517, 40404] 9.620 121796 3615 [36188, 40701] 11.088 78814 3008
rbg048a 50 0.444 [259, 267] 2.996 596 261 0.000 146017 15025 2794.06 [260, 266] 2.256 62610 14794
rbg050c 52 0.459 [225, 236] 4.661 847 225 0.000 1260 326 10.469 225 0.000 24050 432 210.562
rbg109 111 0.909 [320, 699] 54.220 529 [354, 414] 14.493 150506 219 [349, 428] 18.458 85685 601
rbg150a 152 0.927 [403, 972] 58.539 384 [447, 541] 17.375 59431 232 [441, 650] 32.154 34702 618
rbg174a 176 0.929 [400, 1121] 64.318 326 [446, 580] 23.103 42286 302 [441, 627] 29.665 24226 113
rbg253a 255 0.948 - - - [477, 773] 38.292 12700 152 [475, 971] 51.081 5427 231
rbg323a 325 0.928 - - - [926, 4367] 78.796 4536 86 [903, 4035] 77.621 2845 78
rbg341a 343 0.937 - - - [681, 3832] 82.229 3963 116 [680, 3800] 82.105 2300 90
rbg358a 360 0.886 - - - [706, 3296] 78.580 3408 698 [674, 4109] 83.597 1779 144
rbg378a 380 0.894 - - - [649, 2759] 76.477 2831 110 [613, 6701] 90.852 1128 106
kro124p.1 101 0.046 [32598, 45652] 28.595 1 [32858, 35438] 7.280 3389 139 [32827, 35231] 6.824 6926 5724
kro124p.2 101 0.053 [32762, 55265] 40.718 1 [33190, 37956] 12.557 14237 5920 [33163, 38002] 12.734 8410 3458
kro124p.3 101 0.092 [33716, 329579] 89.770 1 [34217, 53988] 36.621 20016 6098 [33991, 77266] 56.008 3313 9747
kro124p.4 101 0.496 [37395, 103491] 63.866 2 [39413, 55187] 28.583 71246 2652 [38269, 62162] 38.437 32120 2746
p43.1 44 0.101 [2825, 4470] 36.801 779 [2827, 4585] 38.342 160185 19944 [2825, 4615] 38.787 51091 11280
p43.2 44 0.126 [2760, 4845] 43.034 430 [2826, 4275] 33.895 162580 18401 [2826, 5025] 43.761 55765 15014
p43.3 44 0.191 [2828, 6955] 59.339 511 [2864, 6105] 53.088 85658 16311 [2847, 5375] 47.033 26582 10567
p43.4 44 0.164 [2991, 5415] 44.765 5826 [3101, 4900] 36.714 875030 2702 [2981, 4970] 40.020 408540 1620
prob.100 100 0.048 [643, 3611] 82.193 1 [674, 1047] 35.626 3718 9961 [661, 1008] 34.425 1533 7323
prob.42 42 0.116 [163, 171] 4.678 2746 171 0.000 112468 7561 945.203 [167, 171] 2.339 157734 11472
ry48p.1 49 0.091 [13278, 15362] 13.566 1339 [13356, 13854] 3.595 158744 8620 [13371, 13722] 2.558 85005 6664
ry48p.2 49 0.103 [13403, 17833] 24.842 585 [13507, 16968] 20.397 82990 10129 [13508, 14659] 7.852 63149 6161
ry48p.3 49 0.193 [13984, 21379] 34.590 773 [14371, 16337] 12.034 70000 8508 [14299, 16326] 12.416 38332 6103
ry48p.4 49 0.588 [16922, 20030] 15.517 10691 [17339, 19649] 11.756 699363 921 [17136, 20915] 18.068 398622 992
Average 28.164 14679 20.723 252211 5772 693.392 23.719 175531 5453 367.070

30

Table 7: IP Models computational results for PCMCA-WT for COMPILERS instances

Instance MCF DA AAC

Name Size Density of P Cost IP Gap Nodes Time (s) Cost IP Gap Nodes Cuts Time (s) Cost IP Gap Nodes Cuts Time (s)
gsm.153.124 126 0.97 [234, 331] 29.305 936 [246, 313] 21.406 357665 413 [243, 319] 23.824 270962 405
gsm.444.350 353 0.99 - - - [1996, 2873] 30.526 50228 209 [2103, 2905] 27.608 27606 216
gsm.462.77 79 0.84 [392, 707] 44.554 1150 [396, 493] 19.675 462000 1734 [391, 488] 19.877 185939 2399
jpeg.1483.25 27 0.484 87 0.000 2338 71.61 87 0.000 20708 583 11.254 87 0.000 33035 553 72.907
jpeg.3184.107 109 0.887 [430, 811] 46.979 992 [488, 684] 28.655 315065 1051 [489, 684] 28.509 121292 744
jpeg.3195.85 87 0.74 [14, 76] 81.579 0 [22, 25] 12.000 27085 9849 [21, 30] 30.000 2955 3273
jpeg.3198.93 95 0.752 [141, 353] 60.057 0 [172, 213] 19.249 89431 2584 [161, 204] 21.078 16822 3448
jpeg.3203.135 137 0.897 [535, 1539] 65.237 14 [600, 755] 20.530 179785 2533 [595, 750] 20.667 120417 1332
jpeg.3740.15 17 0.257 33 0.000 0 0.266 33 0.000 0 5 0.093 33 0.000 0 3 0.125
jpeg.4154.36 38 0.633 90 0.000 10271 139.579 90 0.000 15705 461 25.766 90 0.000 4242 298 12.562
jpeg.4753.54 56 0.769 [157, 174] 9.770 1826 [163, 165] 1.212 1128020 1079 164 0.000 594353 911 2231.235
susan.248.197 199 0.939 [614, 3014] 79.628 0 [718, 1184] 39.358 62265 1519 [736, 1353] 45.602 39582 1511
susan.260.158 160 0.916 [498, 2530] 80.316 74 [541, 1149] 52.916 163071 3999 [564, 876] 35.616 49000 1510
susan.343.182 184 0.936 [527, 1433] 63.224 5 [586, 862] 32.019 111339 901 [591, 887] 33.371 55306 1143
typeset.10192.123 125 0.744 [247, 774] 68.088 0 [280, 415] 32.530 92153 3643 [280, 456] 38.596 59000 1924
typeset.10835.26 28 0.349 [99, 114] 13.158 119310 [99, 112] 11.607 986681 7100 [99, 113] 12.389 577573 5961
typeset.12395.43 45 0.518 [141, 148] 4.730 5556 [143, 146] 2.055 392093 4782 [141, 147] 4.082 175106 4776
typeset.15087.23 25 0.557 97 0.000 10917 97 0.000 24721 1082 29.235 97 0.000 13225 759 32.094
typeset.15577.36 38 0.555 125 0.000 12472 1738.422 125 0.000 18600 1467 51.688 125 0.000 106552 3042 834.797
typeset.16000.68 70 0.658 [71, 102] 30.392 2 [77, 86] 10.465 13917 28566 [77, 80] 3.750 29319 6506
typeset.1723.25 27 0.245 60 0.000 682 84.75 60 0.000 1212 281 3.391 60 0.000 5533 481 29.734
typeset.19972.246 248 0.993 - - - [1325, 1963] 32.501 68601 48 [1307, 1929] 32.245 33530 45
typeset.4391.240 242 0.981 - - - [1067, 1419] 24.806 100406 332 [1093, 1412] 22.592 43577 388
typeset.4597.45 47 0.493 [147, 167] 11.976 3247 [150, 155] 3.226 501643 4681 [149, 159] 6.289 107981 3505
typeset.4724.433 435 0.995 - - - [2378, 5376] 55.766 29538 214 [2460, 3433] 28.343 15907 211
typeset.5797.33 35 0.748 113 0.000 2872 100.234 113 0.000 15172 652 24.25 113 0.000 10733 341 24.953
typeset.5881.246 248 0.986 - - - [1258, 1877] 32.978 105414 318 [1305, 1700] 23.235 44716 183
Average 31.318 7848 17.907 197501 2966 20.811 16.951 101639 1699 404.801

31

5 Conclusions

This work introduces a more scalable model for the PCMCA, and three models
for solving the PCMCA-WT. A proof of complexity shows that the two problems
fall inside the NP-hard complexity class. The experimental results show that
the benchmark instances for the PCMCA could be solved much more efficiently
compared to a previously proposed model. Moreover, the results show that the
benchmark instances are much harder to solve under the PCMCA-WT settings.
In general, large sized instances with dense precedence graphs are outside the
reach of the three PCMCA-WT models proposed, therefore further studies to
find better formulations for the problem are needed.

The two problems proposed have applications in designing distribution net-
works for commodities such as oil and gas, where the network is designed in such
a way to avoid passing through a certain location when delivering the commod-
ity to another location. Moreover, the delivery can be scheduled to reach certain
locations with higher priority first. The Sequential Ordering Problem is a re-
lated problem with a wide range of applications in the domains of scheduling
and logistics. The two problems proposed can be seen as relaxations of the
Sequential Ordering Problem. Therefore, lower bounds for the SOP based on
them (or their linear relaxations) could be derived, together with some new valid
inequalities. This in turn could have impact on solving the several real-world
problems that can be formulated as a Sequential Ordering Problem.

Acknowledgment

We would like to thank the anonymous reviewers for their constructive com-
ments and suggestions.

A The Path-Based model from [10] fails to de-
tect the violation of precedence constraints
in fractional solutions

The MILP model previously proposed for the PCMCA in [10], imposes the
precedence relationships by propagating a value along every path with end-
points s and t for (s, t) ∈ R in order to detect a precedence violation. The
violation is detected if a non-zero value is propagated from t down to s. The
model sometimes fail to detect a violating path in a fractional solution due
to the diminishing propagated values along that path [10]. However, the Set-
Based Model proposed in Section 2.2 is able to detect the violation for the same
fractional solution. In order to show this, consider the example shown in Figure
8. Referring back to Algorithm 1, we construct the graph Dj (consisting of
all the vertices of the original graph G excluding the successors of vertex s in
the precedence graph P), then we compute a minimum (r, s)-cut in Dj , namely
cut [{s, 1, 2}, {r}], which has a value less than 1 in the example. On the other

32

hand in the model proposed in [10] a value of 0 will be propagated down from
t to s failing to detect the violating path. The details about how the value is
propagated can be found in [10].

r

t

12

s

1.0
0.5

0.50.5

0.5

0.5 0.5

r

t 1

1 0.520.5

s 0

1.0
0.5

0.50.5

0.5

0.5 0.5

r

12

s

0.5

0.5

0.5 0.5

Figure 8: Example of a fractional solution that violates the precedence relation-
ship (s, t) ∈ R, and how the violation cannot be detected by the Path-Based
Model. The figure on the left shows the fractional solution with the violating
path from t to s. The figure in the middle shows the value propagated from t to
s next to each vertex, where the violation is not detected using the Path-Based
Model because a value of 0 is propagated down to vertex s from t. The figure on
the right shows how the Set-Based Model is able to detect the violating path,
since using Algorithm 1 the graph has a minimum (r, s)-cut in Dj with value
less than 1.

References

[1] N. Ascheuer, N. Jünger, and G. Reinelt. A branch & cut algorithm for
the asymmetric traveling salesman problem with precedence constraints.
Computational Optimization and Applications, 17(1):61–84, 2000.

[2] J. Bang-Jensen. Edge-disjoint in- and out-branchings in tournaments
and related path problems. Journal of Combinatorial Theory - Series B,
51(1):1–23, 1991.

[3] K. Bérczi, S. Fujishige, and N. Kamiyama. A linear-time algorithm to find
a pair of arc-disjoint spanning in-arborescence and out-arborescence in a
directed acyclic graph. Information Processing Letters, 109(23):1227–1231,
2009.

[4] F. Bock. An algorithm to construct a minimum directed spanning tree in
a directed network. Developments in Operations Research, pages 29–44,
1971.

33

[5] S. Böcker and F. Rasche. Towards de novo identification of metabolites
by analyzing tandem mass spectra. In Seventh European Conference on
Computational Biology and Bioinformatics, ECCB 2008, volume 24, pages
49–55. Springer, 2008.

[6] M.C. Cai, X. Deng, and L. Wang. Minimum k arborescence with bandwidth
constraints. Algorithmica, 38(4):529–537, 2004.

[7] F. Carrabs, R. Cerulli, R. Pentangelo, and A. Raiconi. Minimum spanning
tree with conflicting edge pairs: a branch-and-cut approach. Annals of
Operations Research, 298:65–78, 2021.

[8] Y.J. Chu and T.H. Liu. On the shortest arborescence of a directed graph.
Scientia Sinica, 14:1396–1400, 1965.

[9] A. Darmann, U. Pferschy, and J. Schauer. Determining a minimum span-
ning tree with disjunctive constraints. In Algorithmic Decision Theory,
pages 414–423. Springer Berlin Heidelberg, 2009.

[10] M. Dell’Amico, J. Jamal, and R. Montemanni. A mixed integer linear
program for a precedence-constrained minimum-cost arborescence problem.
In Proc. The 8th International Conference on Industrial Engineering and
Applications (Europe), pages 216–221, 2021.

[11] J. Edmonds. Optimum branchings. Journal of research of the national
bureau of standards, B 71(4):233–240, 1967.

[12] L.F. Escudero. An inexact algorithm for the sequential ordering problem.
European Journal of Operational Research, 37(2):236–249, 1988.

[13] K.P. Eswaran and R.E. Tarjan. Augmentation problems. SIAM Journal
on Computing, 5:653–665, 1976.

[14] G. Fertin, J. Fradin, and G. Jean. Algorithmic aspects of the maximum
colorful arborescence problem. In Theory and Applications of Models of
Computation. TAMC 2017, pages 216–230. Springer, 2017.

[15] M. Fischetti and D. Vigo. A branch-and-cut algorithm for the resource-
constrained minimum-weight arborescence problem. Networks: An Inter-
national Journal, 29(1):55–67, 1997.

[16] A.M. Frieze and T. Tkocz. A randomly weighted minimum arborescence
with a random cost constraint. Mathematics of Operations Research, 2021.

[17] G. Galbiati, S. Gualandi, and F. Maffioli. On minimum changeover cost
arborescences. Lecture Notes in Computer Science, 6630:112–123, 2011.

[18] M.R. Garey and D.S. Johnson. Computers and intractability: A Guide to
the Theory of NP-Completeness. W H Freeman & Co., San Francisco, 1979.

34

[19] L. Gouveia and M.J. Lopes. The capacitated minimum spanning tree prob-
lem: On improved multistar constraints. European Journal of Operational
Research, 160(1):47–62, 2005.

[20] S.L. Hakimi. Optimum distribution of switching centers in a communication
network and some related graph theoretic problems. Operations Research,
13(3):462–475, 1965.

[21] J.X. Hao and J.B. Orlin. A faster algorithm for finding the minimum cut
in a directed graph. Journal of Algorithms, 17(3):424–446, 1994.

[22] V.R Houndji, P. Schaus, M.N. Hounkonnou, and L. Wolsey. The weighted
arborescence constraint. In International Conference on AI and OR Tech-
niques in Constraint Programming for Combinatorial Optimization Prob-
lems, pages 185–201. Springer, 2017.

[23] R. Kawatra and D. Bricker. Design of a degree-constrained minimal span-
ning tree with unreliable links and node outage costs. European Journal of
Operational Research, 156(1):73–82, 2004.

[24] J. Kováč. Complexity of the path avoiding forbidden pairs problem revis-
ited. Discrete Applied Mathematics, 161(10):1506–1512, 2013.

[25] J. Li, X. Liu, and J. Lichen. The constrained arborescence augmentation
problem in digraphs. In 2017 3rd IEEE International Conference on Com-
puter and Communications (ICCC), pages 1204–1209. IEEE, 2017.

[26] Y. Li, M.T. Thai, F. Wang, and D. Zhu Du. On the construction of a
strongly connected broadcast arborescence with bounded transmission de-
lay. IEEE Transactions on Mobile Computing, 5(10):1460–1470, 2006.

[27] R. Montemanni, D.H. Smith, and L.M. Gambardella. A heuristic ma-
nipulation technique for the sequential ordering problem. Computers &
Operations Research, 35(12):3931–3944, 2008.

[28] R Montemanni, D.H. Smith, A.E. Rizzoli, and L.M. Gambardella. Sequen-
tial ordering problems for crane scheduling in port terminals. International
Journal of Simulation and Process Modelling, 5(4):348–361, 2009.

[29] V. Morais, B. Gendron, and G.R. Mateus. The p-arborescence star prob-
lem: Formulations and exact solution approaches. Computers & Operations
Research, 102:91–101, 2019.

[30] A.H. Pereira, G.R. Mateus, and S. Urrutia. Branch-and-cut algorithms for
the p-arborescence star problem. International Transactions in Operational
Research, 29(4):2374–2400, 2021.

[31] G. Reinelt. TSPLIB–A travelling salesman problem library. ORSA Journal
on Computing, 3(4):376–384, 1991.

35

[32] W. Shi and C. Su. The rectilinear steiner arborescence problem is NP-
complete. SIAM Journal on Computing, 35(3):729–740, 2005.

[33] G. Shobaki and J. Jamal. An exact algorithm for the sequential ordeing
problem and its application to switching energy minimization in compilers.
Computational Optimizations and Applications, 61(2):343–372, 2015.

[34] L.A. do Carmo Viana and M. Campêlo. Two dependency constrained span-
ning tree problems. International Transactions in Operational Research,
27(2):867–898, 2020.

36

	1 Introduction
	2 The Precedence-Constrained Minimum-Cost Arborescence Problem
	2.1 Computational Complexity
	2.2 A Set-Based Model

	3 The Precedence-Constrained Minimum-Cost Arborescence Problem with Waiting Times
	3.1 Computational Complexity
	3.2 MILP Models
	3.2.1 A Multi-Commodity Flow Model
	3.2.2 A Distance-Accumulation Model
	3.2.3 An Adjusted Arc-Cost Model

	4 Experimental Results
	4.1 Computational Results for the PCMCA
	4.2 Computational Results for the PCMCA-WT
	4.2.1 Computational Results for LR Models
	4.2.2 Computational Results for IP Models

	5 Conclusions
	A The Path-Based model from ref-dellamico fails to detect the violation of precedence constraints in fractional solutions

