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Abstract

We consider the vehicle routing problem with stochastic demands (VRPSD), a stochastic variant

of the well-known VRP in which demands are only revealed upon arrival of the vehicle at each

customer. Motivated by the significant recent progress on VRPSD research, we begin this paper

by summarizing the key new results and methods for solving the problem. In doing so, we discuss

the main challenges associated with solving the VRPSD under the chance-constraint and the

restocking-based perspectives. Once we cover the current state-of-the-art, we introduce two major

methodological contributions. First, we present a branch-price-and-cut (BP&C) algorithm for the

VRPSD under optimal restocking. The method, which is based on the pricing of elementary routes,

compares favorably with previous algorithms and allows the solution of several open benchmark

instances. Second, we develop a demand model for dealing with correlated customer demands.

The central concept in this model is the “external factor”, which represents unknown covariates

that affect all demands. We present a Bayesian-based, iterated learning procedure to refine our

knowledge about the external factor as customer demands are revealed. This updated knowledge is

then used to prescribe optimal replenishment decisions under demand correlation. Computational

results demonstrate the efficiency of the new BP&C method and show that cost savings above

10% may be achieved when restocking decisions take account of demand correlation. Lastly, we

motivate a few research perspectives that, as we believe, should shape future research on the

VRPSD.

Keywords: Routing, Column generation, Optimal restocking, Bayesian inference

1. Introduction

The vehicle routing problem (VRP; Toth & Vigo 2014) is a foundational problem in trans-

portation logistics. In this paper, we consider the VRP with stochastic demands (VRPSD), a

VRP variant in which customer demands are only revealed upon arrival of the vehicle at each

customer. The VRPSD has been extensively studied, with the first contribution dating back to
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more than 50 years ago (Tillman 1969). The high interest on the VRPSD is explained by the

applicability and difficulty of the problem, which combines elements from discrete and stochastic

optimization. From a practical standpoint, the VRPSD arises in applications such as fuel delivery,

waste collection, logistics of dairy products, courier services, sludge disposal, emergency logistics,

distribution of industrial gases and replenishment of vending machines (see, e.g., Larson 1988,

Chan et al. 2001, Singer et al. 2002, Chepuri & Homem-de Mello 2005, Yan et al. 2013).

Our first goal in this paper is to review and analyze recent contributions, summarize key

results and provide new research avenues on the VRPSD. This in-depth review is motivated by

substantial recent progress on VRPSD research. Key contributions include new exact algorithms,

theoretical results on restocking policies, and new recourse policies, which describe rules (and

their associated costs) to handle the possibility that the total demand along a route may exceed

the vehicle capacity. These advances enabled the solution of larger instances under more realistic

demand distributions and recourse policies, which were known research gaps in this area (Gendreau

et al. 2016). At the same time, the recent progress shed light on important but relatively less

studied VRPSD variants, and suggested future research directions.

Following the review of the state-of-art, the focus of this paper becomes methodological. We

first present a new branch-price-and-cut (BP&C) algorithm for the VRPSD under optimal re-

stocking. This new BP&C method is based on the pricing of elementary routes (hence, elementary

BP&C), and improves considerably upon the dominance-based BP&C by Florio et al. (2020a).

In particular, the new BP&C algorithm finds the optimal solution of several previously unsolved

benchmark instances, and reduces drastically the runtime requirements for solving instances also

solved by the dominance-based BP&C.

Our second methodological contribution is a Bayesian demand model and an optimal restocking

policy for the case of correlated customer demands. The central concept in this demand model

is the external factor, which is a “state of the world” variable that represents unknown demand

predictors. During route execution, each time the demand of a customer is revealed we update

our beliefs about the external factor in a Bayesian fashion, and use the updated knowledge to

prescribe optimal replenishment decisions. We also provide a theoretical convergence result about

the Bayesian learning procedure.

Before we proceed, we clarify that the scope of this paper is the static VRPSD. In the

static paradigm, all customers are known at routing planning stage. In the alternative dynamic

paradigm, new customers may appear while routes are already in execution. For a review on

dynamic VRPs, we refer to the recent work by Soeffker et al. (2022).

In summary, our main contributions are the following:

(i) We review the state-of-art on the VRPSD with a focus on the new contributions and results

since the review by Gendreau et al. (2016). We cover both the restocking-based and the

chance-constraint modeling paradigms, or perspectives, and discuss the most challenging

aspects when solving the VPRSD under either perspective. We also motivate future research

on the VRPSD by discussing a few important research gaps.

(ii) We introduce a new state-of-art BP&C algorithm for the VRPSD under optimal restocking,

which is based on the pricing of elementary routes and strong completion bounds. This

algorithm compares very favorably with the dominance-based BP&C by Florio et al. (2020a).
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In addition to closing several previously unsolved benchmark instances, we also provide, for

the first time, optimal solutions to difficult instances where the total expected demand along

a route is allowed to exceed the vehicle capacity.

(iii) We propose a demand model for correlated demands, together with a Bayesian procedure

to update, as customer demands are revealed, the knowledge of a state of the world variable

that represents unknown demand covariates. Further, we extend the optimal restocking

policy by Yee & Golden (1980) to prescribe optimal replenishment decisions under demand

correlation.

The remainder of this paper is organized as follows: Section 2 formulates the VRPSD under two

modeling paradigms, or perspectives: the restocking-based and the chance-constraint perspectives.

Section 3 reviews recent key contributions on the VRPSD and discusses the challenging aspects

related to each perspective. Section 4 introduces the elementary BP&C algorithm for the VRPSD

under optimal restocking. Section 5 presents the Bayesian-inspired demand model and restocking

policy for dealing with correlated customer demands. Section 6 reports computational results

on the elementary BP&C algorithm and the optimal restocking policy for correlated demands.

Section 7 concludes the paper by summarizing the key takeaways and motivating future research

directions.

2. The VRPSD: One Problem, Two Perspectives

In contrast to its deterministic counterpart, in the VRPSD the total demand along a route may

exceed the vehicle capacity. Two broad model classes arise, depending on how capacity violations

are managed. In the VRPSD with restocking, vehicles may perform replenishment trips to the

depot to increase the capacity available along routes. In the VRPSD without restocking, capacity

constraints are enforced in a probabilistic way to reduce the likelihood of capacity violations. In

this section, we first introduce common notation, and then discuss both modeling perspectives.

2.1. General Definitions

The VRPSD is defined on a complete digraph G = (V,A), where V = {0, . . . , n} is the set

of nodes and A = {(i, j) : i, j ∈ V} is the set of arcs. Node 0 identifies the depot and the node

set V+ = V \ {0} identifies customers. A discrete random demand ξi is associated with each

customer i ∈ V+, and a deterministic cost cij is associated with each arc (i, j) ∈ A. A fleet of m

homogeneous vehicles is available and each vehicle has a capacity of Q.

We define a route as a non-empty sequence of customers θ, and we let Θ be the set of all feasible

routes. We also let g : Θ 7→ R+ be a route cost function. The specifications of Θ and g(·) depend

on the model class, as further discussed in Sections 2.2 and 2.3. With binary decision variables zθ,

θ ∈ Θ, to indicate whether route θ belongs to the solution, the VRPSD can be modeled generically
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as a set-partitioning problem:

min
∑
θ∈Θ

g(θ)zθ, (1)

s.t.
∑
θ∈Θ

I(i ∈ θ)zθ = 1, i ∈ V+, (2)

∑
θ∈Θ

zθ ≤ m, (3)

zθ ∈ {0, 1}, θ ∈ Θ, (4)

where I(·) is the indicator function.

The model minimizes the total cost of the routes selected in the solution, under the constraints

that each customer must be served by exactly one vehicle (constraints (2)) and the fleet size limit

is respected (constraint (3)). Next, we show how this generic set-partitioning model is specialized

to the VRPSD with and without restocking.

2.2. VRPSD with Restocking

In the restocking-based VRPSD all demand must be served, and vehicles are allowed to replen-

ish at the depot to increase the capacity available along routes. Therefore, in this model class we

have the notion of a restocking policy, which is a set of rules that govern, during route execution,

when vehicles replenish at the depot.

The cost of a route is the sum of the costs of the arcs traversed along the route; therefore,

it depends on the restocking policy adopted. Many restocking policies have been proposed, for

example, optimal restocking (Yee & Golden 1980), detour-to-depot (Dror et al. 1989), rule-based

restocking Salavati-Khoshghalb et al. (2019c), and the switch policy (Florio et al. 2022). The route

cost under each of those policies is efficiently computed by dynamic programming. In Section 4.1,

we detail the algorithm to compute costs when the route is executed under optimal restocking.

To establish the feasible region of the restocking-based VRPSD, we first define the set ΘΩ of

all possible customer sequences:

ΘΩ =
{

(v1, . . . , vH) : H ≥ 1 ∧ vi ∈ V+ ∧ vi 6= vj if i 6= j
}
.

Then, the set of feasible routes is given by:

Θ =

{
θ ∈ ΘΩ :

∑
i∈θ

E
[
ξi
]
≤ fQ

}
,

where f ≥ 1 is the so-called load factor parameter.

Traditionally, the VRPSD has been studied assuming a load factor f = 1, under the argument

that, on average, vehicles should be able to serve all demand along a route without restocking.

However, in some applications (e.g., waste collection, see Jaunich et al. 2016) restocking (or

unloading) is the norm rather than the exception. Therefore, sensible models and algorithms

for the VRPSD should allow for larger load factors, even though, as we shall see in Section 6.1,

problem difficulty increases considerably with the load factor.
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As many efficient algorithms for the VRPSD with restocking are based on the integer L-shaped

method (Laporte & Louveaux 1993), we also present the formulation upon which those algorithms

are based. Given binary variables yij , (i, j) ∈ A, to identify the arcs used in a solution, the two-

index model is as follows:

min
∑

(i,j)∈A

cijyij + E
[
Qπ(y)

]
, (5)

s.t.
∑
j∈V+

y0j ≤ m,

∑
i∈V

yij = 1, j ∈ V+,

∑
j∈V

yij = 1, i ∈ V+,

∑
i∈S

∑
j /∈S

yij ≥

⌈∑
i∈S

E
[
ξi
]
/fQ

⌉
, S ⊂ V+, (6)

yij ∈ {0, 1}, (i, j) ∈ A,

where y = [yij ](i,j)∈A.

The model resembles two-index deterministic VRP models with capacity cut constraints (see,

e.g., Toth & Vigo 2014), which, in the VRPSD, are adjusted to take account of the load factor.

The term E[Qπ(y)] in the objective function (5) refers to the expected restocking cost given the

set of planned routes induced by y and assuming that restocking policy π is in effect. Hence, the

two-index formulation can be interpreted as a two-stage stochastic program, where the first-stage

decision is the set of planned routes. However, the VRPSD with restocking is actually a multi-

stage stochastic problem since a decision (e.g., to replenish or not) is taken after each customer is

served.

2.3. Chance-constrained VRPSD

In certain applications, restocking may not be practical. For example, the depot may be located

far from the demand zones and customers may not strictly require all demand to be satisfied. This

gives rise to VRPSD models where the set of feasible routes is defined by the following probabilistic

constraint (or chance-constraint):

Θ =

{
θ ∈ ΘΩ : P

[∑
i∈θ

ξi ≤ Q

]
≥ 1− ε

}
,

where parameter ε regulates the maximum allowed probability of exceeding the vehicle capacity.

In chance-constrained models, the cost of a route θ = (v1, . . . , vH) is deterministic and given

by g(θ) = c0v1 +
∑
i∈{2,...,H} cvi−1i + cvH0. Hence, in this perspective the demand uncertainty

affects only the feasible solution space.

3. Review of Recent Contributions

Rather than cataloging all VRPSD work since Tillman (1969), we review in detail the key

theoretical and methodological contributions that appeared since the review by Gendreau et al.
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Table 1: Key Recent VRPSD Contributions (Restocking Perspective)

Reference Main contributions

Bertazzi & Secomandi (2018)
Theoretical bounds on the cost of routes under optimal
restocking and detour-to-depot policies.

Florio et al. (2020a)
BP&C algorithm for the VRPSD under optimal restocking;
results on instances with high value of stochastic solution.

Florio et al. (2020b)
Unified mixed-integer linear model for the single-VRPSD
under optimal restocking.

Bertazzi & Secomandi (2020)
Forward dynamic programming procedure to approximate
the cost of a route under optimal restocking.

Louveaux & Salazar-González (2018)
First exact algorithm (integer L-shaped) for the VRPSD
under optimal restocking; results on i.i.d. customer demands.

Salavati-Khoshghalb et al. (2019a)
Integer L-shaped method for the VRPSD under optimal
restocking; results on non-i.i.d. customer demands.

Salavati-Khoshghalb et al. (2019b)
Preventive restocking policy that balances risk and expected
cost of failures; integer L-shaped algorithm.

Salavati-Khoshghalb et al. (2019c)
Customer-specific, rule-based restocking policy; integer
L-shaped algorithm.

Florio et al. (2022)
First exact algorithm (BP&C) for a VRPSD under a
(partial) reoptimization recourse policy.

Florio et al. (2021b)
B&P algorithm for a duration-constrained VRPSD with
restocking; Monte Carlo method for checking route feasibility.

De La Vega et al. (2022)
Integer L-shaped algorithm for a VRPSD with time windows
under rule-based restocking.

Hoogendoorn & Spliet (2022)
New families of valid inequalities and improved L-shaped
algorithm for the VRPSD under optimal restocking.

This paper
Elementary BP&C algorithm; optimal restocking policy for
positively correlated customer demands.

(2016). For a more encyclopedic survey of the VRPSD, and stochastic routing in general, we

refer to Oyola et al. (2017, 2018). Our review is split into two broad sections, VRPSD with and

without restocking, which correspond to the two modeling perspectives discussed in Section 2.

For convenience, Tables 1 and 2 highlight the main contributions of each work reviewed in this

section.

3.1. VRPSD with Restocking

A well-known result on the VRPSD is that, given a customer sequence, the optimal restocking

policy is of a threshold type and can be computed by dynamic programming (Yee & Golden 1980).

There are both theoretical and empirical results that justify adopting optimal restocking in place

of detour-to-depot, which is the policy employed by all exact methods proposed before the review

by Gendreau et al. (2016). Bertazzi & Secomandi (2018) show that the expected cost of a route

executed under detour-to-depot is up to 100% higher than the expected cost of the same route

executed under optimal restocking. They also show, by means of a somewhat extreme example,

that the expected cost of the best detour-to-depot route (that is, the route with minimum expected

cost when executed under detour-to-depot) to visit a given set of customers may be 50% higher

than the expected cost of the best optimal restocking route (that is, the route with minimum

expected cost when executed under optimal restocking) to visit the same set of customers.

Florio et al. (2020b) provide empirical evidence that the best optimal restocking route out-

performs the best detour-to-depot route by a moderate margin, also in less pathological instances

than those used by Bertazzi & Secomandi (2018) to demonstrate theoretical results. The differ-

ence in expected cost between the two policies, when routes are optimized for each policy, may

exceed 8%. One key insight from Florio et al. (2020b) is that differences in expected costs between

both policies are minor when the total expected demand along a route does not exceed the vehicle
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capacity. This empirical result is confirmed by Florio et al. (2020a), where best VRPSD solu-

tions under detour-to-depot and optimal restocking are compared on several benchmark instances

with a load factor f = 1. This comparison shows that there is little benefit in adopting optimal

restocking when the total demand along a route cannot exceed the vehicle capacity.

Florio et al. (2020b) studies the single-vehicle version of the VRPSD and propose a mixed-

integer linear model for finding the optimal route under optimal restocking. The single-VRPSD,

which is a special case of the VRPSD when
∑
i∈V+ E[ξi] ≤ fQ, finds practical applications, for

example, in waste collection operations where customers are partitioned in districts (Ghiani et al.

2014). The single-VRPSD is an impressively hard problem: currently, there is no algorithm able

to solve general instances with as few as 25 customers under optimal restocking. Bertazzi &

Secomandi (2020) propose a forward dynamic programming procedure to approximate efficiently

the cost of a route under optimal restocking. Even though this cost can be computed exactly

by solving the original dynamic program by Yee & Golden (1980), a fast approximation is useful

within rollout procedures to find good-quality single-VRPSD solutions, considering, again, the

absence of effective exact methods for solving this variant.

The first algorithm for the VRPSD under optimal restocking was proposed by Louveaux &

Salazar-González (2018). This integer L-shaped method introduces lower bounds on the restock-

ing cost of any feasible solution. Two methods for computing these so-called global bounds are

proposed, the most effective of which relies on independent and identically distributed (i.i.d.) cus-

tomer demands. Furthermore, Louveaux & Salazar-González (2018) adapt the lower bounding

functions originally proposed by Jabali et al. (2014) for the case of detour-to-depot restocking.

These functions compute lower bounds on the restocking cost of fractional solutions consisting

of partial routes. Again, special bounds are developed for the case of i.i.d. demands. Overall,

the method is effective for solving instances with up to 100 customers and 3 vehicles, under i.i.d.

demands with up to nine possible demand values.

Salavati-Khoshghalb et al. (2019a) propose another integer L-shaped algorithm for the VRPSD

with optimal restocking. The methodology developments are similar to Louveaux & Salazar-

González (2018) in that global lower bounds and adaptations of the bounding functions from

Jabali et al. (2014) are derived. Differently from Louveaux & Salazar-González (2018), however,

results on instances with non-identical demand distributions are also reported. Demands follow

discrete distributions with up to five possible demand values, and the largest solved instance has

60 customers and 4 vehicles. Still on integer L-shaped methods, Hoogendoorn & Spliet (2022)

propose an improved algorithm based on stronger partial route inequalities and three families of the

so-called split inequalities, which decompose the recourse cost by route. Compared to previous

methods, this algorithm requires significant less runtime for solving the instances proposed by

Louveaux & Salazar-González (2018), and is also able to solve some of those instances for the first

time.

The first BP&C algorithm for the VRPSD under optimal restocking was introduced by Florio

et al. (2020a). Two main ideas enabled the application of the branch-and-price framework for

solving the problem under general independent demand distributions. First, a pricing algorithm

based on a backward labeling strategy, in which the intermediate results of the optimal restocking

dynamic program (i.e., the cost-to-go functions) are stored in each label. Second, the derivation

of label dominance rules for the stochastic case. Florio et al. (2020a) also determine empirically
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that the value of stochastic solution (VSS) of many instances proposed and solved by Louveaux

& Salazar-González (2018) are very small (i.e., less than 1%), which is mostly not the case in

instances with fewer customers per route (i.e., eight or less) and Poisson distributed demands.

Exact methods for solving the VRPSD under alternative restocking policies have also been

proposed. Salavati-Khoshghalb et al. (2019c) consider rule-based policies, which are policies that

prescribe preventive replenishment trips whenever the remaining vehicle capacity falls below preset

customer-specific thresholds. Salavati-Khoshghalb et al. (2019b) propose a restocking policy that

considers both the risk of a failure (i.e., not having enough capacity to serve the demand of a

customer) and the expected cost of failures along the untravelled portion of the route; hence,

a hybrid policy. The main idea in rule-based and hybrid policies is to benefit from preventive

replenishment without having to solve a dynamic program to compute the optimal restocking

policy. Integer L-shaped algorithms are developed to solve the VRPSD under both policies, and

the results show that best rule-based or hybrid restocking solutions are only marginally worse

than the best optimal restocking solutions.

Note that the VRPSD models from Louveaux & Salazar-González (2018), Salavati-Khoshghalb

et al. (2019a), Salavati-Khoshghalb et al. (2019c) and Salavati-Khoshghalb et al. (2019b) assume

a load factor f = 1. The model used by Florio et al. (2020a) allows larger load factors, but only

instances with f = 1 are solved to optimality. As mentioned, compared to the detour-to-depot

policy, the relative cost savings achieved by more advanced restocking policies are usually only

marginal when the load factor is set to f = 1.

One possible step towards better solutions to the restocking-based VRPSD could be to solve

the problem under policies that allow not only preventive replenishment, but also sequencing

decisions. In this direction, Florio et al. (2022) propose a BP&C algorithm to solve the VRPSD

under the switch policy, which is a recourse policy that allows swapping the visiting order of any

two adjacent customers along a planned route. However, even though problem difficulty increases

considerably under the switch policy, the best solutions under this policy are only marginally

better than the best optimal restocking solutions, even in instances with a load factor above one.

Because of the possibility of replenishment trips, in the restocking-based VRPSD the arrival

time at each customer is, in general, stochastic. Therefore, variants of the problem with timing

constraints (e.g., time windows or deadlines) become more challenging, as these constraints need

to be treated either as probabilistic or soft constraints (i.e., have their violations penalized). Florio

et al. (2021b) propose a branch-and-price algorithm to solve a VRPSD under optimal restocking

in which routes must only comply with a maximum duration chance-constraint. The resulting

problem is significantly more challenging than the usual setting, as the absence of a load limit

along a feasible route (given by fQ in the usual model) precludes the separation of rounded

capacity cuts and the use of completion bounds based on the load limit. Finally, De La Vega

et al. (2022) develop an integer L-shaped algorithm to solve a VRPSD variant with time windows

under a rule-based restocking policy, where an additional recourse action is taken in case of time

window violations.

3.2. Chance-constrained VRPSD

In spite of relatively less attention devoted to this perspective in recent years, significant

progress has been achieved in the chance-constrained VRPSD. As seen in Section 2.3, in this
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Table 2: Key Recent VRPSD Contributions (Chance-constraint / Robust Perspective)

Reference Main contributions

Dinh et al. (2018)
Branch-and-cut and BP&C methods for a chance-constrained
VRPSD under scenario-based demand distributions.

Noorizadegan & Chen (2018)
B&P algorithms for the chance-constrained VRPSD under
independent demands.

Sluijk et al. (2022)
Feasibility bounds to determine route compliance with chance-
constraints; multi-label pricing strategy for a two-echelon setting.

Pessoa et al. (2021)
Reformulation of the robust VRPSD with knapsack uncertainty as a
deterministic heterogeneous fleet capacitated VRP.

Ghosal & Wiesemann (2020)
Efficient capacity cuts separation and branch-and-cut algorithms
for the distributionally robust VRPSD.

Munari et al. (2019)
BP&C algorithm for a robust VRP with both travel time and
demand uncertainty; compact model to obtain robust solutions.

Gounaris et al. (2016)
Characterization of demand uncertainty sets for which it is possible
to efficiently determine route feasibility.

variant the demand stochasticity affects only the feasible solution space. Given a subset S ⊂ V+,

the key challenge in the chance-constrained VRPSD is to compute efficiently, and without strong

distributional assumptions, the minimum number of vehicles required to fully serve all customers

in S at a service level of 1− ε. We denote this quantity by rε(S):

rε(S) = min

{
k ∈ N : P

[∑
i∈S

ξi ≤ kQ

]
≥ 1− ε

}
.

Dinh et al. (2018) propose lower bounds on rε(S) and extend the edge-based chance-constrained

VRPSD formulation by Laporte et al. (1989) to the case of general (i.e., possibly dependent)

customer demands. The proposed bounds are computationally tractable whenever the quantiles of

the distribution of
∑
i∈S ξi can be readily computed, which is the case, for example, in multivariate

normal and scenario-based demand distributions. The edge-based formulation serves as base for

branch-and-cut algorithms that are capable of solving instances with up to 45 customers. Further,

Dinh et al. (2018) present a BP&C algorithm, in which relaxed chance-constrained feasible q-routes

are used to guarantee tractability of the pricing problem. With respect to capacity constraints,

this relaxation defines an extended route set Θ′ ⊃ Θ:

Θ′ =

{
θ ∈ ΘΩ :

∑
i∈θ

E
[
ξi
]
≤ Q′

}
,

where Q′ is computed by solving a chance-constrained knapsack problem in a preprocessing step.

Overall, the BP&C method is effective for solving instances with up to 55 customers.

Noorizadegan & Chen (2018) propose a branch-and-price algorithm for the chance-constrained

VRPSD when demands are independent and follow Poisson, Gaussian or scenario-based distri-

butions. An elementary pricing strategy is adopted, and dominance rules are derived for each

demand distribution.

Sluijk et al. (2022) study a two-echelon VRPSD where second-echelon routes must comply

with probabilistic capacity constraints. Lower bounds are computed by column generation, and

the methods employed to verify route feasibility are also applicable to the single-echelon case. In

particular, feasibility bounds are derived to compute lower and upper limits Q and Q such that

a route θ is feasible if
∑
i∈θ E[ξi] ≤ Q, and infeasible if

∑
i∈θ E[ξi] ≥ Q. Similar bounds based

on the variance of
∑
i∈θ ξi are proposed. When route feasibility cannot be determined with those
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bounds, alternative strategies based on convoluting demand distributions (in case of independent

demands) and Monte Carlo simulation (in case of general demands) are employed.

Most work on chance-constrained VRPSDs assume that demand distributions are known. This

assumption is reasonable, considering that the VRP is an operational problem that is solved for

many periods, and that scenario-based (or empirical) demand distributions can be retrieved from

historical data. In cases where such data might not be available, however, the VRPSD may be

modeled as a robust or distributionally robust optimization problem. Pessoa et al. (2021) refor-

mulates the robust VRPSD with knapsack uncertainty as a heterogeneous fleet capacitated VRP;

therefore, allowing the direct solution of the robust version by algorithms developed for the deter-

ministic variant. Ghosal & Wiesemann (2020) study the distributionally robust VRPSD, where

the demand distribution is only partially known. The proposed branch-and-cut method relies on

an efficient separation of capacity cuts, which is possible when demands belong to ambiguity sets

that satisfy a subadditivity property. Munari et al. (2019) investigate a robust VRP with both

travel time and demand uncertainty. In addition to a specialized BP&C algorithm, they also

propose a compact model that can be used to obtain robust solutions in instances with up to 100

customers. Gounaris et al. (2016) characterize demand uncertainty sets for which it is possible

to efficiently determine route feasibility. We note that optimal solutions to robust models tend

to assume worst-case demand distributions and, consequently, lead to underutilization of vehicle

capacity and additional fleet requirements (Dinh et al. 2018).

4. Branch-Price-and-Cut for the VRPSD under Optimal Restocking

Branch-and-price is an effective method for solving several VRP variants. We refer to Costa

et al. (2019) for an in-depth review of the methodology. When solving VRPs by branch-and-price,

the column generation subproblem is normally a variant of the elementary resource-constrained

shortest path problem (RCSP; Feillet et al. 2004). By and large, efficient algorithms for determin-

istic VRPs relax the elementary condition and solve the pricing problem with a labeling procedure

that relies on dominance rules to discard unpromising partial paths. Experience has shown, how-

ever, that some stochastic VRPs are efficiently solved by an elementary pricing strategy, in which

the combinatorial growth of labels is controlled only with completion bounds. In this section, we

present an elementary BP&C algorithm for the VRPSD under optimal restocking that improves

considerably upon the dominance-based BP&C by Florio et al. (2020a).

4.1. Route Cost under Optimal Restocking

The elementary BP&C algorithm is based on the generic set-partitioning model (1)-(4). Before

describing the algorithm, we specify the cost function g(θ) when route θ is executed under optimal

restocking. As in Florio et al. (2022), we use the functionals φ′(i, j, q,Φ(·)) and φ′′(i, j,Φ(·)) to

facilitate the presentation:

φ′(i, j, q,Φ(·)) = cij + E
[
Υq
ξj

(cj0 + c0j) + Φ(q +QΥq
ξj
− ξj)

]
,

φ′′(i, j,Φ(·)) = ci0 + c0j + E
[
ΥQ
ξj

(cj0 + c0j) + Φ(Q+QΥQ
ξj
− ξj)

]
.

Functional φ′(i, j, q,Φ(·)) calculates the expected remaining cost once customer i is fully served,

given that customer j is visited directly after i, the remaining vehicle capacity is q, and the cost-
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to-go once j is fully served, as a function of the remaining capacity, is given by Φ : {0, . . . , Q} 7→ R.

The quantity Υq
ξ = max{0, d(ξ − q)/Qe} refers to the number of replenishment trips required to

fully serve a demand of ξ when the remaining capacity is q. Similarly, φ′′(i, j,Φ(·)) calculates the

expected remaining cost once customer i is fully served, given that the vehicle replenishes at the

depot before visiting customer j.

Given a route θ = (v1, . . . , vH), Φkθ(q) denotes the expected cost-to-go along θ once customer

vk, k ∈ {1, . . . ,H}, is fully served and the remaining vehicle capacity is q. This cost is computed

by solving the dynamic program:

Φkθ(q) =

min
{
φ′(vk, vk+1, q,Φ

k+1
θ (·)), φ′′(vk, vk+1,Φ

k+1
θ (·))

}
, if k < H,

cvH0, if k = H.

Hence, the cost of route θ under optimal restocking, denoted by g∗(θ), is given by:

g∗(θ) = φ′(0, v1, Q,Φ
1
θ(·)).

4.2. Valid Inequalities

To improve the continuous relaxation bound given by the set-partitioning model, we separate

rounded capacity and subset row inequalities. Rounded capacity cuts (RCCs) correspond to

constraint (6) of the two-index formulation. When translated to the set-partitioning model, these

cuts are of the following form:

∑
θ∈Θ

∑
i∈S

∑
j /∈S

aijθ zθ ≥

⌈∑
i∈S

E
[
ξi
]
/fQ

⌉
, ∀S ⊂ V+, (7)

where aijθ is a binary coefficient that indicates whether route θ traverses arc (i, j).

In addition to RCCs, we also separate subset row cuts (SRCs; Jepsen et al. 2008) defined over

customer triplets: ∑
θ∈Θ

⌊
1

2

∑
i∈S

I(i ∈ θ)

⌋
zθ ≤ 1, ∀S ⊂ V+, |S| = 3. (8)

SRCs play a key role in the efficiency of the elementary BP&C algorithm. In dominance-based

BP&C, the separation of these cuts must be done in a controlled way, since each cut induces a new

resource over which dominance must also be verified (Poggi & Uchoa 2014). Since the elementary

approach does not rely on dominance rules, SRCs can be separated in a more aggressive way.

4.3. Pricing Problem

We refer to the linear relaxation of formulation (1)-(4) with a restricted set of routes Θ′ ⊂ ΘΩ

as the restricted master problem (RMP). We let C and J be sets of customer sets for which RCCs

and SRCs are separated and added to the RMP, respectively. Further, given a solution to the

RMP, we let αi (i ∈ V+), β, γS (S ∈ C) and δS (S ∈ J ) be the dual values associated with

constraints (2), (3), (7) and (8), respectively. When solving the relaxed set-partitioning model by

column generation, the pricing problem identifies a route with a negative reduced cost, that is, a

route θ ∈ ΘΩ \Θ′ such that:

g∗(θ)− ζ(θ) < 0,
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where ζ(θ) is the contribution of the dual values to decrease the reduced cost of θ:

ζ(θ) =
∑
i∈θ

αi + β +
∑
S∈C

∑
i∈S

∑
j /∈S

aijθ γS +
∑
S∈J

⌊
1

2

∑
i∈S

I(i ∈ θ)

⌋
δS . (9)

4.4. Backward Labeling

We solve the pricing problem with a backward labeling procedure, in which a label represents

a partial path from a customer up to the depot. The choice for backward (instead of forward)

labeling is justified by noting that the computation of the route cost g∗(θ) starts at the last

customer along route θ. Therefore, performing labeling backwards allows us to store, in each

label, the intermediate results of the dynamic program, that is, the cost-to-go value function.

These costs are then readily available for all possible backward extensions of a partial path.

Given a label `, `θ ∈ ΘΩ denotes the partial path represented by `; `v ∈ V+ indicates the current

customer; `q ∈ {0, . . . , fQ} denotes the available load; `ζ ∈ R represents the total contribution

of the dual values to the reduced cost; and `Φ(·) : {0, . . . , Q} 7→ R represents the cost-to-go once

`v is fully served, as function of the remaining vehicle capacity. Label attributes are initialized

as described in Table 3. Given a label `2 obtained by extending a label `1 to a customer i, the

cost-to-go function `2Φ(·) is computed by performing one step of the optimal restocking dynamic

programming algorithm for each q ∈ {0, . . . , Q}:

`2Φ(q) = min
{
φ′(i, `1v, q, `

1
Φ(·)), φ

′′(i, `1v, `
1
Φ(·))

}
, (10)

and the remaining attributes of `2 are updated as described in Table 3. Essentially, the partial

path of `2 is set by prepending customer i to the partial path of `1. The current customer of `2

is set to i. The available load decreases by the mean demand of customer i. Lastly, the total

contribution of dual values along the partial path of `2 is computed by Equation (9).

Table 3: Label Attributes, Initialization and Updating Rules

Attribute Description Initializationa Updateb

`θ Partial path (i) `2θ = (i)⊕ `1θ
`v Current customer i `2v = i
`q Available load fQ− E

[
ξi
]

`2q = `1q − E
[
ξi
]

`Φ(q) q ∈ {0, . . . , Q} Cost-to-go function ci0, ∀q See Equation (10)
`ζ Sum of dual values ζ((i)) ζ((i)⊕ `1θ)

aAssuming initialization to customer i.
bAssuming label `2 is created by extending label `1 to customer i; ⊕ denotes sequence concatenation.

The labeling procedure initially creates labels corresponding to the backward extensions from

the depot to each customer. Each label ` is extended to each customer i /∈ `θ such that E[ξi] ≤ `q.
Routes with a negative reduced cost are saved for inclusion in the RMP, and the combinatorial

growth of labels is controlled with completion bounds, as detailed next.

4.5. Completion Bounds

A completion bound is a lower bound on the reduced cost of all routes that can be generated

from a label. Labels with nonnegative bounds can be discarded because they cannot generate
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negative reduced cost routes. Although completion bounds may also be employed in dominance-

based BP&C, when pricing only elementary routes it is possible to derive stronger bounds that

leverage the elementary condition. In this section, we present strengthened versions of the bounds

employed by Florio et al. (2020a).

In what follows, let Θ` ⊂ ΘΩ be the set of routes that can be generated from a label `, and

let σij = αj +
∑
S∈C I(i ∈ S, j /∈ S)γS be the reduced cost decrease due to constraints (2) and (7)

when extending a label from customer j to customer i.

4.5.1. Knapsack Bound

The reduced cost of the route represented by a label ` is given by g∗(`θ) − `ζ . Note that

g∗(`θ′) ≥ g∗(`θ) for all θ′ ∈ Θ`. Considering that only the dual values associated with constraints

(2) and (7) may promote reduced cost decrease (the dual values associated with inequalities (8)

are nonpositive), the reduced costs of all routes in Θ` are lower-bounded by:

g∗(`θ)− `ζ − kp(`),

where kp(`) is the optimal solution value of a {0, 1}-knapsack problem with capacity `q, and with

the value and weight of each item j ∈ V+ \ `θ given by max(i,j)∈A σij and E[ξj ], respectively. This

bound improves upon the unbounded knapsack bound proposed by Florio et al. (2020a), since the

elementary condition is used to forbid items corresponding to customers already visited.

4.5.2. RCSP Bound

Given a customer set S, we define the auxiliary graph G′(S) = (V,A′(S)), with set of nodes

V (as in our original graph G) and set of arcs A′(S) = {(i, j) ∈ A : i /∈ S, j 6= 0}. With each arc

(i, j) ∈ A′(S) a modified cost cij = cij − σij is associated. We further denote by rcsp(S, q, i) the

RCSP in graph G′(S) from the depot to customer i, where the initial capacity at the depot is q

and each visit to customer j consumes a capacity of E[ξj ].

Given a label `, `Φ(Q) determines a lower bound on the cost-to-go once customer `v is fully

served. Therefore, for any customer set M⊂ V+ a completion bound on ` is given by:

rcsp
(
`θ ∩M, `q + E

[
ξ`v
]
, `v
)

+ α`v + `Φ(Q) − `ζ . (11)

The bound given by (11) improves upon the RCSP-based bound by Florio et al. (2020a) in

that the shortest path from the depot to node `v cannot pass through a customer i ∈ `θ ∩M. As

in Florio et al. (2021a), at each iteration of the pricing algorithm we define the set M to contain

customers that promote large reduced cost decrease per unit of resource consumed (e.g., the M

customers with largest αi/E[ξi] ratios, where M is a parameter). The idea is to make bounds

tighter when customers inM are already visited by a label. Before the labeling procedure begins,

rcsp(S, q, i) is pre-computed for all S ⊂M, q ∈ {0, . . . , fQ} and i ∈ V+. Then, each time a label

is generated, bound (11) can be evaluated in constant time.

4.6. Cut Separation and Branching

Lower bounds are obtained by alternating between column generation and separation of RCCs

until there are no negative reduced cost columns nor violated RCCs left. Then, SRCs are separated
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and added to the RMP whenever the maximum possible lower bound increase due to SRCs exceeds

0.0075% (at the root node of the branch-and-bound tree) or 0.03% (at other branch-and-bound

nodes). This lower bound increase is computed by considering only the routes already added to

the RMP. Column generation and separation of RCCs start again once SRCs are separated, and

the procedure repeats until there are no more SRCs that promote a lower bound increase above the

required threshold. RCCs are separated with the CVRPSEP package by Lysgaard et al. (2004),

and SRCs are separated by enumeration. Finally, up to eight SRCs are added to the RMP per

iteration to promote faster convergence and to avoid solving the pricing problem to optimality too

often.

We adopt the same branching rule as in Florio et al. (2020a). Whenever the linear bound

obtained at a branch-and-bound node corresponds to a fractional solution, we branch on an arc

(i, j) such that
∑
θ∈Θ′ a

ij
θ zθ is fractional. Typically, many such arcs are available in a fractional

solution, so we select the arc that, upon branching, leads to the highest lower bound increase when

considering only the columns and rows already generated.

5. A Demand Model and Restocking Policy for Correlated Demands

We now propose a demand model based on Bayesian inference to handle the case of correlated

customer demands. Furthermore, we extend the optimal restocking algorithm, described in Sec-

tion 4.1 for the case of independent demands, to prescribe optimal replenishment decisions under

demand correlation.

5.1. Demand Model

The main concept in our demand model is the external factor, which represents censored

demand covariates (or predictors) such as, for example, weather conditions, short-term trends

and occurrence of events. We assume that the effect of the external factor is uniform across all

customer demands. A “high” external factor increases the likelihood of observing above-average

demands, while a “low” factor causes the opposite effect. Therefore, our model represents the case

where all customer demands are positively correlated. The external factor is unknown at both

route planning and route execution stages. The key idea is to start with some prior knowledge

about the external factor, and update this knowledge in a Bayesian fashion as customer demands

are revealed.

Throughout this section, we assume a fixed route θ = (v1, . . . , vH). For ease of notation, we

reindex the customers in V+ in such a way that vi = i for all vi ∈ θ. We let χ ∈ R+ be the true

(but unknown) external factor, and we let χ̂i be continuous random variables (r.vs.) representing

our best knowledge about χ before each customer i ∈ θ is visited. We let µi, i ∈ θ, be customer

demand rates, as obtained, e.g., by taking the average of historical demands. To model positive

correlation, we assume that the external factor affects demands in a multiplicative way, that is,

E[ξi|χ] = µiχ, and define r.vs. λi ≡ µiχ̂i to represent our best knowledge about demand rates

under the effect of χ. We further denote by fc̃(·) the probability density function of a continuous

r.v. c̃, and by pd̃(·) the probability mass function of a discrete r.v. d̃.

From Bayes’ theorem, we have for all i ∈ θ:

fλi|ξi(l|x
(i)) =

fλi
(l) · pξi|λi

(x(i)|l)
pξi(x

(i))
. (12)
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In Bayesian terms, the left-hand side of (12) is the posterior distribution of λi; the first

term in the numerator corresponds to the prior distribution of λi, and the second term is the

likelihood function. The term in the denominator is the normalization constant, so the resulting

posterior is a valid probability density function. Hence, we condition on the realized demand of

customer i to improve our understanding about λi. After customer i is visited and a demand

of x(i) is observed, the updated knowledge about the external factor is represented by the r.v.

χ̂i+1 ≡ (λi|ξi = x(i))/µi.

The proposed learning mechanism can be applied irrespective of customer demands and ex-

ternal factor distributions. However, in order to derive closed-form expressions, it is necessary

to place distributional assumptions. In what follows, we assume that ξi is Poisson distributed

with rate λi. Further, r.v. χ̂1, which represents the prior knowledge about the external factor,

is gamma distributed with shape and scale parameters given by k0 and s0, respectively. These

distributions are particularly convenient because the gamma distribution is the conjugate prior

of the Poisson distribution (Hoff 2009); therefore, r.vs. χ̂2, . . . , χ̂H are also gamma distributed.

Given these assumptions, we obtain the following distributions before and after the first customer

is visited:

λ1 ≡ µ1χ̂1 ∼ Γ (k0, µ1s0) ,

λ1 | ξ1 = x(1) ∼ Γ

(
k0 + x(1),

µ1s0

1 + µ1s0

)
,

χ̂2 ≡
(λ1 | ξ1 = x(1))

µ1
∼ Γ

(
k0 + x(1),

s0

1 + µ1s0

)
,

where Γ(k, s) denotes the gamma distribution with shape and scale parameters given by k and s,

respectively.

With the updated knowledge about the external factor after the first customer is visited, which

is represented by r.v. χ̂2, we determine λ2 ≡ µ2χ̂2 and the learning procedure iterates. In general,

after observing demands x(1), . . . , x(i−1) we have:

χ̂i ∼ Γ

(
k0 +Xi−1,

s0

1 +
∑i−1
j=1 µjs0

)
,

where

Xi =

i∑
j=1

x(j).

The following theorem shows that the learning procedure takes the external factor knowledge

asymptotically closer to the true external factor:

Theorem 1. Consider a sequence θ = (1, 2, . . .) with infinitely many customers. Then, the

sequence of r.vs. (χ̂i)i∈θ converges in mean square to χ.

Proof. (χ̂i)i∈θ converges in mean square to χ if and only if:

0 = lim
i→∞

E
[
(χ̂i − χ)2

]
= lim
i→∞

(
Var(χ̂i) + E

[
χ̂i − χ

]2)
. (13)

We show that both terms on the right-hand side of (13) converge to zero, and hence the
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equality holds. First, note that the variance of the gamma distributed r.v. χ̂i is given by:

Var(χ̂i) = (k0 +Xi−1)

(
s0

1 +
∑i−1
j=1 µjs0

)2

. (14)

The numerator in (14) grows linearly with i, and the denominator grows quadratically with i.

The other terms are constant, so it follows that Var(χ̂i) = 0 when i→∞.

We now show that E[χ̂i] converges to χ. By conditioning on ξ1, . . . , ξi−1, and considering again

that χ̂i is gamma distributed, we obtain:

E
[
χ̂i | ξ1, . . . , ξi−1

]
=

k0 +

i−1∑
j=1

ξj

( s0

1 +
∑i−1
j=1 µjs0

)
. (15)

Applying the law of iterated expectations and reorganizing the terms of (15), we have:

E
[
χ̂i
]

= E
[
E
[
χ̂i | ξ1, . . . , ξi−1

]]
= E

[
k0s0 +

∑i−1
j=1 ξjs0

1 +
∑i−1
j=1 µjs0

]
. (16)

As i → ∞, the first term in (16) converges to zero and, since E[ξi] = µiχ, the second term

converges to χ.

Note that this convergence result holds regardless of the values chosen for parameters k0 and

s0 that specify the distribution of the prior knowledge on the external factor.

5.2. Optimal Restocking

The updated knowledge about the external factor after customer i − 1 is visited, represented

by r.v. χ̂i, allows us to update the prior on the demand rate of customer i, represented by r.v.

λi = µiχ̂i. Considering again the Poisson-gamma model (Hoff 2009), the posterior predictive

of ξi given x(1), . . . , x(i−1) follows a negative binomial distribution with parameters k0 + Xi−1

(maximum number of failures in the experiment) and ρi/(1 + ρi) (success probability of each

trial), where ρi is given by:

ρi =
s0µi

1 + s0

∑i−1
j=1 µj

.

Hence, the posterior predictive demand distribution of customer i depends on the sum of actual

demands observed until customer i − 1 (that is, on Xi−1), and not individually on observations

x(1), . . . , x(i−1). This suggests a tractable extension of the optimal restocking algorithm from

Section 4.1 to the case of correlated demands, in which a new state variable is introduced in the

dynamic program to keep track of Xi.

We now present the optimal restocking algorithm for the case of correlated demands. Rather

than defining new symbols, we recycle the notation already introduced in Section 4.1 by “over-

loading” functions with the new state variable. The auxiliary functionals are redefined as follows:

φ′(i, j, q,X,Φ(·, ·)) = cij + E
[
Υq
ξj

(cj0 + c0j) + Φ(q +QΥq
ξj
− ξj , X + ξj)

]
,

φ′′(i, j,X,Φ(·, ·)) = ci0 + c0j + E
[
ΥQ
ξj

(cj0 + c0j) + Φ(Q+QΥQ
ξj
− ξj , X + ξj)

]
,
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where Φ : {0, . . . , Q} × N 7→ R is the cost-to-go once customer j is fully served, as a function of

the remaining capacity and of the total demand already observed.

Given a route θ = (v1, . . . , vH), we denote by Φkθ(q,X) the expected cost-to-go along θ once

customer vk is fully served, the remaining vehicle capacity is q, and the total demand of customers

v1, . . . , vk is X. We compute this cost by solving the dynamic program:

Φkθ(q,X) =

min
{
φ′(vk, vk+1, q,X,Φ

k+1
θ (·, ·)), φ′′(vk, vk+1, X,Φ

k+1
θ (·, ·))

}
, if k < H,

cvH0, if k = H.

Finally, the cost of route θ under optimal restocking, assuming correlated demands, is given

by:

g∗(θ) = φ′(0, v1, Q, 0,Φ
1
θ(·, ·)).

Under the assumption that P[ξi ≤ Q] = 1 for all i ∈ θ, the dynamic programming algorithm

has a time complexity of O(|θ|2Q3), which compares with a complexity of O(|θ|Q2) for the case

of independent demands.

6. Computational Results

We perform two sets of computational experiments. In Section 6.1, we compare the elementary

BP&C algorithm (E-BP&C) from Section 4 with the dominance-based BP&C (D-BP&C) by Florio

et al. (2020a). In Section 6.2, we assess the benefit of applying the restocking policy proposed in

Section 5.2 when customer demands are positively correlated.

The E-BP&C algorithm is implemented in C++ and is available at https://github.com/

amflorio/vrpsd-optimal-restocking. All computational experiments are performed on a single

thread of an Intel® Xeon® E5-2683 v4 (2.10GHz) processor with 64GB of available memory, and

IBM® CPLEX® version 12.10 is used to solve linear programs.

6.1. Elementary Branch-Price-and-Cut

We base our comparison on instances of the sets A, E and P of the CVRPLIB (Uchoa et al.

2017), and also instances of the set X with a low n/m ratio. In total, we consider 45 instances

with 36 to 194 customers and n/m ratios varying from 3 to 10. Customer demands follow Poisson

distributions with rates as given by the deterministic demands in the original instances. Similarly

to Florio et al. (2020a), we truncate the Poisson distributions at ε = 10−5, meaning that all

probabilities less than ε are set to zero. Still, the algorithm remains effective for smaller ε values

such as 10−6 or 10−7.

As determined empirically by Florio et al. (2020a), many of the considered instances exhibit

a significant VSS (i.e., 5% or more). We note that neither D-BP&C nor E-BP&C is competitive

for solving the instances proposed by Louveaux & Salazar-González (2018), which have large n/m

ratios (up to 50) but display, on average, very small VSS (i.e., less than 1%). Best overall results

are obtained by employing only RCSP completion bounds, as the computation of knapsack bounds

require additional runtime that, in most instances, is larger than the runtime savings observed

in the pricing algorithm. Therefore, except where noted otherwise, the results in this section are

produced by a BP&C implementation that employs RCSP bounds only.
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Table 4: Results E-BP&C: Unlimited Fleet Size, f = 1.00 (Set A)

D-BP&C E-BP&C

Instance Best Paths Gap Time Best Paths Gap Time RCCs SRCs

A-n36-k5 866.740 5 1.21% 300 862.309 5 34 29 80
A-n37-k5 710.068 5 47 710.068 5 3 17 40
A-n37-k6 1033.08 7 7 1033.08 7 1 39 40
A-n38-k5 779.406 6 17 779.406 6 1 16 32
A-n39-k5 875.618 6 2 875.618 6 1 17 0
A-n39-k6 877.922 6 6 877.922 6 1 20 24
A-n44-k6 1026.45 7 155 1026.45 7 16 18 82
A-n45-k6 1029.68 7 78 1029.68 7 5 40 74
A-n45-k7 1264.94 7 14 1264.94 7 2 13 16
A-n46-k7 1003.23 7 14 1003.23 7 1 27 16
A-n48-k7 1189.10 7 0.07% 300 1189.10 7 17 40 16
A-n53-k7 1127.19 8 0.43% 300 ∗1127.22 8 0.22% 600 26 64
A-n54-k7 1292.53 8 0.14% 300 1292.53 8 33 37 64
A-n55-k9 1183.93 10 9 1183.93 10 1 34 24
A-n60-k9 1535.52 10 1.65% 300 1533.38 10 0.57% 600 88 144
A-n61-k9 1157.86 10 1.54% 300 1149.00 10 133 60 152
A-n62-k8 – – – 300 1434.71 9 185 30 16
A-n63-k9 – – – 300 1850.81 10 0.14% 600 51 64
A-n63-k10 1463.24 11 0.62% 300 1464.06 11 0.45% 600 36 48
A-n64-k9 – – – 300 1583.26 10 – 600 20 0
A-n65-k9 1318.95 10 121 1318.95 10 4 41 64
A-n69-k9 1264.42 10 0.31% 300 ∗1264.42 10 0.17% 600 32 32

∗Results obtained with knapsack bounds enabled.

Tables 4 and 5 compare the results obtained by D-BP&C (extracted from Florio et al. 2020a)

and E-BP&C on all 45 instances when assuming an unlimited vehicle fleet and a load factor

f = 1.00. Column “Time” reports the runtime in minutes; columns RCCs and SRCs report the

number of RCCs and SRCs separated by the algorithm. A dash (‘–’) in column “Best” indicates

that no upper bound could be found, and a dash in column “Gap” indicates that no lower bound

could be found. The results show that, with the exception of a single instance (E-n76-k7), E-

BP&C completely dominates D-BP&C in terms of number of instances solved, solution time and

optimality gap. We remark that the processor used in our experiments is ranked approximately

20% faster than the processor employed by Florio et al. (2020a), but the runtime savings by

E-BP&C exceed that amount by a large margin.

The good performance of E-BP&C is attributed to two main reasons. First, E-BP&C controls

more efficiently the combinatorial growth of labels in the pricing algorithm. The D-BP&C method

spends, on average, one-third of the computation time verifying dominance rules. Besides saving

this computational effort, E-BP&C employs strong completion bounds that are more effective

than dominance rules in pruning unpromising partial paths in the labeling procedure. Second,

E-BP&C achieves tighter lower bounds by pricing only elementary routes and by separating a

large number of SRCs. Such an aggressive separation of SRCs is not possible in D-BP&C because

it hinders label dominance and makes the pricing problem intractable.

Table 6 reports the results on the 33 instances that, when considering an unlimited fleet,

either could not be solved to optimality or whose optimal solution uses more vehicles than the

minimum required for feasibility. This time, we solve these instances by enforcing the fleet size

limitation. The comparison is again very favorable to E-BP&C. In summary, considering both

cases (unlimited and fixed fleet sizes) and a load factor f = 1.00, E-BP&C solves the 32 instances

solved by D-BP&C and, additionally, 24 previously unsolved instances. Among the 24 newly

solved instances, 18 are solved within the same 5 hours runtime allowed for D-BP&C, and 6 are
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Table 5: Results E-BP&C: Unlimited Fleet Size, f = 1.00 (Sets E, P and X)

D-BP&C E-BP&C

Instance Best Paths Gap Time Best Paths Gap Time RCCs SRCs

E-n51-k5 556.800 6 0.83% 300 ∗556.800 6 0.37% 600 39 160
E-n76-k7 703.811 7 0.42% 300 705.560 7 0.45% 600 33 48
E-n76-k8 778.423 9 1.04% 300 777.721 9 0.30% 600 43 128
E-n76-k10 891.224 11 227 891.224 11 8 31 64
E-n76-k14 1122.36 16 228 1122.36 16 16 60 80
E-n101-k14 1182.99 15 0.69% 300 1182.99 15 0.32% 600 117 382
P-n40-k5 475.705 5 0 475.705 5 0 12 0
P-n45-k5 537.237 5 0.15% 300 ∗537.237 5 191 19 136
P-n50-k7 587.314 7 5 587.314 7 3 24 80
P-n50-k8 673.430 9 6 673.430 9 1 34 72
P-n50-k10 763.212 11 17 763.212 11 2 45 64
P-n51-k10 814.687 11 1 814.687 11 0 21 24
P-n55-k7 591.846 7 18 591.846 7 2 19 72
P-n55-k10 746.080 10 25 746.080 10 1 23 80
P-n55-k15 1073.11 18 1 1073.11 18 1 40 11
P-n60-k10 805.176 11 74 805.176 11 5 56 80
P-n60-k15 1089.23 16 0 1089.23 16 1 36 16
P-n65-k10 857.481 10 0.29% 300 857.481 10 229 125 213
P-n70-k10 888.060 11 0.02% 300 888.060 11 8 53 72
X-n101-k25 30606.9 29 0.59% 300 30606.9 29 0.06% 600 279 113
X-n110-k13 16734.1 14 0.33% 300 16734.0 14 182 64 80
X-n148-k46 56584.4 50 0.01% 300 56584.4 50 111 341 0
X-n195-k51 50025.3 58 0.57% 300 49955.5 58 0.17% 600 151 32

∗Results obtained with knapsack bounds enabled.

solved within the additional runtime allowed for E-BP&C.

We now consider instances with a load factor above 1.00. Initially, we select the instances

from sets A and P that could be solved for the limited fleet size case with load factor f = 1.00,

and resolve these instances with f = 1.25 and f = 1.50. We limit the number of vehicles to the

minimum required and, to keep roughly the same n/m ratio, we decrease the vehicle capacity to

the integer value nearest to Q0/f , where Q0 is the original vehicle capacity in each instance. The

results are reported in Table 7.

Out of the 28 instances, 17 can be solved when f = 1.25, and 11 can be solved when f = 1.50. A

comparison with D-BP&C does not apply in this case, since D-BP&C relies on heuristic dominance

rules to solve instances with f > 1. In fact, no previous work reports optimal solutions to VRPSD

instances with f > 1. Even though ratios n/m remain constant, problem difficulty increases

markedly with larger load factors, mainly because the completion bounds lose effectiveness. In

particular, the RCSP bound does not consider restocking costs in the forward path, and these

costs become more relevant when vehicles must replenish more often. As a result, the cost of the

forward path is underestimated and the resulting bound becomes weaker.

6.2. Optimal Restocking for Correlated Demands

Customer demands are correlated whenever they depend on the same covariates. For example,

the weather affects the demand for soft drinks, and city events affect the amount of waste to

be collected from public thrash cans. Hence, demand correlation plays an important role in

applications such as replenishment of vending machines and waste collection. Our next goal is

to measure the cost savings when adopting a restocking policy that takes account of positive

demand correlation. To this end, we compare the policy proposed in Section 5.2 (OR-C) with

the classical optimal restocking policy (OR-I), in which demands are assumed independent. The
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Table 6: Results E-BP&C: Fixed Fleet Size, f = 1.00

D-BP&C E-BP&C

Instance Best Gap Time Best Gap Time RCCs SRCs

A-n37-k6 1044.08 5 1044.08 2 28 8
A-n38-k5 808.874 62 808.874 28 26 96
A-n39-k5 887.547 51 887.547 7 18 16
A-n44-k6 1029.60 7 1029.60 4 26 0
A-n45-k6 1090.14 0.34% 300 1090.14 7 59 24
A-n53-k7 – – 300 1151.64 375 64 64
A-n54-k7 1301.58 0.29% 300 1301.58 31 47 16
A-n55-k9 1202.70 123 1202.70 8 93 48
A-n60-k9 1556.67 2.36% 300 1531.37 332 50 88
A-n61-k9 1190.23 1.33% 300 1190.23 86 108 80
A-n62-k8 – – 300 1454.03 1.50% 600 43 8
A-n63-k9 – – 300 1920.49 – 600 48 0
A-n63-k10 – – 300 1479.97 361 68 96
A-n64-k9 – – 300 1597.47 – 600 43 0
A-n65-k9 1356.85 0.47% 300 1356.85 32 104 24
A-n69-k9 1282.02 1.32% 300 ∗1277.68 0.58% 600 57 16
E-n51-k5 556.795 183 556.795 40 42 24
E-n76-k7 746.534 7.06% 300 711.797 1.58% 600 27 16
E-n76-k8 804.390 4.49% 300 ∗779.926 0.90% 600 36 40
E-n76-k10 918.224 1.29% 300 912.839 502 165 120
E-n76-k14 1160.19 0.44% 300 1159.37 264 239 88
E-n101-k14 1187.79 0.97% 300 1182.57 322 94 56
P-n50-k8 713.671 1.12% 300 713.188 166 129 144
P-n50-k10 775.579 8 775.579 2 72 48
P-n51-k10 850.742 0.18% 300 850.742 6 130 56
P-n55-k15 1176.60 0.10% 300 1176.60 19 261 80
P-n60-k10 814.436 34 814.436 3 60 24
P-n60-k15 1109.88 37 1109.88 4 135 40
P-n70-k10 912.974 2.52% 300 912.974 469 184 144
X-n101-k25 37273.2 3.06% 300 36894.7 0.96% 600 204 40
X-n110-k13 17201.1 2.16% 300 ∗17072.7 1.26% 600 102 32
X-n148-k46 57223.5 0.13% 300 57207.1 0.02% 600 1032 76
X-n195-k51 – – 300 58382.4 0.93% 600 377 16

∗Results obtained with knapsack bounds enabled.
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Table 7: Results E-BP&C: Fixed Fleet Size, f ∈ {1.25, 1.50}

f = 1.25 f = 1.50

Instance Best Gap Time Best Gap Time

A-n36-k5 1025.51 265 1169.90 2.35% 600
A-n37-k6 1274.22 265 1422.53 258
A-n38-k5 956.391 259 1027.86 210
A-n39-k5 1067.11 543 1204.04 – 600
A-n39-k6 1035.32 35 1152.73 134
A-n44-k6 1278.70 1.09% 600 1390.14 0.92% 600
A-n45-k6 1296.62 76 1380.03 139
A-n45-k7 1618.09 1.12% 600 1856.26 – 600
A-n48-k7 1500.52 – 600 1714.14 – 600
A-n53-k7 1448.50 – 600 1603.92 – 600
A-n54-k7 1674.25 – 600 1901.88 – 600
A-n55-k9 1521.48 359 1675.36 0.44% 600
A-n60-k9 1982.64 – 600 2206.92 – 600
A-n61-k9 1457.36 0.07% 600 1589.73 0.44% 600
A-n63-k10 1849.51 – 600 2090.84 – 600
A-n65-k9 1761.26 – 600 1918.98 – 600
P-n40-k5 560.990 87 611.133 166
P-n45-k5 628.288 181 692.645 2.62% 600
P-n50-k7 708.412 120 779.710 0.16% 600
P-n50-k8 847.160 68 913.388 192
P-n50-k10 948.558 45 1027.28 5
P-n51-k10 1034.66 49 1126.52 64
P-n55-k10 915.545 20 999.292 10
P-n55-k15 1391.91 2 1497.86 29
P-n60-k10 1004.45 255 1101.04 0.02% 600
P-n60-k15 1372.09 2 1526.30 26
P-n65-k10 1055.37 0.004% 600 1153.57 0.13% 600
P-n70-k10 1106.96 0.07% 600 1216.71 0.86% 600

comparison is performed by simulating both policies over a large number of routes and under

correlated demands. The savings may be interpreted as the cost of independence, that is, the cost

of assuming independent demands when such assumption does not hold.

In these experiments, we consider the routes from the simulation study in Florio et al. (2022).

For each n ∈ {3, . . . , 15}, 20 routes are generated as follows. First, n customers are randomly

placed on a 1,000 by 1,000 grid, and the depot is located at the southwest corner of the grid. Then,

a route θ is defined by solving a traveling salesman problem on the set of nodes. The demand of

each customer i ∈ θ is Poisson distributed with rate µiχ̃, where µi and χ̃ are uniformly distributed

on the intervals [10, 100] and [0.5, 1.5], respectively. We consider load factors f ∈ {1.3, 1.6, 1.9, 2.5}
by setting the vehicle capacity to the integer value closest to

∑
i∈θ µi/f . For each route and load

factor, we simulate and calculate the costs of both policies under 5, 000 randomly generated

demand scenarios.

Table 8 reports, for each route length (in terms of number of customers) and load factor,

the average and maximum savings realized by OR-C over all simulations. As we see, the cost

savings by OR-C may be quite substantial (in excess of 10%). The savings are significant across

all route lengths and load factors, which highlights the importance of taking demand correlation

into account when prescribing replenishment decisions.

7. Conclusions

7.1. Main Contributions and Takeaways

Recent years have witnessed substantial progress on VRPSD research. We reviewed the new

exact methods for solving the problem, under both the restocking-based and the chance-constraint
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Table 8: Cost Savings when Taking Account of Correlation

f = 1.3 f = 1.6 f = 1.9 f = 2.5

n Avg(%) Max(%) Avg(%) Max(%) Avg(%) Max(%) Avg(%) Max(%) Avg

3 2.35 9.05 3.66 9.51 2.01 6.49 1.36 7.31 2.35
4 1.67 7.31 3.06 7.96 1.74 4.29 2.47 6.92 2.24
5 2.08 8.07 2.94 8.43 2.22 5.41 1.96 5.81 2.30
6 1.30 4.05 3.20 9.81 2.68 8.98 2.01 6.44 2.30
7 2.11 7.57 4.00 9.86 2.20 6.65 1.63 3.77 2.48
8 1.41 4.84 2.72 7.30 1.81 4.48 2.17 8.93 2.03
9 1.77 6.42 2.15 5.42 2.63 7.33 2.31 5.03 2.22

10 1.41 3.52 2.94 7.36 2.93 7.55 2.33 6.99 2.40
11 1.28 5.42 2.63 8.15 2.69 7.03 2.22 7.34 2.20
12 1.42 6.39 2.63 10.19 3.10 8.13 2.32 6.36 2.37
13 0.88 3.70 2.65 10.86 2.61 8.89 2.18 5.66 2.08
14 2.41 7.48 2.37 6.29 2.17 5.93 3.08 7.86 2.51
15 1.56 4.93 2.33 6.83 2.46 9.55 2.32 4.86 2.17

Avg 1.67 2.87 2.40 2.18 2.28

perspectives, and discussed the main modeling and algorithmic challenges related to each perspec-

tive. Concerning methodology, our original contributions are twofold. First, we introduced a new

state-of-the-art algorithm for the VRPSD under optimal restocking. The E-BP&C algorithm out-

performs considerably the dominance-based BP&C by Florio et al. (2020a) and allows the solution

of several previously open literature instances. Second, we proposed a demand model for handling

positively correlated demands and a restocking policy that takes account of demand correlation

when prescribing preventive replenishment decisions.

The recent literature on the VRPSD covered some of the research gaps identified by Gendreau

et al. (2016), namely, how to address demand correlation and how to solve the restocking-based

VRPSD under more sophisticated restocking policies. Demand correlation is now addressed in a

few works, which allows us assess the cost of independence, that is, the cost of falsely assuming

independent customer demands. This cost is quite significant when restocking is allowed, as

measured in Section 6.2: savings may exceed 10% when correlation is taken into account. In

the chance-constrained VRPSD, the cost of independence is a feasibility cost, in the sense that

a solution obtained by assuming independent demands might not be feasible under correlated

demands. Back to the restocking perspective, we notice a trend in solving the VRPSD under

increasingly complex recourse actions. Until the review by Gendreau et al. (2016), all algorithms

for the restocking-based VRPSD assumed the detour-to-depot policy. Since then, several exact

methods based on preventive restocking have been introduced. All in all, the recent advances

helped to bridge the gap between theory and practice in vehicle routing with uncertain demands.

7.2. The Way Forward

We conclude this paper with a few research perspectives:

Inter-route recourse policies. The results by Florio et al. (2022) show that there is only

marginal benefit in allowing, during route execution, partial reoptimization of the customer visiting

sequence. At the same time, there is currently no exact algorithm to solve the VRPSD under a

pooling recourse policy, in which vehicles may cooperate to serve all demand. Potential applications

include package collection, in which drivers could deviate from their planned routes in order to

support other drivers who are facing unexpectedly high demand. Although cooperative recourse

strategies have already been explored (see, e.g., Ak & Erera 2007, Zhu et al. 2014), there is

currently no measure of the benefits of such class of policies compared to optimal restocking.
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Assessing this benefit is crucial to determine whether the additional complexity of coordinating a

vehicle fleet in real-time is justified.

Distribution fairness. The chance-constrained VRPSD assumes that all unserved demand

is ignored, at zero penalty. In a practical setting, the same VRPSD solution may be implemented

at several periods, until there is enough new data to update the customer demand distributions

and to solve the problem again with the updated distributions. Hence, a fairness issue arises as

the same customers (i.e., the last ones along the routes) may repeatedly be underserved each time

the solution is implemented and the vehicle capacity is exceeded. We believe that one promising

avenue to promote a more balanced service is to implement chance-constrained solutions under a

distribution fairness policy. In this type of policy, each time a customer is visited a decision is made

concerning the demand amount that is actually served, with the double goal of serving demands as

much as possible and in a balanced way. An important problem in humanitarian logistics concerns

the distribution of supplies to medical facilities to meet emergency (and uncertain) demand(Liu

et al. 2022). Such problem setting would benefit from an allocation policy to distribute resources

fairly among all customers.

Duration constraints. In many practical settings of restocking-based VRPSDs, ensuring

that drivers return to the depot within a given timespan (e.g., due to working hours regulations)

is more important than limiting (in expectation) the total demand along a route. Conversely,

the number of replenishment trips actually performed may not be as important as finishing the

operation on time. For example, in garbage collection applications trucks may typically unload

at a landfill a few times per day. Nevertheless, the method by Florio et al. (2021b), which is

only effective for solving instances with tight duration limits, remains the only exact algorithm for

the VRPSD with duration constraints. Enforcing only duration constraints is significantly more

challenging, because route duration is, itself, random, and because bounds derived from limiting

the total demand are no longer available. Hence, extensive research is still required before more

practical instances of this important problem variant can be solved.

Demand correlation. Even though recent work explored some facets of demand correlation,

there is still considerable ground to cover towards a more general methodology to deal with

VRPSDs under correlation. As mentioned in Section 6.2, correlation appears whenever stochastic

demands depend on a common factor, which may indeed be the case in applications such as heating

oil delivery and waste collection. The Bayesian demand model and restocking policy proposed in

Section 5 treat the case of positive demand correlation among all customers. It is still an open

question, however, how to prescribe optimal replenishment decisions given a fixed sequence of

customers under an arbitrary demand correlation structure. Likewise, there is currently no exact

method that is able to solve the restocking-based VRPSD under correlation.
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