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Abstract

This paper proposes a combination of two optimization models for simultaneously determining strate-
gic energy planning at both national and regional levels. The first model deals with a single-period
energy mix where the electricity production configuration at a future date (e.g., 2050), based on the
available generation sources, is optimally obtained. An optimization model, based on a non-linear goal
programming method, is designed to ensure a mixed balance between national and regional goals. The
desired energy mix configuration, which is the solution obtained by solving the first model, is then
fed into the second model as the main data input. In the second model, a multiple-period genera-
tion expansion plan is designed which optimizes the energy transition over the time horizon from the
present until the future planning date (2050). The model considers uncertain parameters, including
the regional energy demand, fuel cost, and national peak load. A two-stage stochastic programming
model is developed where the sample average approximation approach is used as a method of solu-
tion. The practical use of the proposed models has been assessed through application to the electricity
generation system in China.

Keywords: Multiple objective programming; Energy planning; Goal programming; Two-stage
stochastic programming

1. Introduction

Global total electricity consumption has continuously grown and increased from 10,897.94 TWh in
1990 to 24,738.92 TWh in 2018, and it is expected that world energy consumption will continue to
rise by nearly 50% in 2050 (Energy Information Administration, 2020). Electricity can be generated
from several generation sources, including fossil fuel-based, nuclear, and renewable sources. There are
advantages and disadvantages when using each source of power, which can be measured over a multiple
set of economic, environmental, social, and technical criteria. The fossil fuel-based sources (i.e., coal,
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petroleum, and natural gas) generate a large quantity of relatively cheap energy at the expense of a
large amount of greenhouse gas (GHG) emissions. Nuclear generation is a good option for lowering the
GHG emissions, however it has low public acceptance due to significant security concerns (Lugovoy
et al., 2021). Renewable energy sources (i.e., hydro, solar, wind, and geothermal) produce clean energy
without GHG emissions, but their cost and feasibility are highly dependent on the potential of different
regions and their prevailing weather conditions (Thangavelu et al., 2015).

The concept of Generation Expansion Planning (GEP) represents a type of strategic energy ap-
proach that determines optimal generation sources, their capacity and location, together with time
construction/decommissioning of new/existing power plants in order to minimize total cost over a
long-term planning horizon, while satisfying high demand growth for electricity at national and re-
gional levels. A series of constraints can also be considered, including the penetration of renewable
energy, the GHG (CO2) emissions produced and energy mix targets. This means that a wide range
of aspects, including economic, environmental, regulatory, technical, operational and social, can be
included in the GEP model. The GEP has been widely investigated in the literature, and for more
details we refer to survey papers such as Koltsaklis and Dagoumas (2018), Dagoumas and Koltsaklis
(2019), and Sadeghi et al. (2017).

In this paper, we propose an integration of two optimization models for determining generation
expansion planning at both national and regional levels. In the first proposed model, a single-period
energy mix at a future date (e.g., 2050) is obtained using a non-linear goal programming method where
a balance between national and regional decisions is also considered. The use of goal programming for
solving the GEP problem is still limited, although this method has the ability to address multiple goals
across conflicting criteria. There are several related works in energy planning where goal programming
is used. San Cristóbal (2012) investigates the GEP problem for the renewable energy plants. A
goal programming model is proposed to obtain the optimal mix of different power plant types over
the planning horizon. Moreover, the power plant locations, together with their capacity expansion
decisions, are optimally determined. The application of the proposed model is assessed by locating five
renewable energy plants in five places located in Cantabria, Spain. Jones et al. (2016) propose a relevant
extension to the classic goal programming model called extended network goal programming (ENGP).
This method aims to ensure that a parametric mix of optimization and balance (efficiency and equity)
is achieved across a hierarchical decision network. A model is designed which gives consideration
to the balance and efficiency of multiple objectives and stakeholders at each network node level. The
methodology is evaluated on a small example concerning the regional development of renewable energy
sources, where the model aims to find an optimal number of renewable energy projects. Özcan et al.
(2017) study a combination of goal programming with an Analytical Hierarchy Process (AHP) and the
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) for maintenance strategy
selection in hydroelectric power plants.

In the second model, we propose a stochastic multi-period GEP model that determines the energy
transition over the time horizon from the present until the end of the horizon period (2050). The
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energy mix configuration at the future period (2050) is obtained from the first model, which can be
considered an energy mix target at the end of the planning horizon. The proposed model takes into
account uncertain parameters, including the regional energy demand, fuel cost, and national peak
load. The GEP under uncertainty has been reported in the literature where Malcolm and Zenios
(1994) and Mulvey et al. (1995) are among the first to deal with this problem. They put forward
robust optimization models to attain capacity expansion plans in the presence of uncertain energy
demand. Robust optimization frameworks are also proposed for the GEP under uncertainty by recent
researchers including Costa et al. (2017), Moret et al. (2020), and Moreira et al. (2021).

Two-stage and multi-stage stochastic programming models are also used to address the GEP under
uncertainty. It is common that uncertain parameters are tackled by the scenario tree configuration or
Monte Carlo simulation. The two-stage stochastic programming model is studied by, among others,
Krukanont and Tezuka (2007), Feng and Ryan (2013), Park and Baldick (2015), Irawan et al. (2022),
and Kim et al. (2021). The multi-stage stochastic programming can be considered the most popular
tool to solve the GEP under uncertainty. Recent researchers who use this approach include Li et al.
(2010), Li and Huang (2012), Min and Chung (2013), Thangavelu et al. (2015), Betancourt-Torcat
and Almansoori (2015) and Ioannou et al. (2019). A fuzzy stochastic programming has also been
implemented for the GEP under uncertainty, including the works of Hu et al. (2014) and Li et al.
(2014).

In this paper, we design a new methodology that integrates two optimization models for the genera-
tion expansion planning at both national and regional levels. The first model is an ENGP model where
multiple objective functions are considered based on economic, environmental, and social dimensions.
We also take into account the target set by the stakeholders (national and regional level) for each
objective function. A Non-Linear Programming (NLP) model is built and a commercial non-linear
solver (Baron) are used to solve the model. The main output of the first model is the energy mix at
both national and regional levels for a single future date (2050). This energy mix is then used in the
second model as a target that needs to be achieved at that future point. The second model can be
considered as a stochastic GEP where a two-stage stochastic programme is designed. Moreover, we
also develop an algorithm based on the sample average approximation method (Kleywegt et al., 2002)
to solve the model. To the best of our knowledge, our methodology is new and has not been used in
the current literature. The proposed methodology is assessed on a realistic instance based on power
system data in China.

This paper makes novel contributions to both the application and methodology of operational re-
search. Firstly, in terms of application it tackles the important problem of determining targets for
China’s electricity generation and developing an energy transition plan to meet those targets in the
period until 2050. This is of high strategic importance, not just to China but on a worldwide scale due
the economic and environmental implications, as China is set to become the World’s largest economy
by around 2030, with a consequent large electricity generation requirement (Energy Information Ad-
ministration, 2022). Environmentally, China is currently the world’s largest consumer of energy, the
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largest producer and consumer of coal, and the largest emitter of carbon dioxide. Hence, the need to
provide more accurate forecasting and strategies to ensure economically and environmentally efficient
future Chinese energy generation is the prime motivation for this paper. Compared to other papers
in literature, our paper has the novel methodological aspects of (i) developing a model that can accu-
rately preferentially achieve both national and regional energy generation goals as closely as possible,
(ii) developing a stochastic energy transition model that is robust under multiple, uncertain future
policy scenarios and (iii) developing an overall methodology that combines the setting of national and
regional targets with an energy transition plan to meet those targets. To the best of our knowledge,
these aspects have not been investigated comprehensively in the extant literature and hence we be-
lieve that our paper is methodologically novel and original with respect to the above three points. To
summarize, the principal novel contributions of this work are as follows:

• a novel methodology that combines two optimization models for simultaneous determination of the
strategic energy planning at both national and regional levels

• a non-linear extended network goal programming model to obtain an energy mix at a future date
• a stochastic energy transition model and its solution method based on sample average approximation
• the construction and analysis of the results for the electricity generation system in China.

The paper is organized into five main sections. In Section 2, we present the novel optimization
models that can be used for the generation expansion planning at both regional and national levels.
Section 3 describes the energy data in China together with the instances that we use. In Section 4,
results of computational experiments are presented together with their discussion. The final section
provides conclusions, limitations and suggestions for future work.

2. Optimization Models

The proposed methodology comprises two optimization models where the first model aims to obtain
the energy mix for the national level together with its regions in a future single period (e.g. 2050).
The model is developed based on the extended goal programming network, and formulated based on
the Mixed Integer Nonlinear Programming (MINLP). The second model is then designed and solved
to generate an energy expansion planning (GEP) starting from the present period to the future period
(multi-period) in order to achieve the energy mix for the future period obtained by the first model.
The second model can represent the energy transition planning to achieve the energy mix that has
been set. The stochastic model is proposed based on the Mixed Integer Linear Programming (MILP),
where uncertain parameters are taken into account, including the fuel cost, annual energy demand
for each region, and the national peak load. To solve the proposed stochastic model, the Sample
Average Approximation (SAA) method is put forward. Figure 1 shows the flowchart of the proposed
methodology used in this paper, while the detailed description of each model is provided in the following
subsections.
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Figure 1: The flowchart of the proposed methodology

2.1. A single-period goal programming-based energy mix model

The single-period energy mix is designed based on a non-linear ENGP methodology which is de-
veloped to ensure that balance and optimization are achieved across a hierarchical decision network.
The model has two levels, namely national and regional, where a country (national level) may consist
of several regions (m regions). The country and each region are treated as stakeholders that have their
own preferential data with respect to a set of sustainability objectives. This implies a decision-making
network comprising multiple layers (levels) with multiple objectives and multiple stakeholders. The
proposed model aims to optimize deployment of the diversity of energy sources in such way that the
energy demand at national and regional levels is satisfied when considering economic, environmental,
and social sustainability aspects.

The economic, environmental, and social aspects are considered goals, where each goal comprises
several sub-goals. In this paper, the sub-goals are taken from Streimikiene et al. (2012) who has de-
veloped evaluation criteria based upon an in-depth review of the literature around energy technology
evaluation criteria and major international research projects that focused on evaluation of energy tech-
nology options and had participation from leading energy research groups that developed the criteria
by considering electricity generation technology options and their impacts in a range of European
countries and China. It is therefore very well suited for the purpose of this research.

Table 1 present the sub-goals (set S) which is divided into two subsets, namely the subset of
sub-goals with underlying maximization functions (S+ ⊂ S), and those with underlying minimization
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functions (S− ⊂ S). A set of generation sources (K) is considered, including coal, gas, hydro, nuclear,
biomass, wind, and solar. Each generation source k ∈ K has a different assessment (aks) on sub-goal
s ∈ S. A target of sub-goal s ∈ S (τS

rs) needs to be set for each stakeholder r. Here, r = 0 indicates
the national level, whereas r = 1, . . . ,m represents regions, from region r = 1 to r = m. Penalties (uS

rs

and vS
rs) are given for each unit of negative deviation from the target of the sub-goal s ∈ S+ and each

unit of positive deviation from the target of sub-goal s ∈ S− respectively.

Table 1: Main goals and their sub-goals

Main Goal Sub-goals Abbreviation Function
Economic dimension Private costs (investments and operation costs) PR-COST Minimize

Average availability (load) factor AVAILAB Maximize
Security of supply SECURE Maximize
Cost of grid connection GRID-COST Minimize
Peak load response PEAKLOAD Maximize

Environmental dimension GHG emissions CO2eq. Minimize
Environmental external costs ENV Minimize
Radionuclide external costs RADIO Minimize
Human health impact HEALTH Minimize

Social dimension Technology-specific job opportunities EMPL Maximize
Food safety risk FOOD Minimize
Fatal accidents from past experience ACC-PAST Minimize
Severe accidents perceived in future ACC-FUT Minimize

Each region r has a set of generation sources (K) to satisfy its energy demand (dr). In the event that
the total energy production of region r (∑k Erk) is not sufficient, the demand can be met by importing
energy (Grr′) from other regions that has surplus production (Lr), considering a transmission lost
factor (lrr′). Note that the surplus region does not receive any transmission from other regions. At
both regional and national level an annual energy production target (MWh) is set from its generation
source k ∈ K (τE

rk). Negative deviation from the target is penalized (uE
rk). The energy production

of the generation source k ∈ K is affected by its capacity factor (ψk), and the maximum potential
capacity (κrk) available in each region r. A diagrammatic illustration of the proposed energy mix
model is presented in Figure 2.

Each stakeholder (national and regional) may have a different perspective regarding each objective.
Here, the proposed model takes into account balance and efficiency among objectives and stakeholders.
Three parameters are used where the first is a relative importance national-regional weight (w), where
0 ≤ w ≤ 1. A larger w indicates a greater degree of decision-making at the national level. Secondly,
Parameter αr controls the mix of optimization and balance of stakeholder r, r = 0, 1, . . . ,m, where
0 ≤ αr ≤ 1. When αr = 0, stakeholder r focuses on the efficiency of the objectives, otherwise, if αr = 1
the balance of the objectives is considered. The third parameter is β (0 ≤ β ≤ 1) which controls the
mix of optimization and balance when considering a set of regions. Increasing the β value increases
the importance given to the maximal stakeholder dissatisfaction, whereas decreasing it increases the
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Figure 2: Diagrammatic illustration of the energy mix model

importance given to the average stakeholder dissatisfaction. In summary, the following notations are
used to describe the sets and parameters of the non-linear ENGP energy mix model.

Sets and indices

r: index of stakeholders where r = 0 is for national, and r = 1, . . . ,m for regions 1 to m
K: set of electricity generation sources indexed by k (coal, gas, wind, etc.)
S: set of sub-goals (i.e., installation cost, operational cost, dispatch ability, energy generated, etc.)
S+: set of sub-goals with underlying maximization functions (S+ ⊂ S)
S−: set of sub-goals with underlying minimization functions (S− ⊂ S)

Parameters

aks: the contribution towards sub-goal s ∈ S of generation source k ∈ K
τS

rs: the target of sub-goal s ∈ S set by stakeholder r = 0, 1, . . . ,m
τE

rk: the annual energy production target (MWh) from generation source k ∈ K set by stakeholder
r = 0, 1, . . . ,m

dr: the annual energy demand of region r = 1, . . . ,m
ψk: capacity factor (%) of generation source k ∈ K representing the ratio of its actual output over a

period of time to its potential output which is calculated based on the installed capacity
κrk: maximum potential capacity (MW) of generation source k ∈ K for stakeholder r = 0, 1, . . . ,m
ϕ: total operating hours (it is assumed the same for all power plants, i.e., 8,760 hours per year)
lrr′ : the transmission loss factor from region r to r′, where (r, r′) = 1, . . . ,m and r ̸= r′

uS
rs: weight associated with penalizing negative deviation from the target of sub-goal s ∈ S+ for

stakeholder r = 0, 1, . . . ,m
vS

rs: weight associated with penalizing positive deviation from the target of sub-goal s ∈ S− for
stakeholder r = 0, 1, . . . ,m

uE
rk: weight associated with penalizing negative deviation from the annual energy production target

from generation source k ∈ K for stakeholder r = 0, 1, . . . ,m
w: controls national-regional weighting
αr: controls mix of optimization and balance in stakeholder r = 0, 1, . . . ,m
β: controls mix of optimization and balance when considering the set of regions
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Decision Variables

Erk: amount of energy produced (MWh) by generation source k ∈ K in stakeholder r = 0, 1, . . . ,m
NS

rs: negative deviation from the target of sub-goal s ∈ S for stakeholder r
PS

rs: positive deviation from the target of sub-goal s ∈ S for stakeholder r
NE

rk: negative deviation from the annual energy target of generation source k ∈ K for stakeholder
r = 0, 1, . . . ,m

PE
rk: positive deviation from the annual energy target of generation source k ∈ K for stakeholder

r = 0, 1, . . . ,m
Grr′ : electricity transmitted (MWh) from region r to r′, where (r, r′) = 1, . . . ,m and r ̸= r′

Lr =

1 if region r has surplus production, where r = 1, . . . ,m,
0 otherwise

λr: maximal deviation from set of normalized weighted goals for stakeholder r = 0, 1, . . . ,m
D: maximal measure from amongst the set of regions (the worst performing region)

Mathematical Model

The energy mix problem can be formulated as the mixed integer non-linear programming extended
network goal programme (MINLENGP), as follows:

minZ = w
[
α0 · λ0 + (1− α0)Z0]+ (1− w)

[
β ·D + (1− β)ZR

]
(1)

Subject to
Z0 =

∑
s∈S+

uS
0s ·NS

0s

τS
0s

∑
k∈K E0k

+
∑

s∈S−

vS
0s · PS

0s

τS
0s

∑
k∈K E0k

+
∑
k∈K

uE
0k ·NE

0k

τE
0k

(2)

ZR =
m∑

r=1

[
αr · λr + (1− αr)

(∑
s∈S+

uS
rs ·NS

rs

τS
rs

∑
k∈K Erk

+
∑

s∈S−

vS
rs · PS

rs

τS
rs

∑
k∈K Erk

+
∑
k∈K

uE
rk ·NE

rk

τE
rk

)]
(3)

∑
k∈K

(aks · Erk) +NS
rs − PS

rs = τS
rs

∑
k∈K

Erk, ∀s ∈ S, r = 0, 1, . . . ,m (4)

Erk +NE
rk − PE

rk = τE
rk, ∀k ∈ K, r = 0, 1, . . . ,m (5)∑

k∈K

m∑
r=1

Erk ≤
∑
k∈K

τE
0k (6)

Erk ≤ κrk · ψk · ϕ, ∀k ∈ K, r = 1, . . . ,m (7)∑
k∈K

Erk −
m∑

r′=1
r′ ̸=r

Grr′ +
m∑

r′=1
r′ ̸=r

Gr′r(1− lr′r) ≥ dr, r = 1, . . . ,m (8)

∑
k∈K

Erk ≥ dr · Lr, r = 1, . . . ,m (9)

m∑
r′=1
r′ ̸=r

Grr′ ≤ Lr ·
∑
k∈K

Erk, r = 1, . . . ,m (10)
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m∑
r′=1
r′ ̸=r

Gr′r ≤ dr · (1− Lr), r = 1, . . . ,m (11)

uS
rs ·NS

rs

τS
rs

∑
k∈K Erk

≤ λr, ∀s ∈ S+, r = 0, 1, . . . ,m (12)

vS
rs · PS

rs

τS
rs

∑
k∈K Erk

≤ λr, ∀s ∈ S−, r = 0, 1, . . . ,m (13)

∑
k∈K

uE
rk ·NE

rk

τE
rk

≤ λr, ∀r = 0, 1, . . . ,m (14)

αr · λr + (1− αr)
(∑

s∈S+

uS
rs ·NS

rs

τS
rs

∑
k∈K Erk

+
∑

s∈S−

vS
rs · PS

rs

τS
rs

∑
k∈K Erk

+
∑
k∈K

uE
rk ·NE

rk

τE
rk

)
≤ D, ∀r = 1, . . . ,m (15)

Erk ≥ 0;NE
rk ≥ 0;PE

rk ≥ 0, ∀k ∈ K, r = 0, 1, . . . ,m (16)

Ns
rs ≥ 0;P s

rs ≥ 0, ∀s ∈ S, r = 0, 1, . . . ,m (17)

Grr′ ≥ 0, ∀(r, r′) = 1, . . . ,m; r ̸= r′ (18)

λr ≥ 0, ∀r = 0, 1, . . . ,m (19)

D ≥ 0 (20)

Lr ∈ {0, 1}, ∀r = 1, . . . ,m (21)

The objective function (1) represents the overall stakeholder dissatisfaction that needs to be mini-
mized. The dissatisfaction is incurred at the national level (2) and regional level (3) where percentage
normalization is used in order to overcome incommensurability. Constraints (4) determine the un-
wanted deviational variables for each sub-goal and for each stakeholder (NS

rs and PS
rs). Constraints

(5) give the national and regional level goals for energy generation. Constraint (6) determines the
amount of energy produced at the national level for each generation source, which is based on energy
produced by each region. This constraint also ensures that the total energy produced at the national
level does not exceed the target that has been set. Constraints (7) impose that the energy produced
by each generation source and each region must consider the maximum capacity installed and the
capacity factor of the generation. Inequality set (8) ensure that the energy demand for each region
must be satisfied by a combination of their production and importation from other regions. Here, the
transmission loss factor needs to be considered.

Constraints (9) indicate the regions that have surplus production. Constraints (10) ensure that
only surplus regions may transmit electricity to other regions, whereas Constraints (11) enforce that
surplus regions do not receive electricity from others. Constraints (12–13) guarantee that for each
region and for each sub-goal, the weighted, normalized, unwanted deviation from each stakeholder goal
target is less than, or equal to, the maximal value for that stakeholder (λr). The interpretation of the
inequality set (14) is similar to (12–13); however, it is for the energy produced by each stakeholder.
Constraints (15) ensures that the parametric combination of the worst case and average deviations for
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each region is less than or equal to the worst case regional score (D). Constraints (16–20) indicate the
non-negativity of the decision variables, whereas binary variables L are defined in Equation (21). The
ENGP energy mix model expressed by Equations(1)–(21) is considered as a Mixed Integer Nonlinear
Programming (MINLP). The sources of non-linearity are Equations (2), (3), (10), (12), (13), and (15),
where Variables Erk are mainly used to normalize the goals. Here, goal target parameters or other
forms of normalization constant could also be used, however they do not give a normalizing factor as
accurate as the level of energy production.

2.2. A multiple-period generation expansion planning (energy transition) model
The multi-period stochastic generation expansion planning model is developed where the main

input is the energy mix to be achieved in the future period for each region (χrk); it is obtained by
the goal programming-based energy mix model described in Subsection 2.1. By implementing the
proposed generation expansion planning model, we can analyze the energy mix transition over the
planning horizon. The objective of this model is to determine the optimal generation sources, level of
expansion, and timing of new generator construction in order to minimize the total cost, while satisfying
the electricity demand. The model considers the existing installed capacity (MW) at the beginning
of the period for each generation source and for each region (brk). The expansion and reduction of
the installed capacity for generation source k and region r are limited to φ+

rk and φ−
rk respectively.

Similar to the previous model, the installed capacity must not exceed κrk. We also consider a set of
parameters for each generation source including the capital cost, decommissioning cost, fixed operating
cost, variable operating cost, fuel cost, heat rate, capacity factor and amount of CO2 produced. The
CO2 price (ρt) is taken into account in order to penalize the amount of CO2 generated. The electricity
can be transmitted from one region to others in order to satisfy demand, considering the transmission
loss factor and the transmission cost.

A two-stage stochastic program model (Birge and Louveaux, 2011) is developed to deal with the
uncertain parameters which are captured by their probability distributions. Scenarios are used to
capture a realization of these parameters and we denote Ω to be the set of scenarios indexed by
ω ∈ Ω. It is also assumed that we can estimate the probability associated with a scenario (pω). In
this study, the uncertain parameters include the fuel cost (oktω), the annual energy demand for each
region (τ̂E

rtω), and the national peak load demand (δtω). It is assumed that the additional (X̂krt)
and reduced (Ŷkrt) installed capacities decision variables for all periods must be determined before
the realization of uncertain parameters, hence, these are determined in the first stage. The second
stage decision variables include annual electricity generated (Êkrtω), electricity transmitted from one
region to another (Ĝrr′tω), and the ones indicating whether or not a region has surplus production
(L̂rtω). The second stage are recourse decisions, because variables Êkrtω, Ĝrr′tω, and L̂rtω are obtained
so that the best response on the occurring scenario is given to the setting defined by the first-stage
decisions. We also introduce auxiliary variable Âkrt to represent the maximum electricity produced by
each generation among the scenarios. This variable may determine the total power plant’s capacity
for each period. Excess capacity for each scenario is penalized based on parameter c̄. Two parameters
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denoted by ĉ and c̃ are used to penalize the unmet annual energy demand and unmet peak load,
respectively. These parameters aim to achieve the feasibility of the obtained solutions over the set
of scenario realizations (Mulvey et al., 1995). Subsequently, two decision variables Ua

rtω and Up
tω are

introduced to represent unmet annual energy demand and unmet peak load, respectively. Here, we
define X = {X̂krt, Ŷkrt, Âkrt} as the first-stage decisions and Y = {Êkrtω, Ĝrr′tω, L̂rtω, U

a
rtω, U

p
tω} as the

second-stage decisions for each scenario ω ∈ Ω. The notations used in this model are similar to the
ones in the previous model, with additional notations as follows:

Sets and indices

T : set of time periods indexed by t ∈ T
ΩF : set of scenarios for the fuel cost
ΩD: set of scenarios for the annual energy demand for each region
ΩP : set of scenarios for the national peak load
Ω: combination of scenarios (Ω = {ΩF ,ΩD,ΩP }) indexed by ω ∈ Ω

Parameters

brk: existing installed capacity (MW) of generation source k ∈ K in region r = 1, . . . ,m at the initial
period

ck: unit capital cost ($/MW) to build new generation source k ∈ K
qk: unit decommissioning cost ($/MW) to retire generation source k ∈ K
fk: unit fixed operating cost ($/MW) of generation source k ∈ K
vk: unit variable operating cost ($/MWh) of generation source k ∈ K
oktω: unit fuel cost ($/MMBtu) of generation source k ∈ K in period t ∈ T under scenario ω ∈ Ω

hk: unit heat rate (MMBtu/MWh) of generation source k ∈ K representing the efficiency of the
power plant that converts a fuel into electricity. The heat rate indicates the amount of energy
used by a power plant to generate one MWh of power.

ψk: capacity factor (%) of generation source k ∈ K
ϕ: total operating hours
lrr′ : the transmission loss factor from region r to r′, where (r, r′) = 1, . . . ,m and r ̸= r′

l̄: the average transmission (distribution) loss factor
lcrr′ : the transmission cost per MWh from region r to r′, where (r, r′) = 1, . . . ,m and r ̸= r′

εk: unit CO2 emissions (tons of CO2/MWh) caused by generation source k ∈ K
ρt: unit CO2 emissions price ($/ton CO2) in period t ∈ T
τ̂E

rtω: annual energy demand (MWh) in period t ∈ T under scenario ω ∈ Ω for region r = 1, . . . ,m
δtω: peak load (MW) in period t ∈ T at the national level under scenario ω ∈ Ω

p̂ω: probability that scenario ω occurs
κrk: maximum total capacity of generation k ∈ K that can be installed in region r = 1, . . . ,m over

the planning horizon
φ+

rk: maximum capacity of generation k ∈ K that can be installed per year in region r = 1, . . . ,m
φ−

rk: maximum capacity of generation k ∈ K that can be retired per year in region r = 1, . . . ,m
χrk: minimum percentage of electricity produced by generation source k ∈ K at the end of planning

horizon (i.e., 2050) in region r = 1, . . . ,m (obtained from the first model)
c̄: unit penalty for excess capacity ($/MW)
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ĉ: unit penalty for unmet annual energy demand ($/MWh)
c̃: unit penalty for unmet peak load ($/MW)

The First-Stage Decision Variables

X̂rkt: installed capacity (MW) of new generation k ∈ K during period t ∈ T in region r = 1, . . . ,m
Ŷrkt: total capacity (MW) of generation k ∈ K that are retired during period t ∈ T in region

r = 1, . . . ,m
Ârkt: maximum annual electricity production (MWh) of generation k ∈ K generated during period

t ∈ T in region r = 1, . . . ,m

The Second-Stage Decision Variables

Êrktω = annual electricity generated (MWh) by generation source k ∈ K in region r = 1, . . . ,m
during period t ∈ T under scenario ω ∈ Ω

Ĝrr′tω: electricity (MWh) transmitted from region r to r′ in period t ∈ T , where (r, r′) = 1, . . . ,m
and r ̸= r′, under scenario ω ∈ Ω

L̂rtω =

1 if region r has surplus production in period t, where r = 1, . . . ,m, under scenario ω ∈ Ω,

0 otherwise

Ua
rtω: unmet annual energy demand (MWh) during period t ∈ T in region r = 1, . . . ,m, under scenario

ω ∈ Ω

Up
tω: unmet peak load (MW) during period t ∈ T under scenario ω ∈ Ω

In the proposed two-stage stochastic programming model, the first-stage model optimizes the strate-
gic capacities decision, whereas the second-stage model minimize the expected operational costs. The
first-stage objective function and constraints can be expressed as follows:

min
X

{∑
t∈T

m∑
r=1

∑
k∈K

(
ck · X̂rkt + qk · Ŷrkt + fk

(
bkr +

t∑
t′=1

(X̂rkt′ − Ŷrkt′)
))

+
∑

ω∈Ω

pω ·Q(X, ω)
}

(22)

subject to:
brk +

∑
t∈T

(
X̂rkt − Ŷrkt

)
≤ κrk, ∀k ∈ K; r = 1, . . . ,m (23)

∑
t∈T

Ŷrkt ≤ brk, ∀k ∈ K; r = 1, . . . ,m (24)

X̂rkt ≤ φ+
rk, ∀t ∈ T ; k ∈ K; r = 1, . . . ,m (25)

Ŷrkt ≤ φ−
rk, ∀t ∈ T ; k ∈ K; r = 1, . . . ,m (26)

Ârkt = ψk · ϕ ·
(
brk +

t∑
t′=1

(X̂rkt′ − Ŷrkt′)
)
, ∀t ∈ T ; k ∈ K; r = 1, . . . ,m; (27)

X̂rkt ≥ 0, ∀k ∈ K; t ∈ T ; r = 1, . . . ,m; (28)

Ŷrkt ≥ 0, ∀k ∈ K; t ∈ T ; r = 1, . . . ,m; (29)

Ârkt ≥ 0, ∀k ∈ K; t ∈ T ; r = 1, . . . ,m; (30)
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The objective function (22) aims to minimize the total costs, where the first term of this equation
determine the total construction, decommissioning, and fixed operating costs, whereas the second term
calculate the expected operational costs. Constraints (23) ensure that the total capacity installed for
each generation source and each region cannot exceed the maximum capacity available. Constraints
(24) guarantee that only existing capacity can be terminated. Constraints (25) and (26) aim to limit the
capacity expansion and the capacity reduction respectively. Constraints (27) determine the maximum
annual electricity production (MWh) that can be generated by power plant k ∈ K during period t ∈ T
in region r = 1, . . . ,m by considering its capacity factor and the total operating hours per year (ϕ =
8,760 hours). Constraints (28)–(30) indicate that the first-stage model uses non-negative continuous
variables.

The second-stage model is implemented after the strategic capacities decisions from the first-stage
model have been applied and the uncertain parameters are revealed. Here, the second-stage model
consists of a set of deterministic models over all possible scenarios. The objective function of this
model for a single scenario ω ∈ Ω is associated with all incurred operational costs. The second-stage
model is formulated as follows:

min
Y Q(X, ω) =

∑
t∈T

{( m∑
r=1

∑
k∈K

[
Êrktω

(
vk + oktω · hk + εk · ρt

)
+ c̄
( Ârkt − Êrktω

γ · ψk

)
+

m∑
r′=1

Ĝrr′tω · lcrr′

])
+ (31)

( m∑
r=1

[
Ua

rtω · ĉ
]

+ Up
tω · c̃

)}

subject to:
Êrktω ≤ Ârkt, ∀t ∈ T ; k ∈ K; r = 1, . . . ,m;ω ∈ Ω (32)

∑
k∈K

Êrktω +
m∑

r′=1
r′ ̸=r

Ĝr′rtω · (1− lr′r)−
m∑

r′=1
r′ ̸=r

Ĝrr′tω + Ua
rtω ≥ τ̂E

rtω, ∀t ∈ T ; r = 1, . . . ,m;ω ∈ Ω (33)

∑
k∈K

Erktω ≥ τ̂E
rtω · L̂rtω, t ∈ T ; r = 1, . . . ,m;ω ∈ Ω (34)

m∑
r′=1
r′ ̸=r

Ĝrr′tω ≤ τ̂E
rtω · L̂rtω, t ∈ T ; r = 1, . . . ,m;ω ∈ Ω (35)

m∑
r′=1
r′ ̸=r

Ĝr′rtω ≤ τ̂E
rtω · (1− L̂rtω), t ∈ T ; r = 1, . . . ,m;ω ∈ Ω (36)

(1− l̄)
∑
k∈K

ψk

m∑
r=1

[
brk +

t∑
t′=1

(
X̂rkt′ − Ŷrkt′

) ]
+ Up

tω ≥ δtω, ∀t ∈ T, ω ∈ Ω (37)

Êrk|T |ω ≥ χrk

∑
k′∈K

Êrk′|T |ω, ∀k ∈ K; r = 1, . . . ,m;ω ∈ Ω (38)

Êrktω ≥ 0, ∀k ∈ K; t ∈ T ; r = 1, . . . ,m;ω ∈ Ω (39)
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Ua
rtω ≥ 0, ∀t ∈ T ; r = 1, . . . ,m;ω ∈ Ω (40)

Up
tω ≥ 0, ∀t ∈ T ;ω ∈ Ω (41)

Ĝrr′tω ≥ 0, ∀t ∈ T, (r, r′) = 1, . . . ,m; r ̸= r′, ω ∈ Ω (42)

L̂rtω ∈ {0, 1}, ∀t ∈ T ; r = 1, . . . ,m;ω ∈ Ω (43)

The objective function (31) aim to minimize the expected operational costs that consist of the vari-
able, fuel, emission, transmission and penalty costs. Three types of penalty costs are computed, which
are associated with the under production capacity, unmet annual energy demand, and unmet annual
peak load. Constraints (32) ensure that the amount of energy generated by each generation source
for each scenario is less than the maximum capacity. Constraints (33) impose that the annual energy
demand for each region must be satisfied otherwise a penalty is incurred. Each region’s demand can be
met by generation within that region and/or by importing energy from other regions. Constraints (34)
determine the regions that have surplus production for each period under scenario ω ∈ Ω. Only surplus
regions may export electricity to other regions which is expressed by Constraints (35). Constraints
(36) ensure that surplus regions do not receive electricity from others. Constraints (37) state that the
total installed capacity should be able to meet the national peak load energy demand for each period,
taking into account the average transmission loss. A penalty cost is also incurred if the peak load is
not satisfied. Constraints (38) enforce the energy mix in the final period which is determined by the
output of the first model (the energy mix model). Constraints (39–42) indicate that the model uses
non-negative continuous variables, whereas Constraints (43) define the binary variables used in the
model.

2.3. Sample average approximation for the stochastic generation expansion planning model

The proposed stochastic generation expansion planning model considers several uncertain parame-
ters. When a large number of scenarios considered in the model is used, the model can be challenging
to solve using an exact method, mainly due to memory issues. We implement the sample average
approximation (SAA) approach in this study to address the proposed problem. The SAA method has
been widely used to solve problems under uncertainty (Bertsimas et al., 2018). This method is suitable
for tackling the problem with an enormous number of possible scenarios, where the uncertain param-
eters follow a continuous distribution (e.g., normal or exponential distributions). A comprehensive
guide to this method is provided by Kim et al. (2015).

Algorithm 1 presents the steps of the proposed SAA for solving the proposed model. M independent
samples are first randomly generated, and we refer to each sample as a SAA problem. Each SAA
problem consists of N scenarios generated from set Ω based on the given distribution function of the
uncertain parameters using the Monte-Carlo sampling method (Shapiro, 2003), which is a mathematical
technique used to estimate the possible outcomes of an uncertain event. These scenarios represent the
realization of uncertain parameters, namely the fuel cost, annual energy demand, and peak load.
Algorithm 2 describes the steps of generating a scenario ω. In the SAA, the expected value of the
objective function is estimated by the average over objective values Q(X, ω). Therefore, the original
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two-stage stochastic problem (22)–(43) is replaced by the equivalent deterministic programming model
expressed as follows:

minZ =
∑
t∈T

m∑
r=1

∑
k∈K

(
ck · X̂rkt + qk · Ŷrkt + fk

(
bkr +

t∑
t′=1

(X̂rkt′ − Ŷrkt′)
))

+ (44)

1
N

N∑
ω=1

∑
t∈T

{
m∑

r=1

∑
k∈K

[
Êrktω

(
vk + oktω · hp + εk · ρt

)
+ c̄
( Ârkt − Êrktω

γ · ψk

)
+

m∑
r′=1
r ̸=r′

Ĝrr′tω · lcrr′

]
+

m∑
r=1

[
Ua

rtω · ĉ
]

+ Up
tω · c̃

}

s.t. (23)–(30) and (32)–(43)

The SAA model (44), (23)–(30) and (32)–(43) is considered as a Mixed Integer Linear Programming
(MILP) and can be optimally solved by an exact method using a commercial solver (e.g., CPLEX). In
summary, the model consists of m|T ||Ω| binary variables and m(3|K||T |+ |K||T ||Ω|+(m+1)|T ||Ω|)+
|T ||Ω| continuous variables, together with m(2|K| + 3|T ||K| + |T ||K||Ω| + 4|T ||Ω| + |K||Ω|) + |T ||Ω|
constraints. We denote ZN

i and XN
i as the objective value and the first-stage solution of the ith SAA

problem, respectively.

Algorithm 1 Procedure SAA for the stochastic generation expansion planning model
1: Set parameters M , N , N ′ and α
2: Set ZN =∞
3: for each sample i = 1 to M do
4: Generate N scenarios to be included in the ith SAA problem
5: Solve the ith SAA problem expressed by Model (44), (23)–(30) and (32)–(43)
6: Let ZN

i be the objective value and XN
i be the first-stage solution

7: if ZN
i < ZN then ZN = ZN

i and X̂← XN
i

8: end for
9: Obtain the average and variance of the M SAA objective functions using (45) and (46), respectively

10: Calculate an approximate 100(1− α)% confidence lower bound (LB) using (47)
11: for each scenario ω = 1 to N ′ do
12: Generate a scenario (ω) for the ωth second-stage problem expressed by Model (31)–(43)
13: Solve the ωth second-stage problem by fixing the first-stage solution X̂
14: Let Ẑω be its objective value
15: end for
16: Compute the average and variance of N ′ second-stage problems using (48) and (49), respectively
17: Obtain the approximate 100(1− α)% confidence upper bound (UB) using (50)
18: Determine the optimality gap using (51).

Determination of lower and upper bounds
The optimality gap is used to evaluate the robustness of the proposed SAA where statistical con-

fidence intervals are used to estimate lower (LB) and upper (UB) bounds (Shapiro et al., 2009). To
estimate a valid LB, we first calculate the average and standard deviation of the objective values of the
M the SAA problems which are denoted by Z̄MN and σ̂MN , respectively, formulated by the following
expressions:
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Algorithm 2 The main steps of generating a scenario ω
1: for each period t ∈ T do
2: Generate the national peak load during period t (δtω) based on the given distribution
3: for each region r = 1 to m do
4: Generate the electricity demand of region r during period t (τ̂E

rtω) based on the given distribution
5: end for
6: for each generation k ∈ KF , where KF = {coal, gas, nuclear, and biomass} do
7: Generate the fuel cost of generation k during period t (oktω) based on the given distribution
8: end for
9: end for

Z̄MN = 1
M

M∑
i=1

ZN
i (45)

σ̂MN =

√√√√ 1
M(M − 1)

M∑
i=1

(ZN
i − Z̄MN )2 (46)

An approximate 100(1−α)% confidence LB can be determined using the average and standard deviation
of M SAA models as follows:

LB1−α = Z̄MN − tα,M−1 · σ̂MN (47)

where tα,M−1 is the α-critical value of the t-distribution with (M − 1) degrees of freedom.
From the M solutions obtained, we take the first-stage best solution (X̂) that consists of variables

X̂krt and Ŷkrt. Solution X̂ provides the best objective function value (ZN ). Then, multiple (N ′)
second-stage problems are formed, where N ′ >> N . The second-stage model aims to minimize the
total operational cost expressed by Equations (31)–(43), with fixed first-stage solution (X̂). Each
second-stage problem consists of only one scenario generated using the Monte-Carlo sampling method.
This problem can easily be solved by an exact method (e.g., CPLEX), with Ẑω be the optimal objective
function value of the ωth second-stage problem. To estimate the upper bound (UB), the average (Z̄N ′)
and the standard deviation σ̂N ′ of objective values are then calculated using the following equations:

Z̄N ′
= 1
N ′

N ′∑
ω=1

Ẑω (48)

σ̂N ′
=

√√√√ 1
N ′(N ′ − 1)

N ′∑
ω=1

(Ẑω − Z̄N ′)2 (49)

The approximate 100(1−α)% confidence upper bound (UB) is determined using the following expres-
sion:

UB1−α = ẐN ′
+ zα · σ̂N ′

(50)

where zα is the standard normal critical value with a 100(1 − α)% confidence level. The statistical
optimality gap (%Gap) can be formulated based on UB and LB values as follows:
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%Gap = UB1−α − LB1−α

UB1−α
× 100 (51)

It is worth noting that the measurement unit used for Z̄MN , Z̄N ′ , LB1−α, and UB1−α is cost which
is the same as the objective function given in Equation (22). Furthermore, it should be noted that
the SAA works by minimizing a sample average function (44). Alternative methods are available, for
instance those based on the Minimax or Maximin functions, that minimize the affect of the worse-case
scenario. However, given the nature of the problem studied in our paper, the SAA is preferred in order
to not give over-emphasis to extreme or unusual generated scenario settings.

3. The Electricity Generation System in China

In this study, the proposed methodology is assessed using China’s energy system. China has the
highest total energy consumption worldwide (Global Energy Statistical Yearbook, 2021) and aspires to
be carbon neutral before 2060 (Mallapaty, 2020). According to the 2018 China Electric Power Yearbook
(CEPY, 2018), China’s power grid can be divided into six regions (see Table 2). For convenience of
presentation, we first outline three energy demand/production settings introduced by the Economics
and Technology Research Institute (ETRI) of the China National Petroleum Corporation (CNPC) to
envision electricity demand and production levels by 2050 (CNPC ETRI, 2019). The baseline (BL,
hereafter) setting is used as a reference setting, whilst the beautiful China (BC) setting emphasizes a
higher degree of environmental and social sustainability with an efficient, clean, and low-carbon energy
system. The intelligence connected (IC) setting, however, expects an interconnected system powered
by advanced digital and intelligent technology with higher productivity and faster economic growth
and, therefore, potentially increased energy demand. Input data were estimated based on, or directly
sourced from, the existing literature and industry documentation and records. Whenever regional data
is not available, we use accessible national data to gauge for each region based on the regional energy
production ratio for each generation source indicated in CEPY (2018).

Table 2: Regional division in the model

Regions Provinces, municipalities and autonomous regions included Regional power grids
Northeast China Liaoning, Jilin, Heilongjiang, East Inner Mongolia Northeast power grid
North China Beijing, Tianjin, Hebei, Shandong, Shanxi, West Inner Mongolia North power grid
East China Zhejiang, Shanghai, Jiangsu, Fujian, Anhui East power grid
Central China Hubei, Hunan, Jiangxi, Chongqing, Henan, Sichuan Central power grid
Northwest China Gansu, Qinghai, Ningxia, Shaanxi, Xinjiang, Tibet Northwest power grid
South China Guangxi, Yunan, Guizhou, Guangdong, Hainan Southern power grid
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3.1. The Energy Mix Model

3.1.1. Maximum capacity of each generation source for each region
Table 3 shows the detailed parameters for the maximum capacity available for each generation

source across all regions, based on Zhang et al. (2018) (for coal, nuclear, hydro, wind, and solar) and
Yi et al. (2016) (for biomass). It is assumed that the maximum capacity for gas for each region is set
to 100,000 MW.

Table 3: Maximum capacity of each generation source for each region (unit: MW)

Region Coal Gas Hydro Nuclear Wind Solar Biomass
Northeast China 105,794.2 100,000.0 25,780.2 24,444.4 211,875.0 236,767.8 29,000.0
North China 279,206.4 100,000.0 15,164.8 19,555.6 508,500.0 153,628.0 30,000.0
East China 258,179.8 100,000.0 40,945.1 68,444.4 52,262.5 79,525.1 17,000.0
Central China 140,868.9 100,000.0 286,615.4 48,888.9 16,950.0 222,308.7 44,000.0
Northwest China 132,143.6 100,000.0 89,472.5 0.0 310,750.0 477,150.4 20,000.0
South China 122,807.0 100,000.0 232,022.0 58,666.7 29,662.5 200,620.1 19,000.0

3.1.2. The annual energy production target
The annual energy production target for each generation source across all regions is summarized

in Table 4, referring to the 2050 energy demand projections for the BL setting in CNPC ETRI (2019).

Table 4: The annual energy production target of each generation source for each region (unit: 109 MWh)

Region Coal Gas Hydro Nuclear Wind Solar Biomass
Northeast China 0.397110 0.142552 0.025325 0.133119 0.347780 0.149481 0.044023
North China 1.048032 0.376217 0.014622 0.000000 0.492384 0.463701 0.093199
East China 0.969106 0.347884 0.113725 0.701692 0.150209 0.356561 0.141999
Central China 0.528767 0.189814 0.902471 0.000000 0.112657 0.212908 0.068988
Northwest China 0.496015 0.178057 0.178710 0.000000 0.404164 0.713123 0.006135
South China 0.460970 0.165476 0.665147 0.565189 0.192806 0.104226 0.045657

3.1.3. The transmission loss factor and capacity factor
The transmission loss factor between regions was derived from the product of the transmission

loss parameter (i.e., 2.75%/1000 km from Yi et al. (2016)) and the distance between regions. We
estimate the distances among regions by the point-to-point distances among the central cities or states
of each of the six regions. Specifically, the central city or state of each region is enumerated as
follows: Qiqihar (Heilongjiang) for the Northeast China, Shijiazhuang (Hebei) for the North China,
Hangzhou (Zhejiang) for East China, Zhangjiajie (Hunan) for Central China, Bayingol Mongolian
Autonomous Prefecture for Northwest China, and Hechi (Guangxi) for South China. The point-to-
point distance between the central cities or states are subsequently evaluated using Google Maps.
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The specific parameters for the capacity factor of each generation source were obtained from the U.S.
Energy Information Administration summarized by Irawan et al. (2022) and Thangavelu et al. (2015).

3.1.4. The assessment and target of sub-goals
Each generation source has been assessed with regard to the three main goals and their correspond-

ing sub-goals as illustrated in Table 1. This is based on the assessment of Streimikiene et al. (2012)
where normalization using a scale in range [0.1–1] is applied. The value of aks is formulated as follow:
aks = 0.1+0.9(âks− min

k′∈K
{âk′s})/( max

k′∈K
{âk′s}− min

k′∈K
{âk′s}), where âks represents the original assessment

value provided by Streimikiene et al. (2012) for sub-goal s ∈ S of generation k ∈ K. Table 5 shows
the assessment of each generation source on the sub-goals.

Table 5: The assessment of each generation source on the sub-goals

Generation Minimizing Function
Source PR-COST GRID-COST CO2eq. ENV RADIO HEALTH FOOD ACC-PAST ACC-FUT
Coal 0.1272 0.1000 1.0000 0.5564 0.1062 0.9169 0.1000 1.0000 1.0000
Gas 0.2936 0.1000 0.8409 0.3983 0.1000 0.5195 0.1000 0.5846 0.4000

Hydro 0.3326 0.1000 0.1061 0.1331 0.1000 0.1598 0.1000 0.1000 0.4000
Nuclear 0.1000 0.1000 0.1036 0.1204 1.0000 0.1279 0.1000 0.1000 1.0000
Wind 0.2667 1.0000 0.1000 0.1000 0.1012 0.1000 0.1000 0.1000 0.1000
Solar 1.0000 0.1000 0.2190 0.2453 0.1000 0.6462 0.1000 0.1000 0.1000

Others 0.2039 1.0000 0.1717 1.0000 0.1168 1.0000 1.0000 0.5846 0.4000
Average 0.3320 0.3571 0.3630 0.3648 0.2320 0.4958 0.2286 0.3670 0.4857

25% Pctile 0.1656 0.1000 0.1049 0.1268 0.1000 0.1439 0.1000 0.1000 0.2500

Generation Maximizing Function
Source AVAILAB SECURE PEAKLOAD EMPL
Coal 0.8875 0.6400 0.5500 0.1978
Gas 0.8875 0.1000 1.0000 0.1685

Hydro 0.9550 1.0000 0.3700 0.2453
Nuclear 0.9438 0.8200 0.1900 0.1000
Wind 0.2575 1.0000 0.1000 0.1280
Solar 0.1000 1.0000 0.1000 1.0000

Others 1.0000 1.0000 1.0000 0.6925
Average 0.7188 0.7943 0.4729 0.3617

75% Pctile 0.9494 1.0000 0.7750 0.4689

It is assumed that four strategic plans are put forward for all stakeholders at national and regional
levels. These strategic plans are represented by the sub-goal target settings, which is presented in
Table 6. The first setting is called Avg, which is determined based on the average assessment value
of the sub-goal (Table 5). Avg-Env, Avg-Cost and Avg-Soc are the target settings which emphasize
environmental, economic, and social dimensions, respectively. Here, the targets are also set based
on the average assessment value, except for the prioritized dimension. For this dimension, the sub-
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goal values for minimizing and maximizing functions are set based on the 25% and 75% percentiles,
respectively, of the assessment values in Table 5. For example, in the target setting Avg-Env, the value
of sub-goal CO2eq is set to 0.1049 which is the 25% percentile of the assessment values of this sub-goal,
whereas in other target settings, it is set to 0.3648 (the average value).

Table 6: Sub-goal settings for national and regional levels

Main Goal Sub-goals Sub-goal Target Settings
Avg Avg-Env Avg-Cost Avg-Soc

Economic

PR-COST 0.3320 0.3320 0.1656 0.3320
AVAILAB 0.7188 0.7188 0.9494 0.7188
SECURE 0.7943 0.7943 1.0000 0.7943

GRID-COST 0.3571 0.3571 0.1000 0.3571
PEAKLOAD 0.4729 0.4729 0.7750 0.4729

Environmental

CO2eq. 0.3630 0.1049 0.3630 0.3630
ENV 0.3648 0.1268 0.3648 0.3648

RADIO 0.2320 0.1000 0.2320 0.2320
HEALTH 0.4958 0.1439 0.4958 0.4958

Social

EMPL 0.3617 0.3617 0.3617 0.4689
FOOD 0.2286 0.2286 0.2286 0.1000

ACC-PAST 0.3670 0.3670 0.3670 0.1000
ACC-FUT 0.4857 0.4857 0.4857 0.2500

Parameters for penalizing unwanted deviations of sub-goals are taken from Yu et al. (2020) and
determined by aggregating provincial data into regional ones. The penalties for unwanted deviations
of energy production are assumed to be the same for each generation source and each region.

3.1.5. The Setting of Instances
Twelve instances have been constructed from four sub-goal target settings (ie., Avg, Avg-Env, Avg-

Cost, Avg-Soc) and the three aforementioned energy demand/production settings (i.e., BL, BC, IC).
Instance 1 combines the Avg sub-goal target and the baseline demand (BL) settings, whereas Instance
12 is the combination of Avg-Soc and IC settings. Section 4.1 discusses the experimental results from
the first model for each of the 12 instances. The energy mix result for each instance will be used as an
input for the second model (Generation Expansion Planning model).

3.2. The Generation Expansion Planning Model

3.2.1. Power plants of different generation sources
Detailed parameters for the costs of operating and decommissioning power plants of different gen-

eration sources, together with their heat rates, CO2 emissions, and CO2 prices, are shown in Table
7. The data for the capital cost, fixed and variable operation costs, heat rate, and CO2 emission rate
are set by referring to the official data from Energy Information Administration (2020). According
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to EIA, variable operations and maintenance (O&M) costs, such as ammonia, water, and miscella-
neous chemicals and consumables, are directly proportional to the plant generating output. For the
hydro, solar, and wind cases, all O&M costs are treated as fixed costs. Fixed O&M costs also include
costs directly related to the equipment design, such as labor, materials, contract services for routine
O&M, and administrative and general costs. The decommissioning cost for the nuclear power plant
was determined based on OECD Nuclear Energy Agency (2016), whereas for other power plants, it is
calculated based on Kutani et al. (2016). There are also other interesting studies in formulating the
power plant decommissioning cost, including for nuclear (Sorgulu and Dincer, 2018) and wind (Topham
and McMillan, 2017). The CO2 price data are taken from Rentizelas et al. (2012). The transmission
cost was estimated at 23.2 $/MWh (Lin et al., 2019).

Table 7: Cost parameters for each generation source

Coal Gas Hydro Nuclear Wind Solar Biomass
Capital cost ($/kW) 3,676 1,084 5,316 6,041 1,265 1,313 4,097
Decommissioning cost ($/kW) 183.8 54.2 265.8 730 63.25 65.65 204.85
Fixed operating cost ($/kW-y) 40.58 14.1 29.86 121.64 26.34 15.25 125.72
Variable operating cost ($/MWh) 4.5 2.55 - 2.37 - - 4.83
Heat rate (Btu/kWh) 8,638 6,431 - 10,608 - - 13,300
CO2 emission (lb/MMBtu) 206 117 0 0 0 0 206
Year 2025 2030 2035 2040 2045 2050
CO2 price ($/tons) 37.416 47.76 60.96 77.796 99.288 126.72

3.2.2. Existing power plant capacity in 2020
We have collected data on the existing capacity of hydro, nuclear, and coal power plants in China

(endcoal.org), whilst the pursuit of necessary data for other generation sources proved difficult. To
this end, we estimated the capacity of power plants based on historical data regarding the electricity
production level and the capacity factor for each generation source. Specifically, we first computed the
electricity production growth rate from 2017 to 2020. Given the regional electricity production level
for each generation source (CEPY, 2018) and its capacity factor (as indicated for the first model), we
then calculated the capacity of existing power plants in 2017, and adjusted it for the year 2020 by
incorporating the electricity production growth rate. The final values considered in the model (see
Table 8) were derived by retrieving the available collected data, or our estimations when no data are
available. Triangulating data from different sources also helps to check and ensure data reasonableness
and integrity.
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Table 8: Existing power plant capacity in 2020 (unit: MW)

Region Coal Gas Hydro Nuclear Wind Solar Biomass
Northeast China 65,565.34 3,204.17 2,304.42 3,458.41 28,219.55 7,667.11 -
North China 173,036.53 8,456.26 1,330.48 - 39,953.07 23,783.86 -
East China 160,005.43 7,819.44 10,348.16 18,229.90 12,188.30 18,288.51 -
Central China 87,302.67 4,266.47 82,118.60 - 9,141.23 10,920.35 -
Northwest China 81,895.19 4,002.20 16,261.40 - 32,794.71 36,577.03 13.88
South China 76,108.94 3,719.43 60,523.70 14,683.57 15,644.68 5,345.87 -

3.2.3. The data of Energy Demand and Fuel costs
In the second model, the uncertain parameters include the annual energy demand for each region,

the national peak load, together with the fuel cost for each generation source and capacity factor for
renewable energy (solar and wind). Based on Zhang et al. (2018), we obtained the estimated regional
electricity demand from 2025 to 2050 with a step size of five years under the BL setting. Note that
Zhang et al. (2018) allocated three provinces/municipalities (Sichuan, Chongqing, and Tibet) to a
separate region named Southwest. Therefore, we adjusted the data by obtaining the demand levels for
the three provinces/municipalities, respectively, using the energy production ratio from CEPY (2018),
and subsequently adding the demand for Sichuan and Chongqing to Central and Tibet to Northwest
to be consistent with the regional division in our study. The regional demand for the BL setting is
then leveraged to estimate the demand level for the BC and IC settings, using the demand/production
ratios between the three settings suggested in CNPC ETRI (2019). To estimate the peak load during
the expansion planning period, we deployed historical data on the yearly electricity demand from the
National Bureau of Statistics of China (2020) and the corresponding peak load from 2005 to 2020 to
develop a regression model. This model was used to project the peak load given the aforementioned
energy demand estimation for the three settings.

The estimated fuel cost data for coal and gas from year 2025 to 2050 are taken from the Energy
Information Administration (EIA, 2021). For nuclear, historical fuel cost data from 1970 to 2019 is
also obtained from the EIA, it is then forecasted using an ARIMA model to estimate the price from
2025 to 2050. A zero fuel cost is applied for renewable generations including hydro, solar and wind.
In this study, we assume that all the uncertain parameters follow the normal distribution with the
forecasted/estimated value treated as the average value (µ). The standard deviation (σ) value of an
uncertain parameter is estimated based on the value of µ, with σ assumed to be 0.05 · µ. Random
numbers for uncertain parameters are generated based on this normal distribution, N(µ, σ). Figure 3
illustrates the estimated energy demand for the Northeast region in the BL setting where the demand
of each period is generated based on the normal distribution.
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Figure 3: Energy demand for the Northeast region in the BL setting

4. Results and discussion

4.1. Results of the first model

This subsection presents the experimental results of the analysis carried out to assess the perfor-
mance of the first model (the single-period goal programming-based energy mix model). The non-linear
ENGP energy mix model is implemented in a non-linear optimizer that can solve the MINLP, namely
Baron solver (https://minlp.com/baron-solver). The tests were run on a workstation with an Intel
Xeon W-2133 CPU @3.60 GHz processor, 128.00 GB of RAM. We limited the computational time
(CPU) to 24 hours (86,400 seconds) only, and set a relative gap to a very small value (i.e., 1e-10). To
evaluate the performance of the solver, we propose two indicators, namely %Gap and %Gapn. The gap
(%Gap) is determined based on the upper and lower bounds (UB and LB) obtained by Baron solver.
To calculate the %Gapn, we use an NLP (non-linear programming) solver, namely IPOPT, to solve
the ENGP energy mix model without including the binary variables Lr (a pure NLP model). In other
words, Constraints (9)–(11) and (21) are removed from the model, which is relatively easier to solve
than the original ENGP energy mix model. The solutions obtained by this solver can also be used for
the lower bound (LBn) to assess the quality of solutions produced by Baron solver. Then, %Gapn is
computed based on the following expression:

%Gapn = UB− LBn

UB × 100 (52)

Table 9 presents the summary of experimental results of the goal programming-based energy mix
model consisting of the 12 instances generated and which are based on the demand and sub-goal
settings. For each instance, the %Gap, %Gapn, and CPU time are provided. According to the
computational experiments, IPOPT solver can optimally solve the pure NLP model for all the instances.
Therefore, the solutions produced by IPOPT solver can be used as good lower bounds. When solving
the MINLP, Baron produces optimal solutions for all instances, except Instance IC-Avg. However, the
%Gap produced by Baron for this instance is very low (0.0003%). The average %Gap of 0.000% is
also obtained by Baron. Compared to solutions attained by IPOPT in solving the pure NLP model,
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Baron yields a small average %Gapn of 0.147%. This indicates that the overall Baron’s performance in
solving the MINLP model is very good, and its solutions can be used as an input to the second model.

Table 9: The experimental results of the first Model

Instance The performance of Baron Energy Mix at National Level (%)
UB %Gap %Gapn CPU(s) Coal Gas Hydro Nuclear Wind Solar Biomass

The Energy Mix Target for the BL setting 30.70 11.20 14.80 11.00 13.00 15.60 3.70
BL-Avg 0.326 0.000 0.305 406 28.87 11.20 17.84 11.00 13.00 14.17 3.91
BL-Avg-Env 0.940 0.000 0.083 14743 7.99 11.20 34.47 10.62 18.48 13.54 3.70
BL-Avg-Cost 0.589 0.000 0.165 2995 30.70 11.66 20.93 11.00 8.70 13.31 3.70
BL-Avg-Soc 0.756 0.000 0.112 7928 7.34 11.20 39.58 11.00 13.00 14.17 3.70
The Energy Mix Target for the BC setting 8.70 7.10 15.40 13.80 19.20 27.70 8.10
BC-Avg 0.414 0.000 0.232 184 10.57 15.33 18.43 13.55 19.20 14.06 8.87
BC-Avg-Env 0.936 0.000 0.087 27667 8.70 7.10 33.11 10.54 20.46 13.08 7.00
BC-Avg-Cost 0.732 0.000 0.151 5501 12.98 16.20 24.93 13.55 10.55 13.70 8.10
BC-Avg-Soc 0.764 0.000 0.099 1226 8.05 7.10 30.35 13.29 20.82 14.06 6.33
The Energy Mix Target for the IC setting 20.00 8.00 14.00 11.00 19.00 23.00 5.00
IC-Avg 0.418 0.000 0.217 86400 20.00 10.99 19.47 11.00 19.00 12.18 7.36
IC-Avg-Env 1.018 0.000 0.092 6078 8.31 8.00 36.89 11.00 19.00 11.79 5.00
IC-Avg-Cost 0.713 0.000 0.115 27739 20.00 15.40 23.71 11.00 12.71 12.18 5.00
IC-Avg-Soc 0.848 0.000 0.101 5347 12.99 8.00 32.65 11.00 19.00 12.18 4.18
Average 0.000 0.147 15518

Avg: the target setting using the average assessment value of the sub-goal
Avg-Env, Avg-Cost and Avg-Soc: the target settings which emphasize environmental, economic, and social

dimensions, respectively.

For each instance, Table 9 also presents the single-period energy mix at national level in 2050 for
each demand setting (i.e., the baseline (BL), beautiful China (BC), and intelligence connected (IC))
and for each sub-goal setting (i.e., Avg, Avg-Env, Avg-Cost, and Avg-Soc). From the table, it is noticed
that when the Avg setting is used, the electricity production for each generation source tends to meet
the target that has been set. As expected, when the cost dimension is prioritized (Avg-Cost), the
fossil generations (coal and gas) are mainly used to cover the energy demand. The wind and solar
generations are not significantly built. In contrast, the use of non-fossil generations, especially hydro,
is dominant when prioritizing either environmental (Avg-Env) or social (Avg-Soc) dimensions. In this
case, the electricity produced by wind and solar generations also increases.

The energy transmitted for one region to others is presented in Figure 4, whereas the energy mix
at regional level for each instance is provided in Figure B.8 in Appendix. We can notice that South,
Northwest, and Northeast regions have surplus production, whereas East, North, and Central regions
need to import energy supply from other regions. In general, the flow of electricity transmission occurs
as follows: from the South to Central and East; from Northwest to North and Central; from Northeast
to North and East. We also observe interesting results regarding the hydro and solar power plants.
The energy production generated by hydro exceeds the target that has been set for all instances. This
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is mainly because hydro has a smaller operating cost compared to other renewable energy types. The
hydro generations built are mainly located in South and Central China Regions. In contrast, the energy
production of solar power plants does not meet the target for all instances. This is mainly because of
its maximum capacity and the high investment/operating costs.

Figure 4: The flow of electricity transmission for Different Demand Settings

4.2. Results of the second model

In this subsection, we present the results of computational experiments of the second model (the
multiple-period Generation Expansion Planning model). The proposed SAA algorithm was coded in
C++ .Net 2019, where the IBM ILOG CPLEX version 20.10 Concert Library was also used to solve the
SAA models with an exact method. We use the same workstation used for the experiments conducted
in Subsection 4.1. In the SAA method, we vary the sample size (N) and set it to 50, 100, 200. The
number of samples (M) is set to 10, whereas the large sample size (N ′) is assigned to 10,000. A 95%
confidence interval is used to estimate the statistical gap (%). As previously discussed, the main input
for the second model is the output generated by the first model, which is the energy mix for national
and regional levels in 2050.

Table 10 presents the summary of experimental results on the second model, where %Gap for each
instance is presented based on the sample size used. The table also reveals the computational time
(CPU) needed to solve the problem. In the table, we also provide %Devc and %Deve, where the
former represents the deviation of the total cost obtained using different sub-goal settings compared
to the setting that yields the best total cost for each demand setting. We also recorded the total
amount of CO2 produced by the solution, generated by solving each instance. Here, the environmental
performance of implementing sub-goal settings is measured by %Deve, indicating the deviation of the
total amount of CO2 produced using different sub-goal settings compared to the setting that yields the
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smallest total CO2 for each demand setting. %Devc and %Deve are calculated based on the following
expression:

%Devc = UBi −UBb

UBi
× 100; %Deve = ϵi − ϵb

ϵi
× 100 (53)

where UBi and ϵi are the upper bound of the total cost and the amount of CO2 produced by solving
instance i, whereas UBb and ϵb are the best upper bound and the amount of CO2 among the instances
for each demand setting (i.e., BL, BC, and IC).

Table 10: The experimental results of the second model

Instance N = 50 N = 100 N = 200
%Gap CPU %Devc %Deve %Gap CPU %Devc %Deve %Gap CPU %Devc %Deve

BL-Avg 1.126 217 1.72 55.84 0.622 347 1.76 55.17 0.443 1029 1.75 55.43
BL-Avg-Env 1.541 216 21.85 0.66 1.255 365 21.77 0.71 1.006 1074 21.75 1.00
BL-Avg-Cost 1.149 264 0.00 59.76 0.644 418 0.00 59.17 0.474 1193 0.00 59.43
BL-Avg-Soc 0.783 280 21.72 0.00 0.437 387 21.74 0.00 0.265 975 21.77 0.00
BC-Avg 0.992 222 1.69 24.33 0.472 363 1.66 24.85 0.317 1162 1.65 25.01
BC-Avg-Env 0.848 245 2.29 0.00 0.433 379 2.28 0.00 0.277 1044 2.26 0.00
BC-Avg-Cost 0.893 272 0.00 25.57 0.468 410 0.00 25.95 0.312 1129 0.00 26.08
BC-Avg-Soc 0.878 304 4.44 0.09 0.450 424 4.42 0.34 0.301 1108 4.41 0.28
IC-Avg 1.133 343 4.38 33.41 0.615 474 4.37 33.49 0.365 1217 4.38 33.59
IC-Avg-Env 1.021 381 14.39 0.00 0.558 474 14.43 0.00 0.333 1037 14.42 0.00
IC-Avg-Cost 1.220 439 0.00 36.12 0.648 551 0.00 35.21 0.384 1261 0.00 34.83
IC-Avg-Soc 1.043 489 9.04 8.16 0.601 596 9.12 7.90 0.359 1252 9.10 7.95
Average 1.052 306 0.600 432 0.403 1124
Avg: the target setting using the average assessment value of the sub-goal
Avg-Env, Avg-Cost and Avg-Soc: the target settings which emphasize environmental, economic, and social

dimensions, respectively.

According to Table 10, %Gap is decreasing with the sample size, meaning that the larger sample
size produces better %Gap at the expense of a longer computing time. The average %Gap obtained
by N = 200 (0.403%) is significantly lower than that obtained by N = 50 (1.502%). In general, the
proposed SAA method yields a relatively small gap. Moreover, the results among instances are also
consistent with a small standard deviation. The CPU time required to solve the problem is acceptable
as the average CPU time are 306, 432, and 1124 seconds when N = 50, 100, 200 respectively. Figure 5
presents the upper and lower bounds obtained by different sample sizes for different sub-goal settings
in the BL demand setting. Here, the UB and LB values are determined based on the total costs of six
periods (2025, 2030, 2035, 2040, 2045, and 2050) to represent all the periods in the planning horizon.
The figure indicates that increasing the sample size consistently reduces the %Gap and improves the
values of upper bound (UB) and lower bound (LB), leading to better solutions.

According to Table 10, as expected, instances with cost priority (Avg-Cost) yield the smallest
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Figure 5: The upper and lower bounds for the BL demand setting, obtained using different sample sizes

total cost for all demand settings (BL, BC and IC). When N = 200, compared to the Avg setting,
implementing cost priority reduces the total cost by an average of 1.75%, 1.65%, and 4.36% for the
BL, BC, and IC demand settings, respectively. On the other hand, the total cost of applying the
Avg-Env setting significantly increases the total cost by an average of 21.77%, 2.28%, and 14.43% for
BL, BC, and IC demand settings respectively. The use of non-fossil generations reduces the amount
of CO2 produced which can be achieved by implementing the Avg-Env and Avg-Soc. When N = 200,
the implementation of the Avg-Env yields the smallest amount of CO2 produced for the BC and IC
demand settings. Compared to the ideal conditions (smallest CO2 produced), implementing the Avg-
Cost (minimizing cost) increases the amount of CO2 by 55.43%, 25.01%, and 33.59% for the BL, BC
and IC demand settings, respectively. In the BL demand setting, implementing the Avg-Env or Avg-Soc
(priority on Environment or Social) yields a significantly smaller amount of CO2 than implementing
the Avg-Cost. The BC demand setting has the smallest deviation between those implementations.
This is most likely because the production target for fossil power plants (coal and gas) has already
been set to a low level in this setting. The deviation in the IC setting is slightly higher than that
in the BC demand setting. In the IC setting, more coal and gas plants are needed to satisfy high
energy demand, as the capacity of non-fossil power plants is limited. It is clear that there is a trade-off
between economic and environmental issues. Here, the decision makers are required to determine the
solutions they prefer.

Figure 6 presents the percentage of energy generated by non-fossil fueled power plants (i.e., Hydro,
Nuclear, Wind, Solar, and Biomass) for each instance, which is obtained by using the SAA method
with N = 200. As seen in the figure, for all instances the percentage of energy produced by non-fossil
power plants increases significantly at the beginning of the period. However, the increment rate will
gradually decrease because of the capacity limitation. Still, they will be become the main source at
the end of period, especially when implementing the Avg-Env and Avg-Soc setting. To minimize the
total cost, the fossil-fueled generations are mainly used at the beginning of the period. The renewable
energy power plants are then gradually built and their electricity production steadily increases.

Figure B.9 in the Appendix shows the national energy mix for 2025 to 2050, generated by solving
each instance using the SAA approach with N = 200. The figure reveals that the energy production
generated by the coal power plants decreases significantly over the planning horizon when implementing
Avg-Env and Avg-Soc (priority on environment and social aspects). At the beginning of the period,
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Figure 6: The percentage of energy produced by renewable energy for each instance using N = 300

the coal power plants are the main energy producers, however they are gradually reduced and replaced
by hydro power plants. However, when Avg and Avg-cost settings are implemented, the amount of
energy produced by coal power plants is not significantly decreased till the end of the period, as it is
considered a cheap energy producer. In all instances, the use of natural gas is increasing, as it produces
lower CO2 emissions, although it is still considered a fossil-fueled power plant. The figure also shows
that the use of renewable energy (hydro, solar, wind, and biomass) and nuclear gradually increases for
all instances. At the end of period, the renewable energy will be the main source of energy production.

Figure B.10 in the Appendix presents the national capacity mix from 2025 to 2050 for all instances.
Similar to the previous figure, it is also generated by the SAA method using N = 200. The figure shows
that the decreasing capacity over the planning horizon is for coal power plants only. A substantial
decrease occurs when the Avg-Env or Avg-Soc sub-goal setting is implemented. The capacity of other
generation sources rises, especially for non-fossil fueled power plants. It is interesting to note that
there is a significant increase in the solar generation capacity and it will be the largest one at the end
of the period. However, as the capacity factor of this generation source is relatively low, its energy
production is also relatively low. A significant capacity growth also occurs for the wind power plants,
especially near the end of the period.

We also carry out an analysis to assess the quality of two benchmark solutions in a stochastic
environment, when the uncertain parameters are considered. The first benchmark solution is obtained
by solving the deterministic version of the second model using an exact method (CPLEX), where
the average values are used for the uncertain parameters (annual demand, peak load, and fuel cost).
The second benchmark solution is generated by solving the original two-stage stochastic programming
problem, expressed by Model (22)–(43), using an exact method (CPLEX), with a high number of
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scenarios (|Ω|) (e.g., |Ω| = 2000, 3000, and 4000). Note that the scenarios are generated using the
Monte-Carlo method used for the SAA method and the probability of each scenario (p̂ω) is equally set.
From these two benchmark solutions, we take the first-stage solution (X̂), consisting of variables X̂krt

and Ŷkrt, and execute the second stage of the SAA method (Line 11–15 of Algorithm 1). Parameter N ′

is set to 10000, which is similar to previous experiments. Instance BL-Avg-Env is used in this analysis.
Figure 7 presents the histograms of the total costs (6 periods) from the different solutions in the

stochastic environment, where the UB value is calculated based on Equation (50). The figure reveals
that the deterministic solution yields a higher average total cost than those generated by solving the
stochastic model using either the SAA method or the exact method on the original model. In addition,
the stochastic solutions also produce a much smaller standard deviation. The figure also shows that
the solution obtained by the SAA with N = 200 generates the smallest UB value, average cost and
standard deviation, with an acceptable computing time (1074 seconds). Solving the original two-stage
stochastic model with |Ω| = 4000 requires 232,309 seconds to complete, with the obtained total cost
slightly worse than the one obtained by the SAA method. When |Ω| is set to 2000 and 3000, CPLEX
needs respectively 29,157 and 64,307 seconds to finish, with slightly higher total costs. Here, the CPU
time increases significantly with the number of scenarios (|Ω|). In general, the proposed SAA method
produces more robust solutions than the other solutions.

Figure 7: The total cost of different solutions in the stochastic environment for Instance BL-Avg-Env

4.3. Managerial and policy implications

The results and findings of our integrated optimization models generate insightful implications for
relevant government agencies and policymakers. Firstly, our models and analysis help policymakers
to make better informed decisions for selecting the optimal energy mix generated from typical fossil
fuel-based and renewable energy power generation to meet the rising energy demand. We also provide
guidance on the corresponding capacity planning given the optimal energy mix, i.e., whether and when
to demolish existing power plants, scale up or down the capacity of existing plants, or invest in new
plants, and the magnitude of such capacity changes. Secondly, our models account for multiple criteria
(i.e., economic, environmental, and social dimensions), the targets set by different levels of stakeholders,
and the uncertainty of critical factors (e.g., regional annual energy demand, fuel cost). Based on the
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models, appropriate sensitivity analysis can be conducted to enable policymakers to evaluate what-if
scenarios and identify the optimal energy mix configuration and the energy generation planning under
various conditions. For example, the impact of the capacity factor for renewable energy on the energy
mix and the minimal cost to satisfy the projected energy demand can be investigated. In this way, some
quantitative analysis can be derived to understand the cost reduction effects by increasing the capacity
factor for renewable energy, which facilitates the cost-benefits analysis for investing in technologies
to enhance the capacity factor for renewable energy generation facilities. Likewise, policymakers can
also explore the impact of the target of sub-goals set by different regions since regions may shift their
prioritized goals during development. By committing to environmental related sub-goals at the national
level, policymakers may use positive or negative incentives to shape the sub-goal target set by different
regions to best meet the requirements at the national level. The choices cities and regions make for
pilot reforms concerning energy generation planning (e.g., prioritizing the environmental dimension)
can, therefore, be better planned. Thirdly, our results suggest the pattern of inter-regional energy
transmission under different circumstances. This serves policymakers with meaningful information
on the direction and scale of regional transmission and, therefore, helps them to plan investment in
building transmission lines between regions. In countries like China where different power corporations
supply electricity for different regions, analysis on the inter-regional energy transmission also facilitates
power trade planning. Regions with insufficient capacity may sign mid- or long-term contracts with
regions with surplus capacity strategically to meet the regional energy demand at a reasonable price,
which contributes to avoidance of the electricity price instability.

5. Conclusion, limitations and future research directions

This paper investigates an integrated strategic energy mix and energy generation planning with
multiple sustainability criteria and consideration of stakeholder demands at national and regional
levels. A novel combination of two optimization models is proposed, the first is built based on a
non-linear extended network goal programming model to determine energy mix at a future period,
with consideration of economic, environmental, and social sustainability factors, and targets set by
stakeholders at both national and regional level. The second model is developed based on a stochastic
multi-period generation expansion planning model to determine the energy transition over a time
horizon of 30 years. The results obtained from the first model are used as the main input for the
second.

We assess the practicality of the proposed models using data on the power system in China and
model a transition towards a more sustainable electricity system. The first model is solved using a
commercial non-linear solver (Baron), whereas the second model is addressed by an algorithm based on
the sample approximation approach (SAA), where a linear solver (CPLEX) is used. Our model results
cast light on pressing issues regarding the energy mix configuration from typical fossil fuel-based and
renewable energy generation sources to meet the mounting demand for energy sustainably and the
corresponding capacity planning in response to such an energy transition, as well as providing insights
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on future demands for inter-regional power transmission pattern. We also summarize the significant
implications from our model results for policymakers to better plan energy generation and expansion
under different conditions. Furthermore, the methodology is designed to provide a plan for a strategic
energy transition over an extended planning period, if political, social, environmental, economic or
technical conditions significantly change over that period then it is possible to re-run the planning
model with new goals and/or data in order to provide adjusted plans. For example, recent debates
and adjustments in regarding carbon reduction goals in the medium and long term can be taken into
account in the models.

Our research and approach has a number of limitations that also provide potential avenues for
further research. First of all our approach of combining two optimization models for long term energy
planning can be further advanced. This is important both academically and practically as countries
increasing need to consider the long term implications on climate change of their decisions on power
generation. One area where the models can be improved is in terms of the assumptions related to the
efficiency of the various options for power generation. Technological development for various energy
options show that the efficiency of renewable energy technology such as solar and wind energy have
advanced more rapidly in the past decade than more traditional options based on fossil fuel combustion.
Models could use extend past learning curves for the various energy options to improve the prediction
of future efficiency levels. Furthermore similar methods could be used to look at the dynamics of fixed
and variable costs. Other parameters that can be further refined include various sustainability criteria
and stakeholder demands. Moreover given the current debate on carbon reduction goals in the coming
decades a more stringent set of carbon reduction goals could be used within the models and potentially
over an even longer time period. Also further scenarios could be explored based on centralized versus
distributed energy system strategies and various pathways towards low-carbon transitions such as
discussed in other studies (Hofman and Elzen, 2010; Geels et al., 2020).

As we apply the models for China, the proposed methodology can also be applied for other nations
with a national-regional energy generation structure, particularly those with large populations and
imbalances in power generation and consumption. In the proposed models, stakeholders comprise of
two layers, namely national and regional levels. The model can be extended by considering sub-regional
levels so that three layers of stakeholders are taken into account. Moreover, it is worth performing
further investigations on the effect of centralized versus decentralized energy strategies and taking into
account efficiency improvement in energy technologies in the proposed methodology.
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Appendix A. Glossary

ACC-FUT Severe accidents perceived in future
ACC-PAST Fatal accidents from past experience
AHP Analytical Hierarchy Process
AVAILAB Average availability (load) factor
Avg Average Setting
Avg-Cost the target settings which emphasize economic dimension
Avg-Env the target settings which emphasize environmental dimension
Avg-Soc the target settings which emphasize social dimension
BC Beautiful China Energy Demand Scenario
BL Baseline Energy Demand Scenario
CEPY China Electric Power Yearbook
CNPC China National Petroleum Corporation
CO2eq. GHG emissions
EMPL Technology-specific job opportunities
ENGP Extended Network Goal Programming
ENV Environmental external costs
ETRI Economics and Technology Research Institute
FOOD Food safety risk
GEP Generation Expansion Planning
GHG Greenhouse Gas
GRID-COST Cost of grid connection
HEALTH Human health impact
IC Intelligence Connected Energy Demand Scenario
LB Lower bound
MINLENGP mixed integer non-linear programming extended network goal programme
MMBtu Million British thermal unit
MWh Megawatt hours
MWh Megawatt
NLP Non-Linear Programming
Pctile Percentile
PEAKLOAD Peak load response
PR-COST Private costs (investments and operation costs)
RADIO Radionuclide external costs
SAA Sample Average Approximation
SECURE Security of supply
TOPSIS Technique for Order of Preference by Similarity to Ideal Solution
UB Upper bound

32



Appendix B. Charts of the Computational Results

Figure B.8: The regional energy mix generated by solving the non-linear ENGP energy model
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Figure B.9: The national energy mix for each instance using the SAA method with N = 300
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Figure B.10: The national capacity mix for each instance using the SAA method N = 300
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