
DUALITY AND SENSITIVITY ANALYSIS OF MULTISTAGE
LINEAR STOCHASTIC PROGRAMS

VINCENT GUIGUES∗, ALEXANDER SHAPIRO† , AND YI CHENG ‡

Abstract. In this paper we investigate the dual of a Multistage Stochastic Linear Program
(MSLP) to study two related questions for this class of problems. The first of these questions is the
study of the optimal value of the problem as a function of the involved parameters. For this sensitivity
analysis problem, we provide formulas for the derivatives of the value function with respect to the
parameters and illustrate their application on an inventory problem. Since these formulas involve
optimal dual solutions, we need an algorithm that computes such solutions to use them, i.e., we need
to solve the dual problem.

In this context, the second question we address is the study of solution methods for the dual
problem. Writing Dynamic Programming equations for the dual, we can use an SDDP type method,
called Dual SDDP, which solves these Dynamic Programming equations computing a sequence of
nonincreasing deterministic upper bounds on the optimal value of the problem. However, applying
this method will only be possible if the Relatively Complete Recourse (RCR) holds for the dual. Since
the RCR assumption may fail to hold (even for simple problems), we design two variants of Dual
SDDP, namely Dual SDDP with penalizations and Dual SDDP with feasibility cuts, that converge to
the optimal value of the dual (and therefore primal when there is no duality gap) problem under mild
assumptions. We also show that optimal dual solutions can be obtained computing dual solutions of
the subproblems solved when applying Primal SDDP to the original primal MSLP.

The study of this second question allows us to take a fresh look at the class of MSLP with
interstage dependent cost coefficients. Indeed, for this class of problems, cost-to-go functions are
non-convex and solution methods were so far using SDDP for a Markov chain approximation of the
cost coefficients process. For these problems, we propose to apply Dual SDDP with penalizations
to the cost-to-go functions of the dual which are concave. This algorithm converges to the optimal
value of the problem.

Finally, as a proof of concept of the tools developed, we present the results of numerical ex-
periments computing the sensitivity of the optimal value of an inventory problem as a function of
parameters of the demand process and compare Primal and Dual SDDP on the inventory and a
hydro-thermal planning problems.

Key words. Stochastic optimization, Sensitivity analysis, SDDP, Dual SDDP, Relatively com-
plete recourse.

AMS subject classifications. 90C15, 90C90, 90C30

1. Introduction. Duality plays a key role in optimization. For generic opti-
mization problems, weak duality allows to bound the optimal value. Dual information
is also used in many optimization algorithms such as Uzawa algorithm [2], primal-
dual projected gradient [21] or Stochastic Dual Dynamic Programming (SDDP) [22].
Moreover, for several classes of optimization problems, the dual is easier to solve than
the primal problem, for instance when it is amenable to decomposition techniques
such as price decomposition [4]. Even when there is a duality gap between the pri-
mal and dual optimal values, solving the dual already gives a bound on the optimal
value, as mentioned earlier. Duality is also a fundamental tool in the reformulation of
Robust Optimization problems, see for instance [3]. Finally, derivatives of the value

∗School of Applied Mathematics, Fundação Getulio Vargas, 190 Praia de Botafogo, Rio de Janeiro,
Brazil, (vincent.guigues@fgv.br). Research of this author was partially supported by CNPq grants
04872/2018-9 and 311289/2016-9.
† School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA

30332-0205, USA, (ashapiro@isye.gatech.edu). Research of this author was partly supported by NSF
grant 1633196.
‡ School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA

30332-0205, USA, (cheng.yi@gatech.edu).

1

ar
X

iv
:1

91
1.

07
08

0v
2

 [
m

at
h.

O
C

]
 3

 O
ct

 2
02

0

mailto:vincent.guigues@fgv.br
mailto:ashapiro@isye.gatech.edu
mailto:cheng.yi@gatech.edu

function of classes of optimization problems can be related to optimal dual solutions,
see [5], [24] and more recently [10, 12, 8] for the characterization of subdifferentials,
subgradients, and ε-subgradients of value functions of convex optimization problems.

For stochastic control problems, stochastic Lagrange multipliers were already used
in [16, 17, 18]. In the context of multistage stochastic programs, duality was studied
in [26, 14], see also [28] for a review. More recently, the sensitivity analysis of mul-
tistage stochastic programs was discussed in [6] and [30]. In [6] the authors study
the sensitivity with respect to parameters driving the considered price model. The
corresponding parameters are in the objective function and the analysis of the esti-
mate of marginal price is based on Danskin’s theorem with the SDDP method used
for the numerical calculations. In [30], the authors use the Envelope Theorem for
the sensitivity analysis. The required derivatives are described in terms of Lagrange
multipliers associated with the value functions.

In this paper, focusing our attention on the dual of a Multistage Stochastic Linear
Program (MSLP), we are able to provide insights into three important problems for
MSLPs: sensitivity analysis, computation of a sequence of deterministic upper bounds
on the optimal value which converges to the optimal value, and use of duality to solve
Dynamic Programming (DP) equations on the dual which are simpler to solve (in
the sense that they have convex cost-to-go functions) than primal DP equations for
problems with interstage dependent cost coefficients. Our main contributions are
summarized below.

Sensitivity analysis of MSLPs. We explain how to compute derivatives of the
optimal value, seen as a function of the problem parameters, of a MSLP in terms of
dual optimal solutions. Therefore, the construction of the dual problem is essential
for our approach, contrary to [6]. With respect to the sensitivity analysis [30], in our
approach, we do not use value functions directly, which are not known and can only
be approximated, but rather construct the dual problem which is solved by an SDDP
type algorithm, called Dual SDDP.

Writing Dynamic Programming equations for the dual problem. A
simple but crucial ingredient for our developments and subsequent analysis of solution
methods for the dual problem of a MSLP is to write DP equations for that dual
problem. We are not aware of another paper with these equations. However, a similar
study was done in [19]. More precisely, for a stochastic linear control problem with
uncertainty in the right-hand-side, in [19], DP equations are written for the conjugate
of the cost-to-go functions and using an SDDP type method for these DP equations,
a sequence of upper bounds on the MSP optimal value is constructed which is the
sequence of conjugate of the approximate first stage cost-to-go functions evaluated
at the initial state x0. Our approach has the advantage of being much simpler:
contrary to derivations in [19] which require some algebra, our DP equations can be
immediately obtained from the dual problem formulation, this latter being known
(given in [28] for instance). On top of that, we relax two assumptions made in [19]:
(a) the relatively complete recourse assumption of the dual and (b) randomness in the
right-hand-side of the constraints only and interstage independent. The next three
paragraphs describe how the scope of (a) and (b) was extended in our analysis.

Dual SDDP for dual problems without relatively complete recourse. In
[19], it is assumed that the dual problem of the considered MSLP satisfies an assump-
tion (Assumption 3) stronger than relatively complete recourse. This assumption
may not be easy to check or may not be satisfied (for instance it is not satisfied for
the inventory and hydro-thermal problems considered in Section 5). Therefore, it is
desirable to extend the scope of Dual SDDP in such a way that it can still compute

2

a deterministic converging sequence of upper bounds without this assumption. We
present two variants of Dual SDDP that can do that: Dual SDDP with penalizations
and Dual SDDP with feasibility cuts.

Dual SDDP for dual problems with all problem data random. Our DP
equations are written for problems with uncertainty in all parameters. We explain
how to apply Dual SDDP for such problems that do not satisfy (b) above.

Dual SDDP for problems with interstage dependent cost coefficients.
Finally, we also relax assumption (b) considering problems having interstage depen-
dent cost coefficients. Writing DP equations for the corresponding dual problem, we
can apply Dual SDDP algorithm to solve these equations, which, interestingly, have
concave cost-to-go functions whereas primal cost-to-go functions are not convex. This
is in sharp contrast with the solution methods proposed so far such as [6, 20] which
apply SDDP on the primal cost-to-go functions using a Markov chain approximation
of the cost coefficients process.

The outline of the paper is the following. Our building blocks are elaborated
in Section 2 where we write DP equations for the dual, we explain how to build
upper bounding functions for the cost-to-go functions of the dual using penalizations,
and study the dynamics of Lagrange multipliers. Sensitivity analysis of MSLPs is
conducted in Section 3 while Dual SDDP and its variants are studied in Section
4. Finally, the results of numerical simulations testing the tools developed on an
inventory and an hydro-thermal problem are presented in Section 5. The interested
reader can find and test the code of all implementations and of Primal and Dual
SDDP for MSLPs at https://github.com/vguigues/Dual SDDP Library Matlab and
https://github.com/vguigues/Primal SDDP Library Matlab. Proofs are collected in
the Appendix.

2. Duality of multistage linear stochastic programs.

2.1. Writing Dynamic Programming equations for the dual. Consider
the multistage linear stochastic program

(2.1)

min
xt≥0

E
[∑T

t=1 c
>
t xt

]
s.t. A1x1 = b1,

Btxt−1 +Atxt = bt, t = 2, ..., T.

Here vectors ct = ct(ξt) ∈ Rnt , bt = bt(ξt) ∈ Rmt and matrices Bt = Bt(ξt),
At = At(ξt) are functions of random process ξt ∈ Rdt , t = 1, ..., T (with ξ1 being
deterministic). We denote by ξ[t] = (ξ1, ..., ξt) the history of the data process up
to time t and by E|ξ[t] the corresponding conditional expectation. The optimization
in (2.1) is performed over functions (policies) xt = xt(ξ[t]), t = 1, ..., T, of the data
process satisfying the feasibility constraints.

The Lagrangian of problem (2.1) is

(2.2) L(x, π) = E
[∑T

t=1 c
>
t xt + π>t (bt −Btxt−1 −Atxt)

]
in variables1 x = (x1(ξ[1]), . . . , xT (ξ[T])) and π = (π1(ξ[1]), . . . , πT (ξ[T])) with the
convention that x0 = 0. Dualization of the feasibility constraints leads to the following

1Note that since ξ1 is deterministic, the first stage decision x1 is also deterministic; we write it
as x1(ξ[1]) for uniformity of notation, and similarly for π1.

3

https://github.com/vguigues/Dual_SDDP_Library_Matlab
https://github.com/vguigues/Primal_SDDP_Library_Matlab

dual of problem (2.1) (cf., [28, Section 3.2.3]):

(2.3)

max
π

E
[∑T

t=1 b
>
t πt

]
s.t. A>T πT ≤ cT ,

A>t−1πt−1 + E|ξ[t−1]

[
B>t πt

]
≤ ct−1, t = 2, ..., T.

The optimization in (2.3) is over policies πt = πt(ξ[t]), t = 1, ..., T .
Unless stated otherwise, we make the following assumption throughout the paper.

(A1) The process ξ1, ..., ξT is stagewise independent (i.e., random vector ξt+1 is
independent of ξ[t], t = 1, ..., T−1), and distribution of ξt has a finite support,
{ξt1, . . . , ξtNt

} with respective probabilities ptj , j = 1, ..., Nt, t = 2, ..., T . We
denote by Atj , Btj , ctj , btj the respective scenarios corresponding to ξtj .

Since the random process ξt, t = 1, ..., T , has a finite number of realizations
(scenarios), problem (2.1) can be viewed as a large linear program and (2.3) as its
dual. By the standard theory of linear programming we have the following.

Proposition 2.1. Suppose that problem (2.1) has a finite optimal value. Then
the optimal values of problems (2.1) and (2.3) are equal to each other and both prob-
lems have optimal solutions.

We can write the following dynamic programming equations for the dual problem
(2.3). At the last stage t = T , given πT−1 and ξ[T−1], we need to solve the following
problem with respect to πT :

(2.4)

max
πT

E[b>T πT]

s.t. A>T πT ≤ cT ,
A>T−1πT−1 + E

[
B>T πT

]
≤ cT−1.

Since ξT is independent of ξ[T−1], the expectation in (2.4) is unconditional with respect
to the distribution of ξT . In terms of scenarios the above problem can be written as

(2.5)

max
πT1,...,πTNT

NT∑
j=1

pTjb
>
TjπTj

s.t. A>TjπTj ≤ cTj , j = 1, ..., NT ,

A>T−1πT−1 +
NT∑
j=1

pTjB
>
TjπTj ≤ cT−1.

The optimal value VT (πT−1, ξT−1) and an optimal solution2 (π̄T1, . . . , π̄TNT
) of

problem (2.5) are functions of vectors πT−1 and cT−1 and matrix AT−1. And so on
going backward in time, using the stagewise independence assumption, we can write
the respective dynamic programming equations for t = T − 1, ..., 2, as

(2.6)

max
πt1,...,πtNt

Nt∑
j=1

ptj
[
b>tjπtj + Vt+1(πtj , ξtj)

]
s.t. A>t−1πt−1 +

Nt∑
j=1

ptjB
>
tjπtj ≤ ct−1,

with Vt(πt−1, ξt−1) being the optimal value of problem (2.6). Finally at the first stage
the following problem should be solved

(2.7) max
π1

b>1 π1 + V2(π1, ξ1).

2Note that problem (2.5) may have more than one optimal solution. In case of finite number of
scenarios the considered linear program always has a solution provided its optimal value is finite.

4

These dynamic programming equations can be compared with the dynamic pro-
gramming equations for primal problem (2.1), where the respective cost-to-go (value)
function Qt(xt−1, ξtj), j = 1, ..., Nt, is given by the optimal value of

(2.8)
min
xt≥0

c>tjxt +Qt+1(xt)

s.t. Btjxt−1 +Atjxt = btj ,

with

Qt+1(xt) := E[Qt+1(xt, ξt+1)] =

Nt∑
j=1

pt+1jQt+1(xt, ξt+1j).

Let us make the following observations about the dual problem.
(i) Unlike in the primal problem, the optimization (maximization) problems (2.5)

and (2.6) do not decompose into separate problems with respect to each πtj
and should be solved as one linear program with respect to (πt1, ..., πtNt

).
(ii) The value function Vt(πt−1, ξt−1) is a concave function of πt−1.
(iii) If At and ct, t = 2, ..., T , are deterministic, then Vt(πt−1) is only a function

of πt−1.

2.2. Relatively complete recourse. The following definition of Relatively
Complete Recourse (RCR) is applied to the dual problem. Recall that we assume
that the set of possible realizations (scenarios) of the data process is finite.

Definition 2.2. We say that a sequence π̄t, t = 1, ..., T , is generated by the
forward (dual) process if π̄1 ∈ Rm1 and for πt−1 = π̄t−1, t = 2, ..., T , going forward
in time, π̄t coincides with some πtj, j = 1, ..., Nt, where πt1, . . . , πtNt

is a feasible
solution of the respective dynamic program - program (2.6) for t = 2, ..., T − 1, and
program (2.5) for t = T . We say that the dual problem (2.3) has Relatively Complete
Recourse (RCR) if at every stage t = 2, ..., T , for any generated πt−1 by the forward
process, the respective dynamic program has a feasible solution at stage t for every
realization of the random data.

Without RCR it could happen that Vt(πt−1, ξt−1) = −∞ for a generated πt−1

and ξt−1 = ξt−1j . Unfortunately, it could happen that the dual problem does not
have the RCR property even if the primal problem has it. This could happen even
in the two stage case. One way to deal with the problem of absence of RCR in
numerical procedures is to use feasibility cuts, we will discuss this later. Another way
is the following penalty approach which will be used in Section 4. The infeasibility of
problem (2.5) can happen because of its last constraint. In order to deal with this,
consider the following relaxation of problem (2.5):

(2.9)

max
πT1,...,πTNT

,, ζT≥0

NT∑
j=1

pTjb
>
TjπTj − v>T ζT

s.t. A>TjπTj ≤ cTj , j = 1, ..., NT ,

A>T−1πT−1 +
NT∑
j=1

pTjB
>
TjπTj ≤ cT−1 + ζT ,

where vT is a vector with positive components. We have that problem (2.9) is always
feasible and hence its optimal value ṼT (πT−1, ξT−1) > −∞. We also have that

(2.10) ṼT (πT−1, ξT−1) ≥ VT (πT−1, ξT−1),

5

with the equality holding if ζT = 0 in the optimal solution of (2.9). If VT (πT−1,ξT−1)
is finite, this equality holds if the components of vector vT are large enough.

Similarly, problems (2.6) can be relaxed to

(2.11)

max
πt1,...,πtNt ,ζt≥0

Nt∑
j=1

ptj

[
b>tjπtj + Ṽt+1(πtj , ξtj)

]
− v>t ζt

s.t. A>t−1πt−1 +
Nt∑
j=1

ptjB
>
tjπtj ≤ ct−1 + ζt,

with vector vt having positive components. In that way, the infeasibility problem is
avoided and the obtained value gives an upper bound for the optimal value of the
dual problem. Note that for sufficiently large vectors vt this upper bound coincides
with the optimal value of the dual problem.

2.3. Dynamics of Lagrange multipliers. Let us consider for the moment the
two stage setting, i.e., T = 2. The primal problem can be written as

(2.12) min
x1≥0

c>1 x1 + E [Q(x1, ξ2)] s.t. A1x1 = b1,

where Q(x1, ξ2) is the optimal value of the second stage problem

(2.13) min
x2≥0

c2(ξ2)>x2 s.t. B2(ξ2)x1 +A2(ξ2)x2 = b2(ξ2).

The Lagrangian of problem (2.13) is

L(x1, x2, λ, ξ2) = c2(ξ2)>x2 + λ>(b2(ξ2)−B2(ξ2)x1 −A2(ξ2)x2).

In the dual form, Q(x1, ξ2j) is given by the optimal value of the problem

(2.14) max
λj

(b2j −B2jx1)>λj s.t. c2j −A>2jλj ≥ 0.

We have that if x1 = x̄1 is an optimal solution of the first stage problem, then optimal
Lagrange multipliers π2j are given by the optimal solution of problem (2.14).

This can be extended to the multistage setting of problem (2.1) (recall that the
stagewise independence condition is assumed). At the last stage t = T , given optimal
solution x̄T−1, the following problem should be solved

(2.15) min
xT≥0

cT (ξT)>xT s.t. BT (ξT)x̄T−1 +AT (ξT)xT = bT (ξT).

For a realization ξT = ξTj , the dual of problem (2.15) is the problem

(2.16) max
λj

(bTj −BTj x̄T−1)>λj s.t. cTj −A>Tjλj ≥ 0.

We then have that πTj are given by the optimal solution of problem (2.16).
At stage t = T−1, given optimal solution x̄T−2, the following problem is supposed

to be solved (see (2.8))

(2.17)
min

xT−1≥0
cT−1(ξT−1)>xT−1 +QT (xT−1)

s.t. AT−1(ξT−1)xT−1 = bT−1(ξT−1)−BT−1(ξT−1)x̄T−2.

We have that QT (·) is a convex piecewise linear function. Therefore for every realiza-
tion ξT−1 = ξT−1j it is possible to represent (2.17) as a linear program and hence to
write its dual. The optimal Lagrange multipliers of that dual give the corresponding
Lagrange multipliers πT−1j . And so on for other stages going backward in time. That
is, we have the following.

6

Remark 2.1. If (x̄1, ..., x̄T (ξ[T])) is an optimal solution of the primal problem,
then for xt−1 = x̄t−1 the Lagrange multiplier πtj is given by the respective Lagrange
multiplier of problem (2.8).

We also refer to [15, 25] for the dynamics of dual solutions to stochastic programs.

3. Sensitivity analysis. In this section we discuss an application of the duality
analysis to a study of sensitivity of the optimal value to small perturbations of the
involved parameters.

3.1. General case. Suppose now that the data ct(ξt, θ), bt(ξt, θ), Bt(ξt, θ), At(ξt,
θ) of problem (2.1) also depend on parameter vector θ ∈ Rk. Denote by ϑ(θ) the
optimal value of the parameterized problem (2.1) considered as a function of θ, and by
S(θ) and D(θ) the sets of optimal solutions of the respective primal and dual problems.
Recall that the sets S(θ) and D(θ) are nonempty provided the optimal value ϑ(θ)
is finite. Let L(x, π, θ) be the corresponding Lagrangian (see (2.2)) considered as a
function of θ. Then we have the following formula for the directional derivatives of
the optimal value function (e.g., [5, Proposition 4.27]).

Proposition 3.1. Suppose that the data functions are continuously differentiable
functions of θ, and for a given θ = θ̄ the optimal value ϑ(θ̄) is finite and the sets S(θ̄)
and D(θ̄) of optimal solutions are bounded. Then

(3.1) ϑ′(θ̄, h) = max
π∈D(θ̄)

min
x∈S(θ̄)

h>∇θL(x, π, θ̄).

In particular if S(θ̄) = {x̄} and D(θ̄) = {π̄} are singletons, then ϑ(·) is differentiable
at θ̄ and

(3.2) ∇ϑ(θ̄) = ∇θL(x̄, π̄, θ̄).

Next, as an example, we consider the sensitivity analysis of an inventory model.

3.2. Application to an inventory model. Consider the inventory model

(3.3)
min E

[
T∑
t=1

at(yt − xt−1) + gt(Dt − yt)+ + ht(yt −Dt)+

]
s.t. xt = yt −Dt, yt ≥ xt−1, t = 1 . . . , T.

Here D1, ...,DT is a (random) demand process, at, gt, ht are the ordering, back-order
penalty and holding costs per unit, respectively, xt is the inventory level and yt−xt−1

is the order quantity at time t, the initial inventory level x0 is given. We refer to [31]
for a thorough discussion of that model. Note that Dt is a random variable whereas dt
stands for a particular realization. We assume that gt > at ≥ 0, ht > 0, t = 1, ..., T .

In the classical setting the demand process is assumed to be stagewise indepen-
dent, i.e., Dt+1 is assumed to be independent of D[t] = (D1, ...,Dt) for t = 1, ..., T − 1.
In order to capture the autocorrelation structure of the demand process it is tempt-
ing to model it as, say first order, autoregressive process Dt = µ+ φDt−1 + εt, where
errors εt are assumed to be a sequence i.i.d (independent identically distributed) ran-
dom variables. However this approach may result in some of the realizations of the
demand process to be negative, which of course does not make sense. One way to deal
with this is to make the transformation Yt := logDt and to model Yt as an autore-
gressive process. A problem with this approach is that it leads to nonlinear equations

7

for the original process Dt, which makes it difficult to use in the numerical algorithms
discussed below.

We assume that the demand is modeled as the following multiplicative autore-
gressive process

(3.4) Dt = εt(φDt−1 + µ), t = 1, ..., T,

where φ ∈ (0, 1), µ ≥ 0 are parameters and D0 ≥ 0 is given. The errors εt are
i.i.d with log-normal distributions having means and standard deviations given by
E[εt] = 1 and Var(εt) = σ2 > 1, respectively. This guarantees that all realizations
of the demand process are positive. It is possible to view (3.4) as a linearization of
the log-transformed process logDt (cf., [29]). See Section 3.2.1 for a discussion of
statistical properties of the process (3.4).

The process (3.4) involves parameters φ and µ which are supposed to be estimated
from the data. As such, these parameters are subject to estimation errors. This
raises the question of sensitivity of the optimal value ϑ = ϑ(φ, µ) of the corresponding
problem (3.3) viewed as a function of φ and µ. To this end, we investigate the
calculation of the derivatives ∂ϑ(φ, µ)/∂φ and ∂ϑ(φ, µ)/∂µ. With these derivatives at
hand, asymptotic distributions of the estimates of φ and µ can be translated into the
asymptotics of the optimal value in a straightforward way by application of the Delta
Theorem. We refer to Section 5.2 for the corresponding numerical experiments.

3.2.1. Properties of the multiplicative autoregressive process. Consider
the multiplicative autoregressive process (3.4). Note that under the specified condi-
tions the demand process is not stationary. Indeed, since the errors εt are i.i.d and
E[εt] = 1 we have that E[Dt] = φE[Dt−1] + µ and

(3.5)
Var(Dt) = E

[
Var
(
εt(φDt−1 + µ)|Dt−1

)]
+ Var [E(εt(φDt−1 + µ)|Dt−1)]

= E
[
σ2(φDt−1 + µ)2

]
+ Var(φDt−1 + µ)

= σ2E
[
(φDt−1 + µ)2

]
+ φ2Var(Dt−1).

It follows that E[Dt] converges to µ/(1 − φ) as t → ∞. Suppose, for example, that
µ = 0. Then Dt = εtφDt−1 = D0φ

t
∏t
τ=1 ετ , t = 1, ..., T, E[Dt] = D0φ

t → 0, and
Var(Dt) = D2

0φ
2t[(1 + σ2)t − 1]. Therefore if φ2(1 + σ2) < 1, then Var(Dt) → 0; and

if φ2(1 + σ2) > 1, then Var(Dt)→∞ provided D0 > 0.

4. Dual SDDP. In this section, using the results of Section 2, we discuss an
adaptation of the cutting planes approach for the approximation of the value functions
of the dual problem, similar to the standard SDDP method and called Dual SDDP.
The interested reader can find the implementation of Primal SDDP and all variants
of Dual SDDP described in this section at https://github.com/vguigues/Dual SDDP
Library Matlab and https://github.com/vguigues/Primal SDDP Library Matlab.

We will make the following assumption.
(A2) Primal problem (2.1) satisfies the RCR assumption.

We first consider the case where only bt and Bt are random in ξt.

4.1. Dual SDDP for problems with uncertainty in bt and Bt. In Dual
SDDP, concave value functions Vt, t = 2, . . . , T , are approximated at the end of iter-
ation k by polyhedral upper bounding functions V kt given by:

(4.6) V kt (πt−1) = min
0≤i≤k

θ
i

t + 〈βit, πt−1〉

where θ
i

t, β
i

t are coefficients whose computation is detailed below. The algorithm uses
valid upper bounds on the norm of dual optimal solutions:

8

https://github.com/vguigues/Dual_SDDP_Library_Matlab
https://github.com/vguigues/Dual_SDDP_Library_Matlab
https://github.com/vguigues/Primal_SDDP_Library_Matlab

Lemma 4.1. Suppose that the optimal value of primal problem (2.1) is finite and
that there is x̂ > 0 feasible for primal problem (2.1). Then for every t = 1, . . . , T , we
can find πt, πt ∈ Rmt such that dual problem (2.6) is unchanged (i.e., has the same
optimal value) adding box constraints πt ≤ πt ≤ πt.

Recall that it is assumed that the number of scenarios is finite and hence problem
(2.1) can be viewed as a large linear program. The assumption of existence of feasible
x̂ > 0 means that problem (2.1) possesses a feasible solution with all components
being strictly positive. If moreover the equality constraints of problem (2.1) are lin-
early independent, then this strict feasibility condition implies that the set of optimal
solutions of the dual problem (i.e., the set of Lagrange multipliers) is bounded. On
the other hand, in the above lemma the linear independence condition is not assumed.
A proof of Lemma 4.1 and a way to obtain the corresponding bounds πt, πt can be
found in the Appendix.

As mentioned earlier, a difficulty to solve the dual problem with an SDDP type
method is that RCR may not be satisfied by the dual problem, even if RCR holds for
the primal. We propose two variants of Dual SDDP to solve the Dual problem even
if RCR does not hold for the dual: Dual SDDP with penalizations and Dual SDDP
with feasibility cuts.

Dual SDDP with penalizations. Dual SDDP with penalizations is based on
the developments of Section 2.2. It introduces slack variables in the constraints which
may become infeasible for some past decisions in the subproblems solved in the for-
ward passes of Dual SDDP. Slack variables are penalized in the objective function with
sequences (vtk)k of positive penalizing coefficients. Therefore, all subproblems solved
in forward and backward passes of this variant of Dual SDDP, called Dual SDDP
with penalizations, are always feasible and at iteration k, the method builds polyhe-
dral upper bounding function V kt for Vt of form (4.6) (see Proposition 4.2). Similarly
to SDDP, trial points are generated in a forward pass and cuts for Vt are computed
in a backward pass. The detailed Dual SDDP method with penalizations is as follows.

Initialization. For t = 2, . . . , T, take for V 0
t an affine upper bounding function

for Vt and V 0
T+1 ≡ 0. Set iteration counter k to 1.

Step 1: forward pass of iteration k (computation of dual trial points).
For the first stage of the forward pass, we compute an optimal solution πk1 of

(4.7) V k−1 =
max
π1

b>1 π1 + V k−1
2 (π1)

π1 ≤ π1 ≤ π1.

Recall that the optimal value of the first stage problem does not change adding box
constraints π1 ≤ π1 ≤ π1 for appropriate values π1 and π1. The introduction of these
box constraints ensures that the optimal value of (4.7) (which is an approximate first
stage problem due to the approximation of V2 by V k−1

2) is finite for all iterations.
For stage t = 2, . . . , T − 1, given πkt−1, we compute an optimal solution of

(4.8)

max
πt1,...,πtNt ,ζt≥0

Nt∑
j=1

ptj
[
b>tjπtj + V k−1

t+1 (πtj)
]
− v>tkζt

s.t. A>t−1π
k
t−1 +

Nt∑
j=1

ptjB
>
tjπtj ≤ ct−1 + ζt,

πt ≤ πtj ≤ πt.
9

An optimal solution of the problem above has Nt components (πt1, πt2, . . . , πtNt
)

for πt. We generate a realization ξ̃kt of ξkt ∼ ξt independently of previous realiza-
tions ξ̃1

2 , . . ., ξ̃
1
T−1,. . ., ξ̃k2 , . . . , ξ̃

k
t−1, and take πkt = πtjt(k) where index jt(k) satisfies

ξ̃kt = ξtjt(k).

Step 2: backward pass of iteration k (computation of new cuts). We
first compute a new cut for VT . Let (α, δ,Ψ,Ψ) be an optimal solution of3

(4.9)

min
α,δ,Ψ,Ψ

δ>(cT−1 −A>T−1π
k
T−1) + c>T

NT∑
j=1

αj +

NT∑
j=1

Ψ
>
j πT −

NT∑
j=1

Ψ>j πT

ATαj + pTjBTjδ −Ψj + Ψj = pTjbTj , j = 1, . . . , NT ,

0 ≤ δ ≤ vTk, αj ,Ψj ,Ψj ≥ 0 j = 1, . . . , NT .

The new cut for VT has coefficients given by

θ
k

T = δ>cT−1 + c>T

NT∑
j=1

αj +

NT∑
j=1

Ψ
>
j πT −

NT∑
j=1

Ψ>j πT , β
k

T = −AT−1δ.

For t = T − 1, . . . , 2, compute an optimal solution (δ, ν,Ψ,Ψ) of

(4.10)

min
δ,ν,Ψ,Ψ

δ>
[
ct−1 −A>t−1π

k
t−1

]
+

k∑
i=0

θ
i

t+1

Nt∑
j=1

νi(j) +

Nt∑
j=1

Ψ
>
j πt −

Nt∑
j=1

Ψ>j πt

ptjBtjδ −
k∑
i=0

νi(j)β
i

t+1 −Ψj + Ψj = ptjbtj , j = 1, . . . , Nt,

k∑
i=0

νi(j) = ptj ,Ψj ,Ψj ≥ 0, j = 1, . . . , Nt,

ν0, . . . , νk ≥ 0, 0 ≤ δ ≤ vtk,

and the cut coefficients

θ
k

t = δ>ct−1 +

k∑
i=0

θ
i

t+1

Nt∑
j=1

νi(j) +

Nt∑
j=1

Ψ
>
j πt −

Nt∑
j=1

Ψ>j πt, β
k

t = −At−1δ.

Step 3: Do k ← k + 1 and go to Step 1.

The validity of the cuts computed in the backward pass of Dual SDDP with
penalizations is shown in Proposition 4.2.

Proposition 4.2. Consider Dual SDDP algorithm with penalizations. Let As-
sumptions (A1) and (A2) hold. Then for every t = 2, . . . , T , the sequence V kt is a
nonincreasing sequence of upper bounding functions for Vt, i.e., for every k ≥ 1 we
have Vt ≤ V kt ≤ V k−1

t and therefore (V k) (recall that V k−1 is the optimal value of
(4.7)) is a nonincreasing deterministic sequence of upper bounds on the optimal value
of (2.1).

To understand the effect of the sequence of penalizing parameters (vtk) on Dual SDDP
with penalizations, we define the following Dynamic Programming equations (see also

3We suppressed the dependence of the optimal solution on T and k to alleviate notation.

10

Lemma 6.1 in the Appendix):
(4.11)

V γT (πT−1) =

max

πT1,...,πTNT
,, ζT≥0

NT∑
j=1

pTjb
>
TjπTj − γe>ζT

s.t. A>TjπTj ≤ cTj , j = 1, ..., NT ,

A>T−1πT−1 +
NT∑
j=1

pTjB
>
TjπTj ≤ cT−1 + ζT ,

for t = 2, . . . , T − 1:

(4.12) V γt (πt−1) =

max

πt1,...,πtNt ,ζt≥0

Nt∑
j=1

ptj
[
b>tjπtj + V γt+1(πtj)

]
− γe>ζt

s.t. A>t−1πt−1 +
Nt∑
j=1

ptjB
>
tjπtj ≤ ct−1 + ζt,

and we define the first stage problem

(4.13) max
π1

π>1 b1 + V γ2 (π1),

where e is a vector of ones and γ is a positive real number. As we will see below, V γt
can be seen as an upper bounding concave approximation of Vt which gets “closer” to
Vt when γ increases. For inventory problem (3.3), it is easy to see that functions Vt in
DP equations (2.5), (2.6), (2.7) and functions V γt in DP equations (4.11), (4.12), (4.13)
(obtained using in these equations data ct, bt At, Bt, corresponding to the inventory
problem) are only functions of one-dimensional state variable πt−1. Therefore, Dy-
namic Programming can be used to solve these Dynamic Programming equations and
obtain good approximations of functions Vt and V γt . To obtain these approximations,
we need to obtain approximations of the domains of functions Vt and compute approx-
imations of these functions on a set of points in that domain. To observe the impact
of penalizing term γ on V γt , we run Dynamic Programming both on DP equations
(2.5), (2.6), (2.7) and on DP equations (4.11), (4.12), (4.13) for γ = 1, 100, and 1000,
on an instance of the inventory problem with T = 20 and Nt = 20. The corresponding
graphs of V2 (bold dark solid line) and of V γ2 for γ = 1, 10, 1000, are represented in
Figure 1. We observe that all functions V γ2 are, as expected, concave upper bounding
functions for V2 finite everywhere. We also see that on the domain of V2, V γ2 gets
closer to V2 when γ increases and eventually coincides with V2 on this domain when
γ is sufficiently large. Similar graphs were observed for remaining functions Vt, V

γ
t ,

t = 3, . . . , T . Therefore, convergence of Dual SDDP with penalizations requires the
coefficients vtk to become arbitrarily large. Proof of the following theorem is given in
the Appendix.

Theorem 4.3. Consider optimization problem (2.1) and Dual SDDP with penal-
izations applied to the dual of this problem. Let Assumptions (A1) and (A2) hold.
Assume that samples ξ`t , t = 2, . . . , T , ` ≥ 1, in the forward passes are independent,
that vtk+1 ≥ vtk for all t, k, and that limk→+∞ vtk = +∞ for all stage t. Then the
sequence V k is a deterministic sequence of upper bounds on the optimal value of (2.1)
which converges almost surely to the optimal value of this problem.

Dual SDDP with feasibility cuts. For dual problems not satisfying the RCR
assumption, a subproblem for a given stage t in the forward pass can be infeasible. In
this situation, as was done in Section 5 of [10] for SDDP, we can build a feasibility cut

11

-5 -4 -3 -2 -1 0 1 2 3 4 5
-3500

-3000

-2500

-2000

-1500

-1000

-500

0

500

True Bellman function
gamma=1
gamma=100
gamma=1000

Fig. 1. Graph of V2 and of V γ2 for γ = 1, 100, 1000.

for stage t−1 and go back to the previous stage t−1 to resolve the problem with that
feasibility cut added, and so on until a sequence of feasible states is obtained for all
stages. In this context, no penalized slack variables are used, neither in the forward
nor in the backward pass. Since the adaptations from [10] are simple, we skip the
details of the derivations of this SDDP method applied to the dual. It will be tested
in the numerical experiments of Section 5.

4.2. Dual SDDP for problems with uncertainty in all parameters. We
have seen in Section 2.1 how to write DP equations on the dual problem of a MSLP
when all data (At, Bt, ct, bt) in (ξt) is random. In this situation, cost-to-go functions Vt
are functions Vt(πt−1, ξt−1) of both past decision πt−1 and past value ξt−1 of process
(ξt). Also recall that functions Vt(·, ξt−1) are concave for all ξt−1. Therefore, Dual
SDDP with penalizations from the previous section must be modified as follows. For
each stage t = 2, . . . , T, instead of computing just one approximation of a single
function (function Vt), we now need to compute approximations of Nt functions,
namely concave cost-to-go functions Vt(·, ξt−1j), j = 1, . . . , Nt. The approximation
V ktj computed for Vt(·, ξt−1j) at iteration k is a polyhedral function V ktj given by:

V ktj(πt−1) = min
0≤i≤k

θ
i

tj + 〈βitj , πt−1〉.

Therefore more computational effort is needed. However, the adaptations of the
method can be easily written. More specifically, at iteration k, in the forward pass,
dual trial points are obtained replacing Vt(·, ξt−1j) by V k−1

tj and in the backward pass

a cut is computed at stage t for Vt(·, ξt−1jk) with jk satisfying ξt−1jk = ξ̃kt−1 where

ξ̃kt−1 is the sampled value of ξt−1 at iteration k.

4.3. Dual SDDP for problems with interstage dependent cost coeffi-
cients. We consider problems of form (2.1) where costs ct affinely depend on their
past while bt are stagewise independent. Specifically, similar to derivations of Section
3.2, suppose that ct follow a multiplicative vector autoregressive process of form

(4.14) ct = εt ◦
(∑p

j=1 Φtjct−j + µt

)
,

with (x ◦ y)i = xiyi denoting the componentwise product, and where matrices Φtj
and vectors µt ≥ 0 as well as c1, . . . , c2−p ≥ 0 are given.

12

We assume that the process (bt, εt) is stagewise independent and that the support
of bt, εt is the finite set

{(bt1, εt1), . . . , (btNt
, εtNt

)},
with εti > 0 and pti = P{(bt, εt) = (bti, εti)}, i = 1, . . . , Nt. For some values of Φtj (for
instance for matrices with nonnegative entries), this guarantees that all realizations
of the price process {ct} are positive. The developments which follow can be easily
extended to other linear models for {ct}, for instance SARIMA or PAR models, see
[9] for the definition of state vectors of minimal size for generalized linear models.

Using the notation ct1:t2 = (ct1 , ct1+1, . . . , ct2−1, ct2) for t1 ≤ t2 integer, for the
corresponding primal problem (of the form (2.1)), we can write the following Dynamic
Programming equations: define QT+1 ≡ 0 and for t = 2, . . . , T ,

(4.15) Qt(xt−1, ct−p:t−1) = Ebt,εt
[
Qt(xt−1, ct−p:t−1, bt, εt)

]
where Qt(xt−1, ct−p:t−1, bt, εt) is given by
(4.16)

min
xt≥0

[
εt ◦

(p∑
j=1

Φtjct−j + µt

)]>
xt +Qt+1

(
xt, ct+1−p:t−1, εt ◦

(p∑
j=1

Φtjct−j + µt

))
Atxt +Btxt−1 = bt,

while the first stage problem is

min
x1≥0

c>1 x1 +Q2(x1, c2−p:1)

A1x1 = b1.

Standard SDDP does not apply directly to solve Dynamic Programming equations
(4.15)-(4.16) because functions Qt given by (4.15)-(4.16) are not convex. Neverthe-
less, we can use the Markov Chain discretization variant of SDDP to solve Dynamic
Programming equations (4.15)-(4.16). On the other hand, as pointed above, it is pos-
sible to apply SDDP for the dual problem with the added state variables. Along the
lines of Section 2.1 we can write Dynamic Programming equations for the dual, now
with function Vt depending on πt−1, ct−1, . . . , ct−p.

These functions are concave and therefore we can apply Dual SDDP with penal-
izations to these DP equations to build polyhedral approximations of these functions
Vt of form

(4.17) V kt (πt−1, ct−1, . . . , ct−p) = min
0≤i≤k

θit + 〈βit0, πt−1〉+

p∑
j=1

〈βitj , ct−j〉

at iteration k.

5. Numerical experiments. In this section, we report numerical results ob-
tained applying Primal SDDP and variants of Dual SDDP to the inventory problem
and to the Brazilian interconnected power system problem. All methods were imple-
mented in Matlab and run on an Intel Core i7, 1.8GHz, processor with 12,0 Go of
RAM. Optimization problems were solved using Mosek [1].

5.1. Dual SDDP for the inventory problem. We consider the inventory
problem (3.3) with parameters at = 1.5 + cos(πt6), pti = 1

N where N is the number
of realizations for each stage, ξtj = (5 + 0.5t)(1.5 + 0.1ztj) where (zt1, . . . , ztN) is a
sample from the standard Gaussian distribution, x0 = 10, gt = 2.8, and ht = 0.2.

13

-5 -4 -3 -2 -1 0 1 2 3 4 5
-500

0

500

1000

1500

2000

-5 -4 -3 -2 -1 0 1 2 3 4 5
-1000

-500

0

500

1000

1500

2000

2500

Fig. 2. Graph of V2 (bold black solid line) and cuts computed for V2 by Dual SDDP with
penalizations vtk = 100 (left panel) and Dual SDDP with feasibility cuts (right panel).

Illustrating the correctness of DP equations (2.5), (2.6), (2.7) and check-
ing the convergence of the variants of Dual SDDP. We solve this inventory
problem using Dynamic Programming applied both to DP equations (2.5), (2.6), (2.7)
and to DP equations (4.11)-(4.12) for γ = 1, 10, 1000. In this latter case, we obtain ap-
proximations of functions V γt . We also run Primal SDDP, Dual SDDP with feasibility
cuts, and Dual SDDP with penalties vtk = 1, 10, 1000, on the same instance, knowing
that Dual SDDP variants were run for 100 iterations (the upper bounds computed
by these methods stabilize in less than 10 iterations) and Primal SDDP was stopped
when the gap is < 0.1 where the gap is defined as Ub−Lb

Ub where Ub and Lb correspond
to upper and lower bounds computed by Primal SDDP along iterations. The lower
bound Lb is the optimal value of the first stage problem and the upper bound Ub
is the upper end of a 97.5%-one-sided confidence interval on the optimal value ob-
tained using the sample of total costs computed by all previous forward passes. With
this stopping criterion and the considered instance of the inventory problem, Primal
SDDP was run for 232 iterations.

In Figure 2, we report the graph of V2 and the cuts computed for V2 by Dual
SDDP with feasibility cuts (right panel) and Dual SDDP with penalties vtk = 100
(left panel). All cuts are, as expected, upper bounding affine functions for V2 on its
domain. However, it is interesting to notice that for Dual SDDP with feasibility cuts,
few different cuts are computed and these cuts are tangent or very close to V2 at the
trial points. On the contrary, Dual SDDP with penalties may compute many cuts
dominated by others on the domain of V2. Therefore, cut selection techniques, for
instance along the lines of [11] [13] using Limited Memory Level 1 cut selection, could
be useful for Dual SDDP.

We report in Table 1 the approximate optimal values and the time needed to
compute them with Primal SDDP, Dual SDDP, and Dynamic Programming applied
to respectively (2.5), (2.6), (2.7) and (4.11), (4.12), (4.13) with γ = 1, 100, 1000. The
approximate optimal values reported are the last upper bound computed for variants
of Dual SDDP and the last lower bound computed for Primal SDDP. All approximate
optimal values are very close (showing that all variants were correctly implemented)
and Dynamic Programming is much slower than the other sampling-based algorithms.
For Dual SDDP with penalization, if penalties are too small the upper bound can be
+∞ while if penalties are sufficiently large the algorithm converges to an optimal
policy.

14

Method Optimal value CPU time (s.)

DP on (2.5), (2.6), (2.7) 321.6 685
DP on (4.11), (4.12), (4.13), γ = 1 +∞ 2 860
DP on (4.11), (4.12), (4.13), γ = 100 322.2 3 808
DP on (4.11), (4.12), (4.13), γ = 1000 321.8 3 376

Primal SDDP 322.5 105
Dual SDDP with penalties, vtk = 1 2 131.4 9.4
Dual SDDP with penalties, vtk = 100 322.5 11.3
Dual SDDP with penalties, vtk = 1000 322.5 11.9
Dual SDDP with feasibility cuts 322.5 10.6

Table 1
Optimal value and CPU time needed (in seconds) to compute them on an instance of the

inventory problem with T = Nt = 20 by Dynamic Programming (DP), Primal SDDP, and variants
of Dual SDDP.

Iteration
1 2 3 4 5 6 7 8 9 10

0

1000

2000

3000

4000

5000

6000

7000

Primal SDDP
Dual SDDP with feasibility cuts
Dual SDDP with penalties

Iteration
10 20 30 40 50 60 70 80 90 100

320

330

340

350

360

370

380

390

400

Primal SDDP
Dual SDDP with feasibility cuts
Dual SDDP with penalties

Fig. 3. Left: upper and lower bounds computed by Primal SDDP and upper bounds computed by
Dual SDDP with feasibility cuts and Dual SDDP with penalties vtk = 1000 for the first 10 iterations.
Right: same outputs for iterations 10,. . . , 100.

Finally, we report for this instance in Figure 3 the evolution of the lower bound
Lb and upper bound Ub computed by Primal SDDP and the upper bounds computed
by Dual SDDP with penalties vtk = 1000 and Dual SDDP with feasibility cuts. With
Dual SDDP, the upper bound is naturally large at the first iteration but decreases
much quicker than the upper bound Ub computed by Primal SDDP, especially for
Dual SDDP with feasibility cuts, with all upper bounds converging to the optimal
value of the problem.

Tests on a larger instance. We now run Primal and Dual SDDP on a larger
instance with T = 100 and Nt = 100 for 600 iterations. The evolution of the upper
bounds computed along the iterations of Dual SDDP (both with feasibility cuts and
with penalizations vtk = 1000) and of the upper and lower bounds computed by Primal
SDDP are reported in Table 2 for iterations 2, 3, 5, 10, 50, 100, 200, 300, 400, 500, and
600. We see that for the first iterations, the upper bound decreases more quickly
with the variants of Dual SDDP, the most important decrease being obtained for
Dual SDDP with feasibility cuts. However, on this instance, the convergence of Dual
SDDP with feasibility cuts is slower, i.e., a solution of high accuracy is obtained

15

quicker using Dual SDDP with penalizations. More precisely, we fix confidence levels
ε = 0.2, 0.15, 0.1, 0.05, 0.01, and for each confidence level, we compute the time needed,
running Primal and Dual SDDP in parallel, to obtain a solution with relative accuracy
ε stopping the algorithm when the upper bound Ub D computed by a variant of Dual
SDDP and the lower bound Lb, computed by Primal SDDP, satisfies (Ub D-Lb)/Ub D<
ε. The results are reported in Table 3. In this table, we also report the time needed
to obtain a solution of relative accuracy ε using only the information provided by
Primal SDDP, stopping the algorithm when (Ub-Lb)/Ub< ε.

We observe that if ε is not too small, the smallest CPU time is obtained combining
Primal SDDP with Dual SDDP with feasibility cuts while when ε is small (0.05 and
0.01) the smallest CPU time is obtained combining Primal SDDP with Dual SDDP
with penalizations. For ε = 0.05 and 0.01, 600 iterations are even not enough to get
a solution of relative accuracy ε using Primal SDDP or combining Primal SDDP and
Dual SDDP with feasibility cuts.

Iteration
Primal

SDDP

Lb

Primal

SDDP

Ub

Dual SDDP with

feasibility

cuts

Dual SDDP

with

penalties

2 656.4 25 443 20 002 20 015
3 713.1 19 340 8 693.1 20 012
5 3361.8 14 800 7 246.8 19 993
10 5330.1 10 662 5 736.6 16 452
50 5483.1 6 594.5 5721.8 5500.9
100 5483.5 6 039.2 5715.1 5484.8
200 5483.6 5 762.4 5710.0 5484.2
300 5483.7 5 671.0 5704.6 5484.0
400 5483.7 5 625.3 5702.7 5483.9
500 5483.7 5 597.9 5702.5 5483.8
600 5483.7 5 579.9 5702.2 5483.8

Table 2
For an instance of the inventory problem with T = Nt = 100, lower bound Lb and upper bound

Ub computed by Primal SDDP and upper bounds computed by Dual SDDP with feasibility cuts and
Dual SDDP with penalties vtk = 1000 along iterations.

In Figure 4, we report the cumulative CPU time along iterations of all methods.
We see that each iteration requires a similar computational bulk and the CPU time
increases exponentially with the number of iterations.

5.2. Sensitivity analysis for the inventory problem. Consider the inven-
tory problem of Section 5.1 with (Dt) as in (3.4) and T = 10 stages. For this problem,
the derivatives from Proposition 3.1 are given by

∂ϑ(φ, µ)/∂φ = ∂L(x̄, ȳ, π̄)/∂φ = E

[
T∑
t=1

π̄tεtDt−1

]
,(5.1)

∂ϑ(φ, µ)/∂µ = ∂L(x̄, ȳ, π̄)/∂µ = E

[
T∑
t=1

π̄tεt

]
,(5.2)

where (x̄, ȳ) is an optimal solution of the primal problem and π̄ are the corresponding
Lagrange multipliers. Our goal is to compute these derivatives solving the primal and
dual problems by respectively Primal and Dual SDDP.

16

ε Primal SDDP
Dual SDDP with

feasibility cuts

Dual SDDP with

penalties vtk = 1000
0.2 300.2 29.5 35.8
0.15 459.8 35.8 41.2
0.1 825.6 48.3 48.3
0.05 2366.2 96.1 61.5
0.01 - - 103.2

Table 3
Time needed (in seconds) to obtain a solution of relative accuracy ε with Primal SDDP, Dual

SDDP with feasibility cuts, and Dual SDDP with penalties vtk = 1000 for an instance of the inven-
tory problem with T = Nt = 100.

Iteration
0 100 200 300 400 500 600

C
um

ul
at

iv
e

tim
e

(s
.)

0

5000

10000

15000

Primal SDDP
Dual SDDP with penalties
Dual SDDP with feasibility cuts

Fig. 4. Cumulative CPU time along iterations of Primal SDDP, Dual SDDP with feasibility
cuts, and Dual SDDP with penalizations vtk = 1000.

We consider 4 instances with (φ, µ) = (0.01, 0.1), (0.01, 3.0), (0.001, 0.1), and
(0.001, 3.0). The remaining parameters of these instances are those from the previous
section. We discretize both the primal and dual problem into Nt = 100 samples for
each stage t = 2, . . . , 10. We take the relative error ε = 0.01 for the stopping criterion
and use 10 000 Monte Carlo simulations to estimate the expectations in (5.1), (5.2).
For Primal SDDP, the upper bound Ub and lower bound Lb at termination are given
in Table 4 for the four instances.

Bound Instance 1 Instance 2 Instance 3 Instance 4

Ub 17.9176 478.687 15.3940 404.242

Lb 17.9163 475.017 15.3927 402.913
Table 4

Upper and lower bounds at the last iteration of Primal SDDP.

The optimal mean values of Lagrangian multipliers for the demand constraints
computed, for a given stage t ≥ 2, averaging over the 10 000 values obtained simulating
10 000 forward passes after termination, are given in Table 5. In this table, LM stands
for the multipliers obtained using Primal SDDP as explained in Remark 2.1 whereas
Dual stands for the multipliers obtained using Dual SDDP with penalties. The fact

17

that the multipliers obtained are close for both methods illustrates the validity of
the two alternatives we discussed in Sections 3-4 to compute derivatives of the value
function of a MSP.

Stage Instance 1 Instance 2 Instance 3 Instance 4

LM Dual LM Dual LM Dual LM Dual

2 0.2465 0.2373 1.6701 1.66959 0.0444 0.0328 1.666 1.666

3 0.3218 0.31095 1.4098 1.4120 0.1421 0.1340 1.406 1.409

4 0.3268 0.3221 0.9862 0.9861 0.19439 0.18974 0.984 0.984

5 0.3086 0.3058 0.6330 0.6329 0.2145 0.2128 0.6327 0.6327

6 0.3408 0.3412 0.49998 0.499897 0.2708 0.2717 0.4999 0.4998

7 0.5026 0.5051 0.63397 0.63397 0.4378 0.4418 0.6339 0.6339

8 0.7047 0.7049 0.8348 0.8340 0.6404 0.6413 0.8349 0.8334

9 0.8985 0.9032 1.0322 1.0343 0.83501 0.8401 1.0315 1.0343

10 1.1022 1.1037 1.2302 1.2365 1.03926 1.04091 1.23 1.23
Table 5

Comparison between optimal Lagrange multipliers from Primal SDDP and Dual SDDP with
penalties.

With optimal dual solutions {π̄t} and the realizations of {Dt} and {εt} at hand,
we are able to compute the sensitivity of the optimal value with respect to φ and µ,
using (5.1) and (5.2), with expectations estimated for 10 000 Monte Carlo simulations.
We benchmark our method against the finite-difference method. Specifically, for value
function ϑ, the finite-difference method approximates the derivative with respect to

u0 by v′(u0) ≈ v(u0+δ)−v(u0−δ)
2δ for some small δ.

The sensitivity of the optimal value of the inventory problem with respect to (φ, µ)
is displayed in Table 6. In this table, S-φ and S-µ denote the derivatives with respect
to φ and µ computed by our method, and fd-φ, fd-µ denote the derivatives computed
by the finite-difference method. In order to measure the difference between the two

methods, we also compute S-gap-φ and S-gap-µ, where S-gap-φ := |fd-φ−S-φ|
|fd-φ| × 100%

and S-gap-µ := |fd-µ−S-µ|
|fd-µ| × 100%.

Instance fd-φ S-φ S-gap-φ(%) fd-µ S-µ S-gap-µ(%)

1 403.604 401.094 0.622 164.578 164.158 0.255

2 10 716.111 10 671.262 0.419 185.346 184.847 0.270

3 269.514 269.443 0.026 134.646 134.463 0.136

4 7 780.570 7 770.274 0.132 158.017 158.001 0.0101
Table 6

Sensitivity of the optimal value with respect to φ and µ by the two methods.

We observe that the derivatives obtained by both methods are close to each other,
especially when φ and µ are small. This is because small φ and µ gives rise to less
variability in the demand. Note also that the finite-difference method is more time
consuming since it requires computing the optimal value twice. Instead, our method
only needs to solve the model once. Moreover, computing the Lagrange multipliers
does not significantly consume CPU time, as they are generated as a by-product
of Primal SDDP. Alternatively, as discussed above, one can compute the optimal
multipliers using Dual SDDP with penalties. Another drawback of the finite-difference
method lies in its numerical instability. Indeed, the method is more accurate when δ

18

is very small. However, the division by a very small number generates bias while our
approach is more stable.

5.3. Dual SDDP for an hydro-thermal generation problem. We repeat
the experiments of Section 5.1 for the Brazilian interconnected power system problem
discussed in [7] for T = 12 stages and Nt = 50 inflow realizations for every stage.
These realizations are obtained calibrating log-normal distributions for each month
of the year using historical data of inflows and sampling from these distributions.
The data used for these simulations (including the inflow scenarios) is available on
Github4.

We solve this problem using Primal SDDP and Dual SDDP with penalizations.
For this variant of Dual SDDP, a general procedure to define sequences of penalizations
(vtk) ensuring convergence of the corresponding Dual SDDP method is to take vtk =
γ0α

k−1e, k ≥ 1, t = 2, . . . , T , with α > 1, γ0 > 0. For numerical reasons, we also take
a large upper bound U for these sequences and use

(5.3) vtk = min(U, γ0α
k−1)e, k ≥ 1, t = 2, . . . , T.

We consider three variants of Dual SDDP: for the first variant, denoted by Dual SDDP

1, vtk are as in (5.3) with γ0 = 104, α = 1.3, U = 1010. To illustrate the fact that
for constant sequences vtk = γ0, Dual SDDP converges (resp. does not converge) for
sufficiently large constants γ0 (resp. sufficiently small constants γ0) we also define two
other variants corresponding to U = +∞, γ0 = 109, α = 1, and U = +∞, γ0 = 106,
α = 1, in (5.3), respectively denoted by Dual SDDP 2 and Dual SDDP 3.

We run Dual SDDP for 1000 iterations and Primal SDDP for 3000 iterations.
The evolution of the upper and lower bounds computed by the methods for the first
1000 iterations is given in Figure 5.5

More precisely, the values of these bounds for iterations 2, 5, 10, 50, 100, 150, 200,
250, 300, 350, 400, 1000, and 3000 are reported in Table 7. We observe that parameter
γ0 for Dual SDDP 3 is too small to allow this method to converge to the optimal
value of the problem whereas the other two variants Dual SDDP 1 and Dual SDDP 2

of Dual SDDP converge. Naturally, these methods start with large upper bounds but
after a few tens of iterations the upper bounds with Dual SDDP 1 and Dual SDDP

2 are better than the upper bound computed by Primal SDDP. In particular, it is
interesting to notice that the best (lowest) upper bounds are obtained with the variant
of Dual SDDP that uses adaptive penalizations, i.e., penalizations that increase with
the number of iterations before reaching value U in (5.3).

We also report in Table 8 the relative error
UpperM (i)−LowerSDDP(i)

UpperM (i) for iterations

i = 100, 200, 300, 400, 500, 800, and 1000 for all methods M where UpperM (i) and
LowerSDDP(i) are respectively the upper bound computed by method M at iteration i
and the lower bound computed by Primal SDDP at iteration i. For iterations 300 on,
the relative error is much smaller with variants of Dual SDDP, meaning that Primal
SDDP overestimates the optimality gap.

However, each iteration of Dual SDDP takes more time as can be seen in Figure
6 which reports the cumulative CPU time for all methods. More precisely, running
Dual and Primal SDDP in parallel, we can compute the time needed to obtain a
solution of relative accuracy ε using the standard stopping criterion for Primal SDDP
(see [27]) or using the lower bound from Primal SDDP and the upper bound from

4https://github.com/vguigues/Primal_SDDP_Library_Matlab
5The upper bounds for Primal SDDP are computed as explained in Section 5.1.

19

https://github.com/vguigues/Primal_SDDP_Library_Matlab

Iteration
2 4 6 8 10 12 14 16 18 20

#108

0

2

4

6

8

10

12

 Dual SDDP 2

 Dual SDDP 3

 Dual SDDP 1
 Primal SDDP

Iteration
20 40 60 80 100 120 140 160

#108

0

2

4

6

8

10

12

 Dual SDDP 2

 Dual SDDP 3

 Dual SDDP 1

 Primal SDDP

Iteration
100 200 300 400 500 600 700 800 900 1000

#107

2

3

4

5

6

7

8

 Dual SDDP 3

 Primal SDDP

 Dual SDDP 2

 Dual SDDP 1

Fig. 5. Top left: upper and lower bounds computed by Primal SDDP and upper bounds computed
by Dual SDDP 1, Dual SDDP 2, and Dual SDDP 3, for the first 20 iterations for an instance of the
hydro-thermal problem with T = 12, Nt = 50. Top right: same outputs for iterations 21,. . . , 150.
Bottom: same outputs for iterations 151,. . . , 1000.

Dual SDDP, and computing the relative error obtained with these bounds each time
a new bound (either lower bound or upper bound) is computed. The results are
reported in Table 9. We see that due to the fact that Dual SDDP iterations are more
time consuming, for all relative accuracies but one, the use of the stopping criterion
based on Dual SDDP upper bounds requires more computational bulk. From this
experiment, performed on a larger problem (in terms of size of the state vector and
number of control variables for each stage) than the inventory problem of Section 5.1,
it seems that the use of Dual SDDP for a stopping criterion of Primal SDDP will
decrease the overall computational bulk only for small problems (having a limited to
small number of controls, state variables, and scenarios).

REFERENCES

[1] E. D. Andersen and K.D. Andersen. The MOSEK optimization toolbox for MATLAB manual.
Version 7.0, 2013. https://www.mosek.com/.

[2] K.J. Arrow, L. Hurwicz, and H. Uzawa. Iterative methods for concave programming in Studies
in linear and nonlinear programming. Stanford University Press, 1958.

[3] A. Ben-Tal and A. Nemirovski. Robust Convex Optimization. Mathematics of Operations
Research, 23(4):769–805, 1998.

[4] D.P. Bertsekas. Nonlinear Programming, 2nd ed. Belmont, MA. Athena Scientific, 1999.

20

https://www.mosek.com/

Iteration
Primal

SDDP

Lb

Primal

SDDP

Ub
Dual SDDP 1 Dual SDDP 2 Dual SDDP 3

2 1.317 143.98 1000.2 1000.2 1000.2
5 5.5588 109.36 1000.2 1000.2 994.04
10 14.032 81.728 360.40 1000.2 495.08
50 23.670 41.346 54.999 1000.2 96.720
100 24.787 35.502 36.322 64.072 82.494
150 25.111 32.447 30.685 35.595 79.465
200 25.249 30.672 29.076 30.404 78.059
250 25.374 30.079 28.215 28.943 76.917
300 25.436 29.434 27.710 28.030 76.344
350 25.477 29.014 27.309 27.532 75.852
400 25.526 28.626 27.110 27.188 75.526
1000 25.703 27.175 26.304 26.335 74.292
3000 25.798 26.883 - -

Table 7
For an instance of the hydro-thermal problem with T = 12, Nt = 50, lower bound Lb and upper

bound Ub computed by Primal SDDP and upper bounds computed by variants of Dual SDDP along
iterations. All costs have been divided by 106 to improve readability.

Iteration Primal SDDP Dual SDDP 1 Dual SDDP 2

100 0.30 0.32 0.61
200 0.18 0.13 0.17
300 0.14 0.08 0.09
400 0.11 0.06 0.06
500 0.09 0.05 0.05
800 0.07 0.03 0.03
1000 0.05 0.02 0.02

Table 8
Relative error as a function of the number of iterations for Primal SDDP, Dual SDDP 1, and

Dual SDDP 2.

[5] J. F. Bonnans and A. Shapiro. Perturbation Analysis of Optimization Problems. Springer
Series in Operations Research. Springer, New York, 2000.

[6] J.F. Bonnans, Z. Cen, and Th. Christel. Sensitivity analysis of energy contracts by stochas-
tic programming techniques, pages 447 – 471. Numerical Methods in Finance, Springer
Proceeding in Mathematics 12 (2012).

[7] L. Ding, S. Ahmed, and A. Shapiro. A python package for multi-stage stochastic programming.
Optimization Online, 2019.

[8] V. Guigues. Inexact Stochastic Mirror Descent for two-stage nonlinear stochastic programs.
Mathematical Programming, to appear.

[9] V. Guigues. SDDP for some interstage dependent risk-averse problems and application to
hydro-thermal planning. Computational Optimization and Applications, 57:167–203, 2014.

[10] V. Guigues. Convergence analysis of sampling-based decomposition methods for risk-averse
multistage stochastic convex programs. SIAM Journal on Optimization, 26:2468–2494,
2016.

[11] V. Guigues. Dual dynamic programing with cut selection: Convergence proof and numerical
experiments. European Journal of Operational Research, 258:47–57, 2017.

[12] V. Guigues. Inexact cuts in Stochastic Dual Dynamic Programming. Siam Journal on Opti-
mization, 30:407–438, 2020.

[13] V. Guigues and M. Bandarra. Single cut and multicut SDDP with cut selection for multistage

21

Iteration
0 100 200 300 400 500 600 700 800 900 1000

#105

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 Dual SDDP 2

 Dual SDDP 1

 Dual SDDP 3

 Primal SDDP

Fig. 6. Cumulative CPU time for Primal SDDP, Dual SDDP 1, Dual SDDP 2, and Dual
SDDP 3.

ε Primal SDDP Dual SDDP 1 Dual SDDP 2

0.3 515 1 042 4 133
0.2 1 167 1 895 7 446
0.15 1 659 2 910 9 882
0.1 3 168 5 114 16 387

0.075 5 359 8 003 22 457
0.05 11 124 15 738 35 113
0.04 45 391 23 449 51 381

Table 9
Time (in seconds) needed to obtain a solution of relative accuracy ε with Primal SDDP and

variants of Dual SDDP for an instance of the hydro-thermal problem.

stochastic linear programs: convergence proof and numerical experiments. arXiv, 2019.
https://arxiv.org/abs/1902.06757.

[14] J.L. Higle and S. Sen. Multistage stochastic convex programs: Duality and its implications.
Annals of Operations Research, 142(1):129–146, 2006.

[15] J.L. Higle and S. Sen. Multistage stochastic convex programs: Duality and its implications.
Annals of operations research, 142:129–146, 2006.

[16] H.J. Kushner. On the stochastic maximum principle: Fixed time of control. J. Math. Anal.
Appl., 11:78–92, 1965.

[17] H.J. Kushner. On the stochastic maximum principle with average constraints. J. Math. Anal.
Appl., 12:13–26, 1965.

[18] H.J. Kushner. Necessary conditions for continuous parameter stochastic optimization problems.
SIAM J. Control, 10:550–565, 1972.

[19] V. Leclère, P. Carpentier, J-P Chancelier, A. Lenoir, and F. Pacaud. Exact converging bounds
for Stochastic Dual Dynamic Programming via Fenchel duality. SIAM J. Optimization,
30:1223 – 1250, 2020.

[20] N. Lohndorf and A. Shapiro. Modeling Time-dependent Randomness in Stochastic Dual Dy-
namic Programming. European Journal of Operational Research, 273:650–661, 2019.

[21] A. Nedić and A. Ozdaglar. Subgradient Methods for Saddle-Point Problems. Journal of Opti-
mization Theory and Applications, 142(1):205–228, 2009.

[22] M.V.F. Pereira and L.M.V.G Pinto. Multi-stage stochastic optimization applied to energy
planning. Math. Program., 52:359–375, 1991.

22

https://arxiv.org/abs/1902.06757

[23] A. B. Philpott and Z. Guan. On the convergence of stochastic dual dynamic programming and
related methods. Oper. Res. Lett., 36:450–455, 2008.

[24] R. T. Rockafellar and R. J.-B. Wets. Variational Analysis. Springer Berlin, 1998.
[25] R.T. Rockafellar. Duality and optimality in multistage stochastic programming. Annals of

Operations Resarch, 85:1–19, 1999.
[26] R.T. Rockafellar. Duality and optimality in multistagestochastic programming. Annals of

Operations Research, 85(0):1–19, 1999.
[27] A. Shapiro. Analysis of stochastic dual dynamic programming method. European Journal of

Operational Research, 209:63–72, 2011.
[28] A. Shapiro, D. Dentcheva, and A. Ruszczyński. Lectures on Stochastic Programming: Modeling

and Theory, second edition. SIAM, Philadelphia, 2014.
[29] A. Shapiro, W. Tekaya, J.P. da Costa, and M.P. Soares. Risk neutral and risk averse stochas-

tic dual dynamic programming method. European Journal of Operational Research,
224(2):375–391, 2013.

[30] G. Terca and D. Wozabal. Envelope theorems for multi-stage linear stochastic optimization.
Optimization Online, 2018.

[31] P.H. Zipkin. Foundations of Inventory Management. McGraw-Hill, Boston, 2000.

6. Appendix. In this Appendix, we prove Lemma 4.1, Proposition 4.2, and
Theorem 4.3.

We first need more notation. We introduce the sequence of functions

(6.1) V
k

T (πT−1) :=

max
πT1,...,πTNT

,ζT

NT∑
j=1

pTjb
>
TjπTj − v>TkζT

A>T πTj ≤ cT , j = 1, . . . , NT ,

A>T−1πT−1 +

NT∑
j=1

pTjB
>
TjπTj ≤ cT−1 + ζT ,

ζT ≥ 0, πT ≤ πTj ≤ πT , j = 1, . . . , NT ,

and for t = 2, . . . , T − 1, the sequence of functions

(6.2) V
k

t (πt−1) :=

max
πt1,...,πtNt ,ζt

Nt∑
j=1

ptj
(
b>tjπtj + V kt+1(πtj)

)
− v>tkζt

A>t−1πt−1 +

Nt∑
j=1

ptjB
>
tjπtj ≤ ct−1 + ζt,

ζt ≥ 0, πt ≤ πtj ≤ πt, j = 1, ..., Nt.

Due to Assumption (A1) we can represent the scenarios for ξ1, ξ2, . . . , ξT , by a sce-
nario tree of depth T +1 where the root node n0 associated to a stage 0 (with decision
x0 taken at that node) has one child node n1 associated to the first stage. We de-
note by N the set of nodes and for a node n of the tree, by (xn, πn) a primal-dual
pair at that node and by ξn the realization of process (ξt) at node n (this realiza-
tion ξn contains in particular the realizations cn of ct, bn of bt, An of At, and Bn of Bt).

Proof of Lemma 4.1. Let 1 ≤ t ≤ T and let us fix a node m of stage t. Let
Am such that constraints Amxm + BmxF (m) = bm are rewritten in compact form

Amx = bm in terms of vector x = (xn)n∈N of decision variables in the scenario tree.
The dual function obtained dualizing the coupling constraints of node m is given by

θ(πm) =
min E[c>x] + π>m(Amxm +BmxF (m) − bm)
x ∈ Sm,

for Sm = {x = (xn)n∈N : x ≥ 0}∩Am whereAm = {x = (xn)n∈N : Anxn+BnxF (n) =
bn,∀n 6= m,n ∈ N}.

23

By Linear Programming Duality, the optimal value Q1(x0) of primal problem
(2.1) is the optimal value of the dual problem

(6.3) max{θ(πm) : πm ∈ Rmt}

which can clearly be written as

(6.4) Q1(x0) = max
πm

{θ(πm) : πm = Amx− bm, x ∈ Aff(Sm)},

where Aff(Sm) is the affine hull of Sm. We now bound the optimal solutions of dual
problem (6.4). Since (6.3) and (6.4) have the same optimal values, adding these
bounds as constraints on πm in (6.3) does not change its optimal value. Since x̂ > 0
there is r > 0 such that

(6.5) B(x̂, r) ⊆ {x ≥ 0}.

We argue that Aff(Sm) = Am. Indeed, the inclusion Aff(Sm) ⊆ Am is clear. Now if
x ∈ Am then if x = x̂ we have that x ∈ Sm ⊆ Aff(Sm) and if x 6= x̂, recalling that
x̂ ∈ Am satisfies (6.5) we have that

y := x̂+
r

2

x− x̂
‖x− x̂‖

∈ Am ∩ B(x̂, r) ⊆ Sm.

Therefore x belongs to the line that contains y and x̂ with y, x̂ belonging to Sm which
implies x ∈ Aff(Sm) and Aff(Sm) = Am.

It follows that

B(x̂, r) ∩Aff(Sm) = B(x̂, r) ∩ Am ⊆ Sm

and that there is ρ∗(m) > 0 such that

B(0, ρ∗) ∩ (AmAm − bm) ⊆ Am(B(x̂, r) ∩ Am)− bm.

Let π̄m be an optimal solution of problem (6.4) and let z = 0 if π̄m = 0 and z =
− π̄m

‖π̄m‖2 ρ∗ otherwise. Observe that z ∈ B(0, ρ∗) ∩ (AmAm − bm) and therefore z ∈
Am(B(x̂, r) ∩ Am) − bm ⊆ AmSm − bm and z can be written z = Amx̃ − bm for
x̃ ∈ B(x̂, r) ∩ Sm. It follows that

Q1(x0) = θ(π̄m) ≤ E[c>x̃] + π̄>m(Amx̃− bm)

≤ E[c>x̂] + r
∑T
t=1 E[‖ct‖2] + π̄>mz

= E[c>x̂] + r
∑T
t=1 E[‖ct‖2]− ρ∗(m)‖π̄m‖2

which gives for every node n of stage t that

‖π̄n‖2 ≤ max
m∈Nodes(t)

E[c>x̂]−Q1(x0) + r
∑T
t=1 E[‖ct‖2]

ρ∗(m)

with corresponding box constraints πt, πt where Nodes(t) are the nodes of stage t. �

Proof of Proposition 4.2. We show by induction on k that Vt ≤ V kt for
t = 2, . . . , T . For k = 0 these relations hold by definition. Assume that for some
k ≥ 1 we have Vt ≤ V k−1

t for t = 2, . . . , T . We show by backward induction on t that

24

Vt ≤ V kt for t = 2, . . . , T . Observe that for any πT−1, optimization problem (6.1) with

optimal value V
k

T (πT−1) is feasible. Indeed, since primal problem (2.1) is feasible and
has a finite optimal value, the corresponding dual problem is feasible which implies
that there is πT1, . . . , πTNT

satisfying A>T πTj ≤ cT , πT ≤ πTj ≤ πT , j = 1, . . . , NT ,
and for every such points we can find ζT ≥ 0 satisfying the remaining constraints in

(6.1). Therefore V
k

T (πT−1) is finite for every πT−1 and is the optimal value of the
corresponding dual optimization problem, i.e., for any πT−1 we get

V
k

T (πT−1) =

min
α,δ,Ψ,Ψ

δ>(cT−1 −A>T−1πT−1) + c>T

NT∑
j=1

αj +

NT∑
j=1

Ψ
>
j πT −

NT∑
j=1

Ψ>j πT

ATαj + pTjBTjδ −Ψj + Ψj = pTjbTj , j = 1, . . . , NT ,

0 ≤ δ ≤ vTk, αj ,Ψj ,Ψj ≥ 0, j = 1, . . . , NT .

Using this dual representation and the definition of θ
k

T , β
k

T , we get for every πT−1:

(6.6) θ
k

T + 〈βkT , πT−1〉 ≥ V
k

T (πT−1).

Recalling representation (6.1) for V
k

T (πT−1), observe that for every πT−1 ∈ dom(VT)

we have V
k

T (πT−1) ≥ VT (πT−1) whereas for πT−1 /∈ dom(VT) we have VT (πT−1) =

−∞ while V
k

T (πT−1) is finite, which shows that for every πT−1 we have V
k

T (πT−1) ≥
VT (πT−1), which, combined with (6.6) and the induction hypothesis, gives

V kT (πT−1) ≥ VT (πT−1)

for everyπT−1.
Now assume that V kt+1(πt) ≥ Vt+1(πt) for all πt for some t ∈ {2, . . . , T − 1}. We

want to show that V kt (πt−1) ≥ Vt(πt−1) for all πt−1. First observe that for every πt−1,

linear program (6.2) with optimal value V
k

t (πt−1) is feasible and has a finite optimal

value. Therefore we can express V
k

t (πt−1) as the optimal value of the corresponding
dual problem given by

(6.7)

min
δ,ν,Ψ,Ψ

δ>
[
ct−1 −A>t−1πt−1

]
+

k∑
i=0

θ
i

t+1

Nt∑
j=1

νi(j) +

Nt∑
j=1

Ψ
>
j πt −

Nt∑
j=1

Ψ>j πt

ptjBtjδ −
k∑
i=0

νi(j)β
i

t+1 −Ψj + Ψj = ptjbtj , j = 1, . . . , Nt,

k∑
i=0

νi(j) = ptj ,Ψj ,Ψj ≥ 0, j = 1, . . . , Nt,

ν0, . . . , νk ≥ 0, 0 ≤ δ ≤ vtk.

Using this representation of V
k

t and the definition of θ
k

t , β
k

t , we obtain for every πt−1:

(6.8) θ
k

t + 〈βkt , πt−1〉 ≥ V
k

t (πt−1).

Next, recalling representation (6.2) for V
k

t (πt−1) and the induction hypothesis, we get

(6.9) V
k

t (πt−1) ≥ V̂ kt (πt−1)

25

where

V̂ kt (πt−1) :=

max
πt1,...,πtNt ,ζt

Nt∑
j=1

ptj
(
b>tjπtj + Vt+1(πtj)

)
− v>tkζt

A>t−1πt−1 +

Nt∑
j=1

ptjB
>
tjπtj ≤ ct−1 + ζt,

ζt ≥ 0, πt ≤ πtj ≤ πt, j = 1, ..., Nt.

Similarly to the induction step t = T , for every πt−1, we have

(6.10) V̂ kt (πt−1) ≥ Vt(πt−1).

Combining (6.8), (6.9), and (6.10) with the induction hypothesis, we obtain V kt (πt−1) ≥
Vt(πt−1) for all πt−1 which achieves the proof of the induction step t.

In particular V k−1
2 ≥ V2 which implies that V k−1 is greater than or equal to the

optimal value of dual problem (2.3) which is also, by linear programming duality, the
optimal value of primal problem (2.1). �

The proof of Theorem 4.3 is based on the following lemma:

Lemma 6.1. Suppose that the multistage problem (2.1) has a finite optimal value.
Then for sufficiently large values of the components of vectors vt, in the dynamic
equations (2.11), the optimal value of the multistage problem defined by these dynamic
equations coincides with the optimal value of the original problem (2.1).

Proof. As it was already mentioned, since it is assumed that the number of
scenarios is finite, we can view problem (2.1) as a large linear program (deterministic
equivalent) written under the form

(6.11) min
x
c>x s.t. Ax = b, x ≥ 0.

Also since (2.1) has a finite optimal value, it has a nonempty set of optimal solutions
and there is a bounded optimal solution of (6.11). Let us fix such an optimal solution
x̄. We have that problem (6.11) can be written

(6.12) min
x
c>x s.t. Ax = b, 0 ≤ x ≤ x̄.

The dynamic programming equations (2.5) - (2.7) represent the standard dual of (2.1).
We can also think about that dual as a large linear programming problem of the form
(this is the dual of (6.11)):

(6.13) max
π

b>π s.t. A>π ≤ c.

Similarly the deterministic equivalent of penalized dynamic equations (2.11) can be
written as:

(6.14) max
π,ζ

b>π − v>ζ s.t. A>π ≤ c+ ζ, ζ ≥ 0.

Next, from optimality conditions of linear programs, (x, π) is an optimal primal-dual
pair for (6.11)-(6.13) if and only if

(6.15) x>(A>π − c) = 0, Ax = b, x ≥ 0, A>π ≤ c.
26

The corresponding optimality conditions for (6.14) are
(6.16)
x>(A>π − c− ζ)− ζ>γ = 0, A>π ≤ c+ ζ, ζ ≥ 0, Ax = b, x ≥ 0, γ ≥ 0, x = v − γ.

Now let π̄ be an optimal dual solution, i.e., an optimal solution of (6.13). Then
(6.15) is satisfied with (x, π) = (x̄, π̄). It follows that if v ≥ x̄, then (x, π, ζ, γ) =
(x̄, π̄, 0, v − x̄) with ζ = 0 satisfies (6.16), and hence (π̄, ζ̄) = (π̄, 0) is an optimal
solution of (6.14) showing that the optimal value of (6.14) is b>π̄ = c>x̄, i.e., the
optimal value of (6.11). We obtain that for v ≥ x̄, the optimal values of problems
(6.13) and (6.14) do coincide.6 �

Proof of Theorem 4.3. Dual SDDP with penalizations is SDDP applied to
Dynamic Programming equations corresponding to a linear program with finite opti-
mal value, satisfying relatively complete recourse with discrete uncertainties of finite
support. Since samples ξ̃kt in Dual SDDP with penalizations are independent, we can
follow the convergence proof of SDDP for linear programs from [23] to obtain that V k

converges to the optimal value of the penalized linear programs, which, by Lemma 6.1
(observe that the Lemma can be applied since limk→+∞ vtk = +∞), is the optimal
value of (2.1). �

6Observe that the dual of (6.14) is given by

min
x
c>x s.t. Ax = b, 0 ≤ x ≤ v,

and for v ≥ x̄, this linear program has the same optimal value as (6.12), which, as we have seen, is
equivalent to primal problem (2.1).

27

	1 Introduction
	2 Duality of multistage linear stochastic programs
	2.1 Writing Dynamic Programming equations for the dual
	2.2 Relatively complete recourse
	2.3 Dynamics of Lagrange multipliers

	3 Sensitivity analysis
	3.1 General case
	3.2 Application to an inventory model
	3.2.1 Properties of the multiplicative autoregressive process

	4 Dual SDDP
	4.1 Dual SDDP for problems with uncertainty in bt and Bt
	4.2 Dual SDDP for problems with uncertainty in all parameters
	4.3 Dual SDDP for problems with interstage dependent cost coefficients

	5 Numerical experiments
	5.1 Dual SDDP for the inventory problem
	5.2 Sensitivity analysis for the inventory problem
	5.3 Dual SDDP for an hydro-thermal generation problem

	References
	References
	6 Appendix

