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Many multi-agent systems have the structure of a single coordinator providing behavioral or financial incen-

tives to a large number of agents. In such settings, two challenges faced by the coordinator are a finite budget

from which to allocate incentives, and an initial lack of knowledge about the utility function of the agents.

Here, we present a behavioral analytics approach to solve the coordinator’s problem when the agents make

decisions by maximizing utility functions that depend on prior system states, inputs, and other parameters

that are initially unknown and subject to partially unknown temporal dynamics. Our behavioral analytics

framework involves three steps: first, we develop a behavioral model that describes the decision-making pro-

cess of an agent; second, we use data to estimate behavioral model parameters for each agent and then use

these estimates to predict future decisions of each agent; and third, we use the estimated behavioral model

parameters to optimize a set of costly incentives to provide to each agent. In this paper, we describe a specific

set of tools, models, and approaches that fit into this framework, and that adapt models and incentives as

new information is collected by repeating the second and third steps of this framework. Furthermore, we

prove that the incentives computed by this adaptive approach are asymptotically optimal with respect to a

given loss function that describes the coordinator’s objective. We optimize incentives utilizing a decompo-

sition scheme, where each sub-problem solves the coordinator’s problem for a single agent, and the master

problem is a pure integer program. We conclude with a simulation study to evaluate the effectiveness of

our behavioral analytics approach in designing personalized treatment plans for a weight loss program. The

results show that our approach maintains efficacy of the program while reducing its costs by up to 60%,

while adaptive heuristics provide substantially less savings.
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1. Introduction

The increasing availability of data presents an opportunity to transform the design of incentives

(i.e., costly inputs that are provided to agents to modify their behavior and decisions) from a single

analysis into an adaptive and dynamic process whereby the incentive design is optimized as new

data becomes available. Historically, this adaptive setting has been studied under the framework

of repeated games (Radner 1985, Fudenberg et al. 1994, Laffont and Martimort 2002), where
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researchers have focused on the analysis and identification of structural properties of effective

policies, and on equilibria. In contrast, continuing advances in optimization software and statistical

estimation tools, utilized with the vast amount of data now available in many settings, enable a

new approach that in many circumstances has the potential to lead to practical tools for designing

effective incentives in real-world settings. This approach, which we call behavioral analytics, is built

around a three step framework: first, we develop a behavioral model that describes the decision-

making process of an agent; next, we iterate repeatedly over two steps as new information is

collected. In the second step, we use data to estimate behavioral model parameters for each agent

and then use these estimates to predict future decisions of each agent; and in the third, we use the

estimated behavioral model parameters to optimize a set of costly incentives to provide to each

agent. In this paper, we describe a specific set of tools, models, and approaches that fit into this

framework, and that adapt models and incentives as new information is collected while the second

and third steps of the framework are repeated.

Specifically, we consider the following discrete-time setting: There is a large pool of agents each

with a set of utility function parameters (which we will refer to as the motivational state) and

system state at time t, and each agent makes a decision at t by maximizing a myopic utility function.

A single coordinator makes noisy observations at t of the system states and decisions of each

agent, and then assigns behavioral or financial incentives (e.g., bonuses, payments, behavioral goals,

counseling sessions) at t to a subset of agents. The incentives change the motivational and system

states of assigned agents at time t+ 1, while the motivational and system states of non-assigned

agents evolve at t + 1 according to some dynamics. This process repeats, and time t advances

towards infinity in unit increments. Here, the coordinator’s problem is to decide what incentives

to provide to which agents in order to minimize the coordinator’s loss function, a function that

depends on the system states and decisions of all agents. This problem is challenging because the

motivational states of agents are neither known nor measured by the coordinator, because agents

make decisions by maximizing an unknown utility function, because measurements are noisy, and

because the coordinator has a fixed budget (over a specified time horizon) from which to allocate

incentives.

1.1. Potential Applications for Behavioral Analytics

The setting described above is found in many domains, including personalized healthcare, demand

response programs, and franchise logistics. Below, we elaborate on these potential applications of

our framework. The first application is the design of a weight loss program. The coordinator is

a clinician and the agents are individuals trying to lose body weight. The next application is the

design of a demand response program in which the coordinator is an electric utility company and
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the agents are homeowners (since they consume electricity). The final application is in franchise

logistics, where a parent company is a coordinator for a group of franchisees (who are the agents).

1.1.1. Weight Loss Programs In a clinically-supervised weight loss program, a clinician

provides two types of behavioral incentives to a group of individuals who are trying to lose body

weight. The first type of incentive is behavioral goals provided to each individual by the clinician,

and it is costless when communication costs are negligible, as is the case with mobile phone-

delivered programs (Fukuoka et al. 2015). The second type of incentive is that the clinician can

provide a limited amount of counseling to individuals, but this is costly and the clinician must

decide how to allocate a limited budget of counseling sessions to the entire pool of individuals.

For example, the Diabetes Prevention Program Research Group (2002, 2003, 2009) has shown

that such programs lead to a clinically significant loss of 5-7% body weight on average, which can

prevent or delay the onset of type 2 diabetes with few side effects. However, these programs are

difficult to design because variations in individual motivational states mean there is not just one

set of optimal behavioral goals and assignment of counseling sessions, but rather that behavioral

goals and the number/timing of counseling needs to be personalized to individuals’ motivational

states to maximize weight loss.

Personalizing the behavioral incentives for each individual can improve efficacy of weight loss

programs and reduce the associated program costs through a reduction in the average amount of

counseling for each individual. Mobile phone technology is one promising avenue for implementing

such personalization, due to its relatively low cost and pervasiveness among diverse communities

(Lopez et al. 2013). Mobile phones allow clinicians to collect real time health data through use of

personal logs and devices such as accelerometers, which provides noisy measurements of the health

state and decisions of each individual. Randomized controlled trials (RCT’s) have found that the

use of mobile phones can reduce the cost of implementing weight loss programs with maintaining

efficacy (Fukuoka et al. 2015); however, little research to date has explored how to use the data

generated by mobile phones and digital accelerometers in order to personalize behavioral incentives

(Fukuoka et al. 2011, O’Reilly and Spruijt-Metz 2013, Azar et al. 2013, Pagoto et al. 2013).

Several adaptive methods have been proposed for designing personalized healthcare treatments,

including: multi-armed bandits (Negoescu et al. 2014, Deo et al. 2013, Bastani and Bayati 2015),

robust optimization (Bertsimas and O’Hair 2013), and dynamic programming (Engineer et al.

2009). One common approach for optimal treatment design and clinical appointment scheduling

has been Markov decision process (MDP) models (Ayer et al. 2015, Mason et al. 2013, Deo et al.

2013, Kucukyazici et al. 2011, Leff et al. 1986, Liu et al. 2010, Wang and Gupta 2011, Gupta

and Wang 2008, Savelsbergh and Smilowitz 2016). These methods are designed for situations with
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infrequent data collection (e.g., only during clinical visits), whereas in weight loss programs the data

is collected daily (or more often) using mobile devices. Our work develops an approach that can

leverage this increased data availability to better design incentives. Moreover, existing approaches

focus either on motivational states characterizing adherence (Mason et al. 2013) or health states

describing prognosis (Ayer et al. 2012, Deo et al. 2013, Helm et al. 2015, Wu et al. 2013, Negoescu

et al. 2014, Engineer et al. 2009). In contrast, we seek to combine motivational and health states

into a single predictive model that is used for personalizing the weight loss program.

1.1.2. Demand Response (DR) DR programs are used by electric utilities to alter home-

owners’ electricity usage to better match electricity generation and reduce peak electricity demand.

Utilities incentivize homeowners to shift or reduce electricity consumption using price-based pro-

grams (e.g., time-of-day electricity rates). Utilities also incentivize reduced electricity consumption

through exchange programs in which a homeowner’s inefficient appliances are replaced (for free by

the electric utility) with efficient appliances (Palensky and Dietrich 2011, Deng et al. 2015). Imple-

mentations of such DR programs have decreased peak electricity demand by almost 10% and have

improved the balance between electricity supply and demand (Lee et al. 2014). However, adverse

selection is a major issue in these programs because incentives are often provided to homeowners

who already have low electricity consumption or already had plans to replace inefficient appliances.

Better targeting in a DR program may lead to improved efficacy with lower associated costs. For

example, electric utilities have the capability to send an auditor to homes to assess what appliance

upgrades are needed (PG&E 2016). Consequently, an electric utility would be interested in finding

the most effective way to schedule its auditors and set its rebates and tariffs. Homeowner electricity

usage data can be collected by the utility in real time using smart electricity meters, and the

adoption rate of these smart electricity meters is increasing in the US (Lee et al. 2014). Moreover,

the two way communication capabilities of smart electricity meters and mobile phones can be used

to communicate billing and incentive information to homeowners (Darby 2010), which opens the

possibility for better targeting of price-based programs and appliance-replacement programs.

DR programs are often designed using game-theoretic approaches (Saghezchi et al. 2015, Samadi

et al. 2010, 2012), multi-armed bandits (Wijaya et al. 2013), convex optimization (Li et al. 2011,

Mohsenian-Rad and Leon-Garcia 2010, Ratliff et al. 2014), dynamic programming (Jiang and Low

2011, Costa and Kariniotakis 2007, Molderink et al. 2010), and MDP’s (O’Neill et al. 2010, Kim

and Poor 2011). These approaches commonly assume the electric utility has perfect information

on the motivational state of each homeowner, and that the uncertainty is primarily in electricity

generation and pricing. In contrast, our proposed methodology has the ability to estimate the

motivational state of each homeowner to better design DR programs through improved targeting of
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price-based and appliance-replacement incentives. (Existing work also does not consider the option

of the power company to provide rebates for upgrading inefficient equipment, while our framework

can incorporate this scheduling problem.)

1.1.3. Franchise Logistics A franchise contract governs the relationship between a parent

company (with a developed brand/products/services) and a separate franchisee company that

retails this brand for a limited amount of time (Rubin 1978). Franchisees enter these contracts

because they lack the brand recognition, economies of scale, or expertise needed. Each franchisee

desires to maximize their individual profit while the parent company works to ensure brand quality

and profitability are maintained. Towards this end, franchise contracts have several common clauses

that help the parent company ensure that franchisees operate within quality standards: The parent

company provides managerial assistance, training, and funding for advertising campaigns (Rubin

1978), and the parent company may also monitor a specific franchisee by assigning an employee to

supervise the franchisee’s daily operations (Gal-Or 1995).

A common feature of such franchise contracts is the requirement for the franchisee to provide sales

figures, customer satisfaction metrics, and expense reports to the parent company; and new online

survey tools give the capability to monitor customer satisfaction and sales at a finer time-scale

than previously possible. Such data lends itself towards approaches for the improved allocation of

parent company resources (e.g., managerial assistance, training, funding for advertising campaigns,

and monitoring of specific franchisees), which can improve the performance of both the parent

company and the franchisee. Restated, these new data streams can be used by the parent company

to develop a better understanding of the competencies and weaknesses of each franchisee, and to

then use this to better allocate resources and set contract terms.

Characteristics of optimal franchise contracts have been studied extensively in the operations

research literature (Gal-Or 1995, Lal 1990, Li 1997, Xie et al. 2016). This stream of literature

primarily extends earlier approaches used to solve contracting problems in which it is assumed that

data acquisition and monitoring is expensive, making it difficult to estimate the utility function

of the franchisee (Lal 1990, Gal-Or 1995). Additionally, much of this work is focused on modeling

the interaction and motivations of the franchisees and parent company and not on developing

algorithms for optimal contract calculation. In contrast, our behavioral analytics framework for

adaptively designing incentives – which consists of repeatedly estimating utility functions and then

refining the incentives using optimization modeling – applies to settings where data (e.g. sales,

customer satisfaction, etc.) is readily available to the parent company.
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1.2. Literature Review

The behavioral analytics framework we develop in this paper builds upon existing literature on

data driven and adaptive methods for stochastic optimization. Ban and Rudin (2016) and Vahn

(2015) consider how predictive and data driven models can be incorporated into inventory manage-

ment problems, and both parametric and nonparametric predictive models are used by a decision

maker to estimate demand and compute an optimal reorder policy. These models are constructed

to estimate demand through i.i.d observations; this differs from the setup in our paper where the

observations are generated by temporal dynamics and are thus not i.i.d. A more general set of

approaches are reinforcement learning and Bayesian optimization (Aswani et al. 2013, Frazier and

Wang 2016, Osband and Roy 2015, Osband et al. 2016), which leverage statistical estimation to

compute asymptotically optimal control inputs for systems with appropriate model structures.

However, the relationship between the computed control inputs and the estimated model is often

difficult to interpret because of the nonparametric nature of the estimation (Breiman et al. 2001).

Our approach offers improved interpretability of the incentives computed by our framework because

we simultaneously generate estimates of the parameters of the utility function (i.e., motivational

states) for each agent. These estimates provide insights into the resulting incentive allocations

computed by our framework because these parameters usually have behavioral or financial inter-

pretations (e.g., responsiveness to incentives, production efficiency, level of risk aversion).

Our behavioral analytics framework is also related to research that explores stochastic control

of multi-agent systems. Related methods include decentralized control (Li et al. 2012), approxi-

mate dynamic programming (Boukhtouta et al. 2011, George and Powell 2007), game-theoretic

approaches (Adlakha and Johari 2013, Iyer et al. 2011, 2014, Zhou et al. 2016), and robust opti-

mization (Blanchet et al. 2013, Bertsimas and Goyal 2012, Lorca and Sun 2015). In general, these

models consider very different settings from the ones we consider in this paper. This body of work

studies settings where the agents can strategically interact with other agents (without the presence

of a coordinator) and where the agents are able to consider long time horizons when making deci-

sions. Our setting differs in that we have a single coordinator that provides incentives to a group

of agents that do not interact strategically with other agents, and where the agents are myopic

(meaning they make decisions based on short time horizons). The three examples of weight loss

programs, demand response programs, and franchise logistics more closely match the setting we

consider in this paper.

1.3. Contributions

Our overall goal in this paper is to provide tools and approaches that form a specific implementa-

tion of the three steps of a behavioral analytics framework, and our secondary goal is to give an
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example that demonstrates how our implementation of behavioral analytics can be applied to a

real-world engineering problem. Recall that these three steps involve designing a behavioral model,

and then repeatedly estimating the parameters of this behavioral model, and using the estimated

parameters to optimize the incentives provided to each agent. To do this, we first need to identify

a general (and practically useful) class of models that describe agent behavior and can be incorpo-

rated into optimization models for incentive design. This is non-obvious because incentive design

in principle requires solving bilevel programs, precluding the straightforward use of commercial

optimization software packages. We address this by abstracting and generalizing our earlier work

on the development of predictive models of the behavior of individuals participating in a weight loss

program (Aswani et al. 2016). Given these behavioral models, we design an optimization approach

that, rather than directly solving the relevant bilevel program, is built around formulations that

incorporate the individual behavior model into mathematical programs that can be solved in a

straightforward way with commercial solvers, and that lead to incentives that are asymptotically

optimal as more data is collected. Below, we describe these contributions in further detail:

First, we develop and analyze an abstract model of agent behavior. This model consists of a

myopic utility function (meaning the agent makes decisions based on a utility function that depends

on states only one time period into the future) and temporal dynamics on the system states and on

the parameters of the utility function. It abstracts and generalizes a predictive model we created

in our prior work on behavioral modeling for weight loss (Aswani et al. 2016). In addition, we

explore (for the first time) theoretical questions related to statistical consistency of utility function

parameter estimates. Such consistency is important because in order to design optimal incentives

we need to be able to correctly estimate the parameters of the utility functions of each agent, and

it was recently shown that not all approaches that have been proposed for estimating parameters

of utility functions are statistically consistent (Aswani et al. 2015). Here, we provide mixed integer

linear programming (MILP) formulations for estimating the parameters of the utility functions,

and we prove these formulations generate estimates that are statistically consistent.

We also develop novel mathematical programs for incentive design that incorporate our model

for agent behavior, and we prove that the incentives are asymptotically optimal (in time). Incentive

design in principle requires solving a bilevel program, and the situation is complicated in our

setting because the mathematical structure of our abstract model for agent behavior leads to

incentive design problems that consist of bilevel mixed integer programs (BMIP’s). BMIP’s are

computationally difficult to solve (Ralphs and Hassanzadeh 2014, DeNegre and Ralphs 2009, James

and Bard 1990, Moore and Bard 1992) since solution techniques for continuous bilevel programming

(Ahuja and Orlin 2001, Aswani et al. 2015, Aswani and Ouattara 2016, Dempe 2002, Heuberger

2004) cannot be used. Consequently, we develop an adaptive two-stage decomposition algorithm.
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In the first stage, we solve the coordinator’s problem for each agent considered individually by

estimating the utility function parameters of an agent by solving a single MILP and then solving a

series of MILP sub-problems. The second stage consists of an integer linear program (ILP) master

problem that aggregates the sub-problem solutions and solves the coordinator’s problem for all

agents considered jointly. We prove this asymptotically designs the optimal incentives.

To evaluate the efficacy of the specific behavioral models, parameter estimation techniques, and

optimization models in our instantiation of a behavioral analytics framework, we perform computa-

tional experiments in the context of goal-setting and clinical appointment scheduling for individuals

participating in a clinically-supervised weight loss program. The first step of our behavioral ana-

lytics approach involves constructing a model that describes individuals’ decisions on how much to

eat and how much physical activity (in terms of daily steps) to do – subject to a utility function

that captures the tradeoffs inherent in achieving one-day-ahead weight loss with reducing dietary

consumption and increasing physical activity. The second step of our behavioral analytics approach

uses past data for each individual in order to quantify (for each individual) the tradeoffs captured

by the utility function, as well as estimate the responsiveness of each individual to the incentives

of providing physical activity goals and providing counseling sessions, and the third step of our

behavioral analytics approach uses the behavioral model and estimated parameters to determine

what physical activity goals to provide to each individual and to determine how to allocate a fixed

number of counseling sessions to a pool of individuals participating in the program. These second

and third steps are repeated as more data is collected from each individual. Through a simulation

study, we compare personalized treatment plans computed by our approach with treatment plans

computed by an adaptive heuristic, and we find that our approach performs substantially better

than the heuristic. Common heuristics implicitly assume monotonicity in individuals’ behaviors

with respect to the treatment plan values, while actual behavior (captured by our predictive mod-

els) displays substantial non-monotonicity: For example, losing weight causes individuals to eat

more and exercise less, so the speed of weight loss can impact the final weight loss outcomes.

1.4. Outline

Section 2 describes the first step of our behavioral analytics framework – the development of

the behavioral model. The model consists of a utility function – describing how an agent makes

decisions – and temporal dynamics on the system states and parameters of the utility function.

We refer jointly to both components of this abstract model as the behavioral model. Section 3

presents approaches for estimating parameters of this behavioral model using MILP formulations

to solve the problems of maximum likelihood estimation (MLE) and Bayesian inference. We prove

that solutions of our MILP formulations provide consistent estimates of the agent’s parameters. In
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Section 4, we present algorithms for optimizing the incentives provided to agents by the coordinator.

We first present an algorithm based on solving two MILP’s that allows the coordinator to allocate

incentives in the situation where there is only a single agent with unknown-to-the-coordinator

parameters, and we prove that this algorithm computes incentives that are asymptotically optimal

(in the sense of minimizing the coordinator’s loss function) as time t goes to infinity. Next, we

develop a two-stage decomposition algorithm (building on the single-agent formulation) to solve

the coordinator’s problem in a multi-agent setting, and we generalize our proof of asymptotic

optimality to this setting Finally in Section 5, we study (via simulation) the effectiveness of our

algorithms for designing personalized weight loss treatment plans. Our results show that treatment

plans computed by our behavioral analytics approach could potentially reduce the cost of running

such weight loss programs by as much as 60% without affecting the efficacy of these programs.

2. Predictive Modeling of a Single Myopic Agent

In this section, we present our behavioral model for a single myopic agent. This forms the first step

of our specific implementation of a behavioral analytics framework, and the key design problem is

formulating a predictive model that is amenable to performing the second and third steps of our

behavioral analytics framework of parameter estimation and incentive optimization. This model

is an extension and abstraction of a behavioral model that was validated in our past work on

behavioral modeling for weight loss (Aswani et al. 2016), in which we used cross-validation (i.e.,

out-of-sample comparisons) to perform a data-based validation of the predictive accuracy of our

behavioral model by comparison to a standard machine learning algorithm for prediction.

Let X ,U ,Π,Θ be compact finite-dimensional sets with X ,U ,Θ convex. We will refer to the

agent’s system states xt ∈ X , motivational states (or type) θt ∈Θ, and decisions ut ∈ U at time t.

The coordinator provides an incentive (or input) πt ∈Π to the agent at time t, and we assume that

the motivational states are unknown to the coordinator but known to the agent. In our behavioral

model, the system and motivational states are subject to temporal dynamics:

xt+1 = h(xt, ut),

θt+1 = g(xt, ut, θt, πt).
(1)

The intuition of the above dynamics is that future system states xt+1 depend on the current system

states xt and decision ut, while future motivational states θt+1 depend on the current system states

xt, decision ut, motivational states θt, and incentives πt.

The agents are modeled to be myopic in the sense that agents make decisions at time t by

considering only their present utility function. We assume the agent’s utility function belongs to
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a parametrized class of functions F := {(x,u) 7→ f(x,u, θ,π) : θ ∈Θ, π ∈Π}; and the agent’s utility

function at time t is f(·, ·, θt, πt). Thus at time t the agent’s decisions are

ut ∈ arg max
{
f(xt+1, u, θt, πt)

∣∣ xt+1 = h(xt, u), u∈ U
}
, (2)

which means we are assuming the agent has perfect knowledge of xt, θt, πt. This model says that

the agent’s decisions depend on the current system states, motivational states, and incentives.

Though the coordinator also has perfect knowledge of the incentives πt, the coordinator can only

make noisy observations of past system states and agent decisions:

x̃ti =Dxti + νti ∀i= 0, . . . , nx,

ỹτi =Cuτi +ωτi ∀i= 0, . . . , nu,
(3)

where C,D are known output matrices, and xti , uτi are the systems states and agent decisions

generated by (1) and (2) with initial conditions (x0, θ0) and incentives (π1, π2, . . .).

For our subsequent optimization modeling and theoretical analysis, we make the following

assumptions about this behavioral model:

Assumption 1. The sets X ,U ,Π,Θ are bounded and finite-dimensional. Moreover, the sets X ,U ,Θ
are convex polyhedra described by a finite number of linear inequalities, and Π can be described by

a finite number of mixed integer linear constraints.

This mild assumption ensures that states, decisions, and inputs are bounded; that the range of

possible values for states and inputs are polytopes; and that the set of possible incentives is repre-

sentable by mixed integer linear constraints.

Assumption 2. The function f :X ×U×Θ×Π→R is deterministic, concave in x, strictly concave

in u, and concave in θ; moreover, f can be expressed as

f(x,u, θ, π) =−(x;u)T ·Q · (x;u) + (θ;π)T ·H · (x;u) +
K∑
i=1

min
j∈Ji

{
Fi,j · (x;u;θ;π) + ζi,j

}
, (4)

where Q is a positive semidefinite matrix, the Fi,j,H are matrices of appropriate dimension, the

ζi,j are scalars, and the Ji are sets of indices.

Strict concavity in u ensures arg maxu∈U f(x,u, θ,π) is singleton for all (x, θ,π)∈X ×Θ×Π, and the

concavity assumptions also model diminishing returns and ensure ut is polynomial-time computable

by the agent (Brock and Wartman 1990, Gafni 1990, Cawley 2004).

Assumption 3. The functions h :X ×U×Θ×Π→X and g :X ×U×Θ×Π→Θ are deterministic

surjective functions of the form

h(x,u) =Ax+Bu+ k

g(x,u, θ,π) =Gi · (x;u;θ;π) +χi when Bi · (x;u;θ;π)≤ψi
(5)
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where A,B,Gi,Bi are matrices; γi,ψi, k are vectors; χi are scalars; and the interiors of the polytopes

Bi · (x;u;θ;π)≤ψi are disjoint.

This condition on h, g allows us to formulate problems of statistical estimation as a MILP.

Assumption 4. The {νti}
nx
i=0 and {ωτi}

nu
i=0 from the measurement noise model (3) are sequences of

i.i.d random vectors with i.i.d components with zero mean and (known) finite variance. Moreover,

the logarithm of their probability density functions can be expressed using integer linear constraints.

This means Eωτi = Eνti = 0 and E(νti)
2
j = σ2

ν < ∞ and E(ωτi)
2
j = σ2

ω < ∞ with known σ2
ν , σ

2
ω.

Examples of noise distributions satisfying the integer linear representability assumption include

the Laplace distribution, the shifted exponential distribution, and piecewise linear distributions.

This assumption can be relaxed to requiring integer quadratic representability (such as is the

case for Gaussian distributed noise), and the subsequent results change in that the optimization

formulations become MIQP’s, rather than the MILP’s that occur with the above assumption.

Assumption 5. The discrete-time system with temporal dynamics (1) and (2) and measurement

model (3) is observable (i.e., there exists a T and sequence πt such that (x0, θ0) can be exactly

computed if the measurements from 0≤ t≤ T are noiseless).

This last assumption is an identifiability condition (Bickel and Doksum 2006), meaning that dif-

ferent initial conditions (x0, θ0) on the agent’s system and motivational states produce different

sequences of measurements and states, and this is a common assumption for control systems (Cal-

lier and Desoer 1994). The second assumption is common for utility functions (Brock and Wartman

1990, Gafni 1990, Cawley 2004). The third assumption says the system state dynamics are linear,

and that the motivational state dynamics are piecewise affine, which are common models for con-

trol systems (Callier and Desoer 1994, Mignone et al. 2000, Aswani and Tomlin 2009). We believe

all five assumptions are satisfied by agents in the three examples of weight loss programs, demand

response programs, and franchise logistics. Section 5 provides a behavioral model for agents in a

weight loss program that satisfies our above assumptions, and we conclude that section with a

computational study where we solve the coordinator’s problem for a weight loss program.

3. Estimating Model Parameters

In this section, we explore how the coordinator can estimate the agent’s initial parameters (x0, θ0),

and predict the agent’s future behavior for a fixed policy π. This forms the second step of our

implementation of a behavioral analytics framework, and we leverage the mathematical structure of

the behavioral model described in Section 2 to construct techniques and methods for estimation and

prediction. This second step is important because the estimated parameters of the behavioral model
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and subsequent predictions of future agent behavior are used to optimize incentives in the third

step of our behavioral analytics approach. We will assume the coordinator makes noisy and partial

observations – according to the measurement model (3) – of the agent’s state and decisions for n

time periods (with some missing observations). In Section 3.1, we present a Maximum Likelihood

Estimation approach to estimate the agent’s initial system states and motivational states. In Section

3.2, we consider a setting in which the coordinator has some prior knowledge about the possible

values of the motivational states, and consider a Bayesian setting.

3.1. Maximum Likelihood Estimation

Let {x̃ti}
nx
i=0 denote the process of the state observations, and let {ỹτi}

nu
i=0 denote the process of the

behavior observations.

Our approach to estimating the agent’s initial parameters will be to compute estimates (x̂0, θ̂0)∈

arg min(x0,θ0)∈X×ΘL(x0, θ0,{x̃ti}
nx
i=0,{ỹτi}

nu
i=0;π) by minimizing an appropriately chosen loss function

L. More specifically, we use the approach of Maximum Likelihood Estimation (MLE). Let pν , pω

be the density functions of νti , ωτi ; then the joint likelihood function of (θ0, x0) for a fixed π is

L(x0, θ0,{x̃ti}
nx
i=0,{ỹτi}

nu
i=0, π) = p({x̃ti}

nx
i=0,{ỹτi}

nu
i=0|θ0, x0, π)

=

nx∏
i=0

pν(x̃ti −Dxti)
nu∏
j=0

pω(ỹτj −Cuτj )
(6)

Thus the coordinator’s estimation problem is given by the following:

(x̂0, θ̂0)∈ arg max
(xt,θt,ut)

nx∑
i=0

log pν(x̃ti −Dxti) +

nu∑
j=0

log pω(ỹτj −Cuτj )

s.t. ut ∈ arg max
{
f(xt+1, u, θt, πt)

∣∣ xt+1 = h(xt, u), u∈ U
}
∀t,

xt+1 = h(xt, ut) ∀t,

θt+1 = g(xt, ut, θt, πt) ∀t,

xt ∈X , θt ∈Θ ∀t.

(7)

Problem (7) is a bilevel optimization problem because the ut are minimizers of f(xt+1, ·, θt, πt),

and such bilevel problems frequently arise in the context of estimating utility functions (Keshavarz

et al. 2011, Bertsimas et al. 2014, Aswani et al. 2015). For the setting we consider in this paper,

we show that the bilevel program for MLE (7) can be exactly reformulated as a MILP.

Proposition 1. If Assumptions 1–5 hold; then the feasible region of (7) can be formulated as a

set of mixed integer linear constraints with respect to (xt, ut, θt, πt).
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Proof: The constraints θt+1 = g(xt, ut, θt, πt) can be reformulated using Assumption 3 as

θt+1 ≤Gi · (xt;ut;θt;πt) + ξi + (1− ιi) ·M

θt+1 ≥Gi · (xt;ut;θt;πt) + ξi− (1− ιi) ·M

Bi · (xt;ut;θt;πt)≤ψi + (1− ιi) ·M

ιi ∈ {0,1}

(8)

where M > 0 is a large-enough constant. Such a finite M exists because X ,U ,Π,Θ are compact.

Hence it suffices to show ut ∈ arg max
{
f(xt+1, u, θt, πt)

∣∣ xt+1 = h(xt, u), u∈ U
}

can be represented

(by its optimality condition) using a finite number of mixed integer linear constraints. Suppose

U = {u : Ξu≤ κ}, where Ξ is a matrix and κ is a vector. Recall Assumption 2

f(x,u, θ, π) =−(x;u)T ·Q · (x;u) + (θ;π)T ·H · (x;u) +
K∑
i=1

min
j∈Ji

{
Fi,j · (x;u;θ;π) + ζi,j

}
. (9)

We cannot characterize optimality by differentiating f because it is generally not differentiable,

but we can reformulate the maximization of (9) as the following convex quadratic program:

ut ∈ arg max − (xt+1;u)T ·Q · (xt+1;u) + (θt;πt)
T ·H · (xt+1;u) +

K∑
i=1

wi

s.t. wi ≤ Fi,j · (xt+1;u;θt;πt) + ζi,j for all i, j

Ξu≤ κ

(10)

Using Assumption 3, we can rewrite the above as

ut ∈ arg max −uT · (B; I)T ·Q · (B; I) ·u+ ((θt;πt)
TH − 2(Ax+ k; 0)TQ) · (B; I) ·u+

K∑
i=1

wi

s.t. wi ≤ Fi,j · (B; I; 0; 0) ·u+Fi,j · (Axt + k; 0;θt;πt) + ζi,j for all i, j

Ξu≤ κ

(11)

where we have eliminated the constant (θt;πt)
T ·H · (Axt + k; 0) since xt, θt, πt are known to the

agent. The above optimization problem is strictly convex by assumption, and all constraints are

linear for fixed πt. Hence the optimality conditions for (11) can be characterized using the KKT

conditions (Dempe 2002, Boyd and Vandenberghe 2004). Let λi,j and µ be the Lagrange Multipliers

for the first and second set of constraints given in (11), and note the KKT conditions are

2(B; I)T ·Q · (B; I) ·u+ (B; I)T · (2Q · (Ax+ k; 0)−HT · (θt;πt)) + ΞT ·µ=
K∑
i=1

∑
j∈Ji

λi,j · (B; I; 0; 0)T ·F T
i,j∑

j∈Ji

λi,j = 1 for i= 1, . . . ,K

λi,j · (wi−Fi,j · (B; I; 0; 0) ·u+Fi,j · (Axt + k; 0;θt;πt) + ζi,j) = 0 for all i, j

wi ≤ Fi,j · (B; I; 0; 0) ·u+Fi,j · (Axt + k; 0;θt;πt) + ζi,j for all i, j

Ξu≤ κ and λi,j ≥ 0 for all i, j

(12)
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Note that the only nonlinear conditions are those which represent complimentary slackness. How-

ever, these conditions can be reformulated as integer linear conditions by posing them as disjunctive

constraints (Wolsey and Nemhauser 1999): For sufficiently large M – which exists because of the

compactness of X ,U ,Π,Θ – the complimentary slackness conditions are

λi,j ≤Mιi,j for all i, j

Fi,j · (B; I; 0; 0) ·u+Fi,j · (Axt + k; 0;θt;πt) + ζi,j ≤wi +M · (1− ιi,j) for all i, j

ιi,j ∈ {0,1} for all i, j

(13)

This shows that feasible region of (7) of can be represented using a finite number of mixed integer

linear constraints. �

An important consequence of this proposition is that it is possible to compute the global solution

of the MLE problem (7) using standard optimization software.

Corollary 1. If Assumptions 1–5 hold, then the MLE problem (7) can be expressed as a MILP.

Remark 1. If the logarithm of the noise densities can be expressed using integer quadratic con-

straints (e.g., Gaussian distributions), then the MLE problem (7) can be expressed as a MIQP.

3.2. Bayesian Estimation

Solving the MLE problem (7) gives an estimate of the agent’s initial system states and motivational

states, which completely characterize the agent. However, the coordinator often has some prior

knowledge about the possible values of the motivational states. In such a case, a Bayesian framework

is a natural setting for making predictions of the agent’s future system states.

Suppose the coordinator has interacted with the agent over T time periods, has measured

{x̃ti}
nx
i=0,{ỹτi}

nu
i=0 with Tnx , Tnu ≤ T , and wants to predict the agent’s future states and decisions

{xi, θi, ui}T+n
i=T for some n > 0 time steps into the future. In principle, this means the coordinator

wants to calculate the posterior distribution of {xi, θi, ui}T+n
i=T . But (x0, θ0) completely characterize

the agent in our model (recall Assumption 5 states that distinct initial conditions produce different

state and decision trajectories), and so we can predict the agent’s future states and decisions using

the posterior distribution of (x0, θ0). Hence we focus on computing the posterior of (x0, θ0). A direct

application of Bayes’s Theorem (Bickel and Doksum 2006) gives

p
(
x0, θ0

∣∣{x̃ti}nxi=0,{ỹτi}
nu
i=0,{πi}T+n

i=0

)
=Z−1× p

(
{x̃ti}

nx
i=0,{ỹτi}

nu
i=0

∣∣x0, θ0,{πi}T+n
i=0

)
× p
(
x0, θ0

)
. (14)

Here Z is a normalization constant that ensures the right hand side is a probability distribution,

and p(x0, θ0) reflects the coordinator’s prior beliefs. We begin with an assumption on p(x0, θ0).

Assumption 6. The function log p(x0, θ0) can be expressed using a finite number of mixed integer

linear constraints, and p(x0, θ0)> 0 for all (x0, θ0)∈X ×Θ.
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This is a mild assumption because it holds for the Laplace distribution, the shifted exponential

distribution, and piecewise linear distributions. Significantly, it is true when the prior distribution

p(x0, θ0) is an empirical histogram with data in each histogram bin (Aswani et al. 2016).

Next, we describe an optimization approach to computing the posterior distribution of (x0, θ0).

Consider the following feasibility problem:

ψT (x̄0, θ̄0) = log p
(
x0 = x̄0, θ0 = θ̄0

∣∣{x̃ti}nxi=0,{ỹτi}
nu
i=0,{πi}Ti=0

)
+ logZ

= max
(xt,θt,ut)

nx∑
i=0

log pν(x̃ti −Dxti) +

nu∑
j=0

log pω(ỹτj −Cuτj ) + log p(x0, θ0)

s.t. ut ∈ arg max
{
f(xt+1, u, θt, πt)

∣∣ xt+1 = h(xt, u), u∈ U
}

∀t,

xt+1 = h(xt, ut) ∀t,

θt+1 = g(xt, ut, θt, πt) ∀t,

x0 = x̄0, θ0 = θ̄0,

xt ∈X , θt ∈Θ ∀t.

(15)

The above problem is almost the same as the MLE problem (7), with the only differences that

the above has additional constraints x0 = x̄0, θ0 = θ̄0 and an additional term in the objective

log p(x0, θ0). Thus we have that the above problem (15) can be expressed as a MILP or MIQP.

Corollary 2. If Assumptions 1–6 hold, then (15) can be formulated as a MILP.

Remark 2. Under appropriate relaxed representability conditions on the noise distributions and

the prior distribution, the problem (15) can be formulated as a MIQP.

Solving (15) does not directly provide the posterior distribution of (x0, θ0) because Z is not known

a priori, though it can be computed using numerical integration. (See for instance the approach by

Aswani et al. (2016).) But since Z only scales the posterior estimate, we instead propose a simpler

scaling. Let (x̂0,T , θ̂0,T ) ∈ arg max(x0,θ0)ψT (x0, θ0) be the maximum a posteriori (MAP) estimates

of the initial conditions, and note that the above corollaries apply to the computation of the MAP

because the corresponding optimization problem for computing the MAP is simply (15) but with

the constraints x0 = x̄0, θ0 = θ̄0 removed. We propose using

p̂
(
x0, θ0

∣∣{x̃ti}nxi=0,{ỹτi}
nu
i=0,{πi}Ti=0

)
=

exp(ψT (x0, θ0))

exp(ψT (x̂0,T , θ̂0,T ))
(16)

as an estimate of the posterior distribution of (x0, θ0). Two useful properties of

our estimate are that p̂(x0, θ0|{x̃ti}
nx
i=0,{ỹτi}

nu
i=0,{πi}Ti=0) ∈ [0,1] by construction, and that

p̂(x̂0,T , θ̂0,T |{x̃ti}
nx
i=0,{ỹτi}

nu
i=0,{πi}Ti=0) = 1 by construction. We will show this estimate is statistically

consistent in a Bayesian sense (Bickel and Doksum 2006):
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Definition 1. The posterior estimate (16) is consistent if for all (x∗0, θ
∗
0) ∈X ×Θ and ε, δ > 0 we

have p(x∗0,θ
∗
0)(p̂(E(δ)|{x̃ti}

nx
i=0,{ỹτi}

nu
i=0,{πi}Ti=0)≥ ε)→ 0 as T →∞, where p(x∗0,θ

∗
0) is the probability

law under (x∗0, θ
∗
0), E(δ) = {(x0, θ0) /∈B(x∗0, θ

∗
0, δ)}, and B(x∗0, θ

∗
0, δ) is an open δ ball around (x∗0, θ

∗
0).

The meaning of this definition is that if (x∗0, θ
∗
0) are the true initial conditions of the agent, then a

consistent posterior estimate is such that it collapses until all probability mass is on the true initial

conditions. Statistical consistency of (16) also needs an additional technical assumption:

Assumption 7. Let (x∗0, θ
∗
0) be the agent’s true initial conditions. The incentives πt are such that

max
E(δ)

lim
T→∞

nx∑
i=0

log
pν(x̃ti −Dxti)
pν(x̃ti −Dxti)

+

nu∑
j=0

log
pω(ỹτj −Cuτj )
pω(ỹτj −Cuτj )

=−∞ (17)

for any δ > 0, almost surely, where xt, ut are the states and decisions under initial conditions

(x∗0, θ
∗
0), and xt, ut are the states and decisions under initial conditions (x0, θ0).

This type of assumption is common in the adaptive control literature (Craig et al. 1987, Astrom

and Wittenmark 1995), and is known as a sufficient excitation or a sufficient richness condition.

It is a mild condition because there are multiple ways of ensuring this condition holds (Bitmead

1984, Craig et al. 1987, Astrom and Wittenmark 1995). One simple approach (Bitmead 1984) is

to compute an input πt and then add a small amount of random noise (whose value is known since

it is generated by the coordinator) to the input before applying the input to the agent.

Proposition 2. If Assumptions 1–7 hold, then the estimated posterior distribution denoted by

p̂(x0, θ0|{x̃ti}
nx
i=0,{ỹτi}

nu
i=0,{πi}Ti=0) and given in (16) is consistent.

Proof: Let (x∗0, θ
∗
0) be the agent’s true initial conditions, and observe that

log p̂
(
x0, θ0

∣∣{x̃ti}nxi=0,{ỹτi}
nu
i=0,{πi}Ti=0

)
= log p̂

(
x∗0, θ

∗
0

∣∣{x̃ti}nxi=0,{ỹτi}
nu
i=0,{πi}Ti=0

)
+

nx∑
i=0

log
pν(x̃ti −Dxti)
pν(x̃ti −Dxti)

+

nu∑
j=0

log
pω(ỹτj −Cuτj )
pω(ỹτj −Cuτj )

+ log
p(x0, θ0)

p(x∗0, θ
∗
0)
, (18)

where xt, ut are the states and decisions under initial conditions (x∗0, θ
∗
0), and xt, ut are the states

and decisions under initial conditions (x0, θ0). But log p(x0,θ0)

p(x∗0,θ
∗
0)

is a constant by assumption, and

log p̂
(
x∗0, θ

∗
0

∣∣{x̃ti}nxi=0,{ỹτi}
nu
i=0,{πi}Ti=0

)
≤ 0 since p̂

(
x0, θ0

∣∣{x̃ti}nxi=0,{ỹτi}
nu
i=0,{πi}Ti=0

)
∈ [0,1] by con-

struction. So using Assumption 6 gives maxE(δ) log p̂(x0, θ0|{x̃ti}
nx
i=0,{ỹτi}

nu
i=0,{πi}Ti=0)→ −∞ for

any δ > 0 almost surely. Equivalently, maxE(δ) p̂(x0, θ0|{x̃ti}
nx
i=0,{ỹτi}

nu
i=0,{πi}Ti=0)→ 0 for any δ > 0

almost surely. Thus for any δ > 0 we have that

p̂(E(δ)|{x̃ti}
nx
i=0,{ỹτi}

nu
i=0,{πi}Ti=0) =

∫
E(δ)

p̂(x0, θ0|{x̃ti}
nx
i=0,{ỹτi}

nu
i=0,{πi}Ti=0)× dx0× dθ0 ≤

volume(X ×Θ) ·maxE(δ) p̂(x0, θ0|{x̃ti}
nx
i=0,{ỹτi}

nu
i=0,{πi}Ti=0)→ 0 (19)

almost surely. This proves the result since (19) holds almost surely for any δ > 0. �
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Corollary 3. If Assumptions 1–7 hold, then (x̂0,T , θ̂0,T )
p→ (x∗0, θ

∗
0) as T →∞.

The above two results imply that future agent behavior can be reasonably predicted using the

MAP parameters. Recall that calculating the MAP can be formulated as a MILP or MIQP, since

the corresponding optimization problem is (15) with the constraints x0 = x̄0, θ0 = θ̄0 removed.

4. Optimizing Incentives

The final step of our behavioral analytics framework involves using estimates of behavioral model

parameters for each agent to optimize the design of costly incentives provided to the agents by the

coordinator. In Section 4.1, we develop an algorithm for the single agent case. In Section 4.2, we

use this single-agent algorithm as a sub-problem in the multi-agent case. In both cases, we show

that our algorithms are asymptotically optimal (as time continues and more data is collected)

with respect to the coordinator’s loss function when the agents behave according to the model

constructed in Section 2. The two algorithms we present in fact combine the second and third steps

of our framework by first applying the parameter estimation algorithms (described in Section 3)

that comprise the second step, and then optimizing incentives. The benefit of combining the second

and third steps into a single algorithm is that this makes it easier to recompute the incentives as

more data is collected over time from each agent.

4.1. Optimizing Incentives for a Single Agent

Consider the problem of designing optimal incentives for a single agent at time T by choosing

{πi}T+n
i=T+1 ∈Πn to minimize a bounded loss function ` :X n×Un→R of the agent’s system states

and decisions over the next n time periods. We consider losses of a fairly general form:

Assumption 8. The loss function ` can be described by mixed integer linear constraints.

Since the coordinator only has noisy and incomplete observations of the agent’s system states and

decisions {x̃ti}
nx
i=0,{ỹτi}

nu
i=0, one design approach is to minimize the expected posterior loss

min
{
E
[
`({xt, ut}T+n

t=T+1)
∣∣{x̃ti}nxi=0,{ỹτi}

nu
i=0,{πi}Ti=0

] ∣∣∣ {πi}T+n
i=T+1 ∈Πn

}
. (20)

However, recalling our previous discussion, the agent’s behavior is completely characterized by the

initial conditions (x0, θ0), and so by the sufficiency and the smoothing theorem (Bickel and Doksum

2006), there exists ϕ :X ×Θ×Πn 7→R such that the design problem can be exactly reformulated

as

min
{
E
[
ϕ(x0, θ0,{πi}T+n

i=0 )
∣∣{x̃ti}nxi=0,{ỹτi}

nu
i=0,{πi}Ti=0

] ∣∣∣ {πi}T+n
i=T+1 ∈Πn

}
. (21)
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Calculating this expectation is difficult because the posterior distribution of (x0, θ0) does not gener-

ally have a closed form expression. In principle, discretization approaches from scenario generation

(Kaut and Wallace 2003) could be used to approximate the design problem as

min
{∑M

i=1ϕ(xi,0, θi,0, π) exp(ψT (xi,0, θi,0;π))∑M

i=1 exp(ψT (xi,0, θi,0;π))

∣∣∣ {πi}T+n
i=T+1 ∈Πn

}
. (22)

where (xi,0, θi,0) is an exhaustive enumeration of X ×Θ. This approximation (22) is still challenging

to solve because the objective has a fractional, nonconvex form, and ψT is defined as the value

function of a MILP, meaning that it does not have an easily computable closed form expression

(Ralphs and Hassanzadeh 2014). This means (22) is a BMIP with lower level problems that are

MILP’s. This is a complex class of optimization problems for which existing algorithms can only

solve small problem instances (James and Bard 1990, Moore and Bard 1992, DeNegre and Ralphs

2009).

In this section, we develop a practical algorithm for optimizing incentives for a single agent. We

first summarize our algorithm, and show it only requires solving two MILP’s. Next we prove this

algorithm can be interpreted as solving an approximation of solving either (20) or the optimal

incentive design problem under perfect noiseless information. More substantially, we also show that

our algorithm provides a set of incentives that are asymptotically optimal as time advances.

4.1.1. Two Stage Adaptive Algorithm (2SSA) Algorithm 1 summarizes our two stage

adaptive approach (2SSA) for designing optimal incentives for a single agent. The idea of the

algorithm is to first compute a MAP estimate of the agent’s initial conditions, use the MAP

estimate as data for the first two arguments of ϕ, and then minimize ϕ. In fact, we can solve

this minimization problem without having to explicitly compute ϕ. Because ϕ is defined as the

composition of the agent’s dynamics with initial conditions (x0, θ0) and the coordinator’s loss

function `, it can be written as the value function of a feasibility problem:

ϕ(x0, θ0,{πi}T+n
i=0 ) = min

xt,ut,θt,πt
`({xt, ut}T+n

t=T+1)

s.t. ut ∈ arg max
{
f(xt+1, u, θt, πt)

∣∣ xt+1 = h(xt, u), u∈ U
}
∀t,

xt+1 = h(xt, ut) ∀t,

θt+1 = g(xt, ut, θt, πt) ∀t,

xt ∈X , θt ∈Θ, πt ∈Π ∀t,

x0 = x0, θ0 = θ0, πt = πt ∀t.

(23)

More importantly, the problem of minimizing this ϕ can be formulated as a MILP.

Corollary 4. If Assumptions 1–8 hold, then ϕ(x0, θ0,{πi}T+n
i=0 ) is lower semicontinuous in

x0, θ0,{πi}T+n
i=T+1, and the optimization problem given by min{ϕ(x0, θ0,{πi}T+n

i=0 ) | {πi}T+n
i=T+1 ∈Πn}

can be formulated as a MILP for all fixed values of (x0, θ0,{πi}Ti=0)∈X ×Θ×ΠT+1.
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Algorithm 1 Two Stage Single Agent Algorithm (2SSA)

Require: {x̃ti}
nx
i=0,{ũτi}

nu
i=0,{πi}Ti=0

1: compute (x̂0,T , θ̂0,T )∈ arg max(x0,θ0)ψT (x0, θ0)

2: return π2SSA(T )∈ arg min{ϕ(x̂0,T , θ̂0,T ,{πi}T+n
i=0 ) | {πi}T+n

i=T+1 ∈Πn}

Proof: For the first result, note Proposition 1 implies the feasible region of (23) can be expressed

as mixed integer linear constraints with respect to (xt, ut, θt, πt). Thus ϕ(x0, θ0,{πi}T+n
i=0 ) is the value

function of a MILP in which x0, θ0, πt belong to an affine term. Standard results (Ralphs and Has-

sanzadeh 2014) imply the value function is lower semicontinuous with respect to x0, θ0,{πi}T+n
i=T+1.

To show the second result, note that the problem of min{ϕ(x0, θ0,{πi}T+n
i=0 ) | {πi}T+n

i=T+1 ∈Πn} is

equivalent to (23) but with removal of the constraints πt = πt for t= T + 1, . . . , T +n. And so the

result follows by Proposition 1 and by recalling the assumptions on Π and `. �

4.1.2. Asymptotic Optimality of 2SSA The next result provides the underlying intuition

of 2SSA. In particular, we are approximating E[ϕ(x0, θ0,{πi}T+n
t=0 )|{x̃ti}

nx
i=0,{ỹτi}

nu
i=0,{πi}Ti=0] using

ϕ(x̂0,T , θ̂0,T ,{πi}T+n
i=0 ), and both these functions are converging to ϕ(x∗0, θ

∗
0,{πi}T+n

t=0 ).

Proposition 3. Suppose that Assumptions 1–8 hold. Then as T → ∞ we have that:

E[ϕ(x0, θ0,{πi}T+n
t=0 )|{x̃ti}

nx
i=0,{ỹτi}

nu
i=0,{πi}Ti=0]

p→ ϕ(x∗0, θ
∗
0,{πi}T+n

t=0 ) for all fixed {πi}T+n
i=0 ; and

ϕ(x̂0,T , θ̂0,T ,{πi}T+n
t=0 )

l-prob−−−→
Πn

ϕ(x∗0, θ
∗
0,{πi}T+n

t=0 ). Here, Λn
l-prob−−−→
X

Λ means random function Λn :X →

R is a lower semicontinuous approximation to function Λ :X →R (Vogel and Lachout 2003a).

Proof: We begin by proving the first result. By definition we have that

E
[
ϕ(x0, θ0,{πi}T+n

i=0 )
∣∣{x̃ti}nxi=0,{ỹτi}

nu
i=0,{πi}Ti=0

]
=∫

X×Θ
ϕ(x0, θ0,{πi}T+n

i=0 )p(x0, θ0|{x̃ti}
nx
i=0,{ỹτi}

nu
i=0, π)× dx0× dθ0. (24)

Also, Proposition 2 implies the posterior p(x0, θ0|{x̃ti}
nx
i=0,{ỹτi}

nu
i=0,{πi}Ti=0) is consistent, and thus

becomes degenerate at (x∗0, θ
∗
0) in the limit. Hence the Dominated Convergence Theorem gives

(24)
p→
∫
X×Θ

ϕ(x0, θ0, π)× δ(x0−x∗0)× δ(θ0− θ∗0)× dx0× dθ0 =ϕ(x∗0, θ
∗
0, π), (25)

where in the equation above δ(·) is the Dirac delta function.

For the second result, recall that Corollary 3 implies (x̂0,T , θ̂0,T )
p→ (x∗0, θ

∗
0). And Corollary 4 gives

that ϕ(x0, θ0,{πi}T+n
i=0 ) is lower semicontinuous in x0, θ0,{πi}T+n

i=T+1. The result then follows by direct

application of Proposition 2.1.ii of (Vogel and Lachout 2003b). �

If the coordinator had perfect knowledge of the agent’s true initial conditions (x∗0, θ
∗
0),

then the optimal incentives are arg min{ϕ(x∗0, θ
∗
0,{πi}T+n

i=0 ) | {πi}T+n
i=T+1 ∈ Πn}. But since
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we do not know the initial conditions, the above result shows that both (20) and

arg min{ϕ(x̂0,T , θ̂0,T ,{πi}T+n
i=0 ) | {πi}T+n

i=T+1 ∈ Πn} are reasonable approximations. In fact, we can

show a stronger result for the solution generated by 2SSA.

Theorem 1. Note that arg min{ϕ(x∗0, θ
∗
0 ,{πi}T+n

i=0 )|{πi}T+n
i=T+1 ∈Πn} is the set of optimal solutions

under the agent’s true initial conditions (x∗0, θ
∗
0). If Assumptions 1–8 hold, then we have that

dist
(
π2SSA(T ),arg min{ϕ(x∗0, θ

∗
0,{πi}T+n

i=0 ) | {πi}T+n
i=T+1 ∈Πn}

)
p→ 0 (26)

as T →∞, for any π2SSA(T ) returned by 2SSA. Note dist(x,B) = infy∈B ‖x− y‖.

Proof: The result follows by combining the second part of our Proposition 3 with Theorem 4.3

from (Vogel and Lachout 2003a). �

This result suggests that any solution returned by 2SSA is asymptotically included within the

set of optimal incentives computed for the agent’s true initial conditions. Restated, the result says

2SSA provides a set of incentives that are asymptotically optimal. This is a non-obvious result

because in general pointwise-convergence of a sequence of stochastic optimization problems is not

sufficient to ensure convergence of the minimizers of the sequence of optimization problems to the

minimizer of the limiting optimization problem. Rockafellar and Wets (2009) provide an example

that demonstrates this possible lack of convergence of minimizers.

4.2. Policy Calculation With Multiple Agents

We next study the general setting where the coordinator designs incentives for a large group of

agents. We let A be the set of agents, and the quantities corresponding to a specific agent a∈A are

denoted using subscript a. Now suppose that at time T the coordinator measures {x̃ati}
nax
i=0,{ỹaτi}

nau
i=0

for all agents a∈A. One approach to designing incentives is by solving:

min
{
E
[
Φ(xa0, θ

a
0 ,{πai }T+n

i=0 for a∈A)|{x̃ati}
Ta
x
i=0,{ỹaτi}

Ta
u
i=0,{πai }Ti=0 for a∈A

] ∣∣∣{
{πai }T+n

i=T+1 for a∈A
}
∈Ω
}

(27)

Here, Φ :X#A× θ#A×Ω→R is a joint loss function that depends on the behavior all agents. For

the settings we are interested in, this loss function has a separable structure.

Assumption 9. Loss Φ is additively Φ(xa0, θ
a
0 ,{πai }T+n

i=0 for a ∈ A) =
∑

a∈Aϕ
a(xa0, θ

a
0 ,{πai }T+n

i=0 ) or

multiplicatively separable Φ(xa0, θ
a
0 ,{πai }T+n

i=0 for a∈A) =
∏
a∈Aϕ

a(xa0, θ
a
0 ,{πai }T+n

i=0 ).

Without loss of generality, we assume Φ is additively separable since we can obtain similar results

for the case of multiplicative separability by taking the logarithm of Φ. We also make an assumption

that states Ω is decomposable in a simple way.
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Assumption 10. There exist a finite set V = {v1, v2, . . .} with vector-valued, sets Sv ⊆ Πn for

v ∈ V , and a vector-valued constant β such that

Ω =
{
{πai }T+n

i=T+1 for a∈A : yav ∈ {0,1},
∑

v∈V y
a
v = 1 for a∈A,

∑
a∈A

∑
v∈V v · yav ≤ β

{πai }T+n
i=T+1 ∈ Sv if yav = 1

}
. (28)

Moreover, the sets Sv are compact sets that are representable by a finite number of mixed integer

linear constraints.

The underlying idea of this assumption is that the set V describes a vector of discrete elements

that can be used as incentives, and β is the vector-valued budget on the discrete incentives. When

the discrete incentives are fixed at v, the set Sv keeps the discrete incentives fixed and describes

the feasible set of continuous incentives.

Even with these assumptions on separability and decomposibility, solving (27) is difficult because

it is a BMIP with #A MILP’s in the lower level. Thus, we develop an adaptive algorithm (based

on the 2SSA algorithm) for optimizing incentives for multiple agents. We first summarize our

algorithm, and demonstrate that it only requires solving a small number of computable MILP’s.

Next we prove this algorithm provides a set of incentives that are asymptotically optimal as time

advances.

4.2.1. Adaptive Algorithm for Multiple Agents We design incentives for multiple agents

with the Adaptive Behavioral Multi-Agent Algorithm (ABMA) presented in Algorithm 2. The

main idea behind this method is to use the assumptions on Φ and Ω to decompose the initial

problem into #A sub-problems that solve a single agent problem, and a single master problem

that combines these solutions into a global optimum across all agents. Because of the assumptions

on Ω, each sub-problem can be further decomposed into #V sub-problems. For each sub-problem,

we use the 2SSA algorithm to solve the #A ·#V sub-problems; however, we do not explicitly call

the 2SSA algorithm because it is more efficient to solve the MAP estimator once and then solve

the incentive design problem for each single agent. Our first result concerns the computability of

this algorithm.

Proposition 4. If Assumptions 1–10 hold, then the main computational steps of the ABMA algo-

rithm involve solving a total of #A · (#V + 1) MILP’s and 1 ILP.

Proof: Step 2 of ABMA is a MAP estimate, which can be computed by solving a single MILP

by Corollary 2. A similar argument used to prove Corollary 4 shows that Steps 4 and 5 can be

computed by solving a single MILP. Step 8 can be seen to be an ILP by construction. The remaining

steps of ABMA are assignment steps and do not require solving any optimization problems. �
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Algorithm 2 Adaptive Behavioral Multi-Agent Algorithm (ABMA)

Require: {x̃ati}
nax
i=0,{ũaτi}

nau
i=0,{πai }Ti=0 for a∈A

1: for all a∈A do

2: compute (x̂a0,T , θ̂
a
0,T ) = arg max(x0,θ0)ψT (x0, θ0)

3: for all v ∈ V do

4: set πav ∈ arg min{ϕa(x̂0,T , θ̂0,T ,{πi}T+n
i=0 ) | {πi}T+n

i=T+1 ∈ Sv}

5: set φav =ϕa(x̂a0,T , θ̂
a
0,T , π

a
v)

6: end for

7: end for

8: compute:
y ∈ arg min

∑
a∈A

∑
v∈V φ

a
v · yav

s.t.
∑

a∈A
∑

v∈V v · yav ≤ β∑
v∈V y

a
v = 1 for a∈A

yav ∈ {0,1}
9: for all a∈A and v ∈ V do

10: set πaABMA(T ) = πav if yav = 1

11: end for

12: return πaABMA(T ) for a∈A

This means the ABMA algorithm performs incentive design for the multi-agent case by solving

#A · (#V + 1) + 1 MILP’s, which is significantly less challenging than solving a BMIP with #A
MILP’s in the lower level as would be required to solve (27).

The ABMA algorithm also has an alternative interpretation, and to better understand this

consider the following feasibility problem:

Φ(xa0, θ
a

0,{πai }T+n
i=0 for a∈A) =

min
xat ,u

a
t ,θ

a
t ,π

a
t

Φ(xa0, θ
a
0 ,{πai }T+n

i=0 for a∈A)

s.t. uat ∈ arg max
{
f(xat+1, u, θ

a
t , π

a
t )
∣∣ xat+1 = h(xat , u), u∈ U

}
∀a, t,

xat+1 = h(xat , u
a
t ) ∀a, t,

θat+1 = g(xat , u
a
t , θ

a
t , π

a
t ) ∀a, t,

xat ∈X a, θat ∈Θ, πat ∈Π ∀a, t,

xa0 = xa0, θ
a
0 = θ

a

0,{πat }T+n
t=0 = {πat }T+n

t=0 ∀a, t,

{{πat }T+n
t=T+1 for a∈A} ∈Ω.

(29)

Our first result concerns regularity properties of the above written feasibility problem.
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Proposition 5. If Assumptions 1–10 hold, then Φ(xa0, θ
a
0 ,{πai }T+n

i=0 for a ∈ A) is lower semicon-

tinuous in its arguments, and min{Φ(xa0, θ
a
0 ,{πai }T+n

i=0 for a ∈A) | {{πat }T+n
t=T+1 for a ∈A} ∈Ω} can

be formulated as a MILP for all fixed values of (xa0, θ
a
0 ,{πai }Ti=0)∈X ×Θ×ΠT+1 for a∈A.

Proof: Using the assumptions on separability of the joint loss function Φ (Assumption 9) and

decomposibility on the incentive set Ω (Assumption 10), we have that (29) can be reformulated as

min
yav

∑
a∈A

∑
v∈V φ

a
v · yav

s.t. min{ϕa(x0,T , θ0,T ,{πi}T+n
i=0 ) | {πi}T+n

i=T+1 ∈ Sv} ≤ φav

xa0 = xa0, θ
a
0 = θ

a

0,{πat }T+n
t=0 = {πat }T+n

t=0 for all a, t∑
a∈A

∑
v∈V v · yav ≤ β∑

v∈V y
a
v = 1 for a∈A

yav ∈ {0,1}

(30)

Since φav ·yav is the product of a continuous and binary decision variable, standard integer program-

ming reformulation techniques allow us to reformulate the above as

min
yav

∑
a∈A

∑
v∈V z

a
v

s.t. ϕa(x0,T , θ0,T ,{πi}T+n
i=0 )≤ φav

{πi}T+n
i=T+1 ∈ Sv

xa0 = xa0, θ
a
0 = θ

a

0,{πat }T+n
t=0 = {πat }T+n

t=0 for all a, t∑
a∈A

∑
v∈V v · yav ≤ β∑

v∈V y
a
v = 1 for a∈A

yav ∈ {0,1}

zav ≥ φav −M · (1− yav)

zav ≤ φav +M · (1− yav)

zav ≤M · yav

zav ≥−M · yav

(31)

where M > 0 is a large-enough constant. Such a finite M exists because X ,U ,Π,Θ are compact, and

because `a is representable by a finite number of mixed integer linear constraints. Since Corollary

4 (and its proof) implies we can represent ϕa(x0,T , θ0,T ,{πi}T+n
i=0 )≤ φav and {πi}T+n

i=T+1 ∈ Sv by mixed

integer linear constraints, this means we can reformulate (29) as a MILP with linear constraints that

are affine in (xa0, θ
a

0,{πai }T+n
i=0 for a ∈A). And so standard results (Ralphs and Hassanzadeh 2014)

imply its value function is lower semicontinuous with respect to these variables, which is our first

result. The second result follows by noting min{Φ(xa0, θ
a
0 ,{πai }T+n

i=0 for a ∈A) | {{πat }T+n
t=T+1 for a ∈

A} ∈Ω} is equivalent to (29) but with removal of the constraints πat = πat for t= T+1, . . . , T+n. �
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The optimization problem (29) and the above result provide an alternative interpretation of the

ABMA algorithm, which is formalized by the next corollary.

Corollary 5. If Assumptions 1–10 hold, then the solution of min{Φ(xa0, θ
a
0 ,{πai }T+n

i=0 for a ∈
A) | {{πat }T+n

t=T+1 for a ∈ A} ∈ Ω}, is given by the ABMA algorithm but with Step 2 replaced with

the step: set (x̂a0,T , θ̂
a
0,T ) = (xa0, θ

a
0).

Proof: This is straightforward from the reformulation shown in (30). �

Thus, though (29) is a large MILP, the assumptions we have made allow us to decompose the

solution of this problem into a series of substantially smaller MILP’s.

4.2.2. Asymptotic Optimality of ABMA The optimization problem in (29) is a use-

ful construction because it can also be used to compute the optimal set of incentives. If

each agent’s true initial conditions (x∗,a0 , θ∗,a0 ) were known, then an optimal solution belongs to

arg min{Φ(x∗,a0 , θ∗,a0 ,{πai }T+n
i=0 for a ∈ A) | {{πat }T+n

t=T+1 for a ∈ A} ∈ Ω}. More importantly, we have

the following relationship to the solutions of the ABMA algorithm:

Theorem 2. Note that arg min{Φ(x∗,a0 , θ∗,a0 ,{π∗,ai }T+n
i=0 for a ∈A) | {{πat }T+n

t=T+1 for a ∈A} ∈Ω} is

the set of optimal solutions under the agents’ true initial conditions (x∗,a0 , θ∗,a0 ). If Assumptions 1–8

hold, then we have that

dist
(
{πaABMA(T ) for a∈A},

arg min{Φ(x∗,a0 , θ∗,a0 ,{πai }T+n
i=0 for a∈A) | {{πat }T+n

t=T+1 for a∈A} ∈Ω}
)

p→ 0 (32)

as T →∞, for any πaABMA(T ) returned by ABMA. Recall that dist(x,B) = infy∈B ‖x− y‖.

Proof: Corollary 3 implies (x̂a0,T , θ̂
a
0,T )

p→ (x∗,a0 , θ∗,a0 ), and Corollary 4 states Φ is lower semicon-

tinuous in its arguments. This means Φ(x̂a0, θ̂
a
0 ,{πai }T+n

i=0 for a∈A) is a lower semicontinuous approx-

imation to Φ(x∗,a0 , θ∗,a0 ,{πai }T+n
i=0 for a∈A) by Proposition 2.1.ii of (Vogel and Lachout 2003b). But

Corollary 5 shows that

{πaABMA(T ) for a∈A} ∈ arg min{Φ(x̂a0, θ̂
a
0 ,{πai }T+n

i=0 for a∈A) | {{πat }T+n
t=T+1 for a∈A} ∈Ω}. (33)

This means that the result follows by applying Theorem 4.3 from (Vogel and Lachout 2003a). �

Thus any solution returned by ABMA is asymptotically included within the set of optimal

incentives computed for the agents’ true initial conditions. Restated, the above result says ABMA

provides a set of incentives that are asymptotically optimal. This is a non-obvious result because

in general pointwise-convergence of a sequence of stochastic optimization problems is not sufficient

to ensure convergence of the minimizers of the sequence of optimization problems to the mini-

mizer of the limiting optimization problem. Rockafellar and Wets (2009) provide an example that

demonstrates this possible lack of convergence of minimizers.
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5. Computational Experiments: Weight Loss Program Design

We have completed computational experiments applying the tools and techniques developed in this

paper that form a specific implementation of a behavioral analytics framework. We compare several

approaches, including ours, for designing incentives for multiple myopic agents to the problem

described in Section 1.1.1 of designing personalized behavioral incentives for a clinically-supervised

weight loss program. The first step of our behavioral analytics approach is to construct a behavioral

model of individuals in weight loss programs. We describe the data source used for the simulations,

and then summarize our behavioral model (Aswani et al. 2016) for individuals participating in such

loss programs. To demonstrate the second and third steps of our framework, we simulate a setting

in which behavioral incentives chosen using our ABMA algorithm are evaluated against behavioral

incentives computed by (intuitively-designed) adaptive heuristics. Both our implementation of a

behavioral analytics framework and the heuristic provide adaptation by recomputing the incentives

at regular intervals as more data is collected from each individual. Our metric for comparison is the

number of individuals who achieve clinically significant weight loss (i.e., a 5% reduction in body

weight) at the end of the program. We also compare the percentage of weight loss for individuals

who do not achieve clinically significant weight loss in order to better understand how clinical visits

are allocated by the different methods. We conclude by performing a sensitivity analysis of design

choices for the second and third steps of our behavioral analytics framework.

5.1. mDPP Program Trial Data Source

Our computational experiments used data from the mDPP trial (Fukuoka et al. 2015). This was a

randomized control trial (RCT) that was conducted to evaluate the efficacy of a 5 month mobile

phone based weight loss program among overweight and obese adults at risk for developing type

2 diabetes. This program was adapted from the Diabetes Prevention Program (DPP) (Diabetes

Prevention Program Research Group 2002, 2009), but the number of in person clinical visits was

reduced from 16 to 6 per person, and group exercise sessions were replaced with a home based

exercise program to reduce costs. Sixty one overweight adults were randomized into an active

control group which only received an accelerometer (n=31) or a treatment group which receive the

mDPP mobile app plus the accelerometer and clinical office visits (n=30). Changes in primary and

secondary outcomes for the trial were promising. The treatment group lost an average of 6.2 ± 5.9

kg (-6.8% ± 5.7%) between baseline and the 5 month follow up while the control group gained 0.3

± 3.0 kg (0.3% ± 5.7 %) (p < 0.001). The treatment group’s steps per day increased by 2551 ±

4712 compared to the control group’s decrease of 734 ± 3308 steps per day (p < 0.001). Additional

details on demographics and other treatment parameters are available in (Fukuoka et al. 2015).
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The data available from the mDPP trial includes step data (from accelerometer measurements),

body weight data (which was measured at least twice a week every week and recorded in the mobile

app by individuals in the treatment group, as well as measured three times in a clinical setting

at baseline, 3 month, and 5 month), and demographic data (i.e., age, gender, and height of each

individual). We note that this data matches the assumptions in Section 2.

5.2. Summary of Behavioral Model

We construct a behavioral model for each individual participating in the weight loss program. Using

the terminology and notation of Section 2, the system state of each individual xt is their body

weight on day t, and their decisions ut = (ft, st) on day t are how many calories they consume ft

and how many steps they walk st. The behavioral incentives πt = (gt, dt) provided to an individual

on day t consist of (numeric) step goals gt and an indicator dt equal to one if a clinical visit

was scheduled for that day. The motivational state (or type) is θt := (ub, fb,t,Fb,t, pt, µ, δ, β). The

state ub captures the individual’s baseline preference for number of steps taken each day, while

fb,t,Fb,t capture the individual’s short term and long term caloric intake preference, respectively.

The variable pt captures the disutility an individual experiences from not meeting a step goal.

The last set of motivational states describe the individual’s response to behavioral incentives. The

states β, δ describe the amount of change in the individual’s caloric consumption and physical

activity preferences, respectively, after undergoing a single clinical visit. The state µ describes the

self efficacy effect (Bandura 1998, Conner and Norman 1996) from meeting exercise goals.

The utility function of an individual on day t is given by f(wt+1, ft, ut;θt, πt) =−w2
t+1 − r(u−

ub)
2 − r(f − fb,t)2 + pt(ut − gt)−. In our past modeling work (Aswani et al. 2016), we found that

the predictions of this behavioral model were relatively insensitive to the value of r. And our

numerical experiments in (Aswani et al. 2016) found that fixing the value of r to be the same

for each individual provided accurate predictions. And so we assume that r is a fixed and known

constant in our numerical experiments here. The temporal dynamics for an individual’s system

and motivational states are the dynamics of an individual’s type by:

wt+1 = a ·wt + b ·ut + ft + k (34)

Fb,t+1 = (1−α) ·Fb,t +α · fb,t (35)

fb,t+1 = γ · (fb,t−Fb,t) +Fb,t−β · dn (36)

pt+1 = γ · pt + δ · dt +µ ·1(ut ≥ gt). (37)

Equation (34) is a “calories in minus calories out” description of weight change, and a standard

physiological formula (Mifflin et al. 1990) is used to compute the values of a, b, k based on the
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demographics of the individual. Equation (35) models the long term caloric intake preference as

an exponential moving average of the short term caloric intake preferences. We found that the

predictions for different individuals were relatively insensitive to the value of α, and so in our

numerical experiments we assume α is known and fixed to a value satisfying α < 1. In (36), we

model the dynamics of baseline food consumption as always tending towards their initial value

unless perturbed by a clinical visit. In (37) we model the tendency for meeting the step goal as

tending towards zero unless there is a clinical visit or the individual has met the previous exercise

goal, which increases their self efficacy and makes the individual more likely to meet their step goal

in the future. In both (36) and (37), γ < 0 is assumed to be a known decay factor since we found

that predictions were relatively insensitive to the value of γ (Aswani et al. 2016). Note that these

temporal dynamics and utility functions satisfy the assumptions in Section 2.

For the MLE and MAP calculations, we assumed that step and weight data were measured

with zero-mean noise distributed according to a Laplace distribution with known variance. We

found that predictions of the behavioral model estimated when assuming the noise had a Gaussian

distribution were of the same quality as those estimated when assuming Laplace noise, and so we

assume Laplace noise so that the MAP and MLE problems can be formulated as MILP’s (as shown

in Section 2). Furthermore, the prior distribution used for the MAP calculation for each individual

was a histogram of the MLE estimates of all the other individual’s parameters. Note that this form

for a prior distribution can be expressed using integer linear constraints (Aswani et al. 2016). The

complete MILP formulations for MAP and MLE are provided in the appendix.

5.3. Weight Loss Program Design

Since the majority of implementation costs for weight loss programs are due to clinical visits, the

clinician’s design problem is to maximize the expected number of individuals who reduce their

weight by a clinically significant amount (i.e., 5% reduction in body weight). The clinician is able

to personalize the step goals for each individual, and can change the number and timing of clinical

visits for each individual. However, there is a budget constraint on the total number of visits that

can be scheduled across all individuals. This constraint captures the costliness of clinical visits.

We optimize the weight loss program using our ABMA algorithm to implement the second and

third steps of our behavioral analytics framework. This requires choosing a loss function for each

individual, and Figure 1 shows three choices that we considered. These three losses make varying

tradeoffs between achieving the primary health outcome of number of individuals with clinically

significant weight loss (i.e., 5% weight loss) at the end of the program versus the secondary health
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outcome of maximizing weight loss of individuals who were not able to achieve 5% weight loss. The

first choice of a loss function is the step loss, which is given by

ϕ=

{
−1, if xT+n ≤ 0.95 · x̃0

0, otherwise
(38)

This discontinuous choice of a loss function gives minimal loss to 5% or more reduction in body

weight and maximal loss to less than 5% reduction in body weight. The second choice of a loss

function is the hinge loss, which is given by

ϕ=


−1, if xT+n < 0.95 · x̃0

−0.2 · (xT+n/x̃0− 1), if 0.95 · x̃0 ≤ xT+n ≤ x̃0

0, if xT+n > x̃0

(39)

This continuous choice of a loss function gives minimal loss to 5% or more reduction in body weight,

maximal loss to less than 0% reduction in body weight, and an intermediate loss for intermediate

reductions in body weight. The third choice of a loss function is the time-varying hinge loss, which

is given by

ϕ=


−1, if

xT+n

x̃0
< 0.95− 0.05

logT

10(logT )(
xT+n

x̃0
− (0.95 + 0.05

logT
)), if 0.95− 0.05

logT
≤ xT+n

x̃0
≤ 0.95 + 0.05

logT

0, if
xT+n

x̃0
> 0.95 + 0.05

logT

(40)

Much like the hinge loss (39), it promotes intermediate amounts of weight loss that might not

meet the 5% threshold of clinically significant weight loss. However, as more data is collected it

approaches the step loss (38) to reflect a higher degree of confidence in the estimated parameters.

Thus, this choice of loss function can be considered an intermediate between the hinge (39) and

step (38) losses. There is one computational note. Since these losses are non-decreasing, we can

modify Step 4 of the ABMA algorithm to instead minimize the body weight of each individual and

then compose the body weight with the loss function.

For the purpose of comparing various program designs through simulations, we considered three

additional designs for the weight loss program. We used an adaptive heuristic to design the weight

loss program: Clinical visits were scheduled towards the end of the treatment at least one week

apart, with more visits given to individuals who were closer to meeting the weight loss goal of a

5% weight reduction based on their latest observed weight, and step goals were set to be a 10%

increase over a linear moving average of the individual’s observed step count over the prior week.

The second design was a “do nothing” plan where individuals were given exactly one clinical visit

after two weeks, and their step goals were a constant 10,000 steps each day. The third design was

the original design of the mDPP trial: Clinical visits were scheduled on predetermined days during

the treatment after 2, 4, 6, 19, 14, 18, and 20 weeks of the trials. The first two weeks of this design
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Figure 1 The left plot shows the step loss function (38), and the right plot shows the hinge loss function (39).

The x-axis on both plots is 100 · (xT+n/x̃0 − 1), which is percent reduction in body weight.

did not contain any clinical visits or exercise goals but instead served as an initialization period.

After the first two weeks, exercise goals increased 20% each week, starting with a 20% increase over

the average number of steps taken by individuals during the the two week initialization period. The

exercise goals were capped at a maximum of 12,000 steps a day. Since the adaptive heuristic and

ABMA are both adaptive, we recalculated both at the beginning of each month of the treatment

and allowed both adaptive methods a 2 week initialization time similar to the mDPP trial.

5.4. Simulation Comparison

We compared the six different program designs using simulations of a weight loss program with

a five month duration and with 30 individuals participating. Each individual in the simulation

followed our behavioral model, and the parameters corresponding to the behavioral model for each

individual were chosen to be those estimated by computing the MLE using the data from the

mDPP trial. Since we also wanted to test how these different designs account for missing data, we

assumed that the data available to each algorithm would be limited to days of the mDPP study

where a particular individual reported their weight and steps. Since the adaptive heuristic and

our behavioral analytics framework are both adaptive, we recalculated the program design at the

beginning of each month of the program (by re-runnning the heuristic calculations and rerunning

the ABMA algorithm) and allowed both adaptive methods a two-week initialization time similar to

the design of the program in the mDPP trial. All simulations were run using MATLAB on a laptop

computer with a 2.4GHz processor and 16GB RAM. The Gurobi solver (Gurobi Optimization

2015) in conjunction with the CVX toolbox for MATLAB (Grant and Boyd 2014) were used to

perform the initial estimation of the individual parameters, compute designs for the weight loss

program, and perform simulations of each design.

Figure 2 compares the primary outcome of interest to clinicians, which is the number of individ-

uals that achieve clinically significant weight loss (i.e., 5% or more reduction in body weight). We
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Figure 2 Comparison of different program design methods with respect to number of successful individuals (i.e.,

lost 5% or more body weight)

repeated the simulations for our behavioral analytics framework and the adaptive heuristic under

different constraints on the total number of clinical visits that could be allocated to individuals.

The x-axis of Figure 2 is the average number of clinical visits provided to individuals. The horizon-

tal line at 18 is the number of individuals who achieved 5% weight loss in the actual mDPP trial, in

which each individual received 7 clinical visits. Figure 2 shows that all forms of behavioral analytics

program and adaptive heuristic program designs outperform the “do nothing” policy. Furthermore,

our behavioral analytics approach and the adaptive heuristic achieve results comparable to the

original mDPP program design but with significantly less resources (i.e., less clinical visits). The

simulations predict that using our behavioral analytics approach in which ABMA has a step (38)

or time-varying hinge loss (40) to design the weight loss program can provide health outcomes

comparable to current clinical practice while using only 40-60% of the resources (i.e., clinical vis-

its) of current practice. In contrast, the adaptive heuristic would require 80-95% of resources (i.e.,

clinical visits) to attain health outcomes comparable to current clinical practice. This suggests that

appropriate choice of the loss function for our ABMA algorithm, as part of behavioral analytics

approach, to personalize the design of a weight loss program could increase capacity (in terms

of the number of individuals participating in the program for a fixed cost) by up to 60%, while

achieving comparable health outcomes.

Figure 3 compares the different program designs using a secondary outcome of interest to clini-

cians of the average amount of weight loss of individuals who did not successfully achieve 5% weight
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Figure 3 Comparison of different program design methods with respect to the percent weight lost by unsuccessful

individuals (i.e., lost less than 5% body weight)

loss. The original treatment plan of mDPP and the “do nothing” treatment plan slightly outper-

form the adaptive program designs at certain clinical visit budgets. This effect however is mainly

due to these static plans not identifying individuals who are on the cusp of achieving 5% weight

loss but might still achieve around 3-4% weight loss, while both adaptive program designs allocate

clinical visits to these individuals and ensure they reach the weight loss goal of 5% weight loss.

Restated, the lower weight loss of unsuccessful individuals under the behavioral analytics treat-

ment plans is an artifact of the improved success rate of the behavioral analytics plans in helping

individuals achieve 5% weight loss. This effect is further exemplified in the region of between an

average of 2.8-4.2 visits per individual, where we see that individuals who were not successful in

achieving 5% weight loss in the behavioral analytics treatment plans on average lose more weight

then those under the heuristic policy, while in the region of an average of 5.6-7 visits per individual

we see that individuals under the heuristic treatment lose more weight. The effect in this last

region is mainly due to the behavioral model used in our behavioral analytics framework, which is

more effective at identifying the individuals who would most benefit from additional clinical visits.

Therefore, more resources are spent on individuals who could potentially reach their 5% weight

loss goal, while the adaptive heuristic uses these resources in a less effective manner.

Figures 2 and 3 demonstrate a tradeoff between the primary and secondary outcomes, and the

various loss functions provide different tradeoffs. Note the line for the step loss (38) is the first

to achieve a primary outcome comparable to that of the original mDPP trial while fluctuating
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relatively little in terms of the secondary outcome. This matches intuition that the step loss func-

tion (38) is focused on ensuring individuals achieve 5% weight loss while not being concerned

with their final weight. On the other hand, the line for the hinge loss (39) lags behind the other

behavioral analytics policies in achieving comparable primary outcomes to the mDPP trial while

having an extremely effective secondary outcome. These results follow our intuition that this loss

favors intermediate weight loss over achieving clinically significant weight loss. Finally, the line

corresponding to the time-varying hinge loss function (40) has a clear transition at an average of 5

visits per individual from favoring the primary outcome to the secondary outcome. This behavior

indicates that using such time scaling leads to interventions that focus on primary outcomes when

resources are constrained but also accounts for secondary outcomes when resources are less scarce.

Such behavior may be useful for implementing a behavioral analytics approach when the relative

abundance of resources is not known a priori.

5.5. Computational Performance and Sensitivity Analysis

The simulation experiments assumed that treatment plans were updated at the beginning of each

month by re-running the second and third steps of our behavioral analytics approach (through

applying the ABMA algorithm), and so we conducted a sensitivity analysis to examine the effect of

updating the program design more or less frequently. Figures 4 and 5 compare the health outcomes

of using a program designed by our behavioral analytics framework with a time-varying hinge loss

(40), where the treatment was recalculated once every two weeks, once a month, and once every two

months. These results show that recomputing the treatment plan with lesser or higher frequency

does not significantly impact the efficacy of the resulting treatment. This indicates that for practical

implementation, the statistical convergence rate of estimated parameters in our behavioral model

is sufficiently fast that it would suffice to rerun the weight loss program design algorithm at most

once a month.

We also conducted time-benchmarks for the sub-problems involved in computing 2SSA, MAP,

and ABMA, which are the algorithms comprising the second and third steps of our implementation

o a behavioral analytics framework. The results of the time-benchmarks are summarized in Tables

1,2, and 3 in the appendix. On average, solving all sub-problems took 17s per individual. This is

promising for practical implementation, particularly because each sub-problem calculation can be

performed in parallel for each size constraint of the clinical visit schedule (from 1 to 7 visits). The

results show that computation time increases with respect to the number of available visits and

data available in the treatment plan calculation. However, the calculation times still remain below

30s on average per individual for each step of the program calculation. This would imply that our

methodology for weight loss program calculation is suitable for large scale program design since

the program design would be updated at most once every month.
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Figure 4 Comparison of calculation schedules and their effects on the number of successful individuals (i.e., lost

5% or more body weight)
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Figure 5 Comparison of calculation schedules and their effects on the weight lost by unsuccessful individuals (i.e.,

lost less than 5% body weight)

6. Conclusion

In this paper, we develop a behavioral analytics framework for multi-agent systems in which a

single coordinator provides behavioral or financial incentives to a large number of myopic agents.

Our framework is applicable in a variety of settings of interest to the operations research commu-
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nity, including the design of demand-response programs for electricity consumes, the personalized

design of a weight loss program, and adaptive logistics allocation for franchises. The framework

we develop involves the definition of a behavioral model, the estimation of model parameters, and

the optimization of incentives. We show (among other results) that under mild assumptions, the

incentives computed by our approach converge to the optimal incentives that would be computed

knowing full information about the agents. We evaluated our approach for personalizing the design

of a weight loss program, and showed via simulation that our approach can improve outcomes with

reduced treatment cost.

Appendix A: Complete MILP Formulation of MLE Problem

min

√
2

σ1

nw∑
i=1

ζw,ti +

√
2

σ2

nu∑
i=1

ζu,ti (41)

s.t. − ζw,ti ≤ w̃ti −wti ≤ ζw,ti ∀1≤ ti ≤ nw (42)

− ζu,ti ≤ ũτi −uτi ≤ ζu,ti ∀1≤ ti ≤ nu (43)

− b(aw1 + bu0 + f0 + k)− r(u0−ub) = 0 (44)

− (aw1 + bu0 + f0 + k)− r(f0−Fb,1) = 0 (45)

− b(awt + but + ft + k)− r(ut−ub) = 0 ∀1≤ t≤m (46)

− (awt + but + ft + k)− r(ft− fb,t) = 0 ∀1≤ t≤m (47)

− 2b(awt + but + ft + k)− 2r(ut−ub) +λ1,t = 0 ∀m≤ t≤ n (48)

− 2(awt + but + ft + k)− 2(ft− fb,t) = 0 ∀m≤ t≤ n (49)

(gt− ε)−Mx1,t ≤ ut ≤ gt− ε+M(1−x1,t) ∀m≤ t≤ n (50)

(gt− ε)−M(1−x2,t)≤ ut ≤ gt + ε+M(1−x2,t) ∀m≤ t≤ n (51)

(gt + ε)−M(1−x3,t)≤ ut ≤ gt + ε+Mx3,t ∀m≤ t≤ n (52)

pt−M(1−xt,1)≤ λ1,t ≤M(1−x3,t) ∀m≤ t≤ n (53)

0≤ λ1,t ≤ pt ∀m≤ t≤ n (54)

xt,1 +xt,2 +xt,3 = 1 ∀m≤ t≤ n (55)

pt+1 ≥ γpt + δdt+1 ∀m≤ t≤ n (56)

pt+1 ≤ γpt + δdt+1 +M(1−x1,t) ∀m≤ t≤ n (57)

pt+1 ≥ γpt + δdt+1 +µ−Mx1,t ∀m≤ t≤ n (58)

pt+1 ≤ γpt + δdt+1 +µ ∀m≤ t≤ n (59)

Fb,t+1 = (1−α)Fb,t +αfb,t ∀t (60)

fb,t+1 = γ(fb,t−Fb,t) +Fb,t−βdt ∀t (61)
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xt+1,1 ≥ xt,1− dt+1−1(gt+1− gt < 0) ∀m≤ t≤ n (62)

xt+1,2 ≤ xt,2− dt+1 +1(gt+1− gt < 0) ∀m≤ t≤ n (63)

xt+1,3 ≤ xt,3− dt+1 +1(gt+1− gt < 0) ∀m≤ t≤ n (64)

wt, ut, ft,Fb,t, fb,t, pt ≥ 0 ∀t (65)

xt,1, xt,2, xt,3 ∈B ∀t (66)

Appendix B: Complete MILP Formulation of MAP Problem

min

√
2

σ1

nw∑
i=1

ζw,ti +

√
2

σ2

nu∑
i=1

ζu,ti −
∑
x∈θ

mx∑
i=1

zi,x logφxi (67)

s.t. − ζw,ti ≤ w̃ti −wti ≤ ζw,ti ∀1≤ ti ≤ nw (68)

− ζu,ti ≤ ũτi −uτi ≤ ζu,ti ∀1≤ ti ≤ nu (69)

− b(aw1 + bu0 + f0 + k)− r(u0−ub) = 0 (70)

− (aw1 + bu0 + f0 + k)− r(f0−Fb,1) = 0 (71)

− b(awt + but + ft + k)− r(ut−ub) = 0 ∀1≤ t≤m (72)

− (awt + but + ft + k)− r(ft− fb,t) = 0 ∀1≤ t≤m (73)

− 2b(awt + but + ft + k)− 2r(ut−ub) +λ1,t = 0 ∀m≤ t≤ n (74)

− 2(awt + but + ft + k)− 2(ft− fb,t) = 0 ∀m≤ t≤ n (75)

(gt− ε)−Mx1,t ≤ ut ≤ gt− ε+M(1−x1,t) ∀m≤ t≤ n (76)

(gt− ε)−M(1−x2,t)≤ ut ≤ gt + ε+M(1−x2,t) ∀m≤ t≤ n (77)

(gt + ε)−M(1−x3,t)≤ ut ≤ gt + ε+Mx3,t ∀m≤ t≤ n (78)

pt−M(1−xt,1)≤ λ1,t ≤M(1−x3,t) ∀m≤ t≤ n (79)

0≤ λ1,t ≤ pt ∀m≤ t≤ n (80)

xt,1 +xt,2 +xt,3 = 1 ∀m≤ t≤ n (81)

pt+1 ≥ γpt + δdt+1 ∀m≤ t≤ n (82)

pt+1 ≤ γpt + δdt+1 +M(1−x1,t) ∀m≤ t≤ n (83)

pt+1 ≥ γpt + δdt+1 +µ−Mx1,t ∀m≤ t≤ n (84)

pt+1 ≤ γpt + δdt+1 +µ ∀m≤ t≤ n (85)

Fb,t+1 = (1−α)Fb,t +αfb,t ∀t (86)

fb,t+1 = γ(fb,t−Fb,t) +Fb,t−βdt ∀t (87)

xt+1,1 ≥ xt,1− dt+1−1(gt+1− gt < 0) ∀m≤ t≤ n (88)

xt+1,2 ≤ xt,2− dt+1 +1(gt+1− gt < 0) ∀m≤ t≤ n (89)
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xt+1,3 ≤ xt,3− dt+1 +1(gt+1− gt < 0) ∀m≤ t≤ n (90)

zi,xh
x
lb,i ≤ xi ≤ zi,xhxub,i ∀x∀i (91)

mx∑
i=1

zi,x = 1 ∀x∀i (92)

mx∑
i=1

xi = x ∀x∀i (93)

zi,x ∈B ∀x∀i (94)

wt, ut, ft,Fb,t, fb,t, pt ≥ 0 ∀t (95)

xt,1, xt,2, xt,3 ∈B ∀t (96)

Appendix C: Complete MILP Formulation of Personalized Treatment Plan Design Problem

min wn (97)

s.t. Fb,t+1 = (1−α)Fb,t +αfb,t ∀t > T (98)

fb,t+1 = γ(fb,t−Fb,t) +Fb,t− β̂dt ∀t > T (99)

pt+1 = γpt + δ̂dt + µ̂(1−x1,t) ∀t > T (100)

dt ≤ 1 [mod(t,7) = 1] ∀t > T (101)

dt ≤ 1− dτ ∀τ > T, τ + 1≤ t≤ τ + 6 ∀t > T (102)

− 2b(awt + but + ft + k)− 2r(ut−ub) +λ1,t +λ4,t = 0 ∀t > T (103)

− 2(awt + but + ft + k)− 2(ft− fb,t) +λ3,t = 0 ∀t > T (104)

(gt− ε)−Mx1,t ≤ ut ≤ gt− ε+M(1−x1,t) ∀t > T (105)

(gt− ε)−M(1−x2,t)≤ ut ≤ gt + ε+M(1−x2,t) ∀t > T (106)

(gt + ε)−M(1−x3,t)≤ ut ≤ gt + ε+Mx3,t ∀t > T (107)

pt−M(1−xt,1)≤ λ1,t ≤M(1−x3,t) ∀t > T (108)

0≤ ft ≤M(1−xf,t); 0≤ ut ≤M(1−xu,t) ∀t > T (109)

0≤ λ3,t ≤Mxf,t ∀t > T (110)

0≤ λ4,t ≤Mxu,t ∀t > T (111)

0≤ λ1,t ≤ pt ∀t > T (112)

xt,1 +xt,2 +xt,3 = 1 ∀t > T (113)

gt+1− gt ≤M(1− gind,t) ∀t > T (114)

gt+1− gt ≥−Mgind,t ∀t > T (115)

xt+1,1 ≥ xt,1− dt+1− gind,t ∀t > T (116)
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xt+1,2 ≤ xt,2− dt+1 + gind,t ∀t > T (117)

xt+1,3 ≤ xt,3− dt+1 + gind,t ∀t > T (118)

gind,t ∈B (119)

xt,1, xt,2, xt,3, xf,t, xu,t ∈B (120)

dt = d̄t;gt = ḡt;wt = ŵt;ut = ût;ft = f̂t;θt = θ̂t ∀t (121)

Appendix D: Benchmarking Performance Tables

Average Runtimes for Candidate Treatment Plan Calculation (in seconds)
Date of Calculation During the Program
15 30 60 90 120 Average

Visit Budget

54 21.715 9.3363 8.8984 9.5618 10.003 11.903
63 21.715 7.7624 14.714 18.736 16.692 15.924
72 21.715 8.8894 21.239 26.186 16.091 18.824
81 21.715 11.408 43.147 28.112 23.284 25.533
90 21.715 10.274 23.935 13.421 33.6 20.589
99 21.715 9.3366 26.251 14.16 19.855 18.263
108 21.715 9.4194 24.208 12.774 21.757 17.975
117 21.715 9.9031 22.962 9.9226 31.865 19.273
126 21.715 10.217 21.749 10.199 28.664 18.509
135 21.715 9.973 16.307 23.129 18.893 18.003
144 21.715 11.208 14.626 14.851 8.9203 14.264
153 21.715 12.978 13.913 13.892 8.0501 14.11
162 21.715 12.403 14.674 14.434 10.965 14.838
171 21.715 13.305 12.102 11.585 23.78 16.497
180 21.715 14.879 12.116 11.964 18.473 15.829
189 21.715 11.731 11.835 12.221 21.715 15.843

Average 21.715 10.814 18.917 15.322 19.538 17.261

Table 1

Average Runtimes for MAP Calculation (in seconds)
Date of Calculation During the Program
15 30 60 90 120 Average

Visit Budget

54 16.365 11.416 9.537 11.479 7.6851 11.296
63 16.365 13.249 12.816 17.157 11.493 14.216
72 16.365 11.913 14.15 13.846 12.884 13.832
81 16.365 17.448 16.11 11.936 17.237 15.819
90 16.365 12.251 9.9218 8.9877 16.463 12.798
99 16.365 9.9473 10.59 9.3482 13.666 11.983
108 16.365 10.412 10.199 9.377 14.746 12.22
117 16.365 10.696 9.5879 8.9027 23.187 13.748
126 16.365 10.36 10.737 9.6123 23.524 14.12
135 16.365 9.7085 10.241 12.753 18.221 13.458
144 16.365 9.3022 13.258 12.135 11.654 12.543
153 16.365 8.5183 11.297 11.527 11.152 11.772
162 16.365 9.4638 8.4174 11.279 14.812 12.068
171 16.365 8.0878 11.092 9.8865 18.003 12.687
180 16.365 8.8929 7.5454 6.5939 12.739 10.427
189 16.365 7.679 7.6401 6.9321 16.365 10.996

Average 16.365 10.584 10.821 10.735 15.239 12.749

Table 2
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Average Runtimes for Knapsack Calculation (in seconds)
Date of Calculation During the Program
15 30 60 90 120 Average

Visit Budget

54 0.21791 0.19278 0.14949 0.1666 0.19679 0.18471
63 0.19295 0.16084 0.19613 0.23577 0.22246 0.20163
72 0.21302 0.2516 0.17474 0.18052 0.3125 0.22648
81 0.25345 0.3542 0.18128 0.17449 0.25997 0.24468
90 0.21698 0.17154 0.168 0.16942 0.21394 0.18798
99 0.17072 0.17607 0.15058 0.15699 0.20012 0.1709
108 0.17086 0.17178 0.17235 0.15172 0.19029 0.1714
117 0.17958 0.17073 0.16465 0.16171 0.20232 0.1758
126 0.18599 0.24335 0.17326 0.16726 0.20706 0.19538
135 0.20403 0.16143 0.16626 0.16681 0.19607 0.17892
144 0.17733 0.14174 0.16112 0.1618 0.18708 0.16581
153 0.18841 0.15411 0.17753 0.17965 0.18822 0.17758
162 0.17892 0.2167 0.18539 0.17419 0.21756 0.19455
171 0.1771 0.29787 0.21357 0.2248 0.21789 0.22625
180 0.20535 0.18508 0.22285 0.16565 0.19392 0.19457
189 0.18554 0.2104 0.19875 0.17776 0.20053 0.1946

Average 0.19488 0.20376 0.1785 0.17595 0.21292 0.1932

Table 3
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