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Abstract

It is still largely unclear to what extent bettors update their prior assumptions

about the strength and form of competing teams considering the dynamics during

the match. This is of interest not only from the psychological perspective, but

also as the pricing of live odds ideally should be driven both by the (objective)

outcome probabilities and also the bettors’ behaviour. Using state-space models

(SSMs) to account for the dynamically evolving latent sentiment of the betting

market, we analyse a unique high-frequency data set on stakes placed during

the match. We find that stakes in the live-betting market are driven both by

perceived pre-game strength and by in-game strength, the latter as measured by

the Valuing Actions by Estimating Probabilities (VAEP) approach. Both effects

vary over the course of the match.

Keywords— OR in sports, live betting, state-space model, stochastic volatility, time series

analysis

1 Introduction

Given the economic relevance of betting markets — the gross gaming revenue was reported as

41.7 billion Euro in 2020 in Europe (European Gaming & Betting Association, 2020) — it is of

much interest to understand the behaviour of the market’s participants, i.e. the bettors. From

the bookmakers’ perspective, it is first of all crucial to avoid inefficiencies in the pricing of
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odds. Furthermore, for profit maximisation it may be beneficial to exploit particular patterns

in bettors’ actions, such as a favourite-longshot bias (or the reverse bias). Such patterns and

potential biases are also interesting from the psychological perspective, and several studies

have indeed already focused on betting behaviour, e.g. investigating the ‘gambler’s fallacy’

(Tversky and Kahneman, 1974; Clotfelter and Cook, 1993), the reaction to a perceived ‘hot

hand’ (Sundali and Croson, 2006; Paul et al., 2014), but also the drivers of demand for sports

bets more generally (Humphreys et al., 2013; Deutscher et al., 2019).

Sports betting takes place both in the pre-game (bets placed before kick-off) and in the in-

game (bets placed during games) market. Although only 45% of the betting volume in Europe

(European Gaming & Betting Association, 2020) is placed in the pre-game market, empirical

research to date has largely focused on this market, investigating market (in-)efficiencies, over-

and underreaction of bettors, drivers of betting volume and forecasting of match outcomes,

to name but a few (see, e.g. Thaler and Ziemba, 1988; Vergin, 2001; Dixon and Pope, 2004;

Feddersen et al., 2017; Deutscher et al., 2018; Brown and Reade, 2019; Butler et al., 2021;

Durand et al., 2021). In contrast, for the in-game market, the existing literature to date

has mostly focused on inefficiencies (see, e.g., Debnath et al., 2003; Choi and Hui, 2014;

Croxson and Reade, 2014), such that in particular the betting behaviour in this important

and highly dynamic market is not yet well understood. The principle question motivating

this contribution thus is the following: What are the drivers of bet placements in the in-game

market? And in particular: To what extent are these related to match dynamics?

For the pre-game betting market, building a forecast based on information such as the

(perceived) teams’ strength is comparable, conceptually, to a fundamental analysis in the

financial market (Abarbanell and Bushee, 1997). In the latter, the incentive to buy stocks —

the counterpart of a sports bet placement — is that people feel confident that the ‘true’ value

of a company is larger than the actual stock price. Market analysts estimate the former by

means of, e.g., the debt-equity-ratio and the earnings before interest, taxes, depreciation, and

amortisation (EBITDA; Mukherji et al., 1997, Quirin et al., 2000, Baresa et al., 2013). Thus,

investments based on a fundamental analysis correspond to an expectation of net profits in

the long run. In contrast, exploiting short-time fluctuations in the financial market can be

attempted based on a technical analysis (see, e.g. Brown and Jennings, 1989; Edwards et al.,

2018). In that case, the investor examines several quantitative indicators such as moving

averages to build a short-term forecast (Zhu and Zhou, 2009). While we do not want to

stretch the analogy too much, we argue that in-game bettors can, in principle, follow not

only a strategy similar to a fundamental analysis, essentially considering the current score
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relative to fixed variables such as the team strength, but also a strategy more similar to a

technical analysis, incorporating information from short-term measures related for example

to ball possession, tackles, goal-scoring opportunities or passes completed. To what extent

either of these two strategy types drives the placement of bets in the in-game market is the

focus of this work.

We investigate the effects of both fixed team information and in-game dynamics on the

stakes placed in the in-game market based on two large and high-resolution data sets from

the 2017/18 season of the German Bundesliga. The first data set covers detailed betting

data, specifically in-game betting odds and volumes for all 306 matches played in the 2017/18

season. This unique data set was provided by a large European bookmaker and allows to

investigate not only in-game odds (as has been done in the existing literature) but also stakes

placed during the match. The second data set, provided by Pappalardo et al. (2019), com-

prises WyScout event data, consisting of information on events such as shots on goal, passes,

1-on-1 situations, and set pieces for all 306 matches. The combination of these two large

data sets enables us to investigate the potential effects of in-game dynamics on betting be-

haviour (rather than on the match outcome; such dependence has been studied, e.g., in

Weimar and Wicker, 2017, Brechot and Flepp, 2020). Moreover, we investigate how these ef-

fects may vary over the course of a match — the expectation being that the importance of

in-game (pre-game) information will increase (decrease) over time.

2 Data

We use in-game stakes placed during all 306 matches of the 2017/2018 German Bundesliga

season to investigate the investment behaviour of bettors during football matches. In partic-

ular, the corresponding data considered cover bets on the match outcome, i.e. home win or

away win (we exclude bets on a draw from our analysis). These data, which were provided

to us by one of the largest bookmakers in Europe (with most of its customers located in Ger-

many), have a 1 Hz resolution. This temporal resolution is finer than necessary with respect

to our research objective, such that to simplify the modelling we aggregate the second-by-

second stakes into intervals of one minute. To compare stakes across teams and matches, we

calculate relativestake per team and minute, where for each interval we divide the amount

of stakes placed on each team by the total amount placed on either team. The two teams’

relative stakes thus always sum to 1, such that it is sufficient to analyse the relative stakes

from the point of view of one team only. Therefore, without loss of generality, in the following
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we will consider the relative stakes placed on the home team only. The processed data set

then comprises N = 306 time series, {yn,t}, n = 1, . . . , 306, with t, t = 1, . . . , T , indicating

the minute of the match. Towards the end of the injury time, much less stakes are placed,

such that we truncate all time series at minute t = 85 to avoid the need to deal with the much

increased variation. Overall, 26 010 observations of relative stakes are considered.

To investigate the drivers of betting behaviour, as represented here by the relative stakes

being placed, we consider both static (pre-game) as well as dynamic (in-game) covariate

information. For the former, we use the pre-game odds as a proxy for the (relative) pre-game

strength of a team, as betting odds in general are accurate probabilistic forecasts for match

outcomes (see, e.g., Spann and Skiera, 2009), and hence constitute reliable measures for the

strength of teams (relative to their opponents). To simplify interpretation, we consider the

implied probabilities, i.e. the inverse of the decimal odds, adjusted for the overround (or

‘vig’). To account for both teams’ strength, we consider the difference of their pre-game

winning probabilities (prewindiff ).

To additionally investigate the effect of in-game actions on the stakes placed, an additional

comprehensive data set on in-game match events is considered. These data, again collected at

1 Hz, were provided by the company WyScout and were made publicly available by Pappalardo

et al. (2019). They contain information on all relevant actions during the match, together

with a time stamp as well as the associated location on the pitch, indicated by x– and y–

coordinates. From the WyScout in-game data, we extract covariate information related to

the match action, aiming to measure how the in-game team strength evolves dynamically

throughout the match. To this end, several simple summary statistics could be used, e.g. the

number of shots, the number of passes or the average distance of actions to the opposing goal.

However, such simple metrics have been shown to be relatively poor predictors for the match

outcome in football (Mackenzie and Cushion, 2012; Carling et al., 2014).

To capture the in-game strength of a team appropriately we thus consider a more refined

metric for measuring the value of actions on the pitch, namely the so-called Valuing Actions by

Estimating Probabilities (VAEP) approach (Decroos et al., 2019). The idea of the VAEP is to

measure the value of any action, e.g. a pass or a tackle, with respect to both the probability of

scoring and the probability of conceding a goal. For illustration, Figure 1 shows an example

sequence of actions and their associated VAEP values, obtained using predictive machine

learning methods, in particular gradient-boosted trees — see the Appendix for more details.

From the action-level VAEP values, we build the covariate vaepdiff, where we consider the

differences between the teams’ VAEP values aggregated over 1-minute intervals. The higher
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(1) pass
0.02

(2) dribble
0.01

(3) pass
0.01

(4) dribble
0.02

(5) cross
0.06

(6) shot
0.88

Figure 1: The attack which led to a goal scored by Amine Harit in the match between
Borussia Dortmund and FC Schalke 04 (4:4) on November 25, 2017. The numbers
indicate the VAEP values of the corresponding actions.

the value of vaepdiff, the more the momentum of the match is with the team for which the

relative stakes are modelled. The top panel in Figure 2 shows an example of how vaepdiff

evolves over time along with our response variable, the relative stakes, for a scoreless draw.

A sequence of positive VAEP differences between minutes 15 and 25 is followed by a shift

towards increased betting on Hamburger SV, whereas around minute 40 a decrease in the

relative stakes may be caused by negative VAEP differences, i.e. Werder Bremen gaining

some momentum. The bottom panel of Figure 2 shows a second example match, one in which

goals were scored. The first goal in minute 29 here leads to a shift towards bets on FSV

Mainz 05. However, the relative stakes are mostly smaller than 0.5, likely caused by RB

Leipzig being the favourite in the match, as their pre-game winning probability was larger

than for FSV Mainz 05.

To explore the relationship between the VAEP and the relative stakes in our data, we

consider their serial cross-correlations. Figure 3 shows the first 20 cross-correlation lags for all

matches in our data (truncated at the time the first goal was scored, to allow for a meaningful
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Figure 2: Time series of the relative stakes placed on a win of Hamburger SV (playing
against Werder Bremen) and FSV Mainz 05 (playing against RB Leipzig). The verti-
cal bars denote the differences between the competing teams’ VAEP values from the
perspective of Hamburg and Mainz, respectively, and dashed lines indicate goals. In
the bottom panel, the 2-0 and 3-0 were scored in minutes 85 and 90, respectively — we
truncate all time series in minute 85.

comparison), indicating a small positive correlation at lower lags. Table 1 displays summary

statistics on the VAEP and on all remaining variables considered in our analysis.

Table 1: Descriptive statistics of the variable analysed, relativestake, as well as the
covariates prewindiff and vaepdiff. Since the covariate prewindiff is constant across
matches, the standard deviation was calculated on the basis of one value per match.

n mean st. dev. min max

relativestake 26,010 0.493 0.313 0.000 1.000
prewindiff 26,010 0.139 0.317 −0.740 0.851
vaepdiff 26,010 0.004 0.161 −1.091 1.167
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Figure 3: Cross-correlations between the VAEP and the relative stakes, with each grey
line referring to one of the 306 time series considered, and the red line showing the
overall mean for each lag.

3 Modelling relative stakes

The time series of relative stakes shows strong positive serial correlation (cf. Figure 2). This

correlation does not result from a potential direct effect of the stakes placed in any given

minute on the stakes placed in subsequent one-minute intervals, as individual bettors (for

the most part) act independently of each other. Instead, the correlation is induced by the

market progressing through different phases: for example, in the top panel of Figure 2, the

relative stakes placed on the home team are relatively low between minutes 10–15. In con-

trast, between minutes 25 and 65, bets are placed predominantly on the home team. Such

different phases can be formalised as a latent variable within a state-space model (SSM),

which therefore constitutes the natural modelling approach for our data: stakes are driven

by the current underlying market phase, more intuitively to be understood as the market

sentiment (e.g. leaning towards bets being placed on the home team), and the unobserved

market sentiment evolves probabilistically over time, exhibiting serial correlation and hence

inducing serial correlation also in the observed time series of stakes.
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More specifically, such an SSM comprises two processes, (i) an unobserved, serially corre-

lated state process {gn,t}, in our application to be seen as a proxy of the market sentiment,

with higher values implying a higher tendency towards bet placement on the home team, and

(ii) an observed state-dependent process {yn,t}, which is driven by {gn,t} and in our case is

the time series of relative stakes placed. For simplicity, the subscript n, indicating the match

considered, is omitted in the following. The state variables are assumed to be first-order

Markovian, i.e.

f(gt|g1, . . . , gt−1) = f(gt|gt−1),

and the observations are assumed to be conditionally independent of each other and of previous

states, given the current state:

f(yt|g1, . . . , gt, y1, . . . , yt−1) = f(yt|gt).

In the next section, we develop the specific model formulation, i.e. the precise form of the

conditional distributions f(gt|gt−1) and f(yt|gt), used to model the time series of relative

stakes. Details on the implementation of the maximum likelihood estimation of the model

parameters are provided in the Appendix.

3.1 Baseline state-space model

Our response variable yt, the relative amount of stakes placed on the home team, is continuous-

valued with support [0, 1], rendering the beta distribution a natural choice for modelling

purposes. The support of the regular beta distribution is (0, 1), such that we use the beta-

inflated distribution (BEINF) to account for the fact that in some intervals stakes are placed

on one team only (in which case yt = 0 or yt = 1). We follow the parametrisation proposed

by Rigby et al. (2019), such that

yt ∼ BEINF(µt, σ, p, q), with f(yt) =


p, for yt = 0;

(1− p− q)h(yt), for 0 < yt < 1;

q, for yt = 1,

for 0 ≤ yt ≤ 1. Here h(yt) is the density function of the regular beta distribution, i.e.

h(yt, a, b) =
ya−1
t (1− yt)b−1

B(a, b)
,
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with the beta function B(a, b). The shape parameters a and b are not directly amenable to

regression modelling, such that we consider a reparametrisation in terms of the beta distribu-

tion’s mean µt and its standard deviation σ (Rigby et al., 2019). From µt and σ the associated

shape parameters are obtained as a = µt(1 − σ2)/σ2 and b = (1 − µt)(1 − σ2)/σ2. Figure

4 displays the exact dependence structure of our SSM as a directed acyclic graph. Specifi-

cally, to account for the dynamic nature of the relative stakes within matches, the mean µt is

assumed to be time-varying and is modelled as follows:

µt = logit−1(α0 + αprewindiff + gt). (1)

The rationale of the latter two components of the linear predictor is as follows. We include the

difference of the teams’ pre-game win probabilities (prewindiff ) to address systematic effects

such as potential favourite-longshot biases, or their reverse, throughout matches (see, e.g.,

Cain et al., 2000, Cain et al., 2003). In addition, information on the current market sentiment

is included via gt, thereby accounting for phases with stronger preferences in bet placement

on either team. If a team shows positive actions on the pitch, then the market sentiment

towards placing bets on that team should improve, which would be reflected by an increase

in gt.

The unobserved variable corresponding to the market sentiment, gt, is modelled as an

autoregressive process of order 1, with additional covariate dependence:

gt = φgt−1 + βvaepdifft−1 + ωηt, (2)

with ηt
iid∼ N (0, 1), ω > 0 and φ ∈ (−1, 1). The in-game covariate vaepdiff is included in the

state variable gt, as it seems natural to assume that potential effects of positive actions by a

team will not necessarily be instantaneous — i.e. affecting the mean of the relative stakes only

in the very minute the action took place — but rather accumulate and persist over some time.

For example, from the bettor’s perspective, a single one-minute interval with high vaepdiff

values is not as likely to affect his or her betting decision as a positive spell of say 15 minutes

of the team considered, with overall elevated vaepdiff values. This is accounted for by allowing

positive contributions of vaepdiff to accumulate in gt, which for φ > 0 is persistent and hence

to some extent memorises these contributions.
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Figure 4: Dependence structure of the SSM used to model the relative stakes yt, driven
by the state variable gt corresponding to the market sentiment. Additional covari-
ate dependence is assumed in both state-dependent and state process, for the former
considering static covariate information (pre-game winning probabilities are constant
within matches), for the latter considering dynamic covariate information built from
event data.

3.2 Varying-coefficient state-space model

The model described in the previous section is to be regarded as a baseline model, which

attempts to formalise a) how the relative stakes evolve during a match depending on the

market sentiment, and b) how the covariates of primary interest, i.e. prewindiff and vaepdiff,

are most naturally incorporated into this model. We will now extend this baseline model

to improve its realism by allowing the effects of these covariates to vary over time and by

introducing additional control variables.

Varying coefficients

Due to the dynamic nature of football matches, it may very well be the case that the effects

of prewindiff and vaepdiff vary over time. Specifically, it seems intuitively plausible that

the strengths of the teams, as measured by the pre-game win probabilities, are a strong
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predictor for betting activity at the beginning of a match when little additional information

is available. Vice versa, towards the end of a match the teams’ performances during the

match might become increasingly important for understanding betting dynamics. To allow

the effects of prewindiff and vaepdiff to vary over time, we replace α and β in Eqs. (1) and

(2) by time-varying parameters αt and βt, respectively. To avoid a priori assumptions on the

functional forms of αt and βt, we model these functions nonparametrically using B-splines.

Since the seminal paper by Eilers and Marx (1996), the class of B-splines has rapidly

gained popularity in nonparametric statistical modelling, and in recent years, B-spline-based

modelling of functional effects has been embedded also in various types of SSMs (see, e.g.

de Souza and Heckman, 2014; Hambuckers et al., 2018; Mews et al., 2022). In our setting,

αt and βt, the time-varying effects of prewindiff (on the mean relative stakes) and vaepdiff

(on the state variable indicating the market sentiment), respectively, are modelled as linear

combinations of a finite number of section-wise defined basis functions,

αt =
K∑
k=1

ναkBk(t), βt =
K∑
k=1

νβkBk(t), (3)

for t = 1, . . . , 85, where B1, . . . , Bk, k = 1, . . . ,K, are fixed, equidistant B-spline basis func-

tions of order three. We use cubic polynomial B-splines to obtain a twice continuously dif-

ferentiable function, thus leading to smooth density estimates (Langrock et al., 2017). To

prevent overfitting we add a roughness penalty term, thus considering so-called penalised

B-splines, i.e. P-splines (Eilers and Marx, 1996). Specifically, we penalise high values of the

second-order differences of adjacent coefficients in the linear combinations above. The sum

of these second-order differences corresponds to an approximation of the integrated squared

curvature of the functional estimate. The resulting penalised log-likelihood function is then

given as follows (cf. Langrock et al., 2017):

`p = log
(
Lapprox

)
− λα

2

K∑
k=3

(∆2ναk )2 −
λβ
2

K∑
k=3

(∆2νβk )2,

with the unpenalized likelihood function Lapprox (see Eq. (8) in the Appendix), the second-

order differences ∆2νk = νk − 2νk−1 + νk−2, and smoothing parameters λα and λβ to control

the bias-variance trade-off. For λα, λβ → ∞ the varying coefficients αt and βt simplify to a

linear effect (Eilers and Marx, 1996). In other words, this nonparametric approach can capture

complex time-varying effects if necessary and otherwise will typically collapse to simple linear
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modelling due to the penalisation of non-zero curvature.

Following Fahrmeir et al. (2013), the tuning parameters λα and λβ are chosen via the

Akaike Information Criterion (AIC), AIC = −2 · l+2 · d̂f , where l is the unpenalised likelihood

under the fitted model and d̂f is an estimate of the degrees of freedom. The latter is obtained

as the trace of the product of the Fisher information matrix for the unpenalized likelihood

and the inverse Fisher information matrix for the penalized likelihood (see Gray, 1992). We

consider the following two-dimensional grid from which the smoothing parameters are chosen:

Λα × Λβ = {0.05, 0.25, 1, 5, 25, 100, 500} × {0.05, 0.25, 1, 5, 25, 100, 500}. (4)

For each combination of λα ∈ Λα and λβ ∈ Λβ, the model is fitted and the AIC calculated,

then selecting the combination of λα and λβ that yields the lowest AIC value. A more detailed

discussion of the implementation of P-splines can be found in Langrock et al. (2017).

Additional control variables

As indicated by the bottom panel of Figure 2, the relative stakes placed on the home team

might also be affected by the current score. We thus now also include the difference in the

current score at minute t (scoredifft), calculated from the home team’s point of view, such

that positive values correspond to a lead of the home team. Since considering the difference

in the current score alone does not fully reflect a team’s winning chances, we further include

the in-game win probability in minute t, which is derived by the betting odds in minute t

(winprobteamt). As for the pre-game win probabilities, we again consider the inverse of the

odds adjusted for the bookmaker’s vig.

We add these further covariates to the predictor for the mean of the BEINF distribution:

µt = logit−1
(
α0 +

K∑
k=1

ναkBk(t) prewindiff + ζ1scoredifft + ζ2winprobteamt + gt
)
. (5)

4 Results

4.1 Baseline state-space model

For the baseline SSM specified by (1) and (2), with the effects of prewindiff and vaepdiff

assumed to be constant over time, the parameter estimates are given in Table 2. The persis-

tence in the state process was estimated to be fairly strong (φ̂ = 0.968), corresponding to a
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positive correlation in the proportional allocation of stakes. In other words, if bets are placed

predominantly on either of the two teams, this pattern tends to persist for some time. The

estimate of the intercept α0 is negative, indicating that overall higher stakes are placed on

the away team (see also Levitt, 2004, for similar results) when the pre-game win probabilities

of both teams are identical (i.e. prewindiff = 0). A possible explanation of this effect is that

bettors may be underestimating the home advantage. The effects of prewindiff and vaepdiff

were both estimated to be positive, confirming the intuition that team strength, both prior to

the match and as manifested during the match itself, is valued by bettors. According to the

AIC, this model is preferred over the model excluding prewindiff (∆AIC = 339.17) as well as

over the model excluding vaepdiff (∆AIC = 522.04). This is corroborated also by the 95%

confidence intervals given in Table 2.

Table 2: Parameter estimates with 95% confidence intervals for the baseline SSM.

parameter estimate 95% CI
φ 0.968 [0.964; 0.971]
ω 0.249 [0.238; 0.261]
σ 0.300 [0.296; 0.303]
α0 -0.195 [-0.278; -0.113]
α
(
prewindiff

)
2.395 [2.151; 2.640]

β
(
vaepdiff

)
0.600 [0.550; 0.651]

4.2 Varying-coefficient state-space model

The varying-coefficient SSM, which allows the effects of prewindiff and vaepdiff to change

as the match progresses, was estimated using K = 10 basis functions to build the functional

effects according to (3). The model was fitted for all combinations of tuning parameters from

Λα × Λβ as specified in (4), with the optimal choice (λα, λβ) = (1, 5) according to the AIC.

The model including time-varying effects of prewindiff and vaepdiff is clearly favoured over

the simpler model reported in Section 4.1 (∆AIC = 270.62)1.

Regarding the estimated parametric effects, the results again confirm serial correlation

in the state process (φ̂ = 0.963). When the market sentiment towards the home team is

improved (as induced for example by a large vaepdiff value), such that gt takes higher values,

this process tends to persist in this phase for the next few minutes. For the effect of the

1To select the tuning parameters λα and λβ , we also considered the BIC and the Hannan-Quinn
criterion, which led to very similar results.
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Figure 5: Time varying P-spline effects of the pre-game winning probabilities (λα = 1)
as well as the VAEP variable (λβ = 5). The white area indicates the intervals data was
considered for. The grey area indicates where outer knots are set.

difference in the current score and the in-game win probability, ζ1 and ζ2 are both estimated

to be positive (ζ̂1 = 0.234, ζ̂2 = 0.336) — teams having the lead and those with a higher

in-game win probability are thus preferred by bettors.

The nonparametrically estimated time-varying effects of prewindiff and vaepdiff are shown

in Figure 5. The effect of prewindiff on stake placement is estimated to be positive throughout

the match, but with the effect size decreasing as the match progresses. This matches the

intuition that the effect of prewindiff — a variable measuring the overall strength of a team

but not taking into account the actions on the pitch — should be largest when new information

is limited, i.e. at the very beginning of matches. The estimated effect size of prewindiff

decreases approximately linearly over time. In contrast, for vaepdiff we find a highly non-

linear functional form of the effect size over time. The effect of vaepdiff — a variable measuring

the in-game strength of a team — is estimated to be slightly positive throughout the first

half of a match, followed by a much more rapid increase in the second half. Bettors thus do

value actions on the pitch, with positive spells of a team leading to a shift in the market’s

sentiment and eventually an increase in the relative stakes placed on that team. Perhaps most
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interestingly, the importance of in-game actions as drivers of betting volumes very rapidly

increases towards the end of matches.

The results show that bettors incorporate information both on the perceived (pre-game)

team quality as well as in-game dynamics when devising their betting strategy. This is in

accordance with evidence found for financial markets, where more than 85% of investors rely

on both fundamental as well as technical analysis (Lui and Mole, 1998), thus incorporating

both the valuation of a company as well as the stock’s more short-term momentum.

4.3 Implications for bookmakers

−0.2

−0.1

0.0

0.1

0.2

0.3

0 10 20 30 40 50 60 70 80
Minutes played

V
A

E
P

 d
iff

er
en

ce
 / 

W
in

 P
ro

ba
bi

lit
y

Hamburger SV vs. Werder Bremen 0:0
Win probability of Hamburger SV

Figure 6: Time series of the win probabilities of Hamburger SV for one example match
from the data set (Hamburger SV vs. Werder Bremen). The vertical bars denote the
differences between both teams’ VAEP values from the point of view of Hamburger SV.
Despite phases of dominance seeming to alternate, especially towards the end of the
match between minutes 60 and 80, the corresponding win probability — derived by the
in-game odds — does not fluctuate accordingly. The changes in the win probability are
almost exclusively resulting from the time remaining.

The estimated effect of in-game actions on stake placement indicates that bettors’ stake

placement is driven by in-game dynamics. In contrast, for the example match Hamburger

SV vs. Werder Bremen, Figure 6 illustrates that the betting odds and hence the implied

winning probabilities appear to be largely unaffected by in-game actions as proxied by the
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VAEP differences. As bookmakers thus do not seem to incorporate such information into

their betting odds, this raises the question of whether bettors can exploit such potential

inefficiencies. To that end, we evaluate an example simple betting strategy: we consider all

matches that are tied after halftime and evaluate the outcome of a strategy placing a bet of 1

euro on the home team whenever the vaepdiff exceeds certain thresholds. Table 3 displays the

returns when following this strategy for our data set, distinguishing several match periods.

While positive returns could have been obtained for relatively large vaepdiff values in the

final phase of a match, it should be noted here that this combination involves only a few data

points. The betting strategy would in fact have led to negative returns in the majority of

settings, with some of the negative returns substantially larger than the usual vig of about

5%.

Table 3: Possible returns for bettors using simple in-game betting strategies on final
match outcomes based on different thresholds for vaepdiff. Only matches tied in the
second half are considered.

vaepdiff> 0.02 vaepdiff> 0.03 vaepdiff> 0.05
minute 45-60 -0.27 -0.20 -0.14
minute 60-75 -0.08 -0.17 -0.28

minute 75 until end -0.01 0.04 0.32

The models developed here could also be used by bookmakers, for example when setting

odds or developing automatic fraud detection systems. In particular, the models can be used

to study the sensitivity of stake placement with respect to changes in the odds, thereby poten-

tially identifying opportunities for profit maximisation. Furthermore, model-based forecasts

of relative stakes can be used to inspect unusual betting behaviour, i.e. to identify stake

placements that are not well-explained by the model.

To obtain real-time predictions of relative stakes, depending on the odds, we can calculate

one-step-ahead forecasts under the fitted SSM. For this, we use the same discretisation strategy

as for the parameter estimation (cf. Appendix), such that the state distribution in minute

t + 1 is predicted, based on which we obtain the distribution of relative stakes according to

Eq. (5). To illustrate such one-step-ahead prediction, Figure 7 displays the time series of

relative stakes placed within the example matches already shown in Figure 2, together with

the model-based one-step-ahead forecasts during the second half. In addition to showcasing

how the model can be used in particular for outlier detection, the figure also indicates that

our model provides adequate predictions of the relative stakes for the two example time series.
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Figure 7: Observed relative stakes (grey line) and one-step-ahead predictions of relative
stakes under our model and conditional on the first half. To illustrate the uncertainty,
the light blue points are simulated from the one-step-ahead predicted BEINF distri-
bution at time t + 1 (500 simulated observations for each time point). The blue line
indicates the predicted mean.

5 Discussion

Our results show that bettors react to in-game dynamics. With this effect being strongest

in the second half, it seems that bettors try to exploit the information provided by in-game

dynamics. However, evaluating a corresponding simple betting strategy where bets are placed

on teams with positive actions, we found that the potential returns to bettors are negative

— thus indicating an overreaction by bettors. Such an overreaction to positive events has in

fact already been reported in sports betting (Durand et al., 2021; Ötting et al., 2021) and

is also known to occur in financial markets (see, e.g., Ma et al., 2005; Piccoli et al., 2017).

In particular, Huang et al. (2007) showed that price-earning ratios in the financial market

deviate from expectations based on fundamentals, in other words that stock prices can be

subject to an overreaction. For the in-game betting market, our results indicate a similar

momentum-induced overreaction by bettors.

From a bookmaker’s point of view, the overreaction of bettors described above can im-

prove profits. Our analysis does however not reveal whether the bookmaker’s current pricing

strategy is profit-maximising. A framework for maximising bookmaker revenue by taking into

account in-game information was developed by Lorig et al. (2021).
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Moreover, for bookmakers, the model-based prediction of relative stakes can be beneficial

in detecting unusual betting behaviour. In particular, if the observed relative stakes are

substantially higher than the predicted relative stakes — e.g. outside the 99% quantile of the

associated forecast distribution — this could indicate insider information or fraud. However,

a comprehensive fraud detection system should additionally take into account the absolute

(rather than only the relative) stakes (Ötting et al., 2018).

In more general terms, while our study focused on a specific aspect of live betting —

namely to what extent in-game dynamics affect bettor behaviour — it also illustrates the im-

mense potential of sports data, the availability of which has improved thanks to data providers

such as WyScout or StatsBomb. The analysis of such complex data requires sophisticated

statistical modelling, and SSMs as applied in the present paper constitute a versatile frame-

work to accommodate the time series nature of most sports data (cf. Koopmeiners, 2012;

Green and Zwiebel, 2018; Ötting et al., 2020; Mews and Ötting, 2022). We thus anticipate

an uptake of this type of modern statistical modelling tools in future research in particular

into the dynamics of live-betting markets, but also in other sports settings.
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Appendix

A.1 Computation of the VAEP values

The VAEP values are obtained using predictive machine learning as proposed in Decroos

et al. (2019), fitting gradient-boosted trees to the data on in-game actions across five different

seasons as well as one World Cup and one European Championship (data provided by Pap-

palardo et al., 2019). We obtain positive but small values for successful passes and dribblings

in midfield, whereas corresponding actions yield larger VAEP values when occurring closer to

the goal.

A.2 Calculating and optimising the SSM likelihood

The likelihood of our non-linear and non-Gaussian SSM involves multiple integrals, which we

evaluate numerically by finely discretising the state process as first suggested by Kitagawa

(1987). This discretisation corresponds to a reformulation of the continuous-state SSM as a

discrete-state hidden Markov model (HMM) with a large state space (Zucchini et al., 2016).

Using the Markov property assumed for the state process and the conditional independence

of the observations, given the states, the likelihood can be written as

L(θ) = f(y1, . . . , yT ) =

∫
. . .

∫
f(g1)f(y1|g1)

T∏
t=2

f(gt|gt−1f(yt|gt) dgT . . . g1, (6)

where the vector θ contains all model parameters. While the integrand has a simple

form, the multiple integration makes this expression analytically intractable. Our approach

to (approximately) evaluating the right side of Eq. (6) is based on very finely discretising

the state space, thus replacing the integrals by approximating sums. More specifically, for

the state process gt we consider a possible range [c0, cm], c0, cm ∈ R, chosen sufficiently large

as to cover virtually all possible values the process may take. We split this range into m

equidistant intervals Ci = (ci−1, ci), i = 1, . . . ,m, of length h = (cm − c0)/m, and denote the

midpoint of the i–th interval by c?i . Using quadrature with a simple midpoint rule over each

of the intervals C1, . . . , Cm, expression (6) is approximated by

Lapprox = hT
m∑
i1=1

...

m∑
iT=1

f(c?i1)f(y1|g1 = c?i1)

T∏
t=2

f(c?it |gt−1 = c?it−1
)f(yt|gt = c?it). (7)

While the calculation of this expression is not computationally feasible given the large num-
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ber of summands (mT ), this reformulation allows us to apply recursive techniques from the

HMM toolbox, in particular for calculating the approximate likelihood (for a single match).

Specifically, the approximated likelihood in (7) is precisely the likelihood of a particular m-

state HMM. The initial state distribution of this HMM is given by the m-dimensional vector

δ = (δ1, . . . , δm) with δi = hf(c?i ). Similarly, the m×m transition probability matrix (t.p.m.)

Γ of the HMM has entries γij = hf(c?j |c?i ) — the approximate probability of the state process

moving from interval Ci to interval Cj . In our model, Γ additionally depends on covariates,

such that we use the notation Γ(t) to make it explicit that the t.p.m. varies over time. Finally,

the m-state HMM involves the state-dependent densities f(yt|c?i ), i = 1, . . . ,m, representing

the approximate density of the observation yt, given that the state process gt is in the subin-

terval Ci at time t. Having recognised (7) as the likelihood of this particular HMM, we can

use the corresponding powerful tools for inference, first and foremost the forward algorithm

for efficiently evaluating (7), yielding the matrix product expression

Lapprox = δP(y1)Γ
(1)P(y2)Γ

(2)P(y3) . . .Γ
(T−2)P(yT−1)Γ

(T−1)P(yT )1, (8)

with 1 = (1, . . . , 1) ∈ Rm. This discretisation trick allows us to calculate an arbitrarily

accurate approximation of the SSM likelihood at computational cost O(m2T ) only (see also,

for example, Bartolucci and De Luca, 2001; Langrock, 2011; Zucchini et al., 2016; Mews et al.,

2022).

To evaluate the likelihood for the complete data set, independence of stakes placed across

matches is assumed, such that the joint likelihood for all 306 matches is simply the product of

the likelihoods of the individual matches. Parameter estimation is then carried out numerically

by optimising the likelihood — or, in case of the varying-coefficient model, the penalised

likelihood — using a Newton-Raphson-type scheme.
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