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Robust Maximum Capture Facility Location under

Random Utility Maximization Models

Abstract

We study a robust version of the maximum capture facility location problem in a com-

petitive market, assuming that each customer chooses among all available facilities according

to a random utility maximization (RUM) model. We employ the generalized extreme value

(GEV) family of models and assume that the parameters of the RUM model are not given

exactly but lie in convex uncertainty sets. The problem is to locate new facilities to maxi-

mize the worst-case captured user demand. We show that, interestingly, our robust model

preserves the monotonicity and submodularity from its deterministic counterpart, implying

that a simple greedy heuristic can guarantee a (1−1/e) approximation solution. We further

show the concavity of the objective function under the classical multinomial logit (MNL)

model, suggesting that an outer-approximation algorithm can be used to solve the robust

model under MNL to optimality. We conduct experiments comparing our robust method to

other deterministic and sampling approaches, using instances from different discrete choice

models. Our results clearly demonstrate the advantages of our robust model in protecting

the decision-maker from worst-case scenarios.

Keywords: Facilities planning and design, maximum capture, random utility maximization,

robust optimization, local search, outer-approximation

1 Introduction

Facility location is an active research area in operations research and has been attracting re-

searchers for decades. Facility location problems play important roles in many decision-making

tasks such as installation of new retail or service facilities in a market, launching new products

to the market, or developing optimal customer segmentation policies. In facility location, a firm

aims at selecting a set of locations to locate their facilities to maximize a profit or minimize a

cost function. In this context, to make good decisions, one may need to build a good model to

predict customers’ behavior with respect to each possible facility location decision. The random

utility maximization (RUM) discrete choice framework (McFadden, 1978) has become useful in

the context due to its flexibility in capturing human behavior. To the best of our knowledge,

existing works on facility location under RUM all assume that the parameters of the RUM model

are known with certainty and ignore any uncertainty associated with the estimates, with a tacit

understanding that the parameters have to be estimated in practice. Such an estimation can

cause errors and the decision-maker needs to cope with the fact that the estimates of the choice

parameters can significantly deviate from their true values. Ignoring such estimation errors

would lead to bad decisions, as shown in several studies in the robust optimization literature

(see Bertsimas et al., 2011, for instance). In this paper, we address this uncertainty issue by

studying a robust version of the facility location problem under RUM.
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We consider the problem of how to locate new facilities in a competitive market such that

the captured demand of users is maximized, assuming that each individual chooses among

all available facilities according to a RUM model. This problem is called as the maximum

capture problem (MCP) (Benati and Hansen, 2002a). We formulate and solve the MCP under

uncertainty in a robust manner. That is, we assume that customers’ behavior is driven by

the well-known generalized extreme value (GEV) family of models, but the parameters of the

RUM model cannot be determined with certainty and belong to some uncertainty sets. These

uncertainty sets can represent a partial knowledge of the decision-makers about the RUM model

and can be inferred from data. The goal here is to maximize the worst-case expected captured

customer demand when the RUM parameters vary in the uncertainty sets. We will study

theoretical properties and develop algorithms for the robust MCP under any GEV model and,

in particular, the robust MCP under the popular multinomial logit (MNL) (Train, 2003).

Before presenting our contributions in detail, we note that, when mentioning the “GEV” model,

we refer to any RUM (or discrete choice) model in the GEV family. This family covers most of

the discrete choice (or RUM) models in the literature (Train, 2003).

Our contributions: We study a robust version of the MCP under a GEV model, assuming

that the parameters of the GEV model are not known with certainty but can take any values

in some uncertainty sets, the uncertainty sets are customer-wise independent, and the objective

is to maximize the worst-case expected captured customer demand. We will show that, under

our uncertainty settings, the inner minimization problem can be solved by convex optimiza-

tion. We then leverage the properties of the GEV family to show that the worst-case objective

function is monotonic and submodular for any GEV model, noting that the monotonicity and

submodularity have been shown for the deterministic MCP (Dam et al., 2021) and in this

work, we show that the robust model preserves both properties. Here, it is important to note

that a robust submodular maximization problem is generally inapproximable, i.e. there is no

polynomial-time algorithm that can guarantee a positive fraction of the optimal value, unless

P = NP (Krause et al., 2008). Our results, however, show that, in the context of the MCP, a

simple polynomial-time greedy algorithm can achieve (1− 1/e) approximation solutions.

The monotonicity and submodularity of the robust problem imply that the robust MCP, under

a cardinality constraint, always admits a (1− 1/e) approximation algorithm (Nemhauser et al.,

1978). That is, we can simply start from an empty set and iteratively select locations, one at a

time, taking at each step the location that increases the worst-case objective function the most,

until the maximum capacity is reached. A solution from this simple procedure will yield an

objective value being at least (1− 1/e) times the optimal value of the robust problem. We then

further adapt the local search procedure proposed by Dam et al. (2021) to efficiently solve the

robust MCP under GEV models. Our results generally hold for any RUM model in the GEV

family, and under any convex uncertainty sets. We further consider the robust MCP under the

MNL model and show that, under the assumption that the uncertainty sets are independent

over customer zones, the robustness preserves the concavity of the relaxation of the worst-
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case objective function, implying that an outer-approximation algorithm can be used to exactly

solve the MCP under MNL. A multicut outer-approximation algorithm is then presented for this

purpose. We finally conduct experiments based on the MNL and nested logit (two most popular

RUM models) to demonstrate the advantages of our robust model in protecting decision-makers

from worst-case scenarios, as compared to other deterministic and sampling-based baselines.

Literature review: The GEV family (McFadden, 1978, Train, 2003) covers many popular

RUM models in the demand modeling and operations research literature. In this family, the

simplest and most popular member is the MNL (McFadden, 1978) and it is well-known that

the MNL model retains the independence from irrelevant alternatives (IIA) property, which is

often regarded as a limitation of the MNL model. The literature has seen several other GEV

models that relax this property and provide flexibility in modeling the correlation between

choice alternatives. Some examples are the nested logit (Ben-Akiva and Lerman, 1985, Ben-

Akiva, 1973), the cross-nested logit (Vovsha and Bekhor, 1998), and network GEV (Daly and

Bierlaire, 2006, Mai et al., 2017a) models. The cross-nested and network GEV models are

considered as being fully flexible as they can approximate any RUM model (Fosgerau et al.,

2013). It is worth noting that in the context of descriptive representation (i.e., modeling human

behavior) the MNL and nested logit models are found the most empirically applicable among

existing RUM models, but in prescriptive optimization (i.e., decision-making), apart from the

MNL, the use of other GEV models is limited due to their complicated structures. Besides

the GEV family, we note that the mixed logit model (MMNL) (McFadden and Train, 2000) is

popular due to its flexibility in capturing utility correlations. In the context of the MCP, the

use of the MMNL however yields the same problem structure as the one from the MNL model

(Dam et al., 2021, Mai and Lodi, 2020).

Besides the GEV family and MMNL model, the literature has seen other discrete choice models

that would be useful for people demand modeling. For example, Blanchet et al. (2016) propose a

Markov-chain choice model under which the substitution from one product to another is modeled

as a state transition in a Markov chain. Gallego and Wang (2019) propose a threshold utility

model where consumers buy any product whose net utility exceeds a non-negative, product-

specific threshold. Farias et al. (2013) propose a non-parametric choice model where the choice

probabilities are modelled based on a distribution over all permutations of the choice alternative

preferences. (Mishra et al., 2014) develop the marginal distribution choice (MDC) models based

on the assumption that the distribution of the random utilities are not given exactly but belong

to an ambiguity set with marginal information. With techniques from distributionally robust

optimization, the estimation of MDC models in decision-making can be handled by convex

optimization (Yan et al., 2022). The difference between the MDC and our robust models lies

in the sources of uncertainty each model captures. More precisely, under the RUM principle,

the utility of an alternative j is modelled as uj = vj + ξj , where vj is deterministic and ξj is

assumed to follow a given distribution. While our model captures uncertainties associated with

the deterministic term vj , the MDC model assumes that the distribution of ξj is ambiguous. In

fact, our robust model is based on the well-studied GEV family while the MDC is not, and our
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robust model is capable of naturally capturing uncertainties caused by, for instance, estimation

errors, limited data, or lack of information about facilities and customers when specifying the

utility function. The MDC model, to the best of our knowledge, is limited in this aspect.

Moreover, while the application of GEV models in choice-based optimization has had a lot

of success, the application of the MDC model has just received attention recently and is still

limited.

In the context of facility location under RUM, there are a number of works making use of the

MNL model to capture customers’ demand. For example, Benati and Hansen (2002a) formulate

the first MCP under MNL and propose methods based on mixed-integer linear programming

(MILP) and variable neighborhood search (VNS). Afterward, some alternative MILP mod-

els have been proposed by Zhang et al. (2012) and Haase (2009). Haase and Müller (2013)

then provide a comparison of existing MILP models and conclude that the MILP from Haase

(2009) gives the best performance. Freire et al. (2015) strengthen the MILP reformulation

of (Haase, 2009) using a branch-and-bound algorithm with some tight inequalities. Ljubić and

Moreno (2018) propose a branch-and-cut method combining two types of cutting planes, namely,

outer-approximation and submodular cuts, and Mai and Lodi (2020) propose a multicut outer-

approximation algorithm to efficiently solve large instances. All the above papers employ the

MNL or MMNL models, leveraging the linear fractional structures of the objective functions to

develop solution algorithms. Recently, Dam et al. (2021) make the first effort to bring general

GEV models into the MCP. In this work, we show that the objective function of the MCP under

GEV is monotonic submodular, leading to the development of an efficient local search algorithm

with a performance guarantee.

Our work belongs to the general literature of robust facility location where the problem is

to open new (or reopen available) facilities under uncertainty. For example, Averbakh and

Berman (1997) considers a minimax-regret formulation of the weighted p-center problem and

shows that the problem can be solved by solving a sequence of deterministic p-center prob-

lems. Subsequently, Averbakh and Berman (2000a) study a minimax-regret 1-center problem

with uncertain node weights and edge lengths and Averbakh and Berman (2000b) consider a

minimax-regret 1-median problem with interval uncertainty of the nodal demands. Some dis-

tributionally robust facility location models have been studied, for instance, Lu et al. (2015)

study a distributionally robust reliable facility location problem by optimizing over worst-case

distributions based on a given distribution of random facility disruptions, Liu et al. (2019) study

a distributionally robust model for optimally locating emergency medical service stations under

demand uncertainty, and Hugosson and Algers (2012) study a facility location problem where

the distribution of customer demand is dependent on location decisions. We refer the reader to

Snyder (2006) for a review. Our work differs from the above papers as we employ RUM models,

thus customers’ behavior is captured by a probabilistic discrete choice model.

Our work relates to the rich literature of robust optimization (e.g. Ben-Tal and Nemirovski,

1998, 1999, Bertsimas et al., 2004, EI-Ghaoui and Lebret, 1997) and distributionally robust

optimization (Rahimian and Mehrotra, 2019, Wiesemann et al., 2014). Most of the works in the
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robust/distributionally robust optimization literature are focused on linear or general convex

programs, thus the existing methods do not apply to our robust MCP. It is worth mentioning

some robust models in the assortment and/or pricing optimization literature, where RUM mod-

els are made use to capture customers’ behavior. Some examples are Rusmevichientong and

Topaloglu (2012), Chen et al. (2019), and Mai and Jaillet (2019), noting that, in the context of

assortment and/or pricing optimization, the objective function is often based on one fraction,

instead of a sum of fractions as in the context of the MCP. Moreover, the objective function of

an assortment problem is typically not submodular, even when the choice model is MNL. Our

robust MCP model under MNL closely relates to the robust fractional 0-1 program studied in

Mehmanchi et al. (2020) but differs by the fact that our approach works with any convex un-

certainty sets while the approaches of Mehmanchi et al. (2020) rely on a particular uncertainty

structure introduced by Bertsimas et al. (2004).

Paper outline: We organize the paper as follows. Section 2 provides a background of the

deterministic MCP under RUM models. Section 3 presents our main results for the robust MCP.

Section 4 describes our algorithms used to solve the robust problems. Section 5 provides some

numerical experiments, and Section 6 concludes. Missing proofs and additional experiments are

provided in the appendix.

Notation: Boldface characters represent matrices (or vectors), and ai denotes the i-th element

of vector a. We use [m], for any m ∈ N, to denote the set {1, . . . ,m}.

2 Background: Deterministic MCP under RUM

In this section, we first revisit the RUM framework and then describe the deterministic MCP

under RUM models.

2.1 The RUM Framework and the GEV family

The RUM framework (McFadden, 1978) consists of prominent discrete choice models for mod-

eling human behavior when faced with a set of discrete choice alternatives. Under the RUM

principle, the customers are assumed to associate a random utility uj with each choice alterna-

tive j in a given choice set of available alternatives S. The additive RUM (Fosgerau et al., 2013,

McFadden, 1978) assumes that each random utility is a sum of two parts uj = vj + ξj , where

the term vj is deterministic and can include values representing the characteristics of the choice

alternative j and/or the customers, and ξj is random and unknown to the analyst. Assumptions

then can be made for the random terms ξj , leading to different discrete choice models, i.e., the

MNL model relies on the assumption that ξj are i.i.d Extreme Value type I. The RUM principle

then assumes that a choice is made by maximizing the random utilities, thus the probability

that an alternative j is selected can be computed as P (uj ≥ uk, ∀k ∈ S).
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Among RUM models, the MNL model is the simplest one and it is well known that this model

fails to capture the correlation between choice alternatives, due to the i.i.d. assumption imposed

on the random terms. This drawback is called as the IIA property (Train, 2003). Efforts

have been made to relax this property, leading to more advanced choice models with flexible

correlation structures such as the nested logit or cross-nested logit models. Among them, the

GEV family (Daly and Bierlaire, 2006, McFadden, 1981) is regarded as one of the most general

families of discrete choice models in the econometrics and operations research literature. We

describe this family of models in the following.

Assume that the choice set contains m alternatives indexed as {1, . . . ,m} and let {v1, . . . , vm}
be the vector of deterministic utilities of the m alternatives. A GEV model can be represented

by a choice probability generating function (CPGF) G(Y) (Fosgerau et al., 2013, McFadden,

1981), where Y is a vector of size m with entries Yj = evj , j ∈ [m]. Given j1, . . . , jk ∈ [m], let

∂Gj1...jk , be the mixed partial derivatives of G with respect to Yj1 , . . . , Yjk . The following basic

properties hold for any CPGF G(·) in the GEV family (McFadden, 1978).

Remark 1 (Basic properties of GEV’s CPGF) The following properties hold for any GEV

probability generating function.

(i) G(Y) ≥ 0, ∀Y ∈ Rm+ ,

(ii) G(Y) is homogeneous of degree one, i.e., G(λY) = λG(Y), for any scalar λ > 0

(iii) G(Y)→∞ if Yj →∞, for any j ∈ [m]

(iv) Given j1, . . . , jk ∈ [m] distinct from each other, ∂Gj1,...,jk(Y) > 0 if k is odd, and ≤ 0 if k

is even.

The above properties are standard for the GEV family. The economic intuition behind these

properties is however limited (Section 4.6 in Train, 2003), especially for Property (iv). In fact,

these properties (or conditions) are to ensure that the corresponding choice model is consistent

with the RUM principle and would be useful to design a new RUM model. To support our later

exposition, we present some additional properties of the GEV family in Proposition 1 below.

These new properties can be verified easily using the basic properties introduced above.

Proposition 1 (Some additional properties of GEV’s CPGF) The following properties

hold for any CPGF under the GEV family:

(i) G(Y) =
∑

j∈[m] Yj∂Gj(Y)

(ii) ∂Gj(λY) = ∂Gj(Y) for any scalar λ > 0

(iii)
∑

k∈[m] Yk∂Gjk(Y) = 0, ∀j ∈ [m].
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Proof. Property (i) can be obtained by taking the derivatives with respect to λ on both sides

of G(λY) = λG(Y) (Property (ii) of Remark 1) to have G(Y) =
∑

j∈[m] Yj∂Gj(λY). We then

let λ = 1 to obtain the desired equality.

For Property (ii), we take derivatives on both sides of the equality G(λY) = λG(Y) with respect

to Yj to have

λ∂Gj(λY) = λ∂Gj(Y).

By removing λ from both sides of the equality, we can obtain the desired equality ∂Gj(λY) =

∂Gj(Y).

For Property (iii), we further take the derivatives with respect to λ on both sides of (ii), we get∑
k∈[m] Yk∂Gjk(λY) = 0. By letting λ = 1, we obtain (iii).

Under a GEV model specified by a CPGF G(Y), the choice probabilities are given as

P (j|Y, G) =
Yi∂Gi(Y)

G(Y)
.

If the choice model is MNL, the CPGF has a linear form G(Y) =
∑

j∈[m] Yj and the corre-

sponding choice probabilities are given by a linear fraction P (j|Y, G) = Yj/(
∑

j∈[m] Yj). On the

other hand, if the choice model is a nested logit model, the choice set can be partitioned into L

nests, which are disjoint subsets of the alternatives. Let denote by n1, . . . , nL the L nests. The

corresponding CPGF has a nonlinear form as G(Y) =
∑

l∈L

(∑
j∈nl

Y µl
j

)1/µl
, where µl ≥ 1,

l ∈ [L], are the parameters of the nested logit model. The choice probabilities have the more

complicated form

P (j|Y, G) =

(∑
j′∈nl

Y µl
j′

)1/µl

∑
l∈[L]

(∑
j′∈nl

Y µl
j′

)1/µl

Y µl
j∑

j′∈nl
Y µl
j′
, ∀l ∈ [L], j ∈ nl.

In a more general setting, a CPGF can be represented by a rooted network (Daly and Bierlaire,

2006), for which the choice probabilities may have no closed-form and need to be computed by

recursion or dynamic programming (Mai et al., 2017a).

2.2 The Deterministic MCP

In the context of the MCP under a RUM model, a firm would like to select some locations

from a set of available locations to set up new facilities, assuming that there exist facilities

from the competitor in the market. The firm then aims to maximize an expected market share

achieved by attracting customers to the new facilities. We suppose that there are m available

locations and we let [m] = {1, 2, . . . ,m} be the set of locations. Let I be the set of geographical

zones where customers are located and qi be the number of customers in zone i ∈ I. For each

customer zone i, let vij be the corresponding deterministic utility of location j ∈ [m]. These
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utility values can be inferred by estimating the discrete choice model using observational data

of how customers made decisions. For each customer zone i ∈ I, the corresponding discrete

choice model can be represented by a CPGF Gi(Yi), where Yi is a vector of size m with entries

Y i
j = evij . The choice probability of a location j ∈ [m] can then be computed as

P (j|Yi) =
Yj∂G

i
j(Y

i)

U i +Gi(Yi)
,

where U i is the total utility of the competitor for zone i ∈ I. Such an utility is analogous to

a non-purchase utility used in the context of assortment optimization (Talluri and Van Ryzin,

2004). Note that we can write

P (j|Yi) =

Yj
U i∂G

i
j(Y

i)

1 + 1
U iGi(Y

i)

(a)
=

Yj
U i∂G

i
j

(
Yi

U i

)
1 +Gi

(
Yi

U i

) ,
where (a) is due to Property (ii) of Proposition 1. Thus, P (j|Yi) are the choice probabilities

given by the set of utilities v′ij = vij− lnU i. In other words, one can subtract the utilities vij by

lnU i to force the competitor’s utilities to be 1, without any loss of generality. Therefore, from

now on, for the sake of simplicity, we assume U i = 1, for all i ∈ I.

In the context of the MCP, we are interested in choosing a subset of locations S ⊂ [m] to locate

new facilities. Hence, the conditional choice probabilities of choosing a location j ∈ S can be

written as

P (j|Yi, S) =
Y i
j ∂G

i
j(Y

i|S)

1 +Gi(Yi|S)
, ∀j ∈ S,

where the Gi(Yi|S) is defined as Gi(Yi|S) = Gi(Y
i
), where Y

i
is a vector of size m with entries

Y
i
j = Y i

j if j ∈ S and Y
i
j = 0 otherwise. This can be interpreted as if a location j is not selected,

then its utility should be very low, i.e., vij = −∞, then Y i
j = evij = 0. The deterministic MCP

under GEV models specified by CPGFs Gi(Yi), i ∈ I, can be defined as

max
S∈K

f(S) =
∑
i∈I

qi
∑
j∈S

P (j|Yi, S)

 , (MCP)

where K is the set of feasible solutions. Under a conventional cardinality constraint |S| ≤ C, K
can be defined as K = {S ⊂ [m]| |S| ≤ C}, for a given constant C such that 1 ≤ C ≤ m. (MCP)

is generally NP-hard, even under the MNL choice model. However, it is possible to obtain

(1− 1/e) approximation solutions using a greedy local search algorithm (Dam et al., 2021).

Under the MNL model, the MCP can be formulated as a linear fractional program as

max
S∈K

{
f(S) =

∑
i∈I

qi
∑
i∈I

∑
j∈S Y

i
j

1 +
∑

j∈S Y
i
j

}
.

The fractional structure allows to formulate the MCP under MNL as a MILP, thus a MILP
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solver, e.g., CPLEX or GUROBI, can be used (Freire et al., 2015, Haase, 2009, Haase and

Müller, 2013). It is well-known that the objective function f(S) is submodular, leading to some

approaches based on submodular cuts or local search heuristic (Dam et al., 2021, Ljubić and

Moreno, 2018). Under more general GEV models, e.g., the nested logit or cross-nested logit

models (Train, 2003), the objective function becomes much more complicated. In fact, it would

be possible to reformulate the MCP under a GEV model as a MILP with submodular cuts

(Benati and Hansen, 2002b, Ljubić and Moreno, 2018, Nemhauser et al., 1978). However, such

a MILP approach involves an exponential number of constraints, thus would be not tractable to

solve. In addition, under a general GEV model, the choice probabilities would not be expressed

in a closed form (Mai et al., 2017b), making the computation of f(S) intractable and the

corresponding MILP intractable as well.

It is relevant to connect the MCP formulation to the context of assortment optimization under

discrete choice models. In fact, (MCP) under MNL shares a close structure with assortment

optimization problems under the mixed logit model (Rusmevichientong et al., 2014). However,

(MCP) is more tractable, in the sense it can be written as a binary program with a convex objec-

tive function, allowing for some convex optimization techniques (e.g. the outer-approximation

algorithm) to be applied , while it is not the case in assortment optimization. Moreover, under

the GEV family, the assortment problem becomes even more challenging to solve and, to the

best of our knowledge, there is no algorithm with performance guarantees for such a problem.

On the other hand, one can achieve (1−1/e) approximation solutions to the MCP by just using

a simple greedy heuristic (Dam et al., 2021).

There would be relevant situations where the algorithms developed in this paper can apply to

assortment optimization problems. For example, one can think of a situation where a seller

needs to select a set of products to sell together with a competitor, and the objective is to

maximize the expected number of customers that come to purchase their products, instead of

maximizing an expected revenue in a conventional assortment optimization problem. In this

context, the assortment optimization model shares the same structure with (MCP) and the

methods developed in this paper can apply.

3 Robust MCP

We first consider the robust MCP under any GEV model and show that the robust model

preserves the monotonicity and submodularity from the deterministic one, which will ensure

that a simple greedy heuristic will always return a (1− 1/e) approximation solution. Moreover,

we show that under the MNL model, the robust model preserves the concavity, implying that an

outer-approximation algorithm could be used to efficiently solve the robust MCP to optimality.
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3.1 Robust MCP under GEV models

In our uncertainty setting, it is assumed that the vectors of utilities are not known with certainty

but belong to some uncertainty sets. That is, we assume that for each customer zone i ∈ I,

the corresponding deterministic utilities vi = {vij | j ∈ [m]} can vary in an uncertainty set Vi
and these uncertainty sets are independent across i ∈ I. This setting is natural in the context,

in the sense that there is one discrete choice model with choice utilities vi for customers in

each zone i, and these utilities are typically inferred from observations of how people in that

zone made choices. Uncertainty sets could be constructed from this, leading to independent

uncertainty sets over customer zones. Moreover, if we relax this assumption, i.e., Vi are no

longer independent over i ∈ I, the adversary’s minimization problem 1 will become much more

difficult to solve, even under the classical MNL model. In contrast, under the assumption that

the uncertainty sets are separable by zones, we will show later that the adversary’s problem can

be efficiently handled by convex optimization.

We further assume that Vi are convex and bounded for all i ∈ I. Convexity and boundedness

are typical assumptions in the robust optimization literature (Bertsimas et al., 2011). For later

investigations, we assume that the uncertainty set Vi can be defined by a set of constraints

{git(vi) ≤ 0; t = 1, . . . , T} where git(v
i) are convex functions in vi. When the choice parameters

vi, i ∈ I, cannot be identified exactly, we are interested in the worst-case scenario. The robust

version of the classical MCP then can be formulated as

max
S∈K

min
vi∈Vi

f(S,V) =
∑
i∈I

qi
∑
j∈S

P (j|vi, S)

 , (1)

where P (j|vi, S) is the choice probability of location j ∈ [m] given utilities vi and set of locations

S ∈ K. Under a GEV choice model with CPGFs Gi, i ∈ I, we write the choice probabilities as

P (j|vi, S) =
Y i
j ∂G

i
j(Y(vi)|S)

1 +Gi(Y(vi)|S)
,

where Y(vi) is a vector of size m with entries Y (vi)j = evij . The objective function can be

further simplified as

f(S,V) =
∑
i∈I

qi
∑
j∈S

P (j|vi, S)

=
∑
i∈I

qi

∑
j∈S Y

i
j ∂G

i
j(Y(vi)|S)

1 +Gi(Y(vi)|S)

(a)
=
∑
i∈I

qi −
∑
i∈I

qi
1 +Gi(Y(vi)|S)

, (2)

where (a) is due to Property (i) of Proposition 1, i.e.,
∑

j∈S Y
i
j ∂G

i
j(Y(vi)|S) = Gi(Y(vi)|S).

1When we say “adversary”, we refer to the worst-case minimization problem, not the competitor in the market.
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Thus, the robust problem can be reformulated as

max
S∈K

{
fWC(S) =

∑
i∈I

qi −
∑
i∈I

qi
1 + minvi∈Vi{Gi(Y(vi)|S)}

}
, (RMCP)

where fWC(S) is referred to as the worst-case objective function when the choice parameters of

the GEV model vary in the uncertainty sets.

In (RMCP) we assume that there is no uncertainty associated with the specification of the

competitor’s utilities. In a more general setting, it is possible that the competitor’s utilities are

not known with certainty and would need to be taken into consideration in the robust model.

Nevertheless, we will show, in the following, that such a general uncertainty structure can be

converted into the same uncertainty structure in (RMCP) with shifted (convex) uncertainty sets.

To facilitate our exposition, let us assume that the utility of the competitor is vi0 for customer

zone i ∈ I, and both vi0,v
i can vary in an uncertainty set Vi. The robust problem then becomes:

max
S∈K

min
(vi0,v

i)∈Vi
∀i∈I

{∑
i∈I

qi

∑
j∈[m] Y

i
j (vij)∂G

i
j(Y(vi)|S)

ev
i
0 +Gi(Y(vi)|S)

}
. (3)

Proposition 2 shows that (3) can be converted equivalently into a robust problem of the same

structure as (RMCP). The proof can be found in Appendix A.

Proposition 2 (RMCP) is equivalent to

max
S∈K

min
ṽi∈Ṽi
∀i∈I

{∑
i∈I

qi

∑
j∈[m] Y

i
j (ṽij)∂G

i
j(Y(ṽi)|S)

1 +Gi(Y(ṽi)|S)

}
, (4)

where Ṽi =
{
ṽi ∈ Rm

∣∣∣ ∃vi ∈ Vi s.t. ṽij = vij − vi0, ∀j ∈ [m]
}
.

It can be seen that Ṽi is convex if Vi is convex. The inner minimization problem of (3) differs

from the inner minimization of (RMCP) just by some additional linear constraints, i.e.,

min
∑
i∈I

qi

∑
j∈[m] Y

i
j (ṽij)∂G

i
j(Y(ṽi)|S)

1 +Gi(Y(ṽi)|S)

subject to ṽij = vij − vi0 ∀i ∈ I, j ∈ [m]

(v0
j ,v

i
j) ∈ Vi ∀i ∈ I.

Thanks to Proposition 2, for the sake of simplicity, we will keep the assumption that the utilities

of the competitor are deterministically equal to 1 throughout the rest of the paper.

We now explore some properties of the robust program in the following. Proposition 3 below

first shows that the inner minimization problem (adversary’s problem) can be solved efficiently

via convex optimization. Before discussing the result, let us define a binary representation of

12



fWC(S) as follows. For any set S ∈ K, let xS ∈ {0, 1}m such that xSj = 1 if j ∈ S and xSj = 0

otherwise. Then, we can write Gi(Y(vi)|S) = Gi(Y(vi)◦xS), where ◦ is the element-by-element

operator.

Proposition 3 (Convexity of the adversary’s minimization problems) Given any i ∈
I and S ⊂ [m], Gi(Y(vi)|S) is strictly convex in vi.

As shown in Dam et al. (2021), the objective function of the deterministic MCP is mono-

tonic increasing, i.e., adding more facilities always yields better objective values. The following

proposition shows that the robust model preserves the monotonicity.

Theorem 1 (Robustness Preserves the Monotonicity) Given S ⊂ [m], for any j ∈ [m]\S,

we have

fWC(S ∪ {j}) > fWC(S).

Proof. Let x ∈ {0, 1}m be the binary presentation of set S ⊂ [m]. We write the objective

function as

fWC(x) =
∑
i∈I

qi −
∑
i∈I

qi
1 + minvi∈Vi{Gi(Y(vi) ◦ x)}

We need to prove that, for any x ∈ X and j ∈ [m] such that xj = 0, we have fWC(x + ej) >

fWC(x), where ej is a vector of size m with all zero elements except the j-th one which is equal

to 1. To prove this, let us consider Gi(Y(vi) ◦ x). Taking the derivative of Gi(Y(vi) ◦ x) w.r.t.

xj we have
∂Gi(Y(vi) ◦ x)

∂xj
= Y i

j (vi)∂Gij(Y(vi) ◦ x)
(b)
> 0,

where the (strict) inequality (b) is because Y i
j (vi) = evij > 0 and ∂Gij(Y(vi) ◦x) > 0 (Property

(iv) of Remark 1). Thus,

Gi(Y(vi) ◦ (x + ej)) > Gi(Y(vi) ◦ x),

and consequently,

min
vi∈Vi

{Gi(Y(vi) ◦ (x + ej))} > min
vi∈Vi

{Gi(Y(vi) ◦ x)}

which directly leads to the desired inequality fWC(x + ej) > fWC(x).

Similar to the deterministic case, the monotonicity implies that an optimal solution S∗ to

(RMCP) always reaches its maximum capacity, i.e., |S∗| = C.

It is known that the objective function of the deterministic MCP is submodular (Dam et al.,

2021). Typically, a robust version of a monotonic submodular function is not submodular (Orlin

et al., 2018). However, in the theorem below, we show that the inclusion of the adversary in

our robust MCP preserves the submodularity.
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Theorem 2 (Robustness Preserves the Submodularity) fWC(S) is submodular, i.e., for

two sets A ⊂ B ⊂ [m] and for any j ∈ [m]\B we have

fWC(A ∪ {j})− fWC(A) ≥ fWC(B ∪ {j})− fWC(B).

In the following we provide essential steps to prove the submodularity result. We will employ

the binary representation of fWC(S) to prove the claim. Let

φi(x) = min
vi∈Vi

Gi(Y(vi) ◦ x). (5)

Since Gi(Y(vi) ◦ x) is strictly convex and differentiable, φi(x) is continuous and differentiable

(Corollary 8.2 in Hogan, 1973). We first introduce the following lemma.

Lemma 1 (First and second order derivatives of φi(x)) Given x ∈ [0, 1]m, let vi∗ be an

optimal solution to the problem minvi∈Vi G
i(Y(vi) ◦ x), then for any j, k ∈ [m],

∂φi(x)

∂xj
=
∂Gi(Y(vi∗) ◦ x)

∂xj

∂2φi(x)

∂xj∂xk
=
∂2Gi(Y(vi∗) ◦ x)

∂xj∂xk
.

Note that minvi∈Vi G
i(Y(vi) ◦ x) always yields a unique optimal solution due to the strict

concavity of Gi(Y(vi) ◦ x) (Proposition 3). Thus, vi∗ mentioned in Lemma 1 is always unique.

We need one more lemma to complete the proof of the submodularity result. The following

lemma shows a monotonicity behavior of ∂φi(x)/∂xk as a function of x.

Lemma 2 Given x ∈ {0, 1}m and any j, k ∈ [m] such that xj = xk = 0 and j 6= k, we have

∂φi(x + ej)

∂xk
≤ ∂φi(x)

∂xk
.

Proof. We define ψ(x) = ∂φi(x)/∂xk. Taking the first-order derivative of ψ(x) w.r.t. xj we get

∂ψ(x)

∂xj
=
∂2φi(x)

∂xk∂xj

(a)
=
∂2Gi(Y(vi∗) ◦ x)

∂xj∂xk

= Yj(v
i∗)Yk(v

i∗)∂2Gijk(Y(vi∗) ◦ x)
(b)

≤ 0 (6)

where (a) is from Lemma 1 and (b) is due to Property (iv) of Remark 1. So, we have ∂ψ(x)/∂xj ≤
0, implying that ψ(x) is monotonically decreasing in xj . Thus, ∂φi(x + ej)/∂xk ≤ ∂φi(x)/∂xk,

as desired.
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We are now ready for the main proof of Theorem 2.

Proof of Theorem 2. From Theorem 1, we have

φi(x + ej) ≥ φi(x) (7)

φi(x + ej + ek) ≥ φi(x + ek). (8)

Moreover, from Lemma 2 we see that, for any x ∈ {0, 1}m and any j, k ∈ [m] such that

xj = xk = 0, function ψ(x) = φi(x + ej)− φi(x) is monotonically decreasing in xk. Thus,

φi(x + ej)− φi(x) ≥ φi(x + ej + ek)− φi(x + ek) ≥ 0. (9)

Moreover, from (7) and (8), we have

(1 + φi(x + ej))(1 + φi(x)) ≤ (1 + φi(x + ej + ek))(1 + φi(x + ek)). (10)

Combine (9) and (10) we get

φi(x + ej)− φi(x)

(1 + φi(x + ej))(1 + φi(x))
≥ φi(x + ej + ek)− φi(x + ek)

(1 + φi(x + ej + ek))(1 + φi(x + ek))

⇔ 1

1 + φi(x)
− 1

1 + φi(x + ej)
≥ 1

1 + φi(x + ek)
− 1

1 + φi(x + ej + ek)
. (11)

Now we note that

fWC(x) =
∑
i∈I

qi −
∑
i∈I

qi
1 + φi(x)

.

Thus, from (11) we have

fWC(x + ej)− fWC(x) ≥ fWC(x + ej + ek)− fWC(x + ej). (12)

Now, given A ⊂ B ⊂ [m], let xA and xB be the binary representations of A, B, respectively.

From (12) we have, for any j ∈ [m]\B

fWC(xA + ej)− fWC(xA) ≥ fWC

xA + ej +
∑

k∈B\A

ek

− fWC

xA +
∑

k∈B\A

ek


= fWC(xB + ej)− fWC(xB),

which is equivalent to fWC(A∪ {j})− fWC(A) ≥ fWC(B ∪ {j})− fWC(B), implying the submod-

ularity as desired.

The submodularity and monotonicity imply that, under a cardinality constraint |S| ≤ C, a

greedy heuristic can guarantee a (1−1/e) approximation solution to the robust problem (Corol-

lary 1 below) (Nemhauser et al., 1978). Such a greedy heuristic can start from an empty set and

keep adding locations, one at a time, taking at each step a location that increases the worst-

case objective function fWC(S) the most. The algorithm stops when the maximum capacity is
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reached, i.e., |S| = C. This greedy algorithm runs in O(mC).

Corollary 1 (Performance guarantee for a greedy heuristic) For the robust MCP un-

der a cardinality constraint |S| ≤ C, there exists a greedy heuristic that always returns a solution

S∗ such that

fWC(S∗) ≥ (1− 1/e) max
|S|≤C

{fWC(S)} .

If the uncertainty set is rectangular, i.e., each vij can freely deviate within an interval, the

following proposition shows that the robust MCP can be further converted into a deterministic

MCP.

Proposition 4 (Rectangular uncertainty sets) If the uncertainty sets are rectangular, i.e.,

Vi = {vi| vi ≤ vi ≤ vi}, for all i ∈ I, then the robust problem (RMCP) is equivalent to

max
S∈K

{∑
i∈I

qi −
∑
i∈I

qi
1 +Gi(Y(vi)|S)

}
,

which is a deterministic MCP with parameters vi = vi, ∀i ∈ I.

Proof. We will simply show that Gi(Y(vi)|S) is minimized over vi ∈ Vi at vi = vi. To prove

this, we consider the equivalent binary representation Gi(Y(vi) ◦ xS) and take its derivatives

w.r.t. vij , for any j ∈ [m], to have

Gi(Y(vi) ◦ xS)

∂vij
= Yj(v

i)xj∂G
i
j(Y(vi) ◦ xS),

and see that the right hand side is non-negative, because Yj(v
i) ≥ 0, xj ≥ 0 and ∂Gij(Y(vi)) ≥ 0,

where the later is due to Property (iv) of Remark 1. So, Gi(Y(vi) ◦ xS) is monotonically

increasing in vi. Thus,

Gi(Y(vi) ◦ xS) ≥ Gi(Y(vi) ◦ xS), ∀vi ∈ Vi,

implying that Gi(Y(vi)|S) is minimized at vi = vi as desired.

3.2 Robust MCP under MNL

Under the MNL choice model, the deterministic MCP has a concave objective function (Benati

and Hansen, 2002a), making it solvable by an exact method such as the outer-approximation

algorithms (Ljubić and Moreno, 2018, Mai and Lodi, 2020). In the following, we show that it

is the case for our robust model. First, recall that under the MNL model, the CPGF becomes

Gi(Y (vi)|S) =
∑
j∈S

evij , and Gi(Y (vi) ◦ x) =
∑
j∈[m]

evijxj .
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Proposition 5 (Concavity under the MNL model) fWC(x) is concave in x.

The claim can be obviously verified based on the fact that minimization will preserve the

concavity. That is, if we define (for ease of notation)

γ(x,V) =
∑
i∈I

qi −
∑
i∈I

qi
1 +Gi(Y(vi) ◦ x)

,

then we know that γ(x,V) is concave in x (Benati and Hansen, 2002a). Note that fWC(x) =

minvi∈V,∀i γ(x,V). To prove the concavity of fWC(x) we will show that for any x1,x2 ∈ [0, 1]m

and α ∈ [0, 1], we have αfWC(x1) + (1− α)fWC(x2) ≤ fWC(αx1 + (1− α)x2). This is verified by

the following chain of inequalities

αfWC(x1) + (1− α)fWC(x2) = min
vi∈Vi,∀i

{
αγ(x1,V)

}
+ min

vi∈Vi,∀i

{
(1− α)γ(x2,V)

}
≤ min

vi∈Vi,∀i

{
αγ(x1,V) + (1− α)γ(x2,V)

}
(a)

≤ min
vi∈Vi,∀i

{
γ(αx1 + (1− α)x2,V)

}
= fWC(αx1 + (1− α)x2)

where (a) is due to the concavity of γ(x,V).

Note that the concavity is preserved with any uncertainty set, not necessarily with convex and

customer-wise decomposable sets. That is, under any nonempty uncertainty set V such that the

worst-case objective function

fWC(x) = min
{v1,...,v|I|}∈V

{∑
i∈I

qi −
∑
i∈I

qi
1 +Gi(Y(vi) ◦ x)

}

is finite, then fWC(x) is concave in x. However, under this general setting, the above minimiza-

tion problem is difficult to solve, as its objective function is highly non-convex in V = (vi, i ∈ I).

4 Robust Algorithms

For the MCP under GEV models, Dam et al. (2021) proposes a local search procedure, named

as GGX, which does not only provide a performance-guaranteed solution but performs well in

practice. On the other hand, if the choice model is MNL, it is possible to efficiently solve the

deterministic MCP using a multi-cut outer-approximation algorithm (Mai and Lodi, 2020). As

shown above, our robust models preserve some main properties of the deterministic versions,

i.e., the submodularity and monotonicity for the MCP under GEV models, and concavity for

the MCP under MNL, making the local search and outer-approximation approaches still useful.

In the following, we discuss how such approaches can be adapted to handle the robust MCP.
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4.1 Local Search for GEV-based Robust MCP

The submodularity and monotonicity of the objective function of (RMCP) shown above are

sufficient to guarantee that a simple greedy heuristic can always yield a (1−1/e) approximation.

Such a greedy can simply start with a null set and iteratively add locations, one at a time, until

the capacity |S| = C is reached. The second and last phases of the GGX algorithm apply due

to that the fact that the objective function fWC(x) is differentiable in x. Such derivatives can

be computed as, for any j ∈ [m],

∂fWC(x)

∂xj
=
∑
i∈I

qi
∂φi(x)/∂xj
(1 + φi(x))2

(a)
=
∑
i∈I

qi
Yj(v

i∗)∂Gij(Y(vi∗) ◦ x)

(1 +Gi(Y(vi∗) ◦ x))2
, (13)

where φi(x) is defined in (5) and (a) is due to Lemma 1. We can apply the second phase

of GGX (i.e., gradient-based local search) to further improve the solution candidate from the

greedy heuristic. At each iteration of this phase, we need to solve the following subproblem

max
x∈{0,1}m

∇fWC(x)Tx (Sub-Prob)

subject to
∑
j

xj = C

∑
j∈[m],xj=1

(1− xj) +
∑

j∈[m],xj=0

xj ≤ ∆, (14)

where x is the current solution candidate, ∆ > 0 is a positive integer scalar used to define a local

area around x in which we want to find the next solution candidate, and (14) is referred to as a

local branching constraint typically used to exploit the neighborhood of a given binary solution

(Fischetti and Lodi, 2003). The use of ∆ in the subproblem is motivated by the trust-region

method in the continuous optimization literature (Conn et al., 2000). (Dam et al., 2021) show

that their subproblem can be solved efficiently in O(m∆) but their algorithm requires that all

the coefficients of the objective function of the subproblem are non-negative. The following

proposition tells us that it is the case under our robust model, making it possible to apply

Algorithm 1 in Dam et al. (2021) to solve (Sub-Prob).

Proposition 6 Given any x ∈ {0, 1}m, all the coefficients of the objective function of (Sub-Prob)

are non-negative. As a result, (Sub-Prob) can be solved in O(m∆).

Proof. We simply use Lemma 1 and Property (iv) of Remark 1 to see that

∂fWC(x)

∂xj
=
∑
i∈I

qi
Yj(v

i∗(x))∂Gij(Y(vi∗(x)) ◦ x)

(1 +Gi(Y(vi∗(x)) ◦ x))2
≥ 0,

where vi∗(x) = argmaxviGi(Y(vi) ◦ x). With the positiveness of the coefficients, Dam et al.
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(2021) show that (Sub-Prob) can be effciently solved in O(m∆).

The third phase of GGX is based on steps of adding/removing locations, thus it can be applied

straightforwardly to the robust problem. We briefly describe our adapted GGX in Algorithm 1

below and we refer reader to Dam et al. (2021) for more details. Here we note that, to compute

fWC(x), we need to solve the inner adversary problems minvi Gi(Y(vi) ◦ x), which are convex

optimization ones (Proposition 3) and can be solved efficiently using a convex optimization

solver. Moreover, let vi∗ = argmaxvi∈ViG
i(Y(vi)◦x), then using Lemma 1 we can compute the

first derivatives of fWC(x) used in (Sub-Prob) as in (14).

Algorithm 1: Local Search

# 1: Greedy heuristics
- Start from S = ∅

- Iteratively add locations to S, one at a time, taking locations that increase fWC(S) the
most

- Stop when |S| = C
# 2: Gradient-based local search
- Iteratively solve (Sub-Prob) to find new solution candidates
- Move to a new candidate solution if it yields a better objective value fWC(S)
- If (Sub-Prob) yields a worse solution, then reduce the size of the searching area ∆
# 3: Exchanging phase
- Swap one (or two) locations in S with one (or two) locations in [m]\S, taking locations
that increase the objective function the most

- Stop when no further improvements can be made.

So far we assume that there is only a cardinality constraint |S| ≤ C. In a real-life application,

one may require some side constraints on x to capture, for instance, traveling costs between

facilities. In this context, for Algorithm 1 to work, one can modify Steps #1 and #2 to account

for the additional constraints. For Step #3, we only need to add the side constraints to the

subproblem (Sub-Prob). Such additional constraints, however, would break the performance

guarantee secured by the greedy heuristic.

4.2 Outer-Approximation for the Robust MCP under MNL

Under the MNL model, the concavity shown in Proposition 5 suggests that one can use a

multicut outer-approximation algorithm to exactly solve the MCP. The idea is to divide the

set of zones I into L disjoint groups D1, . . . ,DL such that
⋃
l∈[L]Dl = I. We then write the

objective function of (RMCP) as

fWC(x) =
∑
l∈[L]

δl(x),

where

δl(x) =
∑
i∈Dl

qi −
∑
i∈Dl

qi

1 + minvi∈Vi

{∑
j∈[m] e

vijxj

} , ∀l ∈ [L].
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A multicut outer-approximation algorithm executes by iteratively adding sub-gradient cuts to

a master problem and solve it until reaching an optimal solution. Such a master problem can

be defined as

max
x∈{0,1}m,θθθ∈RL

∑
l∈[L]

θl (sub-OA)

subject to
∑
j∈[m]

xj = C

Ax−Bθθθ ≥ c (15)

θθθ ≥ 0,

where the linear constraints (15) are linear cuts of the form θl ≤ ∇δl(x)(x − x) + δl(x) added

to the master problem (sub-OA) at each iteration of the outer-approximation algorithm with a

solution candidate x. The algorithm stops when we find a solution (x∗, θθθ∗) such that
∑

l∈[L] θ
∗
l ≤∑

l∈[L] δl(x
∗). Here we note that the outer-approximation algorithm works with any side linear

constraints on x and always returns an optimal solution after a finite number of iterations due

to the concavity of δl(x) and the fact that the feasible set of x is finite. Similar to (14), the

gradients of δl(x) can be computed as

δl(x)

∂xj
=
∑
i∈Dl

qi∂G
i
j(Y(vi∗) ◦ x)(

1 +Gij(Y(vi∗) ◦ x)
)2 , ∀j ∈ [m].

We briefly describe our multicut outer-approximation approach in Algorithm 2 below.

Algorithm 2: Multicut Outer-Approximation

Initialize the master problem (sub-OA).
Choose a small threshold τ > 0 as a stopping criteria.
do

Solve (sub-OA) to get a solution (x, θθθ)
if
∑

l∈[L] θl >
∑

l∈[L] δl(x) + τ then

Add constraints θl ≤ ∇δl(x)(x− x) + δl(x) to (sub-OA).

until
∑

l∈[L] θl ≤
∑

l∈[L] δl(x) + τ ;
Return x.

It is possible to use the Branch-and-Cut algorithm proposed in Ljubić and Moreno (2018) to

solve the robust MCP under MNL. Our multicut outer-approximation described here is similar

to the one used in Mai and Lodi (2020) and differs from the Branch-and-Cut method of Ljubić

and Moreno (2018) by the fact that it generates one cut per a group of multiple demand points

instead of one cut per every single demand point, and it is a Cutting Plane approach instead of

a Branch-and-Cut. Mai and Lodi (2020) show that the Cutting Plane approach is more efficient

than the Branch-and-Cut in handling large-scale instances.

20



5 Numerical Experiments

We provide numerical experiments showing the performance of our robust approach in protecting

us from worst-case scenarios when the choice parameters are not known with certainty. We first

discuss our approach to construct uncertainty sets to capture the issue of choice parameter

uncertainties. We then provide experiments with MCP instances under two popular discrete

choice models in the GEV family, namely, the MNL and nested logit models.

5.1 Constructing Uncertainty Sets

We first discuss our approach to build uncertainty sets to capture uncertainty issues when

identifying choice parameters in the MCP. In the deterministic setting, it is assumed that there

is only one vector of customer choice utilities vi for each zone i ∈ I. However, the real market

typically has many different types of customers characterized by, for instance, age or income.

The choice parameters may significantly vary across different customer types. Let us assume

that, for each zone i ∈ I, there are N types of customers with N utility vectors ṽi1, ..., ṽiN ,

respectively. We let τi1, ..., τiN ∈ [0, 1] be the actual proportions of the customer types with∑
n∈[N ] τin = 1. If these proportions are known with certainty, then one can define a mean

value vector ṽi =
∑

n∈[N ] τ
inṽin and solve the corresponding deterministic MCP problem. Our

assumption here is that these proportions cannot be identified exactly, but we know that the

actual proportions are not too far from some estimated proportions. In this context, uncertainty

sets can be defined as

Vi =

vi =
∑
n∈[N ]

ηnṽ
in
∣∣∣ηn ≥ 0, ∀n ∈ [M ];

∑
n∈[N ]

ηn = 1; and ||ηηη − τ̃ττ i|| ≤ ε

 , (16)

where τ̃ττ i = {τ̃ in, n ∈ [N ]} are some estimates of the actual proportions τττ i and ε ∈ [0, 1] repre-

sents the “uncertainty level” of the uncertainty set. Larger ε values lead to larger uncertainty

sets, thus resulting in more conservative models that may help provide better protection against

worst-case scenarios, but may give a low average performance. In contrast, smaller ε values pro-

vide smaller uncertainty sets, which would lead to better average performance but may give

a bad performance in protecting against worst-case scenarios. The firm could adjust ε to bal-

ance the worst-case protection and average performance. Clearly, if ε = 0, the uncertainty sets

become singleton and the robust MCP becomes a deterministic MCP with mean-value choice

utilities, i.e., the actual proportions are known perfectly, or the firm just treats their estimated

proportions as the actual ones. On the other hand, if we select ε > N , then the uncertainty sets

will cover all possible affine combinations of {ṽi, i ∈ I}. This reflects the situation that the firm

knows nothing about the actual proportions and has to ignore the pre-computed values τ̃ττ i. This

way of constructing uncertainty sets is similar to the approach employed in Rusmevichientong

and Topaloglu (2012) in the context of assortment optimization under uncertainty.
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5.2 Baseline Approaches and Other Settings

We will compare our robust approach (denoted as RO) against other baseline approaches under

the MNL and nested logit models. The first baseline approach, which is a deterministic one

(denoted as DET1), relies on mean-value choice parameters, i.e., we solve the MCP with average

values of the choice utilities, i.e. ṽi =
∑

n∈[N ] τinṽin. This is the case of ε = 0, i.e., no uncertainty

in the robust model. For the second baseline approach (denoted as DET2), we utilize all the

vectors of choice parameters ṽin, for all n ∈ [N ] and solve the following mixed version of the

MCP

max
S∈K

∑
i∈I

qi
∑
n∈[N ]

τ in

∑
j∈S

P (j|ṽin, S)

 . (17)

So, for the DET1 and DET2 approaches, we acknowledge that there are N customer types in

the market but ignore the uncertainty issue. Note that the DET2 approach can be viewed as

an MCP under a mixed logit model. We consider another baseline that accounts for the issue

that the proportion of the customer types maybe not be determined with certainty. We perform

this approach by sampling over the uncertainty sets Vi. Then, for each sample of the utilities,

we solve the corresponding MCP to get a solution. Since we aim at covering the worst-case

scenarios, for each solution, we sample again from the uncertainty sets to get an approximation

of the worst expected captured demand value. We then pick a solution that gives the best

worst-case objective value over samples. This way allows us to find solutions that are capable

of guaranteeing some protection against worst-case scenarios. This approach can be viewed as

a sampling-based method to solve the robust problem. We denote it as SA.

For all the MNL and nested logit instances, we employ the local search (Algorithm 1) to solve

the robust/deterministic MCP, for all the RO, DET1, DET2, and SA approaches, noting that

for MNL instances, the outer-approximation (Algorithm 2) can be used as an exact method, but

it is generally outperformed by the local search in terms of both solution quality and running

time. For nested logit instances, the local search is also more convenient to use, as (i) the

multicut outer-approximation algorithm becomes heuristic and does not offer us any guarantees,

and (ii) Dam et al. (2021) already show that the local search outperforms the multicut outer-

approximation algorithm for nested instances. Thanks to the submodularity, the local search

always gives us at least (1− 1/e) approximation solutions (Corollary 1).

We use instances from the three datasets HM14, ORlib, and NYC to generate instances for

our robust problems and we refer the reader to Freire et al. (2016) for a detailed description.

These datasets have been used in previous MCP studies (Dam et al., 2021, Ljubić and Moreno,

2018, Mai and Lodi, 2020). We select N = 5 (i.e., there are 5 customer types in each zone).

We then randomly choose the pre-determined proportions {τ1, ..., τ5} such that
∑

n∈[N ] τn = 1.

For each deterministic instance from the datasets (HM14, ORlib, or NYC) to generate the

underlying utility vectors {ṽ1i, ..., ṽ5i} to construct uncertainty sets, we take the set of utility

values {vij , i ∈ I, j ∈ [m]} from the data and sample (randomly and uniformly) each element ṽkij
in range [0.7× vij ; 1.3× vij ], for all k = 1, . . . , 5. To compare the performances of the RO, DET,
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and SA approach in protecting us from worst-case scenarios, we vary the uncertainty level ε and

compare the robust solutions with those from the DET and SA approaches. More precisely, we

will perform the following steps for each ε > 0.

(i) Define an uncertainty set as in (16).

(ii) For RO, we solve the robust problem (RMCP) and obtain a robust solution xRO.

(iii) For DET1, we solve the deterministic MCP (MCP) with the weighted average utilities

ṽ =
∑

n∈[n] τnṽn and obtain a solution xDET1.

(iv) For DET2, we solve (17) to get a solution xDET2.

(v) For SA, we take 10 samples from the uncertainty sets to obtain 10 candidate solutions.2

Then, for each solution obtained, we use 1000 samples of the utilities, taken from the

uncertainty sets, to get an approximate worst-case objective value. We then pick the

solution xSA that gives the best worst-case objective. All the sampling is done randomly

and uniformly.

(vi) We assess the value and the price of the robust approach by checking the performances of

different solutions obtained by the robust, sampling-based, and deterministic approaches

in the uncertain environment, and in the nominal (or deterministic) setting. That is,

we plug xDET1, xDET2, and xSA into the robust problem to compute relative decreases

in terms of worst-case objective, and plug xRO and xSA into the deterministic MCP to

evaluate relative decreases in terms of average objective. These two measurements are

often referred to as the value and the price of robustness and have been popularly used to

assess robust optimization methods (Bertsimas and Sim, 2004, Mehmanchi et al., 2020)

(vii) We additionally evaluate the performances of xRO, xDET1, xDET2, and xSA by looking at

the empirical distributions of the objective values yielded by different vectors of utilities

sampled from the uncertainty sets. To this end, we randomly and uniformly sample 2000

utility vectors {vi, i ∈ I} from the uncertainty sets and compute, for each utility sample,

the corresponding objective values given by xRO, xDET1, xDET2, and xSA. This allows us to

plot and analyze empirical distributions of the objective values given by different solutions

when the uncertain utilities vi vary randomly within the uncertainty sets.

We use MATLAB 2020 to implement and run the algorithms. We use the maximum norm to

define the uncertainty sets in (16). Under this setting, the adversary’s optimization problems can

be formulated as convex optimization ones with (strictly) convex objective functions and linear

constraints. We use the nonlinear optimization solver fmincon from MATLAB, under default

settings, to solve the adversary’s convex optimization problems (i.e., minvi∈G
i(Y(vi)◦x)). The

experiments were done on a PC with processor AMD-Ryzen 7-3700X CPU-3.80 GHz and with

16 gigabytes of RAM.

2More samples can be taken, but we restrict ourselves to 10 samples, as the SA approach is expensive to run
as we will show later.
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5.3 Comparison Results

In this section, we present comparison results for MNL and nested logit instances to assess the

value of the robust approach. Computing time comparisons will also be presented.

5.3.1 MNL Instances

Figure 1: Value of robustness for MNL instances; the performances of DET1 and DET2 are
almost identical.

Figure 2: Price of robustness for MNL instances.

We first solve MNL instances using Algorithm 1 and plot, in Figure 1 and Figure 2, the average

relative decreases (“% loss”) w.r.t. the robust and deterministic MCP for the three datasets

(i.e. HM, ORlib, and NYC). In both figures, higher “% loss” implies worse results. The results

generally show that the percentage loss, as expected, seems to increase as the uncertainty level ε

increases. The percentage losses for ORlib are remarkably smaller than the losses for the other

datasets, and the losses for the largest dataset NYC are, as expected, significantly higher than

those from ORlib and HM. Moreover, Figure 1 shows that SA performs better than DET1 and

DET2 in terms of the value of robustness. Looking at both figures, it can be observed that the

deterministic solution performs worse in the robust setting than the robust and SA solutions

do in the deterministic setting for the ORlib dataset, and performs comparably for the other

datasets.

To further assess the performance of the robust approach, we pick instances of size (|I|,m) =

(100, 50) and plot, in Figure 3, empirical distributions of the objective values given by the four

approaches and utilities sampled from the uncertainty sets. More plots can be found in Appendix
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C. The first row of the figure shows the histograms for small ε (ε ≤ 0.08). Under these small

uncertainty levels, the distributions given by the four approaches are quite similar and there is

no clear advantage of the robust approach. This is an expected observation, as when ε is small,

the corresponding uncertainty sets become small and xRO should be close to xDET1, xDET2, and

xSA. When we increase ε, the second row of Figure 3 shows clear differences between the four

approaches. That is, the distributions given by xRO always have lower variances, and shorter

tails, as compared to the those from the other approaches. In terms of worst-case protection,

the RO performs the best, followed by the SA and then the two deterministic approaches.

This clearly demonstrates the capability of the RO approach in giving “not-too-low” expected

captured demands. Moreover, the protection against “low” objective values seems higher as ε

increases. This is also an expected observation, as the RO and SA approaches are essentially

designed for this purpose. We also observe that the two DET approaches perform better in

terms of best-case scenarios, indicating a trade-off of being conservative when making robust

decisions under uncertainty.

Figure 3: Comparison of the distributions of the objective values given by solutions from RO,
SA, DET1 and DET2 approaches, under the MNL choice model and instances of size |I| = 100
and m = 50.

Before moving to nested logit instances, we note that the robust MCP under MNL is relevant to

the robust fractional 0-1 program studied in Mehmanchi et al. (2020). We provide a comparison
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with this work in Appendix B.

5.3.2 Nested Logit Instances

We now provide comparison results for nested logit instances. As mentioned, to create the

instances, we divide the set of locations into 5 groups of the same size (i.e, L = 5) and choose

the nested logit parameters as µ = (1.1, 1.2, 1.3, 1.4, 1.5), noting that these parameters are just

selected at random for a testing purpose and other values can be chosen. Similar to the MNL

instances, we first report the value and price of robustness in Figures 4 and 5 below. We

first notice that the percentage losses reported in Figure 4 are remarkably smaller than those

reported for the MNL instances. This would be because we solve the nested logit instances

by the local search algorithm, thus the solutions xRO obtained may not be optimal for the

robust problem, affecting the value of robustness. Moreover, in analogy to MNL instances, SA

performs slightly better than DET1 and DET2, in terms of the value of robustness. We also

see that the percentage losses for ORlib are smaller, compared to losses for the other datasets.

Especially, the percentage losses of the RO and SA solutions in the deterministic environment

almost vanish. The losses for NYC instances, similarly to the MNL case, are also significantly

larger than the losses for ORlib and HM. Moreover, while the robust solutions perform better

in the deterministic problem than the DET solutions do in the robust setting for the ORlib

dataset, they perform slightly worse for the other datasets.

Figure 4: Value of robustness for nested logit instances; the performances of DET1 and DET2
are almost identical.

Figure 5: Price of robustness for nested logit instances.

We also pick instances of size (|I|,m) = (100, 50) to plot empirical distributions of the objective
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values given by the four approaches and utilities sampled from the uncertainty sets. In the first

row of Figure 6, we plot the histograms for ε ∈ {0.02, 0.04, 0.08}. As we can see, histograms

given by RO, DET1, and SA are identical. For ε = 0.02 or ε = 0.04, the histograms look

very similar, but for ε = 0.08 we start seeing that the histogram given by RO has smaller

variance and shorter tail. Moreover, even though the differences are not clear with these small

uncertainty set levels, some protection from the RO approach against bad scenarios can still be

observed.

Figure 6: Comparison of the distributions of the objective values given by solutions from RO,
SA, DET1 and DET2 approaches, under the nested logit choice model and instances of size
|I| = 100 and m = 50.

Histograms with larger ε (ε ∈ {0.4, 0.5, 0.6}) are plotted in the second row of Figure 6. There is

no surprise, as similar to the MNL instances, the distributions given by the RO approach have

small variances, shorter tails, and larger worst-case objective values, as compared to those given

by the other approaches. In particular, we can see that the two deterministic approaches can

give many low objective values. The SA approach seems to do better in protecting the objective

value from being too low, and RO performs the best in pushing its worst-case scenarios to

higher objective values. It is worth noting that the DET1 approach (when average values of the

choice utilities are made use of) performs better than the mixed deterministic approach DET2

in terms of worst-case protection. A trade-off between having high worst-case objective values
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and having low best-case objective values can also be observed. This is also consistent with

remarks from prior studies in the context of assortment and pricing optimization where discrete

choice models are also employed (Li and Ke, 2019, Mai and Jaillet, 2019, Rusmevichientong and

Topaloglu, 2012).

5.3.3 Percentile Ranks of the RO’s Worst-case Objective Values

We look closely into the distributions of the objective values given by the four approaches to see

where the RO’s worst-case values are located in other distributions. This would help evaluate

how much RO can provide protection when ε increases. To this end, we compute the percentile

ranks of the RO’s worst-case objective values in the distributions given by the DET and SA

solutions. Such a percentile rank can tell us the percentage of the values in the DET1, DET2,

or SA distributions that are lower than or equal to the worst objective values given by the RO

approach. We plot the percentile ranks of the RO’s worst objective values in Figure 7 for both

the MNL and nested logit models. For the MNL instances, when ε > 0.1, the percentile ranks

are significant and increasing from about 0% to almost 100% for DET2, from 0% to about

60% for DET1, and are quite small for SA (less than 20%). For the nested logit instances, the

percentile ranks for DET1 and DET2 can go up to more than 40% and can go up to 30% for

the SA approach. This clearly indicates how much RO can provide protection, as compared to

the other approaches, for instance, for the nested model with ε = 0.6, the RO’s worst objective

values are larger than more than 30% of the SA’s sample objective values, and more than 40%

of the DET1’s and DET2’s sample objective values. It can be seen that, among the DET1,

DET2 and SA approaches, SA performs better than DET1 and DET2, and DET1 is better

than DET2, in terms of worst-case protection.

MNL Nested logit

Figure 7: The percentile ranks of the RO’s worst-case values in the distributions given by the SA,
DET1 and DET2 solutions under the MNL and nested choice models for instance of |I| = 100
and m = 50.
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5.4 Computing Time Comparison

We look at the computing times required by the different approaches to terminate. In Table

1, we report the average computing times for the four approaches, under the two discrete

choice models (the MNL and nested logit) and with two instance sizes. It clearly shows that

DET1 require the least amount of running time. It is interesting to see that RO requires

less computing times than DET2, except for the instances of size |I| = 82341. SA is much

more time-consuming, as compared to the other three approaches since it requires sampling

and solving several deterministic problems. On the other hand, for the largest problem, RO

requires the largest computing times under the MNL model due to the fact that it needs to

solve a large number of inner minimization problems (i.e., solving minvi∈Vi G
i(Y(vi) ◦ x) for

i = 1, 2, ..., 82341).

Choice model |I| m RO SA DET1 DET2

MNL
100 50 14.0 18.8 0.3 3.6
100 100 12.4 21.6 0.3 1.5
200 100 26.7 25.09 0.3 13.7
1000 100 60.0 479.72 45.3 680.4
82341 59 2861.1 885.1 0.39 6.5

Nested logit
100 50 5.6 17.0 1.4 3.3
100 100 11.3 88.8 8.2 6.6
200 100 16.40 116.4 11.0 23.3
1000 100 49.0 311.6 23.2 155.7
82341 59 2262.4 4386.9 311.5 2586.7

Table 1: Average computing times (in seconds).

As shown in Dam et al. (2021), such a local search procedure as in Algorithm 1 achieves

the best performance in terms of objective value and computing time, as compared to outer-

approximation algorithms or MILP reformulations. Thus, we provide here a comparison of

Algorithm 1 and Algorithm 2. Note that, for the MCP under the nested logit model, the objec-

tive function is highly non-concave and the outer-approximation method often performs much

worse than the local search heuristic (Dam et al., 2021). Thus, we only provide a comparison

of the two algorithms with MNL instances. We use Algorithm 1 and Algorithm 2 to solve the

robust MCP with MNL instances of different sizes with ε ∈ {0.02, 0.04, 0.08, 0.4, 0.5, 0.6} and

report the objective values and the computing times in Table 2. For ease of exposition, we

denote Algorithm 1 as LS and Algorithm 2 as MOA. We observe that the LS and MOA always

return the same objective values for all the instances, implying that LS always give us optimal

solutions. In addition, the computing times required by MOA and LS are similar for the in-

stances of sizes (|I|,m) = (100, 50), (|I|,m) = (100, 100) and (|I|,m) = (200, 100). However,

for instances of size (|I|,m) = (1000, 100), LS requires shorter computing times than MOA. In

particular, the computing times of LS are always below 40 seconds when MOA always needs

more than 60 seconds to finish. For the largest instances (|I|,m) = (82341, 59), LS requires

shorter computing times for small ε value (i.e, ε ≤ 0.08). In contrast, MOA requires shorter
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computing times for the largest instances with large ε values (i.e., ε ≥ 0.4).

|I| m ε
MOA LS

Objective values Time Objective values Time

100 50 0.02 74.33 2.24 74.33 2.79
100 50 0.04 74.29 2.38 74.29 2.71
100 50 0.08 74.22 2.68 74.22 2.72
100 50 0.4 74.01 2.21 74.01 2.27
100 50 0.5 74.01 1.83 74.01 1.93
100 50 0.6 74.02 1.76 74.02 1.82
100 100 0.02 74.63 3.08 74.63 3.22
100 100 0.04 74.60 3.46 74.60 3.44
100 100 0.08 74.55 4.04 74.55 3.99
100 100 0.4 74.40 2.40 74.40 2.47
100 100 0.5 74.40 2.07 74.40 2.24
100 100 0.6 74.39 2.03 74.39 2.08
200 100 0.02 148.71 5.92 148.71 6.29
200 100 0.04 148.64 6.53 148.64 6.89
200 100 0.08 148.51 7.28 148.51 7.68
200 100 0.4 148.15 4.62 148.15 4.83
200 100 0.5 148.14 4.13 148.14 4.23
200 100 0.6 148.14 3.84 148.14 4.00
1000 100 0.02 39236.30 60.10 39236.30 29.83
1000 100 0.04 39228.52 78.44 39228.52 31.78
1000 100 0.08 39213.34 82.75 39213.34 36.19
1000 100 0.4 39153.40 75.73 39153.40 29.17
1000 100 0.5 39150.54 70.80 39150.54 24.28
1000 100 0.6 39149.27 69.19 39149.27 22.81
82341 59 0.02 71682.01 2915.80 71682.01 2833.67
82341 59 0.04 71603.14 3034.34 71603.14 2962.36
82341 59 0.08 71458.12 3181.14 71458.12 3109.69
82341 59 0.4 70996.35 2384.12 70996.35 2465.88
82341 59 0.5 70985.87 2303.91 70985.87 2395.21
82341 59 0.6 70982.53 2237.14 70982.53 2326.52

Table 2: Comparison of the MOA and LS algorithms.

6 Conclusion

We have formulated and studied a robust version of the MCP under GEV models. We have

shown that the adversary’s minimization problem can be solved by convex optimization, and the

robust model preserves the monotonicity and submodularity from its deterministic counterpart,

leading to the fact that a simple greedy heuristic can guarantee (1−1/e) approximation solutions.

We have then introduced the GGX algorithm that works with the robust MCP under GEV,

and a multicut outer-approximation algorithm that can exactly solve the robust MCP under

MNL. Our numerical experiments based on the MNL and nested logit models have shown the

advantages of our model and algorithms in providing protection against worst-case scenarios,
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as compared to other deterministic and sampling-based baseline approaches.

Our robust model assumes that the choice parameters can vary uniformly in the uncertainty

sets, which might be conservative in some contexts where the distribution of these parameters

may be partially known. Therefore, it would be interesting to consider a distributionally robust

version of the MCP. It is interesting to look at a model where the firm and the competitor make

decisions in a Stackelberg game setting. Moreover, in this paper we assume that the (expected)

number of customer in each zone is fixed and ignore any uncertainty associated with the fact

that customers may travel between different zones. Accounting for this would require a new

model to predict how customers would move between zones any maybe a new stochastic or

robust optimization model for the MCP. This would be an interesting direction for future work.

As mentioned earlier, our model only targets uncertainties associated with the deterministic

parts of the utilities. There would be other sources of uncertainty that would come from, for

instance, the structure of the GEV model or the distribution of the random parts of the utilities.

Models and algorithms addressing such uncertainties would be challenging, but worth being

investigated. Moreover, since the objective functions of the MCP and robust MCP under GEV

models are all submodular, a MILP approach based on submodular cuts would be interesting

for future explorations.
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Appendix

A Proofs

A.1 Proof of Lemma 1

Proof. We will make use of the assumption that Vi can be defined by a set of constraints

{git(vi) ≤ 0; t = 1, . . . , T}. The Lagrangian expression of the minimization problem is

L(x,vi,λλλ) = Gi(Y(vi) ◦ x) +
∑
t∈[T ]

λtg
i
t(v

i)

Let λλλ∗ be the saddle point of Lagrangian (solution that minimize Gi(Y(vi) ◦ x) subjects to the

constraints), the Envelop theorem (Mirrlees, 1971) implies that

∂φi(x)

∂xj
=
∂L(x,vi,λλλ)

∂xj

∣∣∣∣
(vi,λλλ)=(vi∗,λλλ∗)

=
∂Gi(Y(vi∗) ◦ x)

∂xj
+
∂
(∑T

t=1 λtg
t(vi)

)
∂xj

∣∣∣∣∣∣
(vi,λλλ)=(vi∗,λλλ∗)

(a)
=
∂Gi(Y(vi∗) ◦ x)

∂xj
, (18)

where (a) is due to the fact that
∑T

t=1 λtg
t(vi) = 0 (complementary slackness from the KKT

conditions) does not involve x. We take the second derivative of φi(x) w.r.t. xk we have

∂2φi(x)

∂xj∂xk
=
∂2L(x,vi∗,λλλ∗)

∂xj∂xk
+
∑
j∈[m]

∂2L(x,vi(x),λλλ∗)

∂xj∂vij(x)

∂vij(x)

∂xk

+
∑
t∈[T ]

∂2L(x,vi∗,λλλ(x))

∂xj∂λt(x)

∂λt(x)

∂xk
, (19)

where (vi(x),λλλ(x)) is the saddle point of the Lagrangian as functions of x ∈ [0, 1]m. We know

that, for any x ∈ [0, 1]m and for any j ∈ [m], t ∈ [T ], the KKT conditions imply that

∂L(x,vi(x),λλλ(x))

∂vij(x)
= 0; (20)

and λt(x)git(v
i(x)) = 0. There are two cases to consider here. If λt(x) = 0 then ∂λt(x)/∂xk = 0

and if git(v
i(x)) = 0 then

∂L(x,vi∗,λλλ)

∂λt

∣∣∣∣
λ=λ(x)

=

(
∂Gi(Y(vi∗) ◦ x)

∂λt
+ git(v

i∗)

)∣∣∣∣
λ=λ(x)

= 0.
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Thus
∂2L(x,vi,λλλ)

∂λt∂xj

∣∣∣∣
λ=λ(x)

= 0.

Combine the two cases, we have

∑
t∈[T ]

∂2L(x,vi∗,λλλ(x))

∂xj∂λt(x)

∂λt(x)

∂xk
= 0. (21)

Combine (19), (20) and (21) we have

∂2φi(x)

∂xj∂xk
=
∂2L(x,vi∗,λλλ∗)

∂xj∂xk

=
∂2Gi(Y(vi∗) ◦ x)

∂xj∂xk
+
∂2
(∑T

t=1 λtg
t(vi)

)
∂xj∂xk

∣∣∣∣∣∣
(vi,λλλ)=(vi∗,λλλ∗)

=
∂2Gi(Y(vi∗) ◦ x)

∂xj∂xk
. (22)

We complete the proof.

A.2 Proof of Proposition 2

Proof. Recall that Y i
j (vij) = ev

i
j , then by dividing the numerator and denominator of each

fraction by ev
i
0 , we write the objective function of (3) as

∑
i∈I

qi

∑
j∈[m] Y

i
j (vij − vi0)∂Gij(Y(vi)|S)

1 + 1

ev
i
0
Gi(Y(vi)|S)

. (23)

Moreover, from Property (ii) of Remark 1 and (ii) of Proposition 1 we have

∂Gij(Y(vi)|S) = ∂Gij(Y(vi)/ev
i
0 |S) = ∂Gij(Y(vi − vi0e)|S)

1

ev
i
0

Gi(Y(vi)|S) = Gi(Y(vi)/ev
i
0 |S) = Gi(Y(vi − vi0e)|S),

where e is an all-ones vector of size m. Thus, the inner minimization problem of (3) is equivalent

to

min
(vi0,v

i)∈Vi
∀i∈I

{∑
i∈I

qi

∑
j∈[m] Y

i
j (ṽij)∂G

i
j(Y(ṽi)|S)

1 +Gi(Y(ṽi)|S)

}
. (24)

where ṽi is a vector of size m with entries ṽij = vij − vi0, for all i ∈ I. Now, by defining new

uncertainty sets Ṽi, ∀i ∈ I, we can write (24) equivalently as

min
ṽi∈Ṽi
∀i∈I

{∑
i∈I

qi

∑
j∈[m] Y

i
j (ṽij)∂G

i
j(Y(ṽi)|S)

1 +Gi(Y(ṽi)|S)

}
,
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as desired.

A.3 Proof of Proposition 3

Proof. It is more convenient to use the binary representation Gi(Y(vi) ◦x) to prove the claim.

To prove the convexity, we take the second derivatives of Gi(Y(vi) ◦x) w.r.t. vi and prove that

the Hessian matrix is positive definite. Let ρ(vi) = Gi(Y(vi) ◦x). We take the first and second

order derivatives of ρ(vi) with respect to vi and have

∂ρ(vi)

∂vij
=
∂Gi(Y(vi) ◦ x)

∂vij
= (xjYj)∂G

i
j(Y(vi) ◦ x), ∀j ∈ [m]

∂2ρ(vi)

∂vij∂v
i
k

= (xjYj)(xkYk)∂G
i
jk(Y(vi) ◦ x), ∀j, k ∈ [m], j 6= k

∂2ρ(vi)

∂vij∂v
i
j

= (xjYj)∂G
i
j(Y(vi) ◦ x) + (xjYj)

2∂Gijj(Y(vi) ◦ x), ∀j ∈ [m].

So, we define Y ∈ Rm such that Y j = ev
i
jxj and write

∇2ρ(vi) = diag(Y)∇2Gi(Y)diag(Y) + diag(∇Gi(Y) ◦Y)

where ∇2Gi(Y) is a matrix of size (m×m) with entries ∂Gijk(Y), for all j, k ∈ [m], and diag(Y)

is the square diagonal matrix with the elements of vector Y on the main diagonal. We see

that diag(∇Gi(Y) ◦ Y) is positive definite. Moreover, diag(Y)∇2Gi(Y)diag(Y) is symmetric

and its (j, k)-th element is Y jY k∂G
i
jk(Y). For j 6= k we have ∂Gijk(Y) ≤ 0 (Property (iv)

of Remark 1), thus all the off-diagonal entries of the matrix are non-positive. Moreover, from

Property (iii) of Proposition 1, we see that
∑

k∈[m] Y jY k∂G
i
jk(Y) = 0 for any j ∈ [m], thus

each row of the matrix sums up to zero. Using Theorem A.6 of De Klerk (2006), we see that

diag(Y)∇2Gi(Y)diag(Y) is positive semi-definite. Since diag(∇Gi(Y) ◦Y) is positive definite,

∇2ρ(vi) is positive definite, implying that ρ(vi) is strictly convex in vi, as desired.

B Comparison with Mehmanchi et al. (2020)

Mehmanchi et al. (2020) study a robust fractional 0-1 program based on the uncertainty struc-

ture introduced by (Bertsimas and Sim, 2004, Bertsimas et al., 2004), which can be well applied

to the MCP under MNL. The work of Mehmanchi et al. (2020) differs from our robust MCP un-

der MNL by the fact that our methods work with any convex uncertainty sets while Mehmanchi

et al. (2020) employ rectangular uncertainty sets where each unknown coefficient (i.e., utility

in the MCP context) lies in a symmetric interval centered on a nominal value. Thus, our algo-

rithms (i.e., both the local search and outer-approximation) can work well with their uncertainty

setting. In this section, we consider a robust MCP under the Mehmanchi et al. (2020)’s un-

certainty setting and make a numerical comparison between our algorithms and their solution
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approach which is based on a MILP reformulation.

Under Mehmanchi et al. (2020)’s uncertainty setting, each uncertainty set Vi is defined as

Vi = {Vi|Vij ∈ [V ij − dij ;V ij + dij ], |Si(V)| ≤ Γi} where V ij are nominal utilities, coefficients

dij ≥ 0 denote potential deviation from the nominal utilities, Si(V) is the set of indices of the

uncertain parameters V whose values are different from the nominal values V. The constraints

Si(V) ≤ Γi imply that there are at most Γi unknown coefficients taking values different from

their nominal values. The robust MCP under MNL can be formulated as:

max
x∈{0,1}m

{
fWC(x) =

∑
i∈I

min
Vi∈Vi

{
qi −

∑
i∈I

qi
1 +

∑
j Vijxj

}}
(RO*)

subject to
∑
j∈[m]

xj = C.

Since the inner problem is a minimization problem, we want to maximize the number of

times that Vij is equal to its lower bound. Thus, we can use additional binary variables

uij ∈ {0, 1}, ∀i ∈ [I], j ∈ [m] to write the MCP problem as:

max
x{0,1}m

f
WC(x) =

∑
i∈I

qi −
∑
i∈I

qi

1 +
∑

j V ijxj −maxuij , ∀j∈[m]∑
j uij≤Γi

{∑
j dijxjuij

}


subject to
∑
j∈[m]

xj = C.

To reformulate the above fractional program as a MILP, we let

yi = 1/

1 +
∑
j

V ijxj − max
uij∈{0,1}∑

j uij≤Γi

∑
j

dijxjuij




and denote zij = yixj . We further linearize these bi-linear terms using McCormick inequalities
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(McCormick, 1976) to obtain:

max
x∈{0,1}m

{
fWC(x) =

∑
i∈I

qi −
∑
i∈I

qiyi

}
subject to

∑
j∈[m]

xj = C

yj +
∑
j

V ijzij − max
uij∈{0,1}∑

j uij≤Γi

∑
j

dijzijuij

 ≥ 1

zij ≥ yi − yi(1− xj) ∀i ∈ I, ∀j ∈ [m]

zij ≤ yi + y
i
(xj − 1) ∀i ∈ I, ∀j ∈ [m]

zij ≤ yixj ∀i ∈ I, ∀j ∈ [m]

zij ≥ yixj ∀i ∈ I, ∀j ∈ [m]

yj ≥ 0, zij ≥ 0, ∀i ∈ I, ∀j ∈ [m],

where yi, yi, ∀i ∈ I, are some upper and lower bounds of yi, respectively. Using Equation (9)

of Mehmanchi et al. (2020), we take the dual of the inner maximization problem and formulate

the robust MCP as the following MILP:

max
x

{
fWC(x) =

∑
i∈I

qi −
∑
i∈I

qiyi

}
(MILP*)

subject to
∑
j∈[m]

xj = C

yj +
∑
j

V ijzij − 1 ≥ Γiα+
∑
j

pj

pj + α ≥ dijzij
zij ≤ yi + y

i
(xj − 1) ∀i ∈ I, ∀j ∈ [m]

zij ≤ yixj ∀i ∈ I, ∀j ∈ [m]

zij ≥ yixj ∀i ∈ I, ∀j ∈ [m]

α, pj , yj , zij ≥ 0, ∀i ∈ I, ∀j ∈ [m],

where α and pj , j ∈ [m] are dual variables of the inner maximization problem.

To conduct the experiment, we take instances from the three datasets HM, ORlib, and NYC.

We choose the deviation coefficients as dij = 0.5V ij , ∀i ∈ I, j ∈ [m] and the level of uncertainty

Γi ∈ [1, 2, 3, 4, 5] and C = 5. We set a time limit of 600 seconds for all the methods and

select lower and uppers bounds for yi as yi = 1 and y
i

= 0, for all i ∈ I, similarly to the

setup in Mehmanchi et al. (2020). We will compare (MILP*) against our local search algorithm

(i.e. Algorithm 1), noting that the MOA can be used as well but it is generally less efficient

than the local search algorithm, in terms of both computing time and solution quality. For

each step of LS, we compute the worst-case objective value by solving the inner maximization
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max uij∈{0,1}∑
j uij≤Γi

{∑
j dijxjuij

}
(x is fixed). This can be done efficiently by relaxing the binary

variables uij and using CPLEX to solve the resulting linear program. Here, we only focus on

comparison in terms of solving the robust problem, as the value and price of robustness under

this uncertainty setting were intensively assessed in previous work (Bertsimas and Sim, 2004,

Mehmanchi et al., 2020).

Table 3 below reports the performance of (MILP*) solved by CPLEX and our LS algorithm,

in terms of running time and the number of times each method returns better objective values

within the time budget. The results generally show that LS outperforms (MILP*) in terms of

solution quality and is also faster, especially for large-sized instances.

Dataset |I| m
# instances with
better objectives

Average
running time (seconds)

MILP* LS (ours) MILP* LS (ours)

HM14 50 25 5 5 0.4 12.1
HM14 50 50 5 5 1.1 9.6
HM14 50 100 5 5 4.3 12.7
HM14 100 25 5 5 1.0 11.7
HM14 100 50 5 5 3.8 11.7
HM14 100 100 5 5 13.5 13.6
HM14 200 25 5 5 4.8 14.9
HM14 200 50 5 4 22.4 16.3
HM14 200 100 5 3 152.4 21.7
HM14 400 25 5 5 14.9 15.5
HM14 400 50 5 5 78.4 18.9
HM14 400 100 3 4 600 24.0
HM14 800 25 5 5 136.2 17.9
HM14 800 50 2 4 600 15.1
HM14 800 100 2 3 600 22.7

ORlib 50 25 5 4 27.1 11.8
ORlib 50 25 5 4 27.1 10.2
ORlib 50 25 5 5 25.4 11.5
ORlib 50 25 5 5 25.6 10.2
ORlib 50 50 5 4 600 12.4
ORlib 50 50 5 4 600 13.7
ORlib 50 50 5 4 600 12.5
ORlib 50 50 5 5 600 13.8
ORlib 1000 100 0 5 600 16.3
ORlib 1000 100 0 5 600 14.3
ORlib 1000 100 0 5 600 15.0

NYC 82341 59 0 5

Average 4.0 4.6

Table 3: Comparison between the MILP approach proposed in Mehmanchi et al. (2020) and
Algorithm 1 for the MCP under MNL.
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C Additional Experiments

C.1 Comparing across the MNL and Nested Logit Models

We will assess the performance of the RO approach across the MNL and nested logit instances.

The aim is to see how the RO performs, as compared to the other approaches, when the

correlation structure of the choice model changes. To this end, we will provide results under the

following two settings. First, we solve the robust MCP problem under MNL and nested logit by

Algorithm 2 and 1 and compare the obtained solutions by injecting them into the corresponding

nested logit instances and comparing the corresponding distributions of the objective values,

in a similar way as in the above sections. The aim is to evaluate gains that we can get if the

choice model is well-specified, under our robust settings. Second, we solve MNL instances by

the RO, DET1, DET2 and SA approaches. We then take the obtained solutions to test on

the corresponding nested logit instances in the same manner as in the previous sections. In

other words, we solve the robust MCP problem under MNL but test the solutions obtained on

nested logit instances. By doing this, we aim to explore how different approaches protect us

from worst-case scenarios when the choice model is misspecified.

For the first setting, we plot in Figure 8 the distributions of the 2000 samples of the objective

values given by MNL and nested-logit solutions with ε ∈ {0.02, 0.04, 0.08, 0.4, 0.5, 0.6}, for in-

stances of size |I| = 100 and m = 50. The figure clearly shows that the nested-logit solutions

always return better objective values than those given by the MNL solutions. Moreover, the

difference seems smaller as ε increases.

For the second setting, in Table 4, we report the averages of 2% of the worst-case nested logit

objective values for each ε value. It is quite clear that RO is not able to retain the same

advantages as in the cases considered above, especially for some large-scale instances where the

nested correlation structures become more complex. The SA and DET2 approaches seem to

provide better protection in this case, suggesting that more investigations would be needed if

the correlation structure of the choice model is not well specified.

In summary, if the choice model is well-specified in terms of correlation structure, our results

show gains from our robust model in protecting decision-makers from expected user demand

that would be too low. The histograms given by the robust approach have high peaks, small

variances, and high worst-case values, as compared to their deterministic and sampling-based

counterparts. The sampling-based SA approach can provide some protection as well, but it is

much more expensive than the RO. If the correlation of the choice model is not well specified,

we observe that the RO is limited in maintaining the same advantage, suggesting that more

investigations, or possibly, new robust models would be needed to address such a misspecification

issue. This is out-of-scope of the paper and we keep this for future work.
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|I| m ε RO DET1 DET2 SA

100 50 0.02 73.48 73.48 73.85 73.87
100 50 0.04 73.45 73.45 73.82 72.95
100 50 0.08 71.62 73.38 73.73 72.91
100 50 0.40 73.27 72.80 73.13 73.53
100 50 0.50 73.29 72.78 73.13 71.91
100 50 0.60 73.37 72.79 73.16 72.55
100 100 0.02 69.51 69.51 73.12 73.12
100 100 0.04 69.50 69.50 73.09 73.09
100 100 0.08 69.47 69.47 73.05 73.05
100 100 0.40 70.48 69.34 72.78 72.94
100 100 0.50 70.51 69.36 72.81 71.01
100 100 0.60 70.55 69.40 72.85 72.93
200 100 0.02 140.63 140.63 140.63 140.63
200 100 0.04 140.56 140.56 140.56 140.56
200 100 0.08 140.41 140.38 140.38 134.13
200 100 0.40 145.09 139.10 139.10 133.83
200 100 0.50 145.15 138.89 138.89 140.17
200 100 0.60 140.23 138.71 138.71 134.11
1000 100 0.02 38104.29 38266.32 38104.29 38104.29
1000 100 0.04 38099.74 38260.89 38099.74 38831.59
1000 100 0.08 38087.11 38244.76 38087.11 38823.69
1000 100 0.40 38281.47 38135.82 38008.28 38963.94
1000 100 0.50 38291.25 38124.55 38003.93 38362.69
1000 100 0.60 38300.33 38114.96 38002.34 39164.15
82341 59 0.02 68497.10 70338.96 70338.96 68497.10
82341 59 0.04 68442.18 70246.72 70246.72 68442.18
82341 59 0.08 68345.19 70076.93 70076.93 68345.19
82341 59 0.40 67974.98 68772.24 68772.24 69141.38
82341 59 0.50 67999.14 68579.18 68579.18 67999.14
82341 59 0.60 68069.08 68442.86 68442.86 68069.08

Table 4: Comparison of nested logit objective values given by solutions obtained by solving
MNL instances.
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Figure 8: Comparison of the distributions of the nested-logit objective values given by solutions
from the MNL and the nested logit model for instance of |I| = 100 and m = 50.

C.2 Objective Value Distributions

Instances of |I| = 100 and m = 100. Figure 9 shows the histograms given by the four

approaches with MNL instances. When ε is small, the histograms are very similar across the

four approaches. When ε ≥ 0.4, in analogy to the experiments shown in the main part of the

paper, the histograms given by the RO solutions have small variance and shorted left tails,

indicating the capability of RO to cover too-low expected demand values.

Figure 10 shows comparison results for nested logit instances, where the histograms from the

four approaches are identical for ε ≤ 0.08. When ε ≥ 0.4, the superiority of RO in terms of

worst-case protection becomes much clearer. We note that RO seems to give better protection

with nested logit instances, as compared to the MNL instances shown in Figure 9.

In Figure 11 we plot the percentile ranks of the RO’s worst-case objective values in the dis-

tributions given by the other approaches. We see that the ranks only become significant with

ε > 0.4 for MNL instances and with ε > 0.2 for nested logit instances. The solutions given by

DET1 and DET2 are identical for these testing instances. We see that the percentile ranks are

higher for nested logit instances, indicating that the RO would give better protection under the
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nested logit.

Figure 9: Comparison results between the distributions of the objective values given by solu-
tions from the RO, SA, DET1, and DET2 approaches, under the MNL choice model and with
instances of size |I| = 100 and m = 100.

Instances of |I| = 200 and m = 100. Figure 12 shows the histograms given by the four

approaches for MNL instances, where the ability of RO to provide protection is clearly shown.

When ε ≥ 0.4, the histograms given by RO always have higher peaks, shorter tails, and higher

worst-case objective values. The trade-off of being robust can also be seen. Figure 13 shows the

histograms for nested logit instances. Figure 14 shows the percentile ranks of the RO’s worst-

case objective values. In analogous to the previous experiments, the ability of RO in protecting

the decision-maker from low objective values is clearly demonstrated.
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Figure 10: Comparison of the distributions of the objective values given by solutions from RO,
SA, DET1, and DET2 approaches, under the nested choice model and with instances of size
|I| = 100 and m = 100.

MNL Nested logit

Figure 14: The percentile ranks of RO worst value in the distributions given by the SA, DET1,
and DET2 solutions under the nested logit choice model for instance with |I| = 200 andm = 100.

Instances of |I| = 1000 and m = 100. Figure 15 shows the histograms given by the four

approaches under the MNL choice model. The difference between the histograms of the four
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Figure 11: The percentile ranks of RO worst value in the distributions given by the SA, DET1,
and DET2 solutions under the MNL choice model for instance with |I| = 100 and m = 100.

approaches is not clear when ε is small. With ε ≥ 0.4, the histograms given by the RO solutions

have very small variance, shorted left tails, and particularly high peaks, as compared to the

other approaches. Figure 16 below shows the histograms given by the four approaches under the

nested logit choice model. The histograms of RO, SA, and DET1 are similar at ε ∈ {0.02, 0.04}.
When ε becomes larger, RO gives histograms of higher peaks, smaller variances, and shorter

tails, as compared to other approaches. It clearly shows the ability of RO in protecting the

decision-makers against worse-case situations. In Figure 17, we plot the percentile ranks of the

RO’s worst objective value. We see that the percentile ranks only become significant when

ε > 0.26 for the MNL and ε > 0.2 for the nested logit instances.
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Figure 12: Comparison between the distributions of the objective values given by solutions from
RO, SA, DET1, and DET2 approaches, under the MNL choice model and with instances of size
|I| = 200 and m = 100.

Figure 15: Comparison between the distributions of the objective values given by solutions from
RO, SA, DET1, and DET2 approaches, under the MNL choice model and with instances of size
|I| = 1000 and m = 100.
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Figure 13: Comparison between the distributions of the objective values given by solutions from
RO, SA, DET1, and DET2 approaches, under the nested logit choice model and with instances
of size |I| = 200 and m = 100.

Figure 16: Comparison between the distributions of the objective values given by solutions from
RO, SA, DET1, and DET2 approaches, under the nested logit choice model and with instances
of size |I| = 1000 and m = 100.
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Figure 17: The percentile ranks of RO worst value in the distributions given by the SA, DET1,
and DET2 solutions under the nested logit choice model for instance with |I| = 1000 and
m = 100.

Instances of |I| = 82341 and m = 59 In Figures 18, 19, and 20, we plot similar figures

as in the previous sections for large-scale instances of size |I| = 82341 and m = 59, which

give analogous observations, i.e., the histograms of RO always have lower variances and shorter

tails and the percentiles ranks of the RO’s worst-case objective values are always significant,

especially when ε becomes large.
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Figure 18: Comparison between the distributions of the objective values given by solutions from
RO, SA, DET1, and DET2 approaches, under the MNL choice model and with instances of size
|I| = 82341 and m = 59.
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Figure 19: Comparison between the distributions of the objective values given by solutions from
RO, SA, DET1, and DET2 approaches, under the nested logit choice model and with instances
of size |I| = 82341 and m = 59.
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Figure 20: The percentile ranks of RO worst value in the distributions given by the SA, DET1,
and DET2 solutions under the nested logit choice model for instance with |I| = 82341 and
m = 59.
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