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Abstract

We analyze combinatorial optimization problems with ordinal, i.e., non-additive,
objective functions that assign categories (like good, medium and bad) rather
than cost coefficients to the elements of feasible solutions. We review different
optimality concepts for ordinal optimization problems and discuss their simi-
larities and differences. We then focus on two prevalent optimality concepts
that are shown to be equivalent. Our main result is a bijective linear trans-
formation that transforms ordinal optimization problems to associated stan-
dard multi-objective optimization problems with binary cost coefficients. Since
this transformation preserves all properties of the underlying problem, problem-
specific solution methods remain applicable. A prominent example is dynamic
programming and Bellman’s principle of optimality, that can be applied, e.g.,
to ordinal shortest path and ordinal knapsack problems. We extend our results
to multi-objective optimization problems that combine ordinal and real-valued
objective functions.

Keywords: multiple objective programming, ordering cones, ordinal objective
functions, combinatorial optimization

1. Introduction

Ordinal objective functions occur whenever it is only possible to represent
the quality of an element by a ordered category and not by a numerical value.
As an example, consider the problem of finding optimized routes for cyclists in
a road network: While edges may be associated with different categories like
asphalt, gravel or sand—or, when related to safety considerations, very safe
(there is a bicycle path), neutral (a quiet road) or unsafe (a main road with-
out bicycle path)—such categories do not immediately translate into monetary
or cost values. Bi-objective shortest path problems with route safety criteria
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are addressed, for example, in the web application geovelo and in the associ-
ated publications Kergosien et al. (2021); Sauvanet & Néron (2010). In these
references, only two categories are considered (safe or unsafe edges), and the
safety criterion is translated into a cost function that evaluates the total length
of unsafe route segments. In contrast, an ordinal shortest path problem is in-
vestigated in Schäfer et al. (2020). A major difficulty when considering ordinal
objective functions is that “optimality” may be defined in many different ways.
Schäfer et al. (2020) suggests an optimality concept that is based on sorted cate-
gory vectors. A similar concept is used in Klamroth et al. (2021), where matroid
optimization problems with one real-valued and one ordinal objective function
are investigated. A different perspective is proposed in Schäfer et al. (2021)
who define ordinal optimality for knapsack problems on the basis of numerical
representations for the categories.

In this paper, we consider general combinatorial optimization problems and
provide a new cone-based interpretation of the optimiality concept for ordi-
nal objectives suggested in Schäfer et al. (2021). In particular, we interrelate
ordinal optimality with the classical concept of Pareto optimality for an as-
sociated multi-objective optimization problem. For a general introduction to
multi-objective optimization we refer to Ehrgott (2005). Since the underly-
ing transformation of the objective function is linear and bijective and hence
preserves the combinatorial structure of the respective problems, our results
immediately lead to efficient solution strategies as, for example, dynamic pro-
gramming for shortest path problems. The respective transformations are based
on a representation of dominance relations by cones.

The paper is organized as follows. In Section 2 we review three optimality
concepts for ordinal optimization based on Schäfer et al. (2021). These results
and optimality concepts are then extended and re-interpreted as a special case
of cone-optimality (see, e.g., Engau, 2007) in Section 3. A detailed analysis
of the properties of the corresponding ordering cones then leads to a linear
transformation of ordinal optimization problems to associated multi-objective
optimization problems with the Pareto cone defining dominance and optimality.
This transformation is used in Section 4 to formulate a general algorithm for
solving ordinal optimization problems. Furthermore, we investigate the relation
between the definition of ordinal optimality and the weight space decomposition
of the associated multi-objective problem. In Section 5 we extend our results
to more general problem types with additional real-valued objective functions.
We conclude in Section 6 with a summary and an outlook on future research.

2. Single-objective Ordinal Optimization

2.1. Problem Definition

We consider combinatorial optimization problems with an ordinal objective
function. In general, an ordinal optimization problem (OOP) can be formulated
as

“ ordinally minimize ” o(x)
s. t. x ∈ X,

(OOP)
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where X is the set of feasible solutions. We assume that X is a subset of the
power set of a discrete set S, i.e., X ⊆ 2S . Every element of S is assigned
to one of K ordered categories. This assignment is encoded by a mapping
o : S → C with C = {η1, . . . , ηK}. We assume that category ηi with i ∈
{1, . . . ,K − 1} is strictly preferred over category ηi+1, written as ηi ≺ ηi+1.
The objective function of a feasible solution x = {e1, . . . , en} is given by the
ordinal vector o(x) = sort(o(e1), . . . , o(en)), where the operator sort( ) means
that the components of o(x) are sorted w.r.t. non-decreasing preferences, i.e.,
o1(x) ≺

= o2(x) ≺
= · · · ≺

= on(x). Note that different feasible solutions may have
different numbers of elements, and hence the length of the ordinal vector o(x)
may vary for different x ∈ X .

Instead of using the un-aggregated, ordered ordinal vector o(x) one can count
the number of elements in a feasible solution per category. Accordingly, we use
the counting vector c : X → Z

K
≧

with Z
K
≧

:= {y ∈ Z
K : yi ≥ 0 for all i =

1, . . . ,K}. Thereby, the i-th component of c(x) equals the number of elements
in x which are in category ηi, i. e., ci(x) = |{e ∈ x : o(e) = ηi}|. Obviously,
there is a one to one correspondence between the vectors o ∈ R

n and c ∈ R
K ,

since the ordinal vector o can be determined from a given counting vector c
by oi(x) = ηj with j = argmin{j ∈ {1, . . . ,K} : i ≤

∑j
l=1 cl(x)}. Note again

that the number of elements n of a feasible solution, and hence the length of
the ordinal vectors o ∈ R

n, may vary while the number of categories K and
therefore the length of the counting vectors c ∈ R

K is fixed. Hence, we get the
following formulation of an ordinal counting optimization problem (OCOP)

“ ordinally minimize ” c(x)
s. t. x ∈ X,

(OCOP)

which will be shown to be equivalent to problem (OOP) for an appropriate
definition of “ordinal minimization”.

In the following, we also consider an incremental tail counting vector c̃ ∈ R
K

that counts, in its i-th component, the number of elements of a feasible solution x
which are in category ηi or worse, i.e., c̃i(x) = |{e ∈ x : ηi ≺

= o(e)}| =
∑K

j=i cj(x).
In particular, the total number of elements of a solution x is given in the first
component of c̃, i.e., |x| = c̃1(x) =

∑K
i=1 ci(x).

As an example, consider the shortest path problem shown in Figure 1 to-
gether with the outcome vectors o(x) (for problem (OOP)) and c(x) (for prob-
lem (OCOP)) for all feasible solutions x ∈ X . In addition, the incremental tail
counting vector c̃(x) is given for all x ∈ X .

2.2. Optimality Concepts for Ordinal Objective Functions

In the following, we review three different concepts of optimality for ordinal
optimization. All of them try to answer the question what minimization could
mean for the problems (OOP) and (OCOP). The first concept is to use numer-
ical representations that assign a numerical value to every category such that
the order of the categories is respected. In this context, a numerical represen-
tation respects the order of the categories whenever the numerical value of a
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Figure 1: Instance of an ordinal shortest path problem. A dotted-green edge is in the best
category η1, a dashed-orange edge is in category η2 and a solid-red edge is in the worst
category η3. All possible s − t paths xi, i = 1, . . . , 6 and their respective objective function
vectors are given.

better category is strictly smaller than the numerical value of a less preferred
category. If we take the sum over all numerical values of a vector o(x′) for a
feasible solution x′, we obtain a unique numerical value that can be compared
to the corresponding numerical value of another feasible solution x̂. A feasible
solution x′ is called efficient if there is no other feasible solution x̂ which is
better w.r.t. all numerical representations.

The second concept is to maximize the number of elements in the good
categories, and the third concept is to minimize the number of elements in the
bad categories. After the formal introduction of these three optimality concepts,
we investigate their interrelation.

Optimality by Numerical Representations. We consider the problems (OOP)
and (OCOP). The concept of optimality by numerical representation for ordinal
objectives as introduced in Schäfer et al. (2021) is based on a previous and more
general work of Fishburn (1999). It assigns an order preserving numerical value
to each category. Following Schäfer et al. (2021), we call a function ν : C → Z≥
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a numerical representation if

ηi ≺ ηj ⇐⇒ ν(ηi) < ν(ηj) for all i, j ∈ {1, . . . ,K}.

Note that we assume strictly ordered categories, i.e., there are no categories
that are indifferent. As a consequence, we do not allow ν(ηi) = ν(ηj) for i 6= j
since this would make two different categories indistinguishable in the numerical
representation. Let V denote the set of all numerical representations for a given
number of categories K.

For a given numerical representation ν, we define the numerical value of a
feasible solution x = {e1, . . . , en} ∈ X w.r.t. ν (cf. Schäfer et al., 2021) as

ν(x) :=

n
∑

i=1

ν(o(ei)) =

K
∑

i=1

ν(ηi) · ci(x).

The numerical value ν(x) of a feasible solution x ∈ X can be evaluated in
different ways by re-arranging the terms and using the counting vector c or the
incremental tail counting vector c̃, respectively:

ν(x) =

K
∑

i=1

ν(ηi) · ci(x)

=

K−1
∑

i=1

ν(ηi)

( K
∑

j=i

cj(x) −

K
∑

j=i+1

cj(x)

)

+ ν(ηK) cK(x)

= ν(η1) ·

K
∑

i=1

ci(x) +

K
∑

i=2

(

ν(ηi)− ν(ηi−1)
)

·

K
∑

j=i

cj(x)

= ν(η1) · c̃1(x) +

K
∑

i=2

(

ν(ηi)− ν(ηi−1)
)

· c̃i(x).

An illustration for different ways to evaluate ν(x) is given in Figure 2.

Example 1. We apply the concept of numerical representations to the shortest
path problem given in Figure 1. As a motivation, suppose that there are two
decision makers A and B who have to select a most preferred path. They would
agree, for example, that path x1 is worse than path x2, because x1 has a dashed-
orange edge more than x2 and, other than that, their outcome vectors are the
same. But they do not agree on the question whether x2 or x5 is preferred,
because decision maker A chooses the numerical representation νA(η1) = 1,
νA(η2) = 2 and νA(η3) = 5, while decision maker B chooses νB(η1) = 2,
νB(η2) = 3 and νB(η3) = 4. Therefore, decision maker A would prefer path x5

because νA(x
5) = 4 < 6 = νA(x

2) while decision maker B would prefer path x2

because νB(x
2) = 6 < 7 = νB(x

5). Hence, the path x2 does not ordinally domi-
nate the path x5, i.e., x2 is not better than x5 for all numerical representations.
Similarly, the path x5 does not ordinally dominate the path x2 since also x5 is
not better than x2 for all numerical representations.

5



η1 η2 η2 η3 η4 η4 η4

ν(ηi)

1

2

3

4

5

6

7

8

(a) ν(x) =
7∑

i=1

ν(oi(x))

η1 η2 η2 η3 η4 η4 η4

ν(ηi)

1

2

3

4

5

6

7

8

(b) ν(x) =
4∑
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ν(ηi) · ci(x)
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(c) ν(x) = ν(η1) · c̃1(x)+
4∑

i=2

(ν(ηi) − ν(ηi−1)) · c̃i(x)

Figure 2: Consider an example with n = 7 and K = 4. Different ways to compute the numer-
ical value of a feasible solution x with o(x) = (η1, η2, η2, η3, η4, η4, η4)⊤, c(x) = (1, 2, 1, 3)⊤,
ν(η1) = 2, ν(η2) = 4, ν(η3) = 7 and ν(η4) = 8 are illustrated. The different colors represent
the summands and visualize the different slicing strategies.

Definition 2 (cf. Schäfer et al., 2021). Let x′, x̂ ∈ X be feasible solutions.
Then,

1. x′ weakly ordinally dominates x̂, o(x′) weakly ordinally dominates o(x̂)
and c(x′) weakly ordinally dominates c(x̂), denoted by x′ ≺

= x̂, o(x′) ≺
= o(x̂),

c(x′) ≺
= c(x̂), respectively, if and only if for every ν ∈ V, it holds that

ν(x′) ≤ ν(x̂).

2. x′ ordinally dominates x̂, o(x′) ordinally dominates o(x̂) and c(x′) ordi-
nally dominates c(x̂), denoted by x′ � x̂, o(x′) � o(x̂), c(x′) � c(x̂),
respectively, if and only if x′ weakly ordinally dominates x̂ and there exists
ν∗ ∈ V such that ν∗(x′) < ν∗(x̂).

3. x∗ ∈ X is called ordinally efficient, if there does not exist an x ∈ X such
that x � x∗.

4. o(x∗) and c(x∗) are called ordinally non-dominated outcome vectors of
Problem (OOP) and (OCOP), respectively, if x∗ is ordinally efficient.

Optimality by Maximization of Elements in Good Categories. Another optimal-
ity concept in ordinal optimization is to maximize the number of elements in
good categories. The intuition behind this concept is that solutions with many
good elements are to be preferred over solutions with few good elements. The
drawback, however, is that this concept rewards solutions with larger numbers
of elements as long as these are in (relatively) good categories, which may not
be wanted in practice. This optimality concept is defined only for the problem
(OCOP), as we need the counting vector c for its definition.

Definition 3. We say x′ weakly head-dominates x̂, denoted by x′ ≧h x̂ or

6



c(x′) ≧h c(x̂), if and only if

j
∑

i=1

ci(x
′) ≥

j
∑

i=1

ci(x̂) for all j = 1, . . . ,K. (1)

Furthermore, x′ head-dominates x̂, denoted by x′ >h x̂ or c(x′) >h c(x̂), if and
only if (1) holds and c(x′) 6= c(x̂). Moreover, x∗ ∈ X is called head-efficient if
there is no x ∈ X such that x >h x∗. The corresponding outcome vector c(x∗)
is called head-non-dominated.

Optimality by Minimization of Elements in Bad Categories. The drawback that
longer solutions may be preferred over shorter solutions, as long as the elements
are in good categories, can be avoided by taking the converse perspective, i.e.,
when minimizing the number of elements in the bad categories. Again, this
optimality concept is defined only for the problem (OCOP).

Definition 4. We say x′ weakly tail-dominates x̂, denoted by x′ ≦t x̂ or
c(x′) ≦t c(x̂), if and only if

c̃j(x
′) =

K
∑

i=j

ci(x
′) ≤

K
∑

i=j

ci(x̂) = c̃j(x̂) for all j = 1, . . . ,K. (2)

Again, x′ tail-dominates x̂, denoted by x′ 6t x̂ or c(x′) 6t c(x̂), if and only if
(2) holds and c(x′) 6= c(x̂). Moreover, x∗ ∈ X is called tail-efficient if there is
no x ∈ X such that x 6t x

∗. The corresponding outcome vector c(x∗) is called
tail-non-dominated.

Remark 5. Note that head-dominance as well as tail-dominance are equiva-
lently defined on the feasible set X ⊆ 2S and on its image set c(X) ⊆ R

K . The
definitions immediately extends to the complete R

K .

2.3. Properties of and Interrelations between Optimality Concepts for Ordinal
Optimization

In addition to the concepts described above, there are further ways to de-
fine efficiency. This has been done, for example, in Schäfer et al. (2020) for
the ordinal shortest path problem. Their definition has the disadvantage that
Bellman’s principle of optimality (see Bellman, 1957) does not hold in general,
i.e., not every subpath of an efficient path is necessarily efficient w.r.t. this op-
timality concept. The definition of head-optimality has the same disadvantage,
see Remark 10 below for more details. In contrast, the definitions of ordinal
optimality and tail-optimality can be proven to be equivalent. Moreover, they
are compliant with Bellman’s principle of optimality. Note that, for the special
case of a knapsack problem, this was shown in Schäfer et al. (2021).

Lemma 6. For feasible solutions x̄ = {ē1, . . . , ēn}, x
′ = {e′1, . . . , e

′
m} ∈ X with

ci(x̄) ≤ ci(x
′) for all i = 1, . . . ,K and n < m it holds x̄ � x′.

7



Proof. First let ν ∈ V be an arbitrary numerical representation. Then ν(x̄) =
∑K

i=1 ν(ηi) · ci(x̄) ≤
∑K

i=1 ν(ηi) · ci(x
′) = ν(x′), i.e., x̄ ≺

= x′. Note that since
n < m, and due to the above assumptions, there must exist a category ηj ,
j ∈ {1, . . . ,K} such that cj(x̄) < cj(x

′). Therefore, there exists a numerical
representation ν∗ such that ν∗(ηj) > 0 and thus ν∗(x̄) < ν∗(x′), which concludes
the proof.

Note that the condition of Lemma 6 is always satisfied if x̄, x′ ∈ X with x̄ ( x′.
Thus, in Example 1 the path x2 is always preferred over the path x1. This is also
the case for tail-efficiency, but not for head-efficiency, see Remark 10 below. In
many application contexts this is meaningful property, since adding additional
elements to a solution (no matter from which category) does generally not im-
prove the solution quality. As an example, we refer again to paths representing
bicycle routes as in the app geovelo, where we are not interested in routes that
are unnecessarily long.

Lemma 7 (Schäfer et al. 2021). The ordinal dominance relation ≺
= defined on

the feasible set X is a preorder, i.e., it is reflexive and transitive.

Proof. Let x′, x̂, x̄ ∈ X . Obviously, ν(x′) ≤ ν(x′) holds for every ν ∈ V . Hence,
the relation ≺

= is reflexive. If ν(x′) ≤ ν(x̂) and ν(x̂) ≤ ν(x̄) for every ν ∈ V it
follows that ν(x′) ≤ ν(x̄) for every ν ∈ V by definition and therefore, we have
shown transitivity.

Note that the ordinal dominance relation ≺
= is in general not antisymmetric

on the feasible set X since two different feasible solutions may have the same
number of elements in each category like the paths x3 and x4 in Example 1.

The following two results show that (weak) ordinal dominance and (weak)
tail-dominance are actually equivalent on the feasible set X .

Lemma 8 (Schäfer et al. 2021). Let x′, x̂ ∈ X be two feasible solutions. Then
x′ weakly ordinally dominates x̂, i.e., x′ ≺

= x̂ if and only if x′ ≦t x̂.

Proof. The proof is a simplified variant of the proof in Schäfer et al. (2021).
Note, that they consider maximization problems while we consider minimization
problems.

First we show by contradiction that x′ ≺
= x̂ implies x′ ≦t x̂. Let x′, x̂ ∈ X

and let j∗ ∈ {1, . . . ,K} with

K
∑

i=j∗

ci(x
′) >

K
∑

i=j∗

ci(x̂).

The idea of the proof is to make the bad categories ηj∗ , . . . , ηK very expensive,
such that an element of this category can not be replaced by elements of the
lower categories. Hence, we define the numerical representation

ν(ηi) =

{

i, if i < j∗

i+ 2 |x̂|K, if i ≥ j∗.

8



This implies

ν(x′) ≥ 2 |x̂|K ·

K
∑

i=j∗

ci(x
′) ≥ 2 |x̂|K ·

(

1 +

K
∑

i=j∗

ci(x̂)

)

> |x̂|K + 2 |x̂|K ·

K
∑

i=j∗

ci(x̂) ≥

K
∑

i=1

i ci(x̂) + 2 |x̂|K ·

K
∑

i=j∗

ci(x̂)

=

j∗−1
∑

i=1

i ci(x̂) +

K
∑

i=j∗

i ci(x̂) +

K
∑

i=j∗

2 |x̂|K · ci(x̂) = ν(x̂).

For the other direction we use the reformulation of ν(x), which is visualized
in Figure 2(c). It follows that for any ν ∈ V

ν(x′) = ν(η1) c̃1(x
′) +

K
∑

i=2

(

ν(ηi)− ν(ηi−1)
)

c̃i(x
′)

≤ ν(η1) c̃1(x̂) +

K
∑

i=2

(

ν(ηi)− ν(ηi−1)
)

c̃i(x̂) = ν(x̂).

The inequality holds because of the assumption c̃j(x
′) ≤ c̃j(x̂) for all j =

1, . . . ,K and ν(ηi)−ν(ηi−1) > 0 for all ν ∈ V and i = 2, . . . ,K. Hence, we have

shown that
∑K

i=j ci(x
′) ≤

∑K
i=j ci(x̂) for all j = 1, . . . ,K implies x′ ≺

= x̂, which
concludes the proof.

Lemma 9. Let x′, x̂ ∈ X be two feasible solutions. Then x′ ordinally dominates
x̂, i.e., x′ � x̂ if and only if x′ 6t x̂.

Proof. We first show that x′ � x̂ implies x′ 6t x̂. If x′ ordinally dominates x̂,
then x′ ≺

= x̂ which implies x′ ≦t x̂ due to Lemma 8. It remains to show that
c(x′) 6= c(x̂). As x′ ordinally dominates x̂ it holds that there is a numerical
representation ν∗ such that ν∗(x′) < ν∗(x̂). Hence,

0 < ν∗(x̂)− ν∗(x′)

⇐⇒ 0 <

K
∑

i=1

ν∗(ηi)
(

ci(x̂)− ci(x
′)
)

.

Since ν(ηi) > 0 for all i = 1, . . . ,K, it holds c(x′) 6= c(x̂). Consequently, we
have shown that when x′ ordinally dominates x̂, then x′ ≦t x̂ holds for all
j = 1, . . . ,K and c(x′) 6= c(x̂).

For the other direction it is sufficient to show that c(x′) 6= c(x̂) implies that
there exists a numerical representation ν∗ ∈ V such that ν∗(x′) < ν∗(x̂). Let j∗

be the largest category such that cj∗(x
′) 6= cj∗(x̂). This implies

K
∑

i=j∗

ci(x
′) <

K
∑

i=j∗

ci(x̂).

9



Now the result follows analogously to the proof of Lemma 8 with exchanged
roles of x′ and x̂.

Remark 10. Lemma 8 (and thus also Lemma 9) does not hold in general for
the relation >h. As a counter example, consider the paths x1 and x2 with
c(x1) = (1, 1, 1)⊤ and c(x2) = (1, 0, 1)⊤ from Figure 1. Obviously, x1 head-
dominates x2. But for every numerical representation it follows ν(x1) > ν(x2),
which contradicts x1 ≺

= x2.

Note that the crucial point in the counter example given in Remark 10 is the
different cardinality of the solutions, |x1| 6= |x2|. For ordinal optimization prob-
lems with fixed cardinality, for which matroid optimization problems as studied
in Klamroth et al. (2021) are an example, it can be shown that head- and tail-
dominance are equivalent.

Lemma 11. If all feasible solutions have the same cardinality, i.e., if |x′| = |x̂|
for all x′, x̂ ∈ X, then head- and tail-dominance as defined in Definitions 3 and
4, respectively, are equivalent.

Proof. First assume that x′ head-dominates x̂, i.e., inequality (1) is satisfied.
We show that then x′ also tail-dominates x̂, i.e., inequality (2) holds. Towards
this end, let j ∈ {2, . . . ,K}. Then

K
∑

i=j

ci(x
′) =

K
∑

i=1

ci(x
′)−

j−1
∑

i=1

ci(x
′)

(1)

≤

K
∑

i=1

ci(x
′)−

j−1
∑

i=1

ci(x̂)

|x′|=|x̂|
=

K
∑

i=1

ci(x̂)−

j−1
∑

i=1

ci(x̂) =
K
∑

i=j

ci(x̂),

which implies (2).
Now let x′ tail-dominate x̂, i.e., (2) is satisfied. We show that then also x′

head-dominates x̂, i.e., (1) holds. Hence, let j ∈ {1, . . . ,K − 1}. Then

j
∑

i=1

ci(x
′) =

K
∑

i=1

ci(x
′)−

K
∑

i=j+1

ci(x
′)

(2)

≥
K
∑

i=1

ci(x
′)−

K
∑

i=j+1

ci(x̂)

|x′|=|x̂|
=

K
∑

i=1

ci(x̂)−

K
∑

i=j+1

ci(x̂) =

j
∑

i=1

ci(x̂),

which implies (1).

Lemma 12. The relation ≦t is a partial order on R
K , i.e., it is reflexive,

transitive and antisymmetric. Moreover, the relation 6t is a strict partial order
on R

K, i.e., it is irreflexive and transitive.

Proof. Let u ∈ R
K . Then u ≦t u, i.e., ≦t is reflexive. Furthermore, for u, v, w ∈

R
K such that u ≦t v and v ≦t w it follows that

∑K
i=j ui ≤

∑K
i=j vi ≤

∑K
i=j wi
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for all j = 1, . . . ,K, i.e., u ≦t w which means ≦t is transitive. To show that the
relation ≦t is antisymmetric, consider two vectors u, v ∈ R

K with u ≦t v and

v ≦t u. Then
∑K

i=j ui =
∑K

i=j vi for all j = 1, . . . ,K. This implies that u = v
and hence ≦t is antisymmetric. Therefore, ≦t is a partial order.

Now consider the relation 6t. Since u 
t u for all u ∈ R
K , it holds that

6t is irreflexive. It remains to show that 6t is transitive. Towards this end,
consider three vectors u, v, w ∈ R

K such that u 6t v and v 6t w. This implies
∑K

i=j ui ≤
∑K

i=j vi ≤
∑K

i=j wi for all j = 1, . . . ,K, and there exist indices

s, t ∈ {1, . . . ,K} such that
∑K

i=s ui <
∑K

i=s vi and
∑K

i=t vi <
∑K

i=t wi. Hence,

we can conclude that
∑K

i=j ui ≤
∑K

i=j wi for all j = 1, . . . ,K and u 6= w, i.e.,
u 6t w. Consequently, we have shown that 6t is irreflexive and transitive which
concludes the proof.

As a consequence of the discussion in Sections 2.2 and 2.3, we focus in the follow-
ing on the ordinal optimization problem (OOP) w.r.t. optimality by numerical
representation, or equivalently, on the ordinal counting optimization problem
(OCOP) w.r.t. the concept of tail-dominance.

3. Ordinal Optimality versus Pareto Optimality: An Interpretation

Based on Ordering Cones

A prominent example of an order relation in the context of multi-objective
optimization is the component-wise order or Pareto order, see, e.g., Ehrgott
(2005). For two vectors u, v ∈ R

K , we write

u 6 v :⇐⇒ ui ≤ vi, i = 1, . . . ,K and u 6= v, (3)

and say that u Pareto dominates v if and only if u 6 v. The associated weak
and strict component-wise orders, respectively, are defined by

u ≦ v :⇐⇒ ui ≤ vi, i = 1, . . . ,K, (4)

u < v :⇐⇒ ui < vi, i = 1, . . . ,K. (5)

Note that ≦ defines a partial order in R
K while 6 as well as < define strict

partial orders in R
K .

In the following, basic properties of orders and their relation to cones are
discussed and illustrated at the example of the Pareto order. This leads to a
novel perspective on ordinal optimality in comparison to Pareto optimality.

3.1. Orders and Cones

Orders and cones are closely related. The following review of basic concepts
relevant in our context is on Ehrgott (2005); Engau (2007); Ziegler (1995).

A cone in R
K is a subset C ⊆ R

K such that λu ∈ C for all u ∈ C and for all
λ ∈ R, λ > 0. A cone C ∈ R

K is called pointed if u ∈ C implies that (−u) 6∈ C
for all u 6= 0. Moreover, a cone C ⊆ R

K is called a polyhedral cone if there exists
a matrix A ∈ R

m×K \ {0} such that C = hcone(A) := {y ∈ R
K : Ay ≧ 0}. The

11



rows of the matrix A are normal vectors of hyperplanes, and thus a polyhedral
cone can be seen as the finite intersection of m (closed and linear) halfspaces.
Polyhedral cones can also be described by their extreme rays. This property is
an immediate consequence of the well-known Weyl-Minkowski Theorem:

Theorem 13 (Weyl-Minkowski-Theorem, cf. Ziegler 1995). A cone C ⊆ R
K is

finitely generated by n vectors in R
K , i.e.,

C = vcone(B) :=
{

Bλ : λ ∈ R
n, λ ≧ 0

}

for some B ∈ R
K×n

if and only if it is a finite intersection of m halfspaces in R
K, i.e.,

C = hcone(A) =
{

y ∈ R
K : Ay ≧ 0

}

for some A ∈ R
m×K .

Now let C ⊂ R
K be a cone. Then the sets

C∗ := {d ∈ R
K : d⊤c ≥ 0 for all c ∈ C}

C∗
s := {d ∈ R

K : d⊤c > 0 for all c ∈ C \ {0}}

are called the dual cone and the strict dual cone of C, respectively.
Every cone C ∈ R

K induces a binary (ordering) relation R ⊆ R
K ×R

K by
defining that (u, v) ∈ R if and only if (v−u) ∈ C. Depending on the context, we
also write uRv whenever (u, v) ∈ R (as, for example, in the case of the binary
relations defined in (3), (4) and (5) above). Binary relations that are induced by
cones are always compatible with scalar multiplication, i.e., (u, v) ∈ R implies
(λu, λ v) ∈ R for all u, v ∈ R

K and λ > 0. Moreover, they are compatible with
addition, i.e., (u, v) ∈ R implies (u+ w, v + w) ∈ R for all u, v, w ∈ R

K .
Conversely, binary (ordering) relations that are compatible with scalar mul-

tiplication induce cones that represent the respective relation. The following
result will be particularly useful in our context.

Lemma 14 (see, e.g., Ehrgott 2005). Let R ⊆ R
K × R

K be a binary relation
on R

K which is compatible with scalar multiplication. Then CR := {(v − u) ∈
R

K : (u, v) ∈ R} is a cone, and CR induces the binary relation R. If R is
additionally compatible with addition, then the following statements hold:

1. 0 ∈ CR if and only if R is reflexive.

2. CR is pointed if and only if R is antisymmetric.

3. CR is convex if and only if R is transitive.

It is easy to see that all three orders (3), (4) and (5) are compatible with scalar
multiplication and addition. The component-wise order (3) induces the Pareto
cone given by P := R

K
> = {(v − u) ∈ R

K : u 6 v} = {y ∈ R
K : y > 0}.

Similarly, the weak component-wise order (4) induces the closure of the Pareto
cone given by R

K
≧

= {y ∈ R
K : y ≧ 0} = P ∪ {0}, which is a proper, pointed

and convex cone (see Lemma 14). Moreover, it is a polyhedral cone that is
defined by the identity matrix, i.e., P ∪ {0} = hcone(I) = vcone(I) (where I is

12



the K × K identity matrix). Note also that the Pareto cone is self dual, i.e.,
P ∗ = P .

Lemma 14 implies that binary relations R that are compatible with scalar
multiplications can be equivalently represented by associated cones CR. This
interrelation was used, among others, in Engau (2007) to define the concept of
cone-efficiency (or CR-efficiency). For a general introduction to ordering cones
in the context of vector optimization see, e.g., Tammer & Göpfert (2003); Jahn
(2011).

Definition 15 (c.f. Engau 2007). Let Y ⊂ R
K be a nonempty set and let

CR ⊂ R
K be a cone induced by a strict partial order R ⊂ R

K ×R
K (i.e., R is

irreflexive and transitive). Then the sets

N(Y,CR) := {y ∈ Y : (y − CR) ∩ Y = ∅}

Nw(Y,CR) := {y ∈ Y : (y − int(CR)) ∩ Y = ∅}

are called the CR-non-dominated and the weakly CR-non-dominated set of Y ,
respectively. The corresponding pre-images x ∈ X are called CR-efficient and
weakly CR-efficient, respectively. Thereby, int(CR) denotes the interior of CR.

Furthermore, we say that u CR-dominates v if u ∈ (v − CR), and that u
weakly CR-dominates v if u ∈ (v − int(CR)).

Note that when R is the component-wise order (or Pareto order) defined in (3),
then CR = P is the Pareto cone in R

K , N(Y, P ) is the non-dominated set (or
Pareto set) of Y , and Nw(Y, P ) is the weakly non-dominated set of Y , see, e.g.,
Ehrgott (2005).

3.2. The Ordinal Cone

In the following we show that tail-dominance, represented by the binary
relation 6t, is induced by a polyhedral cone in R

K . We will refer to this
cone as the ordinal cone. As a first step towards this goal, we prove that
6t is compatible with scalar multiplication and addition. As a second step,
the associated ordinal cone is constructed and analyzed. Afterwards, we can
reinterpret problem (OCOP) based on cone optimality.

Lemma 16. The relation 6t is compatible with scalar multiplication and with
addition.

Proof. To show that 6t is compatible with scalar multiplication, let λ > 0
and u, v ∈ R

K with u 6t v. It follows that λ
∑K

i=j ui ≤ λ
∑K

i=j vi which

implies
∑K

i=j λui ≤
∑K

i=j λ vi for all j = 1, . . . ,K. Furthermore, it holds that
λu 6= λ v, and hence λu 6t λ v, which implies that 6t is compatible with scalar
multiplication.

It remains to show that6t is also compatible with addition. Let u, v, w ∈ R
K

with u 6t v, i.e.,
∑K

i=j ui ≤
∑K

i=j vi for all j = 1, . . . ,K and u 6= v. This implies

that
∑K

i=j(ui+wi) ≤
∑K

i=j(vi+wi) for all j = 1, . . . ,K and (u+w) 6= (v+w),
i.e., u+w 6t v+w. Hence we have proven the compatibility with addition.
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It can be proven analogously that ≦t is also compatible with scalar multiplica-
tion and addition.

From Lemma 14 and Lemma 16 we can conclude that the cone C6t
:=

{(v−u) ∈ R
K : u 6t v} induced by the strict partial order 6t is pointed, convex

and it does not contain 0. We call this cone the ordinal cone to emphasize that
C6t

equivalently represents ordinal dominance and show that its closure, the
cone C6t

∪ {0}, is a polyhedral cone that can be described as the intersection
of K halfspaces.

Theorem 17. The closure of the ordinal cone is a polyhedral cone. In partic-
ular, it holds that C6t

∪ {0} = hcone(A6t
) with A6t

∈ R
K×K given by

A6t
= (aij)i,j=1,...,K with aij =

{

1, if i ≤ j

0, otherwise
, i.e., A6t

=

1 1

0

0 0 1

















.

Proof. First note that 0 ∈ (C6t
∪ {0}) ∩ hcone(A6t

). It thus remains to show
that for all ũ ∈ R

K \ {0}, it holds that ũ ∈ C6t
if and only if A6t

ũ > 0.
Now let ũ ∈ R

K \ {0} with A6t
ũ > 0. We define u := 0 ∈ R

K and v := ũ.
Hence, it holds v − u = ũ and

A6t
ũ > 0 and ũ 6= 0

⇐⇒
K
∑

i=j

ũi ≥ 0 for all j = 1, . . . ,K, and ũ 6= 0

⇐⇒

K
∑

i=j

vi ≥

K
∑

i=j

ui for all j = 1, . . . ,K, and v 6= u

⇐⇒ u 6t v

⇐⇒ ũ = v − u ∈ C6t
.

Thus, we obtain hcone(A6t
) \ {0} = C6t

, which concludes the proof.

Theorem 13 implies that the closure of the ordinal cone C6t
∪ {0}, which is a

polyhedral cone by Theorem 17, must also have a description based on a finite
number of extreme rays. Indeed, the following result provides such a description
based on exactly K extreme rays.

Theorem 18. It holds that hcone(A6t
) = vcone(B6t

) for A6t
defined according

to Theorem 17 and B6t
∈ R

K×K given by B6t
= (bij)i,j=1,...,K with

bij =











1, if i = j

−1, if i = j − 1

0, otherwise

, i.e., B6t
=

1 −1 0 0

0

0

−1

0 0 1

































.
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Proof. We first show that hcone(A6t
) ⊆ vcone(B6t

). Let d ∈ hcone(A6t
).

Hence, it holds A6t
d ≧ 0 which is equivalent to

∑K
i=j di ≥ 0 for all j = 1, . . . ,K.

Set λj :=
∑K

i=j di ≥ 0 and let Bj• denote the j-th row of B6t
, for j = 1, . . . ,K.

Then Bj• λ = λj − λj+1 = dj for j = 1, . . . ,K − 1 and BK• λ = λK = dK .
Consequently, we have shown that d ∈ vcone(B6t

).
For the other direction, let d ∈ vcone(B6t

), i.e., d = B6t
λ for some λ ≧ 0.

The definition of B6t
implies that

∑K
i=j Bi• λ =

∑K−1
i=j (λi − λi+1) + λK = λj

for all j = 1, . . . ,K − 1 and BK• λ = λK . Hence, it follows that A6t
· d =

A6t
· (B6t

λ) = λ ≧ 0 and thus d ∈ hcone(A6t
), which concludes the proof.

Note that these descriptions of the closure of the ordinal cone C6t
∪ {0} are

not unique. Indeed, both the normal vectors in A6t
as well as the extreme rays

in B6t
could be reordered, and they could be multiplied by arbitrary positive

scalars without changing the cone that they define. In the particular description
given in Theorems 17 and 18, however, we observe that the matrix B6t

is the
inverse of the matrix A6t

, i.e., (A6t
)−1 = B6t

.

Remark 19. It holds (hcone(A6t
))∗ = hcone((B6t

)⊤) and (vcone(B6t
))∗ =

vcone((A6t
)⊤) since the normal vectors of the halfspaces given in A6t

are or-
thogonal to the extreme rays contained in B6t

.

It is easy to see that the Pareto cone, P , is a subset of the ordinal cone, C6t
.

Moreover, the dual cone of the ordinal cone is a subset of the Pareto cone, i.e.,
(C6t

)∗ ⊆ P ⊆ C6t
. This holds since z ∈ P implies that z > 0 and hence

A6t
· z > 0, i.e., z ∈ C6t

. Moreover, z∗ ∈ (C6t
)∗ is equivalent to (z∗)⊤c ≥ 0

for all c ∈ C6t
which implies z∗i ≥ 0, because the i-th unit vector ei ∈ R

K is
contained in C6t

for all i = 1, . . . ,K. These cones and their duals are visualized
in Figure 3.

Remark 20. Note that head-dominance (c.f. equation (1)), represented by the
binary relation >h, also induces a polyhedral cone. Indeed, we have that C>h

∪
{0} = hcone(A>h

) = vcone(B>h
), where A>h

= A⊤
6t

and B>h
= B⊤

6t
.

Now we can use the ordinal cone C6t
as described in Definition 15 to reformulate

the optimization problem (OCOP) as follows:

minC6t
c(x)

s. t. x ∈ X.
(OCOP)

Here, minC6t
denotes the minimization in the sense of Definition 15 for the

ordinal cone C6t
= hcone(A6t

) \ {0}. In other words, the C6t
-non-dominated

set of problem (OCOP) is given by N(Y,C6t
), where Y = c(X). In the follow-

ing, we use this notation to clearly distinguish between the optimization w.r.t.
different ordering cones.

3.3. Bijective Linear Transformation Between Ordinal and Pareto Optimization

In the previous subsection we showed that tail-dominance, and hence also
ordinal dominance due to Lemma 9, can be equivalently described by the ordinal
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(a) Pareto Cone 2D
(Minimization)

(b) hcone(A6t
) 2D

(Minimization)
(c) hcone((A6t

)⊤) 2D
(Maximization)

(d) Dual Pareto Cone 2D
(Minimization)

(e) (hcone(A6t
))∗ 2D

(Minimization)
(f) (hcone((A6t

)⊤))∗ 2D
(Maximization)

−2

2−2

2

−2

2

(g) Pareto Cone 3D
(Minimization)

−2

2−2

2

−2

2

(h) hcone(A6t
) 3D

(Minimization)

−2

2−2

2

−2

2

(i) hcone((A6t
)⊤) 3D

(Maximization)

−2

2−2

2

−2

2

(j) Dual Pareto Cone 3D
(Minimization)

−2

2−2

2

−2

2

(k) (hcone(A6t
))∗ 3D

(Minimization)

−2

2−2

2

−2

2

(l) (hcone((A6t
)⊤))∗ 3D

(Maximization)

Figure 3: Cones and their dual cones
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cone C6t
. Moreover, the closure C6t

∪ {0} of the ordinal cone is the polyhe-
dral cone hcone(A6t

) = vcone(B6t
) that is spanned by K linearly independent

extreme rays in R
K , c.f. Theorems 17 and 18. Since the closure of the Pareto

cone P ∪ {0} is also a polyhedral cone that is spanned by K linearly indepen-
dent extreme rays in R

K (namely the K unit vectors in R
K), there exists a

bijective linear transformation that maps the (closure of the) ordinal cone onto
the (closure of the) Pareto cone.

We thus define the following transformed Pareto cone optimization problem
(TOP)

minP A6t
· c(x)

s. t. x ∈ X,
(TOP)

where minP denotes the optimization w.r.t. the Pareto cone P according to
Definition 15. Note that the objective vector of problem (TOP) corresponds
to the incremental tail counting vector c̃(x) = A6t

· c(x) ∈ R
K introduced in

Section 2.1, that counts in its jth component the number of elements of x that
are in category ηj or worse. Indeed, for a feasible solution x = {e1, . . . , en} ∈ X
we get c̃(x) =

∑n
i=1 c̃(ei), where

c̃j(ei) =

{

1, if ηj ≺
= o(ei)

0, otherwise
for all j = 1, . . . ,K.

Thus, problem (TOP) is actually a multi-objective optimization problem with
K binary objective functions c̃1, . . . , c̃K defined on the ground set S, and with
feasible set X ⊆ 2S . Recall from Section 2.1 that c̃1(e) = 1 for all e ∈ S
and hence c̃1(x) simply counts the number of elements in a solution x ∈ X .
Moreover, the vector c̃(e) has the consecutive ones property in the sense that
whenever a component of c̃(e) is zero, then all subsequent components of c̃(e)
are also zero.

As an example, consider the ordinal shortest path problem introduced in
Example 1. The path x1 consists of the green-dotted edge e2 with c̃(e2) =
(1, 0, 0)⊤, the orange-dashed edge e1 with c̃(e1) = (1, 1, 0)⊤, and the red-solid
edge e5 with c̃(e5) = (1, 1, 1)⊤. Hence, we compute c̃(x1) = c̃(e2)+c̃(e1)+c̃(e5) =
(3, 2, 1)⊤, see also Figure 1.

In order to show that the ordinal counting optimization problem (OCOP)
(and hence the ordinal optimization problem (OOP)) can be solved by using the
above transformation to the “standard” multi-objective optimization problem
(TOP), we use a classical non-dominance mapping result for polyehdral cones.
This result can be found in Engau (2007) and the references therein among
several others. We include a proof, which is similar to the more general proof
in Hunt & Wiecek (2003), for the sake of completeness.

Theorem 21 (see, e.g., Engau, 2007). Let Y ⊂ R
K be a nonempty set and let

hcone(A) be a cone induced by a matrix A ∈ R
m×K. Then it holds

A ·N(Y, hcone(A) \ {0}) ⊆ N(A · Y, P ).
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c1
c2

c3 c4

(a) Problem (OCOP)

c̃1c̃2
c̃3 c̃4

(b) Problem (TOP)

Figure 4: Illustration of the tail-efficient solutions of the instance of (OCOP) introduced in
Example 23 (left) and of the respective Pareto-efficient solutions of the transformed problem
(TOP) (right). The dominated areas are shown up to the reference points (4, 4, 4)⊤ (left) and
(5, 5, 5)⊤ (right).

If rank(A) = K, then equality holds, i.e., then we have that A ·N(Y, hcone(A) \
{0}) = N(A · Y, P ).

Proof. Suppose that ȳ ∈ Y such that ȳ ∈ N(Y, hcone(A) \ {0}) and A · ȳ /∈
N(A · Y, P ). Then, by Definition 15, there exists a ŷ ∈ Y \ {ȳ} such that
A · ŷ ∈ (A · ȳ − P ), i.e., there exists d ∈ P such that A · ŷ = A · ȳ− d. Hence, it
follows that d = A·ȳ−A·ŷ = A·(ȳ− ŷ) > 0 and thus d̄ := ȳ− ŷ ∈ hcone(A)\{0}.
Finally, we can deduce that ŷ ∈ (ȳ − hcone(A) \ {0}), with ŷ ∈ Y . But then
ȳ /∈ N(Y, hcone(A) \ {0}), which contradicts the assumption.

It remains to show that A·N(Y, hcone(A)\{0}) ⊇ N(A·Y, P ) if rank(A) = K.
Towards this end, suppose that ȳ ∈ Y such that A · ȳ ∈ N(A · Y, P ) and
ȳ /∈ N(Y, hcone(A) \ {0}). Hence, there exists a d ∈ hcone(A) \ {0} such that
ŷ = ȳ−d ∈ Y . This implies A·ŷ = A·ȳ−A·d ∈ A·Y . From rank(A) = K and d 6=
0 we deduce that A·d 6= 0 and thus A·d > 0. Consequently, (A·ȳ−P )∩A·Y 6= ∅
which contradicts the assumption that A · ȳ ∈ N(A · Y, P ).

Theorem 22. The set of ordinally efficient solutions for problem (OOP), the
set of tail-efficient (ordinally efficient) solutions of problem (OCOP) and the
set of Pareto-efficient solutions of problem (TOP) are equal.

Proof. This follows immediately from Lemma 9, the relation between orders
and cones and Theorem 21.

Example 23. Consider an instance of problem (OCOP) with K = 3 cate-
gories that has four feasible counting vectors c1 = (3, 1, 0)⊤, c2 = (0, 2, 1)⊤,
c3 = (0, 0, 2)⊤ and c4 = (1, 0, 2)⊤. The transformation to problem (TOP)
yields the corresponding incremental tail counting vectors as c̃1 = (4, 1, 0)⊤,
c̃2 = (3, 3, 1)⊤, c̃3 = (2, 2, 2)⊤ and c̃4 = (3, 2, 2)⊤. The outcome spaces of both
formulations are depicted in Figure 4 together with the dominance cones C6t

and P , respectively.

4. Solution Strategies

In this section, we discuss a generic algorithmic framework for ordinal op-
timization problems that takes advantage of the close relationship to multi-
objective optimization problems. Since the weighted sum scalarization is a
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popular approach in multi-objective optimization, the interpretation of weights
in the context of ordinal optimization and Pareto optimization is analyzed in
more detail, and their relation to numerical representations is discussed.

4.1. Ordinal Optimization by Pareto Transformation

From the theory above it follows that we can solve the problems (OCOP)
and (OOP) by solving the transformed problem (TOP), which is a standard
multi-objective combinatorial problem w.r.t. Pareto optimality. After the com-
putation of the Pareto-efficient set of problem (TOP), or of a minimal complete
Pareto-efficient set, respectively, it is necessary to re-compute the correspond-
ing outcome vectors of either problem (OCOP) or (OOP). In this context,
a minimal complete Pareto-efficient set of (TOP) is a subset of the Pareto-
efficient set that contains one Pareto-efficient solution for each Pareto-non-
dominated outcome vector. We refer to Serafini (1987) for different solution
concepts in multi-objective optimization. The efficient sets of the problems
(TOP), (OCOP) and (OOP) are equal and will be denoted by Xeff in the follow-
ing. The respective non-dominated sets are denoted by Y TOP

nd := N(c̃(X), P ),
Y OCOP
nd := N(c(X), C6t

) and Y OOP
nd , respectively. A procedure for the compu-

tation of the efficient set and the respective non-dominated sets based on this
Pareto transformation is outlined in Algorithm 1.

Algorithm 1: Ordinal optimization by Pareto transformation (OOPT)

Input: feasible set X ⊆ 2S and ordinal function o : S → C
Output: efficient set Xeff and non-dominated sets Y OCOP

nd and Y OOP
nd

1 Compute c(x) for all x ∈ X // compute counting objective c
2 Xeff := minP {A6t

· c(x) : x ∈ X} // solve lin. transf. (TOP)

3 Y OCOP
nd := c(Xeff) // map efficient set to ...

4 Y OOP
nd := o(Xeff) // ... resp. obj. spaces

5 return efficient set Xeff and non-dominated sets Y OCOP
nd and Y OOP

nd

Note that the structural properties of the problems (OCOP) and (OOP) are
preserved by the transformation as we do not change the feasible set and as the
transformation of the objective function is linear and bijective. In particular,
combinatorial solution strategies, like e.g. Bellman’s principle of optimality for
knapsack problems, can be applied in step 2 of Algorithm 1 to efficiently compute
Xeff . Ordinal optimization is thus in general no more complex that standard
multi-objective optimization.

4.2. Weighted Sum Scalarization and Ordinal Weight Space Decomposition

In the following we investigate the interrelation between weighted sum scalar-
izations for (TOP) and (OCOP) and numerical representations for (OOP).
Thereby we rely on the concept of weight space decompositions, which were in-
troduced by Benson & Sun (2000) for multi-objective linear programming and
extended to integer linear problems in Przybylski et al. (2010).
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The weighted sum scalarization for (TOP) is

min

K
∑

i=1

λi c̃i(x) (WSTOP(λ))

s. t. x ∈ X

with λi > 0 for i = 1, . . . ,K and
∑K

i=1 λi = 1. Analogously, the weighted sum
scalarization for (OCOP) can be formulated as

min

K
∑

i=1

µi ci(x) (WSOCOP(µ))

s. t. x ∈ X

with µ ∈ (C6t
)∗s , where (C6t

)∗s is the strict dual cone of the ordinal cone C6t
,

and
∑K

i=1 µi = 1. Recall that the strict dual cone (C6t
)∗s is the interior of the

dual cone (C6t
)∗, which is visualized in Figures 3(e) and 3(k).

It is a well-known fact that when considering a multi-objective optimization
problem, then optimal solutions of weighted sum scalarizations with weighting
vectors λ ∈ R

K
> are always Pareto-efficient (see, e.g., Ehrgott, 2005). Such so-

lutions are called supported efficient solutions. Thus, problem (WSTOP(λ))
always yields Pareto-efficient solutions for problem (TOP). Since (OCOP)
can be interpreted as a multi-objective optimization problems w.r.t. the order-
ing cone C6t

, every optimal solution of the associated weighted sum problem
(WSOCOP(µ)) with weights in the strict dual cone (C6t

)∗s of C6t
is ordinally

efficient for (OCOP) (see, e.g., Engau, 2007).
The supported efficient solutions of problems (TOP) and (OCOP) are the

same, hence there is a one-to-one correspondence between appropriate weighting
vectors λ and µ. For a given λ ∈ R

K
> and x ∈ X we define µi =

∑i
j=1 λj for all

i = 1, . . . ,K. Then it holds that

K
∑

i=1

λi c̃i(x) =

K
∑

i=1

λi

K
∑

j=i

cj(x) =

K
∑

i=1

ci(x)

i
∑

j=1

λj =

K
∑

i=1

ci(x)µi,

which shows that problems (WSOCOP(µ)) and (WSTOP(λ)) have the same
objective functions in this case.

Note that µi =
∑i

j=1 λj and λi > 0 for all i = 1, . . . ,K implies that µi < µj

for all i < j, as required. Conversely, weighting vectors µ ∈ (C6t
)∗s satisfy

µi < µj for all i < j and hence yield associated weighting vectors λ ∈ R
K
> by

setting λ1 := µ1 > 0 and λi := µi − µi−1 > 0 for all i = 2, . . . ,K. Note also
that while the values of µi =

∑i
j=1 λj , i = 1, . . . ,K (for given λ ∈ R

K
> ) are in

general not normalized to satisfy
∑K

i=1 µi = 1, such weighting vectors µ can be
easily normalized by setting

µi :=

∑i
j=1 λj

∑K
ℓ=1

∑ℓ
j=1 λj

=

∑i
j=1 λj

∑K
j=1(K − j + 1)λj

.
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(b) Ordinal weight space decomposition

Figure 5: Weight space decomposition and corresponding ordinal weight space decomposition
for the shortest path problem given in Example 1. The efficient solution x2 corresponds to the
light grey triangle, both x3 and x4 correspond to the middle grey triangle and x5 corresponds
to the dark grey triangle. The values on dashed lines may not be chosen for λ and µ, because
for the weight space decomposition we assume that λ ∈ RK

> and
∑

3

i=1
λi = 1, and for the

ordinal weight space decomposition we require 0 < µ1 < µ2 < µ3 and
∑

3

i=1
µi = 1.

Note that this normalization is applicable since (C6t
)∗s ⊂ R

K
> . As a conse-

quence, a weight space decomposition for the multi-objective problem (TOP)
can be translated into an associated ordinal weight space decomposition for the
ordinal counting optimization problem (OCOP). In this context, a weight space
decomposition subdivides the space of relevant weighting vectors λ ∈ R

K
> with

∑K
i=1 λi = 1 into polyhedral cells such that all weighting vectors from the same

cell generate the same efficient solution(s).

Example 24. In the shortest path problem of Example 1 the solutions x2, x3, x4

and x5 are efficient. In Figure 5 the corresponding weight space decomposition is
depicted showing the values of λ and µ for which the respective efficient solution
is obtained.

From yet another perspective, weighting vectors µ ∈ (C6t
)∗s , i.e., weighting

vectors µ ∈ R
K satisfying 0 < µi < µj for all i < j, are related to numerical

representations as introduced in Section 2.2. Indeed, numerical representations
assign a numerical value ν(ηi) to every ordinal category ηi, i = 1, . . . ,K, such
that ν(ηi) < ν(ηj) whenever i < j. Hence we can chose the values µi, i =
1, . . . ,K, equal to the values ν(ηi) of any numerical representation that satisfies
ν(η1) > 0. These values can again be normalized without changing the optimal
solutions of (WSOCOP(µ)) by setting

µi :=
ν(ηi)

∑K
j=1 ν(ηj)

, i = 1, . . . ,K.
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It is important to note that this does not imply that numerical representations
and weighted sum scalarizations are equivalent. Similarly, it is in general not
possible to compute all ordinally efficient solutions of problem (OOP) by solving
(WSOCOP(µ)) for an appropriate µ. To see this, recall that a solution x′ ∈ X
is called ordinally efficient for problem (OOP) if and only if there is no x̂ ∈ X
that ordinally dominates x′, i.e., if for every x̂ ∈ X there exists a numerical
representation νx̂ ∈ V such that νx̂(x′) ≤ νx̂(x̂). In contrast, a solution x′ ∈ X
is optimal for problem (WSOCOP(µ)) with appropriate µ if and only if there
exists a numerical representation ν∗ ∈ V such that ν∗(x′) ≤ ν∗(x̂) for all
x̂ ∈ X .

Remark 25. Ordinal optimization problems may have non-supported efficient
solutions. This is illustrated in Example 26. Hence, we can not expect to deter-
mine all efficient solutions with the weighted sum method.

Example 26. Consider an instance with two categories and three efficient
solutions x′, x̂, x̄ with counting vectors c(x′) = (3, 1)⊤, c(x̂) = (5, 0)⊤ and
c(x̄) = (0, 2)⊤. The incremental tail counting vectors in the transformed prob-
lem (TOP) are c̃(x′) = (4, 1)⊤, c̃(x̂) = (5, 0)⊤ and c̃(x̄) = (2, 2)⊤, respec-
tively. Obviously, c̃(x′) is non-dominated in (TOP) but unsupported, and thus
x′ is not optimal for (WSTOP(λ)), irrespective of the choice of λ ∈ R

K
> .

Similarly, there is no numerical representation such that x′ is simultaneously
better than x̂ and x̄, i.e., there is no numerical representation ν such that
ν(x′) ≤ ν(x̂) and ν(x′) ≤ ν(x̄). Indeed, the numerical values of the points
are ν(x′) = 3 ν(η1) + ν(η2), ν(x̂) = 5 ν(η1) and ν(x̄) = 2 ν(η2). ν(x′) ≤ ν(x̂)
implies ν(η2) ≤ 2 ν(η1) and ν(x′) ≤ ν(x̄) implies 3 ν(η1) ≤ ν(η2), which is a
contradiction to ν(η1) < ν(η2) and ν(ηi) ≥ 0 for i = 1, 2. However, neither x̂
nor x̄ ordinally dominate x′, i.e., neither x̂ nor x̄ yield a better objective value
for every numerical representation.

5. Multi-objective Ordinal Optimization

5.1. Conflicting Real-valued Objectives and Ordinal Objectives

The results of Section 3 can be extended to multi-objective optimization
problems that combine a finite number of p “standard” real-valued objective
functions wj : X → R with a finite number of r ordinal objective functions
ol : X → Cl, l = 1, . . . , r, that are in mutual conflict. The number of categories
in the l-th ordinal objective function is denoted by Kl, i.e., C

l = {ηl1, . . . , η
l
Kl

}
for l = 1, . . . , r.

For a feasible solution x = {e1, . . . , en} ∈ X , we assume that wj(x) :=
∑n

i=1 w
j(ei), j = 1, . . . , p. Moreover, ol(x) = sort(ol(e1), . . . , o

l(en)) for l =
1, . . . , r. This leads to the multi-objective ordinal optimization problem with
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additional cost functions (MOOP):

minP (w1(x), . . . , wp(x))⊤

min� o1(x)
...

min� or(x)
s. t. x ∈ X.

(MOOP)

By replacing the ordered vectors ol(x) for l = 1, . . . , r by the counting vectors
cl(x) for l = 1, . . . , r we get a corresponding multi-objective ordinal counting
optimization problem with additional cost functions (MCOP):

minP
(

w1(x), . . . , wp(x)
)⊤

minC6t
c1(x)

...
minC6t

cr(x)
s. t. x ∈ X.

(MCOP)

We denote the concatenated outcome vectors of (MCOP) as

v(x) :=
(

w1(x), . . . , wp(x), (c1(x))⊤, . . . , (cr(x))⊤
)⊤

∈ R
p+r̃,

where r̃ :=
∑r

l=1 Kl. Then problem (MCOP) can be transformed into an equiv-
alent standard multi-objective optimization problem w.r.t. Pareto dominance
using a linear transformation that is defined by the block diagonal matrix

Ã :=











Ip×p

A1
6t

. . .

Ar
6t











.

Here, Ip×p ∈ R
p×p denotes the identity matrix and Al

6t
is the transforma-

tion matrix corresponding to the objective cl for l = 1, . . . , r, c.f. Theorem 17.
Thus, we get the multi-objective transformed Pareto cone optimization problem
(MTOP)

minP Ã · v(x) (MTOP)

s. t. x ∈ X.

Now, problem (MOOP) or, equivalently, problem (MCOP) can be solved by
using a simple adaptation of Algorithm 1, c.f. Section 4.

Example 27. We consider a problem of type (MCOP) with one real-valued
objective w an one counting objective c with K = 2 categories (i.e., p = r =
1). Consider an instance with four feasible outcome vectors v = (w, c1, c2)

⊤

given by v1 = (4, 1, 0)⊤, v2 = (3, 2, 1)⊤, v3 = (2, 0, 2)⊤ and v4 = (3, 0, 2)⊤.
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(a) Problem (MCOP)

ṽ1ṽ2

ṽ3 ṽ4

(b) Problem (MTOP)

Figure 6: Original and transformed outcome space for the multi-objective problem with one
real-valued and one ordinal objective function introduced in Example 27. In both figures the
upper corner of the bounding box is located at the point (5, 5, 5)⊤.

Then the corresponding outcome vectors of problem (MTOP), ṽi = Ã vi for
i = 1, . . . , 4, are obtained as ṽ1 = (4, 1, 0)⊤, ṽ2 = (3, 3, 1)⊤, ṽ3 = (2, 2, 2)⊤ and
ṽ4 = (3, 2, 2)⊤. In this case, the transformation matrix is given by

Ã =





1 0 0
0 1 1
0 0 1



 .

The feasible points and the dominated volumes in the respective outcome spaces
are depicted in Figure 6 for both problems, (MCOP) and (MTOP).

5.2. Coherent Real-valued Objectives and Ordinal Objectives

In some practical applications, the elements of S have a real-valued cost
(e.g., the length of an edge) and an associated category (e.g., the safety of
the corresponding road segment for a cyclist) such that the real-valued cost is,
rather than in conflict, coherent with the respective category. This situation is
illustrated at the following example:

Example 28. Consider the shortest path problem shown in Figure 7. Let w(e)
denote the length of an edge e and let o(e) denote its safety: dotted green edges
are save and in category η1, while solid red edges are insecure and in category
η2. Then, irrespective of the number of edges contained in the respective paths,
the path x1 = {e1, e2, e3} should be preferred over the path x2 = {e4, e5, e6}
since the total weights are equal w(x1) = w(x2) = 10), and the red sub-path in
x1 has a smaller weight than that of x2. In this sense, the weight or length of
an edge can be interpreted as an attribute of its respective category. However,
x1 is dominated by x2 w.r.t. problem (MOOP).

To model the situation where a real-valued objective function w : S → R is
in accordance with an ordinal objective function o : S → C with K categories,
i.e., the situation where the weight w(e) reflects the multiplicity with which the
category o(e) of the element e is to be counted, we introduce a weighted counting
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vector

cwi (e) :=

{

w(e) if o(e) = ηi

0 otherwise.

The basic idea of this concept is also used in the risk-aware bicycle routing
application geovelo, which takes, besides the route length, also the total length
of unsafe route segments into account. For example, when K = 4, w(e) = 7
and o(e) = η2, then cw(e) = (0, 7, 0, 0)⊤. The weighted counting objective
of a feasible solution x = {e1, . . . , en} ∈ X equals the sum of the weighted
counting vectors of all elements in x, i.e., cw(x) =

∑n
i=1 c

w(ei). Thereby, the
i-th component of cw(x) corresponds to the total weight of the elements in x
that are in category ηi, i = 1, . . . ,K. Now the weighted counting vector can be
handled analogously to the counting vector. Indeed, as in the previous chapter
we consider the transformation c̃wi (x) :=

∑K
j=i c

w
j (x) = A6t

· cw(x) to obtain
the weighted transformed Pareto cone optimization problem

minP c̃w(x)
s. t. x ∈ X

(WTOP)

w.r.t. the concept of Pareto optimality, that can be solved with the methods
developed in the preceding sections.

5.3. Modelling Aspects

We emphasize that it depends on the context of the respective application
whether the multi-objective model (MTOP) or the aggregated model (WTOP)
is more suitable. The following example illustrates that the aggregated model
(WTOP) is meaningful whenever w and c are interrelated and coherent objec-
tives, while the multi-objective model (MTOP) is particularly useful for unre-
lated or incompatible objectives.

Example 29. Consider again the shortest path problem depicted in Figure 7.
Obviously, the path x1 = {e1, e2, e3} is the unique efficient solution for prob-
lem (WTOP), while the path x2 = {e4, e5, e6} is the unique efficient solution
for problem (MOOP).

Whether x1 or x2 are actually preferred thus depends on the interpretation
of the weights and of the ordinal categories. Towards this end, suppose that, as
in Example 28, the category of an edge corresponds to its security level.

First, consider the case that the real-valued objective w(e) represents the
length of the edge e as in Example 28. Then both objectives are interrelated and
hence model (WTOP) is appropriate.

If, on the other hand, w(e) represents the toll of the edge or road e, then
this real-valued objective is not an attribute of the corresponding category. In
other words, both objectives are potentially conflicting and not coherent. Hence,
in this case the path x2 is preferred since the total amount of toll is the same
for both paths, but the second path has more green and fewer red edges.
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Figure 7: Instance of a shortest path problem. A dotted-green edge is in the best category η1
and the solid-red edges are in the worst category η2. The possible s-t-paths x1 and x2 and
their different objective function vectors are given.

6. Conclusion

In this paper we investigate ordinal combinatorial optimization problems.
We describe different optimality concepts for ordinal objective functions, namely
ordinal optimality, which was introduced first by Schäfer et al. (2021), as well
as tail- and head-optimality. We prove that all three concepts are equivalent if
all feasible solutions have the same length. In general, only ordinal optimality
and tail-optimality are equivalent.

We provide alternative descriptions of these three optimality concepts based
on associated ordering cones. Using the fact that ordinal optimality and tail-
optimality are equivalent, and that tail-optimality can be represented by a poly-
hedral cone with K extreme rays in R

K , we show that ordinal optimization
problems can be transformed into equivalent multi-objective optimization prob-
lems with binary cost coefficients. The transformation is realized by a bijective
linear mapping. The resulting problem can be solved with standard methods
from multi-objective optimization, and hence ordinal optimization is as easy
or hard as the associated, “standard” multi-objective problems. For example,
ordinal knapsack problems and ordinal shortest path problems can be solved by
multi-objective dynamic programming, using Bellman’s principle of optimality.

The results can be extended to problems with more than one objective func-
tion. We suggest two modelling approaches to combine an ordinal objective
function with a real-valued objective function. While in the first approach all
objectives are considered in a standard multi-objective setting, the second ap-
proach allows to model interrelated and coherent objective functions, where the
real-valued objective is interpreted as an attribute of the respective category in
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the ordinal objective.
Future work should focus on the development of tailored optimization al-

gorithms for the associated multi-objective optimization problems that exploit
the fact that these problems have binary cost coefficients. Moreover, specific
combinatorial problems like, for example, shortest path, knapsack, assignment
and general routing and network flow problems should be analyzed both with
coherent and with conflicting ordinal and real-valued objective functions.
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