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Abstract

This paper studies the risk-averse mean-variance optimization in infinite-horizon

discounted Markov decision processes (MDPs). The involved variance metric

concerns reward variability during the whole process, and future deviations are

discounted to their present values. This discounted mean-variance optimization

yields a reward function dependent on a discounted mean, and this dependency

renders traditional dynamic programming methods inapplicable since it sup-

presses a crucial property—time consistency. To deal with this unorthodox

problem, we introduce a pseudo mean to transform the untreatable MDP to a

standard one with a redefined reward function in standard form and derive a dis-

counted mean-variance performance difference formula. With the pseudo mean,

we propose a unified algorithm framework with a bilevel optimization structure

for the discounted mean-variance optimization. The framework unifies a variety

of algorithms for several variance-related problems including, but not limited

to, risk-averse variance and mean-variance optimizations in discounted and av-

erage MDPs. Furthermore, the convergence analyses missing from the literature

can be complemented with the proposed framework as well. Taking the value

iteration as an example, we develop a discounted mean-variance value iteration

algorithm and prove its convergence to a local optimum with the aid of a Bell-

man local-optimality equation. Finally, we conduct a numerical experiment on
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portfolio management to validate the proposed algorithm.

Keywords: Dynamic programming, Markov decision process, discounted

mean-variance, bilevel optimization, Bellman local-optimality equation

1. Introduction

Financial optimizations usually involve trade-offs between profit and risk,

and variance is to risk what mean is to profit. It could be the reason why

the mean-variance optimization theory initiated by Markowitz (1952) is one of

the most prevalent financial optimization frameworks. As a cornerstone of the

modern portfolio theory, the mean-variance optimization theory has been exten-

sively applied in a variety of financial problems, such as portfolio selection (Best

and Grauer 1991), hedging (Kouvelis et al. 2018), pricing (Kandel et al. 1989),

etc. It appeals to both academia and industry not only for its simplicity but

also for being a satisfactory proxy for other types of risk minimization rules.

Levy and Levy (2003) show that when diversification between assets is allowed,

the mean-variance optimization theory and the prospect theory (Tversky and

Kahneman 1992) almost coincide, which justifies its robustness. One stream of

works on the mean-variance optimization is from the perspective of stochastic

control (Li and Ng 2000, Basak and Chabakauri 2010, Zhang et al. 2012). In this

paper, we study it from the perspective of Markov decision processes (MDPs),

where it is often assumed that the state and action spaces are finite and the

reward is bounded in a discrete-time scenario.

In the framework of MDPs, a variety of works (Sobel 1982, Tamar et al.

2012, Xie et al. 2018) concern the variance of total discounted reward, or re-

turn, i.e., V{∑∞t=1 α
t−1r(Xt)}, given α the discount factor and r(Xt) the im-

mediate reward at time epoch t. Its counterpart in average MDPs is termed

the limiting average variance, which is defined by limT→∞ 1
T E{(

∑T
t=1 r(Xt) −

E{∑T
t=1 r(Xt)})2} (Hernández-Lerma et al. 1999). These two variance metrics

focus on the fluctuation of cumulative reward at the final epoch. However, it

is seemingly preferable to consider risks at every time point in many practical
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problems. For example, an autonomous driving system should pay attention

to every detail along the road to ensure safe driving. In finance, it is easy to

manipulate a stock price at a specified time point, but it is barely possible to

do it during the whole process.

Motivated by the above observations, we consider a steady-state variance

metric in the mean-variance optimization. The steady-state variance is also

known as the long-run variance (Filar et al. 1989), which is defined by limT→∞ 1
T

E{∑T
t=1(r(Xt)− ηa)2}. It quantifies the dispersion of immediate rewards from

the long-run average ηa = limT→∞ 1
T E{

∑T
t=1 r(Xt)} by averaging the reward

deviations during the whole process. The difference between the limiting av-

erage variance and the steady-state variance is discussed by Xia (2016). Dif-

ferent from the classic definition, we introduce a discount factor in the steady-

state variance, and optimize the discounted mean-variance objective (η − βζ),

where η is the normalized discounted mean, β is a risk-aversion parameter, and

ζ = E{∑∞t=1 α
t−1(r(Xt) − η)2} is the discounted steady-state variance. The

motivation of involving the discount factor in the variance metric is twofold.

First, we calculate the present risk (deviation) value from a monetary point

of view, which renders risks at multiple epochs comparable with a consistent

measure. Second, a discounted variance puts more emphasis (weights αt−1) on

the transient behavior at the beginning of the process, which may account for a

property of the risk: future risks are less critical than current one. Moreover, it

is more tractable both computationally and analytically with a discount factor

from a mathematical viewpoint.

For the steady-state variance, Filar et al. (1989) illustrate the reasonability

of the steady-state variance in average MDPs with a simple example. They

point out that when variance is concerned, the discounted problem is more diffi-

cult to analyze than its average counterpart. Furthermore, they model the two

problems as convex quadratic programs and prove the existence of determinis-

tic optimal policies. Sobel (1994) and Chung (1994) independently analyze the

variance optimization problem with a mean performance constraint in unichain

MDPs. With the aid of the extant theory on quasiconcave minimization, the
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problem can be transformed to a linear program, and the relevant properties

and Pareto optimality are studied. Prashanth and Ghavamzadeh (2013) pro-

pose actor-critic algorithms to estimate policy gradients of the return variance

in discounted MDPs and the steady-state variance in average MDPs. With the

ordinary differential equation approach, they prove the asymptotic local con-

vergences of the algorithms. Gosavi (2014) proposes a model-free algorithm

analogous to Q-learning for the mean-variance problem in average reinforce-

ment learning (RL). The algorithm is validated with a numerical experiment,

but the convergence analysis is missing. This gap is filled by Xia (2016), who

proposes a policy iteration for variance minimization in average MDPs, regard-

less of the mean performance. With the aid of the sensitivity-based optimiza-

tion theory (Cao 2007), Xia derives a variance performance difference formula

(PDF), which quantifies the variance difference between MDPs under any two

policies. With the PDF, the local convergence of the proposed policy iteration is

proved. This work is later extended to the mean-variance optimization in aver-

age MDPs (Xia 2020). Bisi et al. (2020) study the discounted mean-variance in

RL, where the steady-state variance is evaluated to bound the limiting average

variance. They develop a gradient-based trust region policy optimization (orig-

inally proposed by Schulman et al. (2015)) algorithm with a monotonic policy

improvement. Zhang et al. (2021) focus on the mean-variance optimization in

both discounted and average MDPs, and develop a policy iteration algorithm

and a gradient-based RL algorithm. To deal with the policy-dependent reward

function, they reformulate variance with its Legendre-Fenchel dual with an extra

variable introduced. Virtually, this variance reformulation is similar to the ones

with pseudo variances defined by Xia (2016, 2020), where more detailed analy-

ses are given on variance and mean-variance optimization problem equivalences

and local convergences in average MDPs, respectively.

Two problems emerge from the literature review. One is that the mean-

variance optimization has been studied in discounted and average MDPs sepa-

rately, and the relationship between the two cases has not been revealed. The

other problem is that various optimization algorithms are proposed without con-
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vergence analyses, which is partially because the variance-related criteria do not

fit in with a standard MDP model. Variance is a quadratic function of mean,

and a variance-related problem is equivalent to an MDP with a special reward

function, whose value for each state depends on policy instead of action, i.e., the

variance value function at a current state will be affected by actions chosen at

not only the current epoch but also future epochs. This dependency deprives the

time-consistency property and revokes traditional dynamic programming (DP)

methods (Puterman 2005, Eckstein et al. 2016, Bisi et al. 2020). In other words,

the Bellman optimality equation does not optimize over the admissible action

set for a state x (maxa∈A(x)), but over the policy space for the whole state space

S (maxd∈D), and we can not divide and conquer this problem in a traditional

manner. Most of the relevant studies resort to program-based or gradient-based

methods, but the first type of methods cannot deal with problems with large

state and action spaces, and the second usually suffers from intrinsic deficien-

cies: slow convergence, large variance of gradient estimates, and sensitivity to

step sizes (Zhao et al. 2012). Xia (2016, 2020) proposes policy iterations for the

risk-averse variance and mean-variance optimizations in average MDPs, which

offer a new perspective for variance-related problems.

In this paper, we first unify the two mean-variance optimization problems

with the continuity property of the discounted mean-variance metric, and we

show that the average problem formulation can be viewed as a special case when

α ↑ 1. For details see Remark 1. This formulation unification offers a systematic

perspective in contrast to the previous works. To deal with the difficulty caused

by policy dependency, we analyze it in the theory of sensitivity-based optimiza-

tion (Cao 2007), which stems from the perturbation analysis theory (Ho and

Cao 1991) and has been largely extended to stochastic dynamic systems includ-

ing Markov models. This theory is applicable to general Markov systems, even

including the cases without the time-consistency property. With the sensitivity-

based optimization theory, we derive a discounted mean-variance PDF, based

on which we propose a unified algorithm framework with a bilevel optimiza-

tion structure, where the inner problem concerns a standard MDP with a fixed
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pseudo mean, and the outer problem refers to a one-dimensional optimization

of the pseudo mean. Different algorithms can be developed with convergence

analyses, which are crucial for the risk-averse variance-related problems. Taking

the value iteration as an example, we propose a discounted mean-variance value

iteration (DMVVI) algorithm and prove its local convergence. In addition, we

present a Bellman local-optimality equation, which presents a necessary and suf-

ficient condition for local optimality of a policy. Finally, we apply the DMVVI

algorithm to a portfolio management problem and illustrate its validity.

The contributions of our paper are twofold. First, we present a unified al-

gorithm framework for the risk-averse (mean-)variance optimization problem in

discounted and average MDPs. This unified framework can unify the algorithms

in relevant works and provide a new perspective for the dynamic optimization

concerning steady-state variance metrics. Second, we develop a DMVVI algo-

rithm and prove its convergence, which can provide a foundation for further

developing efficient temporal-difference learning methods, such as Q-learning,

SARSA (Sutton and Barto 2018), and RL with neural networks, to variance-

related optimization problems. We believe that the algorithm framework and

the DMVVI algorithm can complement the steady-state variance optimization

theory together with the existing works of policy iterations (Xia 2016, 2020).

The remainder of the paper proceeds as follows. Section 2 formulates the

risk-averse mean-variance optimization in discounted MDPs. Section 3 proposes

a unified algorithm framework with a bilevel optimization structure. Several

algorithms can be developed in this framework, and we propose a DMVVI as

an example and prove its convergence. Section 4 gives a numerical experiment

on financial dynamic portfolio management to validate the DMVVI algorithm.

Section 5 presents concluding comments.

2. Problem formulation

In this paper, we focus on infinite-horizon discrete-time MDPs, which can

be represented byM = 〈S,A, r, p, µ, α〉, in which S = {s1, s2, · · · s|S|} is a finite
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state space, and Xt ∈ S represents the state at (decision) epoch t ∈ N+ =

{1, 2, · · · }; A(x) is the admissible action set for x ∈ S, A =
⋃
x∈S A(x) is a

finite action space, and Kt ∈ A represents the action at t; r : S × A → R

is a bounded reward function; p(y | x, a) = P(Xt+1 = y | Xt = x,Kt = a)

denotes the homogeneous transition probability; µ : S → [0, 1] is the initial

state probability mass function, and µ is an |S|-dimensional row vector with

the n-th entry µ(sn) for any n ∈ {1, · · · , |S|}; and α ∈ (0, 1) is the discount

factor.

A policy describes how to choose actions sequentially. It is stationary when

it is independent of time, and deterministic if it determines an action for each

state. In this study, we focus on stationary deterministic policy space D only.

For a given MDP, a policy d : S → A induces a Markov reward process. We

denote its transition probability by an |S|-by-|S| matrix Pd with Pd(x, y) =

p(y | x, d(x)), and its reward function by an |S|-dimensional column vector

rd with rd(x) = r(x, d(x)), for x, y ∈ S. We further denote its stationary

distribution by an |S|-dimensional row vector πd, with the n-th entry πd(sn)

for any n ∈ {1, · · · , |S|}. For notational simplicity, we omit the subscript “d”

when it is clear in the context.

In this study, we concern a risk-averse discounted mean-variance objective,

where the discounted variance refers to the (normalized) cumulative discounted

reward deviations from the discounted mean. Firstly, we denote the discounted

mean value function under a policy d ∈ D by

v(x) = vd(x) := (1− α)Edx

{ ∞∑
t=1

αt−1r(Xt)

}
, x ∈ S, (1)

where Edx stands for the expectation given the initial state X1 = x under the

policy d, and we derive the following matrix form

v = (1− α)(I− αP)−1r.

Considering the initial state distribution µ, we have the discounted mean as

η = ηd := (1− α)Edµ

{ ∞∑
t=1

αt−1r(Xt)

}
= µv, (2)
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where Edµ stands for the expectation given X1 ∼ µ under the policy d.

Next, we define the discounted steady-state variance with a second moment

value function. The (normalized) discounted second moment value function

under a policy d is

w(x) = wd(x) := (1− α)Edx

{ ∞∑
t=1

αt−1r2(Xt)

}
, x ∈ S, (3)

and in matrix form, we have

w = (1− α)(I− αP)−1(r)2�,

where “�” refers to the Hadamard product, i.e., (r)2� = (r2(s1), · · · , r2(s|S|))T .

Considering the initial state distribution µ, we have the (normalized) discounted

steady-state variance as

ζ = ζd := (1− α)Edµ

{ ∞∑
t=1

αt−1[r(Xt)− η]2

}
= µ(w − 2ηv + η2e),

where e = (1, · · · , 1)T .

After defining the two value functions, we define the discounted mean-

variance value function by

u(x) = ud(x) := v(x)− β[w(x)− 2ηv(x) + η2], x ∈ S, (4)

where β > 0 is a risk-aversion parameter. We may consider the discounted

mean-variance optimization problem as a discounted MDP with a special policy-

dependent reward function represented by

f(x) = fd(x) := r(x)− β[r(x)− η]2, x ∈ S, (5)

where η depends on the policy. In matrix form, we have

f = r− β(r− ηe)2�,

and then we have the discounted mean-variance value function in matrix form

as

u = v − β(w − 2ηv + η2e) = (1− α)(I− αP)−1f .
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Considering the initial state distribution µ, we have the discounted mean-

variance as

ξ = ξd := (1− α)Edµ

{ ∞∑
t=1

αt−1{r(Xt)− β[r(Xt)− η]2}
}

= (1− α)Edµ

{ ∞∑
t=1

αt−1f(Xt)

}
= η − βζ = µu.

(6)

Our objective is to find a deterministic policy d ∈ D to maximize the discounted

mean-variance, i.e.,

ξ∗ := max
d∈D
{ξ},

d∗ ∈ arg max
d∈D

{ξ}.
(7)

The two equations together define the risk-averse discounted mean-variance op-

timization problem. We may consider this problem as a discounted MDP with

a reward function defined in (5), where η is the discounted mean defined in

(2). The value of the variance part in this special reward function for each

state depends on policy instead of action, i.e., the performance at a current

state will be affected by actions chosen at not only the current epoch but also

future epochs. This dependency deprives the discounted variance metric of the

time-consistency property. In this case, the Bellman optimality equation does

not optimize over the admissible action set for a state, but over the policy space

for the whole state space, which revokes the divide-and-conquer DP methods.

In the next section, we will turn to the sensitivity-based optimization theory to

solve this problem.

Remark 1 (Problem formulation unification by discounting). Besides the ra-

tionales given in the introduction section, the involvement of a discount factor

unifies variance-related problems in both discounted and average MDPs. This

unification is embodied in the continuities of the discounted mean and variance

at α = 1 with

lim
α↑1

(1− α)(I− αP)−1 = eπ.

For details, see Chapter 2 in (Cao 2007). In other words, with respect to

an expected return/variance/mean-variance objective, the three scenarios are
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equivalent:

1. an MDP with a discount factor α ↑ 1;

2. a discounted MDP with a special initial state distribution µ = π (see

Lemma 2.1); and

3. an average MDP.

In particular, the discount factor is trivial when the steady-state distribution

equals the initial state distribution, for which we have the following lemma.

Lemma 2.1 (The futility of discounting). For a given policy d ∈ D, the dis-

counted mean-variance is independent of the discount factor if µ = π, i.e., the

initial state distribution equals the stationary distribution.

Proof. Since πP = π, for the discounted mean with the initial state distribution

µ = π, we have

η = π(1− α)(I− αP)−1r

= π(1− α)

( ∞∑
t=1

αt−1Pt−1
)

r

= (1− α)

( ∞∑
t=1

αt−1πPt−1
)

r

= (1− α)

∞∑
t=1

αt−1πr

= πr.

Hence, the discounted mean is independent of the discount factor when µ =

π (Sutton and Barto 2018), and we can similarly derive that ζ = π(r − ηe)2�

in this case. Therefore, we have ξ = πf , i.e., the discounted mean-variance is

independent of the discount factor when µ = π.

3. Unified algorithm framework and discounted mean-variance value

iteration

In this section, we propose a unified algorithm framework for the risk-averse

mean-variance optimization and give a value iteration algorithm as an exam-
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ple. First, we introduce the pseudo mean to remove the policy dependency

of the reward function, and derive the discounted mean-variance PDF, which

has a square term to handle the error from the introduction of pseudo mean.

Next, we propose a unified algorithm framework with a bilevel optimization

structure, where the inner problem refers to a standard MDP with a reward

function dependent on a fixed pseudo mean, and the outer problem concerns

a one-dimensional optimization of the pseudo mean. We show that risk-averse

(mean-)variance optimization can be solved by algorithm variants in the pro-

posed framework. Finally, we develop a value iteration in the framework for

the discounted mean-variance problem. Furthermore, we prove its local con-

vergence with a Bellman local-optimality equation, which is a necessary and

sufficient condition for local optimality of a policy.

3.1. Performance difference formula

One key result of the sensitivity-based optimization theory is the perfor-

mance difference formula (PDF). Based on the performance sensitivity analysis,

a PDF quantifies the difference between system performances under any two

policies. This theory is valid even for unorthodox Markov systems where the

traditional DP methods fail (Cao 2007). For the concerned mean-variance op-

timization, Equation (5) shows that the reshaped reward function depends on

the discounted mean η, which is unknown and affected by future actions. To

handle this policy dependency, we firstly replace η with a pseudo mean λ ∈ R,

and define a pseudo reward function for any d ∈ D by

fλ(x) = fλ,d(x) := r(x)− β[r(x)− λ]2, x ∈ S, (8)

and in matrix form, we have

fλ = r− β(r− λe)2� = (r(s1)− β[r(s1)− λ]2, · · · , r(s|S|)− β[r(s|S|)− λ]2)T .

The corresponding pseudo discounted mean-variance value function under policy

d ∈ D is

uλ(x) := (1− α)Edx

{ ∞∑
t=1

αt−1fλ(Xt)

}
, x ∈ S,
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and in matrix form, we have

uλ = (1− α)(I− αP)−1fλ. (9)

Considering the initial state distribution µ, we have the pseudo discounted

mean-variance as

ξλ = ξλ,d := (1− α)Edµ

{ ∞∑
t=1

αt−1fλ(Xt)

}
= µuλ. (10)

Now we have a standard MDP with the pseudo reward function (8), and the

difference between the pseudo discounted mean-variance ξλ and the discounted

mean-variance ξ can be measured.

Lemma 3.1 (Deviation of pseudo discounted mean-variance). The pseudo dis-

counted mean-variance and the discounted mean-variance have the following re-

lation

ξλ = ξ − β(η − λ)2.

Proof. From (10), we have

ξλ = (1− α)µ(I− αP)−1fλ

= (1− α)µ(I− αP)−1[r− β(r− λe)2�]

= (1− α)µ(I− αP)−1[r− β(r− ηe + ηe− λe)2�]

= (1− α)µ(I− αP)−1
{

[r− β(r− ηe)2�]− β[2ηr− 2λr− η2e + λ2e]
}

= ξ − β(1− α)µ(I− αP)−1[2ηr− 2λr− η2e + λ2e].

With (2) and noticing that (1− α)µ(I− αP)−1e = 1, we have

ξλ = ξ − β(2η2 − 2λη − η2 + λ2)

= ξ − β(η − λ)2.

Remark 2 (Means in discounted variance). One may be tempted to set the

long-run average ηa = limT→∞ 1
T E{

∑T
t=1 r(Xt)} as the value from which the
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deviations are measured. Though it has a straightforward physical meaning,

it is not the real mean in this discounted setting. When a discount factor

is involved, it implies that the underpinned occupation measure of state-action

pairs is in a discounted form, so the real “baseline” is the first central moment—

the discounted mean η. This claim is supported by Lemma 3.1 as well, since

the real mean should minimize variance (maximize mean-variance).

To construct the discounted mean-variance PDF, we start by quantifying the

difference between any two pseudo discounted mean-variance functions under

two policies with respect to a pseudo mean λ ∈ R. From (9), for d ∈ D we have

uλ = (1− α)fλ + αPuλ.

Denote the other pseudo discounted mean-variance function by u′λ under d′ ∈ D,

with the transition matrix P′ and the pseudo reward f ′λ, and then we have the

difference as

u′λ − uλ = (1− α)(f ′λ − fλ) + α(P′u′λ −Puλ)

= (1− α)(f ′λ − fλ) + α(P′u′λ −Puλ + P′uλ −P′uλ)

= (1− α)(f ′λ − fλ) + α(P′ −P)uλ + αP′(u′λ − uλ) (11)

= (1− α)(I− αP′)−1(f ′λ − fλ) + α(I− αP′)−1(P′ −P)uλ (12)

= (I− αP′)−1[(1− α)(f ′λ − fλ) + α(P′ −P)uλ], (13)

noticing from (11) to (12), we have (I−αP′)(u′λ−uλ) = (1−α)(f ′λ−fλ)+α(P′−
P)uλ. Equation (13) checks the update rule of the standard value iteration

from the perspective of PDF, and it explains why the standard value iteration

converges to a global optimum. For the discounted mean-variance optimization,

multiply the initial state distribution µ on both sides, and then we have the PDF

for the pseudo discounted mean-variance as

ξ′λ − ξλ = µ(I− αP′)−1 [(1− α)(f ′λ − fλ) + α(P′ −P)uλ] .

Furthermore, with Lemma 3.1 we have the PDF for the discounted mean-
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variance as

ξ′−ξ = µ(I−αP′)−1[(1−α)(f ′λ−fλ)+α(P′−P)uλ]+β(η′−λ)2−β(η−λ)2. (14)

Equation (14) quantifies the difference between the mean-variance performances

under two policies in an MDP with a pseudo reward. Based on (14), it is

straightforward to develop a policy iteration for the risk-averse (mean-)variance

optimization problems. For the problems in average MDPs see (Xia 2016, 2020).

The involvement of the pseudo mean brings in the last two terms in (14)

and makes the variance-related optimization converge to a local optimum. To

clarify the local optimality, we present the discounted mean-variance perfor-

mance derivative formula, which is another fundamental concept in the theory

of sensitivity-based optimization. Different from the PDF, the derivative for-

mula captures the behavior when the policy changes in a small local region. To

see that, we first define a mixed policy space with the concept of mixed policy.

For any two policies d, d′ ∈ D, we define a mixed policy dδ,d
′

for δ ∈ (0, 1),

which follows d with probability 1 − δ and follows d′ in the rest. It is easy to

verify that Pδ = P + δ(P′ − P) and fδλ = fλ + δ(f ′λ − fλ). Substituting them

into (14), we derive the performance difference between dδ,d
′

and d as

ξδ−ξ = µ(I−αPδ)−1δ[(1−α)(f ′λ− fλ)+α(P′−P)uλ]+β(ηδ−λ)2−β(η−λ)2.

Letting δ → 0, we obtain the derivative formula in the mixed policy space,

dξ

dδ
= µ(I− αP)−1[(1− α)(f ′λ − fλ) + α(P′ −P)uλ] + 2β(η − λ)

dη

dδ
, (15)

where limδ→0 Pδ = P and limδ→0
d(ηδ−λ)2

dδ = 2(η − λ)dη
dδ . Next, we present a

unified algorithm framework for the risk-averse discounted mean-variance opti-

mization and develop a value iteration algorithm with a provable local conver-

gence.

3.2. Unified algorithm framework

In this subsection, we propose a unified algorithm framework for the risk-

averse discounted mean-variance optimization. This framework has a bilevel
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optimization structure, where the inner problem refers to a standard MDP with

a reward function dependent on a fixed pseudo mean, and the outer problem

concerns a one-dimensional optimization of the pseudo mean. In particular,

for variance-related problems (risk-averse discounted/average variance/mean-

variance, etc.), the outer problem has a closed-form solution. Different algorithm

variants can be developed with different solvers to the inner problem. Moreover,

the proposed framework is applicable to some other variance-related optimality

criteria as well.

The difficulty of the risk-averse (mean-)variance optimization lies in that

the variance metric is a function of the discounted mean. This dependency sup-

presses the time-consistency property, and so that the traditional DP methods

are not applicable. To remove the dependency, we introduce the pseudo mean

to transform the special MDP to a standard one, where traditional DP methods

can be applied. Mathematically, the introduction of the pseudo mean results in

a bilevel optimization problem, which can be further extended to such problem

equivalences.

Lemma 3.2 (Problem equivalences with pseudo mean).

ξ∗ = max
d∈D
{ξ} = max

d∈D

{
max
λ∈R
{ξλ}

}
(16)

= max
λ∈R

{
max
d∈D
{ξλ}

}
(17)

= max
λ∈R

{
max
d∈D
{µuλ}

}
(18)

= max
λ∈R

{
〈(max
d∈D
{uλ(x)})Tx∈S ,µT 〉

}
. (19)

Proof. Lemma 3.1 implies that (16) holds with λ = arg maxλ∈R{ξλ} = ηd. Since

the outer and inner operators are both maximum, the two are exchangeable and

(17) holds. Equation (18) comes from (10). Noticing that for a given λ, the

inner optimization refers to a standard MDP, and the optimal mean results from

the optimal value function uλ.

Equation (17) underpins the bilevel algorithm framework. By introducing

the pseudo mean λ, the original problem is transformed to a bilevel problem,
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where the inner problem concerns a standard MDP Mλ = 〈S,A, fλ, p, µ, α〉,
and the outer problem refers to a one-dimensional optimization of the variable

λ. The framework is shown in Algorithm 1.

Algorithm 1 A unified algorithm framework for discounted mean-variance op-

timization
Input: The MDP M; initialize two pseudo means λ, λ′ ∈ R with λ′ 6= λ

Output: A local optimal policy d and the discounted mean-variance optimum

ξd

while λ 6= λ′ do

λ← λ′

Construct a standard MDPMλ. By using standard/optimistic algorithms

(e.g., policy iteration, value iteration, or policy gradient), solve or partly solve

Mλ to obtain an improved policy d and λ′ . Inner optimization

end while

Return d and ξd = µuλ

In the bilevel framework, the inner optimization helps optimize λ, which

means to keep updating it with a value closer to the discounted mean of any

local optimum. For any fixed λ, the resultant Mλ is a standard MDP, so there

are two threads to optimize λ. One is to calculate the optimal discounted mean

with a standard DP algorithm. The convergence of algorithms stemming from

this thread is guaranteed by the convergence of the involved DP algorithm and

Lemma 3.1, which claims that the pseudo discounted mean-variance ξλ equals

the discounted mean-variance ξ when λ = η. This thread is straightforward but

could be conservative. The other thread is to improve λ with an intermediate

value during its process converging to ηλ. The variant of policy iteration imple-

menting in this thread is well known as the optimistic policy iteration (Sutton

and Barto 2018), which has been studied for solving the risk-averse variance

and mean-variance optimizations in average MDPs in (Xia 2016, 2020), respec-

tively. Here we give simplified descriptions on variants of policy iteration and
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value iteration for the inner optimization as examples in Algorithms 2 and 3 1 2.

The inputs of these four algorithm variants are the MDP M and the current

pseudo mean λ, and the outputs are the updated policy d and pseudo mean λ.

For some realizations of the algorithm variants, we need to add the additional

initializations to the input of the framework. It is worth noting that, though a

set of DP algorithms, such as policy gradient, linear programming, and policy

iteration, can be applied in the first thread, the convergences of their optimistic

counterparts need further deliberations.

Algorithm 2 Policy iteration variants for inner optimization in Algorithm 1

Standard version:

Initialize d, d′ ∈ D with d 6= d′

while d 6= d′ do

d← d′

uλ ← (1− α)(I− αPd)
−1fλ,d

d′ ∈ arg maxd∈D {(1− α)fλ,d + αPduλ}
end while

λ′ ← (1− α)µ(I− αPd)
−1rd

Optimistic version:

Add. Init.: d ∈ D
uλ ← (1− α)(I− αPd)

−1fλ,d

d ∈ arg maxd∈D {(1− α)fλ,d + αPduλ}
λ′ ← (1− α)µ(I− αPd)

−1rd

A variety of algorithms for variance-related optimization in previous works

can be unified and analyzed in the proposed framework. When the equivalence

in (18) is concerned, we have the policy gradient for the mean-variance opti-

mizations in discounted MDPs (Bisi et al. 2020), and the policy iteration for

the mean-variance optimization in discounted and average MDPs (Zhang et al.

2021). However, no convergence analysis is given in either of the works, such

as the analyses for the policy iterations in (Xia 2016, 2020). Since most, if

not all, of the algorithms exploit the variance property described in Lemma 3.1

and result in local optima, a convergence analysis is crucial. In the proposed

1The norm used through the paper could be p-norm for p ∈ {1, 2,+∞}.
2For the value iteration variants, the policy d should be derived at the end of Algorithm 1,

and here we put it in the descriptions for structure unification only.
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Algorithm 3 Value iteration variants for inner optimization in Algorithm 1

Standard version:

Add. Init.: a small constant θ > 0

Initialize value functions v,uλ,u
′
λ ∈

R|S| with ‖uλ − u′λ‖ > θ

while ‖uλ − u′λ‖ > θ do

uλ ← u′λ

d ∈ arg maxd∈D {(1− α)fλ,d + αPduλ}

u′λ ← (1− α)fλ,d + αPduλ

v ← (1− α)rd + αPdv

end while

λ′ ← µv

Optimistic version:

Add. Init.: value functions v,uλ ∈
R|S|

d ∈ arg maxd∈D {(1− α)fλ,d + αPduλ}
uλ ← (1− α)fλ,d + αPduλ

v ← (1− α)rd + αPdv

λ′ ← µv

framework, a convergence analysis can be developed with the aid of a PDF.

Remark 3 (Unified algorithm framework). The unification in the algorithm

framework is twofold.

1. A set of problems potentially solvable by algorithms developed in the

framework. These problems include, but not limited to, the risk-averse

variance and mean-variance optimizations in discounted and average MDPs,

and these four metrics can be covered by (6). When the discount factor

α ↑ 1, the problem turns into the mean-variance maximization in average

MDPs (Xia 2020, Gosavi 2014) (see Remark 1). When the risk-aversion

parameter β is large enough with respect to the mean, the problem de-

grades to the variance minimization problem (for average MDPs, see (Xia

2016)).

2. For the unified set of problems, a set of algorithms can be developed and

analyzed in the framework, such as the policy gradients (Prashanth and

Ghavamzadeh 2013, Bisi et al. 2020), the policy iterations (Xia 2016, 2020,

Zhang et al. 2021), and the value iteration (Gosavi 2014). The missing

convergence analyses in some previous works can be developed as well.
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Moreover, both standard and optimistic versions of the DP algorithms

can be studied with deliberations on their convergences.

Remark 4 (Convergence rate and complexity). In the bilevel optimization frame-

work, the inner problem is a standard MDP for a given pseudo mean λ. The

convergence rate relies on the solver to the inner problem. For example, the

convergence of the value iteration is linear at rate β. However, since the mean

value function v is different from the mean-variance value function u, the con-

vergence rate of λ cannot be analyzed similarly. The complexity of an algorithm

in the bilevel optimization framework depends as well. Taking value iteration

for example, the complexity for each iteration is O(|S|2|A|). A lower bound for

the number of iterations needed can be estimated with an error bound at the

n-th iteration. For any d ∈ arg maxd∈D{fλ,d + βPduλ,n}, where uλ,n is the

pseudo mean-variance value function at n-th iteration, we have

‖ud
λ − u∗λ‖ ≤

2βn−1

1− β ‖max
d∈D
{fλ,d + βPduλ,1} − uλ,1‖,

where ud
λ is the pseudo mean-variance value function under d, and uλ,1 is the

initial pseudo mean-variance value function (Puterman 2005). To seek ε-optimal

policies, we have

2βn−1

1− β ‖max
d∈D
{fλ,d + βPduλ,1} − uλ,1‖ ≤ ε,

⇔n ≥ logβ

{
ε(1− β)

2‖maxd∈D{fλ,d + βPduλ,1} − uλ,1‖

}
+ 1.

3.3. Discounted mean-variance value iteration

In this subsection, we develop a discounted mean-variance value iteration

(DMVVI) in the proposed framework as an example. We show the relationship

between the original problem and the one with a pseudo mean. We prove

the local convergence of the DMVVI with a Bellman local-optimality equation,

which is a necessary and sufficient condition for local optimality of a policy.

We believe that the DMVVI algorithm provides a foundation for model-free RL

methods, such as Q-learning and SARSA, to the variance-related optimizations.
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Equation (19) is the foundation for a value iteration to the risk-averse

variance-related optimization. By further extending (19), we derive an opti-

mality equation as

ξ∗ = max
λ∈R

{
〈( max
a∈A(x)

{(1− α)fλ(x, a) + α
∑
y∈S

p(y | x, a)u∗λ(y)})Tx∈S ,µT 〉
}
. (20)

Equation (20) forms a Bellman optimality equation parameterized by λ for the

inner standard MDP with a fixed λ. To improve the discounted mean-variance

value function and evaluate the mean simultaneously, we maintain two value

functions in the iteration: the discounted mean value function v and the second

moment value function w. Given a policy d ∈ D, we define the value function

updates with two Bellman operators:

v′ = Tv,dv := (1− α)r + αPv

and

w′ = Tw,dw := (1− α)(r)2� + αPw.

Now we give the value iteration for the risk-averse discounted mean-variance

optimization in Algorithm 4, which is a detailed description of the standard

value iteration in Algorithm 3 in the framework.

Although the problem with a pseudo mean is different from the original

problem, we have the following theorem to relate these two problems in an

iterative algorithm.

Theorem 3.3 (Relationship between the two problems). For a fixed pseudo

mean-variance value function uλ, compute the pseudo mean-variance ξλ, the

policy d ∈ D and η = ηd, and then set λ = η. In the next iteration, if we have

ξ′λ ≥ ξλ, then we have ξ′ ≥ ξ. We have ξ′ > ξ if the first inequality strictly

holds.

Proof. With Lemma 3.1, we have

ξ′ − ξ = [ξ′λ + β(η′ − λ)2]− [ξλ + β(η − λ)2].
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Algorithm 4 The discounted mean-variance value iteration (DMVVI)

Input: The MDP M; a small threshold θ > 0; initialize λ, λ′ ∈ R with λ 6= λ′,

two discounted mean value functions, two second moment value functions

and a pseudo mean-variance value function v,v′,w,w′,uλ ∈ R|S|, with

‖uλ − [v′ − β(w′ − 2λv′ + λ2e)]‖ > θ

Output: Local optimal policy d and the local optimum ξ

1: while λ′ 6= λ do

2: λ← λ′

3: while ‖uλ − [v′ − β(w′ − 2λv′ + λ2e)]‖ > θ or ‖v′ − v‖ > θ do

4: v← v′

5: w← w′

6: uλ ← v − β(w − 2λv + λ2e)

7: for x ∈ S do

8:

d(x) ∈ arg max
a∈A(x)

(1− α)fλ(x, a) + α
∑
y∈S

p(y | x, a)uλ(y)


9: end for

10: v′ ← Tv,dv
11: w′ ← Tw,dw
12: end while

13: λ′ ← µv′

14: end while

15: ξ = µuλ

By setting λ = η, we have

ξ′ − ξ = ξ′λ − ξλ + β(η − η′)2.

Therefore, if ξ′λ ≥ (>)ξλ, we have ξ′ ≥ (>)ξ.

Though the error term in Lemma 3.1 can gracefully handle the policy depen-

dency of the variance metric, it takes a toll as well. Next, we show the condition
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that the global optimum cannot be reached in one iteration of the DMVVI.

Lemma 3.4 (Unreachability of global optimum in one iteration). In one outer

iteration of the DMVVI, ignoring the estimation error, given the current dis-

counted mean-variance ξ with the discounted mean η, and the global optimum

ξ∗ with

η∗ = ηd∗ , d∗ ∈ arg min
d∈D∗

{|ηd − η|}, (21)

where D∗ is the set of global optimal policies, if

(ξ∗ − ξ) ≤ β(η∗ − η)2, (22)

the global optimum cannot be reached in the current iteration.

Proof. For the current discounted mean-variance function u, we have the transi-

tion probability matrix P and the discounted mean-variance reward function f .

Denote ξ∗η the pseudo discounted mean-variance under a global optimal policy

d∗ ∈ D∗, with P∗ and f∗η . From Lemma 3.1, we have

(ξ∗ − ξ)− β(η∗ − η)2 = ξ∗η − ξ

= µ(I− αP∗)−1[(1− α)(f∗η − f) + α(P∗ −P)u] ≤ 0.

Since each entry of µ(I−αP∗)−1 is nonnegative, there exists at least one x ∈ S,

such that

[(1− α)f∗η + αP∗u](x) ≤ [(1− α)f + αPu](x)

≤ max
a∈A(x)

(1− α)[r(x, a)− β(r(x, a)− η)2] + α
∑
y∈S

p(y | x, a)u(y)

 ,

which means that, in this iteration, the value function will not converge to the

optimal value function under any d∗ ∈ D∗, so the global optimum cannot be

reached in the current iteration.

Lemma 3.4 claims that, given ξ, η, and the optimal policy d∗ whose dis-

counted mean performance η∗ is closest to η (see (21)) in the current iteration,

if the difference between η and η∗ is relatively large (see (22)), then the pseudo
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mean-variance under d∗ will deteriorate to ξ∗η ≤ ξ because of η, and the op-

timum cannot be reached in this iteration. With the aid of Lemma 3.4, we

can prove the local convergence of the DMVVI. We first give the definition of

local optimality for the discounted mean-variance optimization, along with the

Bellman local-optimality equation.

Definition 3.1 (Local optimality). For a policy d ∈ D, if there exists ∆ ∈ (0, 1),

we always have ξd ≥ ξdδ,d′ for any δ ∈ (0,∆), then we say d is a local optimum

in the mixed policy space.

Definition 3.2 (Bellman local-optimality equation). A policy d# ∈ D is a

local optimal policy if and only if its value function u# satisfies the Bellman

local-optimality equation

u#(x) = max
a∈A(x)

(1− α)[r(x, a)− β(r(x, a)− ηd#)2] + α
∑
y∈S

p(y | x, a)u#(y)

 .

(23)

The local convergence of DMVVI is established with the performance deriva-

tive formula (15), which shows that the converged value function has a nonpos-

itive gradient in any feasible directions. Next, we give the local convergence

proof of the DMVVI.

Theorem 3.5 (Local convergence of DMVVI). The DMVVI converges to a

local optimum.

Proof. First, we prove the convergence of the DMVVI. At t-th step of the outer

iteration, we have a pseudo mean λt ∈ R and a discounted mean-variance

µuλt,t (i.e., ξλt,t) at the beginning of the inner optimization (at Line 3 in Al-

gorithm 4). After one inner optimization, we have µuλt,t+1 ≥ µuλt,t (i.e.,

ξλt,t+1 ≥ ξλt,t, at Line 1), which is guaranteed by the convergence of the stan-

dard value iteration (Puterman 2005). Derive λt+1 (at Line 2) and then we

have µuλt+1,t+1 ≥ µuλt,t+1 (i.e., ξλt+1,t+1 ≥ ξλt,t+1) based on Lemma 3.1,

which strictly holds if λt+1 6= λt. Since the policy space D is finite and
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ξλt+1,t+1 ≥ ξλt,t+1 ≥ ξλt,t, this algorithm will stop after a finite number of

iterations. Thus, the convergence of the DMVVI is proved.

Second, we prove that the DMVVI converges to a local optimum. From

Lemma 3.4, the DMVVI converges to the current discounted mean-variance ξ#

if it is local optimum, i.e., it satisfies the Bellman local-optimality equation (23).

Plugging λ = ηd# into (15), we derive that

dξd#

dδ
= µ(I− αP#)−1[(1− α)(f#

′ − f#) + α(P′ −P)u#].

Noticing that the elements of µ(I−αP#)−1 are always nonnegative, we conclude

that
dξ
d#

dδ ≤ 0 along any feasible changing direction, indicating that d# is a local

optimum in the mixed policy space.

Comparing with the standard value iteration, whose global convergence is

guaranteed by (13), Theorem 3.5 explains why the DMVVI converges a local

optimum—within one iteration, the value function update always depends on

the former discounted mean, and the error term in Lemma 3.1 suppresses the

global policy in that iteration (Lemma 3.4). Since the optimization procedure

is deterministic, the sequence of λ’s depends on the initial λ only. If a pseudo

mean derived from a local optimal policy is reached before one from a global

optimal policy, then the DMVVI will converge to this local optimum, and in this

case, the iteration is “trapped” by the Bellman local-optimality equation (23).

This local convergence analysis can be generalized to other algorithm variants

governed by the unified algorithm framework, such as the works in (Xia 2016,

2020, Zhang et al. 2021). Besides, if all policies share the same discounted mean,

the error term vanishes, and the DMVVI will converge to the global optimum.

By introducing a pseudo mean, the PDF quantifies the performance dif-

ference between any two policies and provides a foundation for iterative al-

gorithms. As shown in the introduction section, most of the relevant works

focus on gradient-based methods, and to the best of our knowledge, only two

works concern iterative algorithms for variance-related problems besides (Xia

2016, 2020). One is (Zhang et al. 2021), which reformulates the mean-variance
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formulation in average MDPs with its Legendre-Fenchel dual, and derives a

similar problem formulation as the one with a pseudo mean. The authors pro-

pose a stochastic block coordinate ascent algorithm (Cui et al. 2018), which can

be unified as a policy iteration in our unified algorithm framework. No local

convergence analysis is given in this work. The other is (Gosavi 2014), where a

value iteration is proposed for the mean-variance optimization in average MDPs.

However, relevant algorithm analyses, such as convergence and local optimality,

are circumvented with assumptions. We believe that our work complements

risk-sensitive optimization in MDPs from three aspects:

1. The mean-variance optimization theory is extended to discounted MDPs;

2. A unified algorithm framework is proposed, where a variety of algorithm

variants can be unified and analyzed with the aid of PDF, and the frame-

work works for a collection of risk-sensitive criteria including, but not limit

to, several variance-related risk measures; and

3. The DMVVI is proposed with a convergence analysis and a Bellman local-

optimality equation, and it provides a foundation for model-free RL meth-

ods, such as Q-learning and SARSA, to the variance-related optimizations.

4. Numerical experiment

In this section, we validate the proposed DMVVI by solving the discounted

mean-variance optimization in a portfolio management problem (Tamar et al.

2012). We assume the dynamics of portfolio management to be a stationary

stochastic process and model it as an MDP with an appropriate discretization

of all relevant continuous variables.

A portfolio is usually composed of two types of assets. One is the liquid

assets (e.g., short-term T-bills), each of which has a fixed interest rate rl and

can be sold at any epoch t ∈ N+. The other type is the non-liquid assets (e.g.,

low liquidity bonds or options), each of which can be sold only after a maturity

period of M ∈ N+ steps with a time-dependent interest rate rn(t). We assume

that rn(t) can take either rlown or rhighn , and the transitions between these two
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cases occur randomly with a switching probability ps. In addition, a non-liquid

asset has a default risk with probability pr. To simplify the problem, we assume

that the portfolio has one for each type of assets. Besides, we discretize the in-

vestor’s total available cash into N ∈ N+ units, and represent a state by a vector

x = (x0, x1, · · · , xM+1) ∈ {0, · · · , N}M+1×{rlown , rhighn }, where x0 ∈ {0, · · · , N}
is the number of units invested in the liquid asset; x1, · · · , xM ∈ {0, · · · , N} are

the numbers of units invested in the non-liquid assets with 0, · · · , (M − 1) time

steps to maturity, respectively; and xM+1 ∈ {rlown , rhighn } records the current

non-liquid interest rate. At each epoch with a state x, the investor may change

her portfolio by investing a number of units a ∈ A(x) = {0, 1, · · · , (x0 + x1)}
in the non-liquid asset. We further assume that default can happen only at the

maturity epoch. The dynamics of the investment among the liquid asset and

the non-liquid assets with different maturity times is illustrated in Figure 1.

x0 x1 · · · xm−1 xm

liquid non-liquid

Figure 1: Dynamics of investment among liquid asset and non-liquid assets with different

maturity times. The arrow “→” represents a controllable investment, and “�” represents a

uncontrollable state transition. Notice that the investment at x1 can be directly reinvested

to the non-liquid asset since it is matured at the decision epoch.

To consider a small-scale problem, we set the discount factor α = 0.95, the

risk-aversion parameter β = 1, the maturity period M = 3, the total available

cash units N = 3, the liquid asset interest rate rl = 0.03, the low non-liquid

asset interest rate rlown = 0.4, the high non-liquid asset interest rate rhighn = 1,

the interest switching probability ps = 0.1, and the default risk probability

pr = 0.1. We assume that all units of cash are in the liquid asset at t = 1. For

the given parameter setting, we construct an MDP to represent this portfolio

management problem.
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4.1. Local convergence and laddered policy

We solve the risk-averse discounted mean-variance optimization in the port-

folio management with the DMVVI (Algorithm 4) with θ = 10−5. As Theo-

rem 3.5 states, the DMVVI converges to a local optimum. For different initial

pseudo means, the value iteration may converge to different local optima. In

this portfolio management problem with the specified setting, the algorithm

converges to the global optimum if we initialize the pseudo mean by λ′ = 1.

In contrast, it converges to a local optimum if we initialize λ′ = −1. The two

convergences are compared in Figures 2 and 3.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Mean

0

2

4

6

8

Va
ria

nc
e

local conv.
global conv.

0.0 0.1 0.2 0.3 0.4 0.5
1.0

0.5

0.0

0.5

1.0

1.5

2.0

(0.09, 0)

(0.4384, 0.3071)

Figure 2: The local and global convergences in the mean-variance space with λ′ = −1 and 1,

respectively.

In Figure 2 we show that when the pseudo mean is initialized differently, the

algorithm will converge to different local optima. In this case, the local opti-

mal policy is d(x) = 0, x ∈ S, which indicates that we should always invest in

the liquid risk-free asset, which will deliver a deterministic revenue 0.09. Com-

paring with this conservative local optimal policy, the global optimum achieves

a revenue with the discounted mean µ ≈ 0.4384 and the discounted variance

ζ ≈ 0.3071, which is better with β = 1. The discounted mean-variance values

are 0.1313 and 0.09 for the global and local optima, and the convergences are
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Figure 3: The local and global convergences along the time steps with λ′ = −1 and 1,

respectively.

illustrated in Figure 3. In both Figures 2 and 3, we can see that there are

“jumps” near the ends. That is because the pseudo means are updated in the

outer optimization in the bilevel framework.

It is worth noting that, the global optimal policy is d(x) = 0 for x ∈ {x ∈ S |
x0 + x1 = 0} and d(x) = 1 otherwise. This policy is a laddered (or laddering)

strategy, which splits an investment to non-liquid assets into equal units and

invests them in regular intervals consecutively in order to maintain a cash flow.

Since investments are spread across several maturities, the laddered strategy

also implies temporal diversification which reduces financial risks. Laddered

strategies are widely used in portfolio management (Caldeira et al. 2016).

4.2. Mean-variance trade-off along convex efficient frontier

A mean-variance metric is a combination of two metrics weighted with a risk-

aversion parameter β. Different β’s reflect different trade-offs between profit (µ)

and risk (ζ). By adjusting β, different policies represented by (µ, ζ)’s can be

found with the DMVVI (assuming the global optimality is achieved), and these

combinations establish a convex efficient frontier, which is the intersection of
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the mean-variance (Pareto) efficient frontier and the convex hull of the mean-

variance pairs. The convex hull, which is also known as the convex envelope or

convex closure, is the smallest convex set that “contains” a given space. Each

policy in the convex efficient frontier corresponds to a global optimal solution to

a mean-variance optimization with a specific β. The convex efficient frontier of

the discounted mean-variance problem along with some possible mean-variance

pairs is shown in Figure 4. In this case, the convex efficient frontier is composed

of five vertices, and every vertex represents a possible (µ, ζ) under an optimal

policy with respect to some risk-aversion parameter.
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Figure 4: The convex hull of the risk-averse discounted mean-variance optimization.

4.3. Risk-aversion versus risk-neutral

Another concern could be the difference between the results of risk-averse

and risk-neutral optimizations—“how much profit is sacrificed” and “how much

risk is eliminated” are crucial questions. To quantify the difference, we compare

the mean-variance pairs under the optimal policies for the cases with β = 0 and

β = 1. The comparison is shown in Figure 5, with the Gaussian distribution

used for presentation only. The mean and variance for the risk-neutral case is

(0.4507, 1.3468), while its risk-averse counterpart is (0.4384, 0.3071). We can

see that by sacrificing (0.4507 − 0.4384) = 0.0123 (0.0123/0.4507 × 100% ≈
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2.73%) in the expected profit, we reduce the variance from 1.3468 to 0.3071

(0.3071/1.3468 × 100% ≈ 22.80%). It means that in this case, we sacrifice

2.73% of the expected profit to eliminate (1 − 22.80%) = 77.20% of the risk,

which could be a meaningful risk-averse decision.
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Figure 5: A comparison between the means and variances with β = 0 and β = 1.

5. Summary and outlook

In this paper, we study the risk-averse discounted mean-variance optimiza-

tion, in which the concerned variance refers to the steady-state variance for-

mulated with a discount factor. The problem formulation unifies the (mean-

)variance optimizations in discounted and average MDPs. Since the reward

functions are policy-dependent in the variance-related problems, the MDPs are

unorthodox, and the traditional DP methods cannot be applied directly. We

proposed a unified algorithm framework to solve and analyze this problem. This

framework has a bilevel optimization structure, where the inner problem refers

to a standard MDP, and the outer problem concerns a one-dimensional opti-

mization. For the concerned mean-variance optimization, the outer problem

has a closed-form solution, i.e., the discounted mean with respect to a given

policy determined by the inner optimization. This framework unifies a series
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of algorithms for several variance-related optimizations in discounted and av-

erage MDPs, such as the policy gradients (Prashanth and Ghavamzadeh 2013,

Bisi et al. 2020), the policy iterations (Xia 2016, 2020, Zhang et al. 2021), and

the value iteration (Gosavi 2014). Furthermore, convergence analyses can be

developed with the aid of the Bellman local-optimality equation. For the risk-

averse mean-variance optimization in discounted MDPs, we take value iteration

as an example and develop the DMVVI algorithm. A numerical experiment on

a portfolio management problem is given to validate the proposed DMVVI.

Possibilities for future work include studies on the conditions of global con-

vergence, i.e., when an algorithm for a variance-related optimization can con-

verge to a global optimum with probability one. A first attempt could be a

stochastic global convergence achieved with the exploratory mechanism in RL.

The other future work could be model-free RL algorithms, such as Q-learning

and SARSA, as online solutions to risk-averse variance-related problems. We

believe that the proposed algorithm framework and one of its consequent algo-

rithms, the DMVVI, provide a theoretic foundation and inspiration for future

works.
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