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Abstract

A log-optimal portfolio is any portfolio that maximizes the expected logarithmic growth
(ELG) of an investor’s wealth. This maximization problem typically assumes that the
information of the true distribution of returns is known to the trader in advance. However,
in practice, the return distributions are indeed ambiguous; i.e., the true distribution is
unknown to the trader or it is partially known at best. To this end, a distributional robust

log-optimal portfolio problem formulation arises naturally. While the problem formulation
takes into account the ambiguity on return distributions, the problem needs not to be
tractable in general. To address this, in this paper, we propose a supporting hyperplane

approximation approach that allows us to reformulate a class of distributional robust log-
optimal portfolio problems into a linear program, which can be solved very efficiently. Our
framework is flexible enough to allow transaction costs, leverage and shorting, survival trades,
and diversification considerations. In addition, given an acceptable approximation error, an
efficient algorithm for rapidly calculating the optimal number of hyperplanes is provided.
Some empirical studies using historical stock price data are also provided to support our
theory.

keywords: Financial Engineering, Stochastic Systems, Distributionally Robust Optimization, Port-

folio Optimization, Kelly Criterion, Robust Linear Programming, Approximation Theory.

1 Introduction

In portfolio management, one of the key questions that most investors want to address is how
to find an “optimal” asset allocation fraction so that the desired risk-reward objective can be
achieved. To address this, [1] and [2] propose the celebrated mean-variance model in a single-
period setting. Since then, many extensions and ramifications are developed along the line of
portfolio theory and optimization; e.g., see [3–7]. A good survey on this topic can be found in [8].
However, the Markowitz-style approach is static in the sense that it only optimizes for the next
rebalancing.

In contrast to the class of single-period portfolio optimization problems, [9] proposes an
alternative approach called Kelly criterion aimed at addressing multi-period betting problem in
a repeated gambling setting. The theory calls for a maximization of the expected logarithmic
growth (ELG) of a gambler’s account; see also [10] for a good introduction to the Kelly-based
approach. This framework is readily generalized to stock trading and portfolio optimization
scenario; e.g., see [11–16]. It is well-known that the Kelly-based approach guarantees the so-
called comparative optimality and myopic property; see [17–19]. That is, the growth rate of
trader’s wealth is maximized asymptotically and the trader who adopted the Kelly-based trading
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strategy does not have to consider prior nor subsequent investment opportunities. Additionally,
the corresponding Kelly-based portfolio also minimizes the expected time to reach a prespecified
target account value; e.g., see [20] and [21].

In addition, we mention a sampling of the developments along this line of research. See [22]
for an algorithm of solving the classical log-optimal portfolio problem, [23] for a discussions
on game-theoretic optimal portfolio, [24] for a study on continuous-time log-optimal portfolio.
A textbook that contains many important papers on the Kelly-based approach can be found
in [25]. See also [26] and [27] for studies on the application of Kelly-based approach in option
trading. Recently, [28] studies the statistical properties of the estimators for the log-optimal
portfolio; [29] studies a optimal growth in a two-sided market, and [30] for studies on Kelly
criterion with continuous Lévy process as a model for returns.

Most of the work related to the Kelly-based approach are typically assuming that the return
distributions are known in advance. However, in practice, the true distribution of returns is
unknown or only partially known to the trader at best. Said another way, the return distributions
are indeed ambiguous to the trader. To this end, some of the work attempt to remedy this
ambiguity issue. For example, [31] proposes a universal portfolio algorithm that generate an
adaptive strategy from historical data. The resulting universal portfolio can be shown at least
as well as the best log-optimal portfolio selected in hindsight. However, in the short run, the
portfolios might be susceptible to error maximization. As another approach, [32] proposes a
version of robust log-optimal portfolio framework by maximizing a version of the Value at Risk
of portfolio returns under a long-only framework. They show that the problem is indeed a
tractable semidefinite program (SDP) and with exploiting a certain structure of the ambiguity
set, it is possible to obtain a second-order cone program (SOCP). Later, [33] considers a new
objective for the Kelly betting problem using a conservative expected value with the similar
aim to mitigate the ambiguity issues. Recently, [34] uses a convex optimization approach for
solving a class of distributional robust Kelly betting problems with the assumptions that the
returns of the gambles are independent and identically distributed (IID). However, all of the work
above assumes that the trades must be long-only and cash-financed. In contrast to the existing
literature, in this paper, we propose a class of distributional robust log-optimal portfolio problems
under a polyhedron ambiguity set for the return distributions. In addition, our formulation allows
extra flexibility in the sense that various practical trading requirements such as transaction costs,
leveraging and shorting, survival trades, and diversification considerations are involved. Then,
we propose a new hyperplane approximation approach that enables us to solve the distributional
robust problem in a much fast linear program paradigm.

1.1 Contributions of this Paper

The main contributions of this paper are summarized as follows.

• We consider a class of distributional robust log-optimal portfolio formulations with a poly-
hedron ambiguous return distributions. Our formulation is flexible enough to incorporate
various practical constraints such as transaction costs, leveraging and shorting, survival
trades, and diversification.

• We provide a supporting hyperplane approximation approach and prove that such an ap-
proximation enables us to reformulate the distributional robust log-optimal portfolio prob-
lem as a linear program. Hence, it can be solved in a very efficient way.

• We refine our approximation and study the optimal number of supporting hyperplanes. An
efficient algorithm for rapidly calculating the optimal number of hyperplanes is provided.
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In addition, if there is no ambiguity on the return distributions, we show that our approach
attains an approximate optimum which can be arbitrarily close to the true optimum as far
as performance is concerned.

• In empirical studies with historical stock price data, we show that our distributional robust
log-optimal portfolio is competitive with the classical log-optimal portfolio.

• We also indicate one possibility to extend our formulation. That is, by involving a surrogate
drawdown risk constraint, we show that the distributional robust log-optimal portfolio
problem is still a concave program. Hence, it may be solved in an efficient manner.

2 Problem Formulation

In this section, we first provide some preliminaries and then formulate a distributional robust
log-optimal portfolio problem.

2.1 Finite Outcome Case

Consider a portfolio consisting of n ≥ 1 risky assets. For k = 0, 1, 2, . . . , N − 1 the ith asset
at stage k whose price is denoted by Si(k) > 0. The associated per-period rate of returns for
the ith asset is given by

Xi(k) :=
Si(k + 1)− Si(k)

Si(k)

with Xi(k) > −1.1 For each k, let

X(k) := [X1(k) X2(k) · · · Xn(k)]
T .

The return vector X(k) is drawn according to an unknown distribution function but are assumed
to be identically distributed in k and is supported on only m points.2 The corresponding joint
probability mass function for the returns is given by

P (X1(k) = xj
1, . . . , Xn(k) = xj

n) = pj , j ∈ {1, 2, . . . ,m}

with pj ≥ 0 and
∑m

j=1 pj = 1.Ormore compactly, P
(
X (k) = xj

)
:= pj where x

j := [xj
1 xj

2 · · · xj
n]

T

and j ∈ {1, 2, . . . ,m}. In the sequel, we take xi,min := minj x
j
i and xi,max := minj x

j
i for

i = 1, 2, . . . , n.

2.2 Linear Trading Policy

As far as the computational tractability of a trading policy is concerned, carryout optimization
over all general causal policies is unrealistic. Instead, we will restrict attention to a memoryless
linear trading policy that keeps the associated portfolio weights constant across all rebalancing

1Our setting is flexible enough to involve at least one of the assets, say the 1st asset, to be riskless with
nonnegative rate of return X1(k) := rf ≥ 0. That is, if an asset is riskless, the return is assumed to be
deterministic and is treated as a degenerate random variable with value rf for all k with probability one.

2While the distribution is unknown, we assume the case where one of m events occurs; i.e., X(k) is supported
on only m points. It is worth mentioning that, in the finance literature, the identical distributed returns or even
stronger cases such as IID returns are closely related to a market which is information efficient ; e.g., see [10,35,36].
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stages. Specifically, to establish the trading scheme, for k = 0, 1, . . . , let V (k) be the account
value at stage k. We consider the so-called linear trading policy for the ith asset. That is,

ui(k) := KiV (k)

where Ki is the weight for the ith asset.3 The policy for the portfolio at stage k is given by

n∑

i=1

ui(k) =

n∑

i=1

KiV (k).

In the sequel, we shall take a vector notation

K := [K1 K2 · · · Kn]
T .

As seen later in Section 2.4, various practical trading requirements on K that are imposed in our
framework are discussed.

2.3 Account Value Dynamics with Transaction Costs

Let ci ∈ (0, 1) be a percentage transaction costs on Asset i.4 That is, at stage k, if one invests
ui(k) at Asset i, then the associated transaction costs in dollar is |ui(k)|ci. The dynamics of
account value at stage k + 1 is characterized by the following stochastic recursive equation:

V (k + 1) = V (k) +

n∑

i=1

ui(k)Xi(k)−
n∑

i=1

|ui(k)|ci (1)

= V (k) +

n∑

i=1

ui(k)X̃i(k) (2)

where

X̃i(k) :=

{
Xi(k)− ci, Ki ≥ 0;

Xi(k) + ci, Ki < 0

is the fee-adjusted returns.5 Via a straightforward calculation, it follows that the account value
at terminal stage k = N for some integer N > 1 is given by

V (N) =

N−1∏

k=0

(
1 +KT X̃(k)

)
V (0).

In the sequel, we may sometimes write VK(N,X) instead of V (N) to emphasize the dependence
on feedback gainK and return sequenceX := {X(k) : k ≥ 0}. If ci := 0 for all i, then the account

value reduces to V (N) =
N−1∏
k=0

(
1 +KTX(k)

)
V (0), which is typically used in the literature; e.g.,

see [17, 39–41].

3The linear policy ui(k) = KiV (k) is widely used in practice. One can readily convert the linear policy in
terms of the corresponding number of shares. Specifically, let Ni(k) be the number of shares invested at stage k.
Then, with the price Si(k) > 0, it follows that Ni(k) := ui(k)/Si(k).

4For example, if one trades in Taiwan Stock Exchange, then a typical transaction cost is α · 0.1425% of the
trade value for some α ∈ (0, 1). As a second example, if one adopts some professional broker services such as
Interactive Brokers Pro., it would cost $0.005 per share with minimum fee $1 dollar and maximum 1% of the
trade value.

5Other transaction cost models are possible; e.g., one can add a term that is quadratic in the trade value; e.g.,
see [37–39].
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2.4 Constraints Considerations

In this subsection, we consider three practical constraints to be involved in our formulation. That
is, (i) shorting and leveraging (ii) survival for all time; i.e., V (k) ≥ 0 for all k with probability
one, and (iii) diversification constraint.

2.4.1 Shorting and Leverage Constraints.

To allow shorting and leverage, for Asset i and k = 0, 1, . . . , N − 1, we write the trading policy
ui into two parts as follows.

ui(k) = KiV (k)

:= Ki,LV (k) +Ki,SV (k)

where Ki,L ≥ 0 represents the proportion of going long and Ki,S ≤ 0 represents the proportion
of going short. If Ki,L + Ki,S ≥ 0, then it indicates one goes long with Asset i. Similarly, if
Ki,L +Ki,S ≤ 0, then one goes short with Asset i. We require that

∑n

i=1 |ui(k)| ≤ LV (k) for
some leverage constant L ≥ 1. Equivalently, we have

n∑

i=1

|Ki,L +Ki,S| ≤ L.

Noting that the constraints above are characterized by various linear inequalities, it forms a
convex polytope; see [42].

2.4.2 Survival Constraints.

It is important that the trade is survival ; i.e., V (k) < 0 is disallowed for all k with probability
one.6 This requires that (1 +KTX(k))V (0) ≥ 0 for all k with probability one. Since V (0) > 0,
it is equivalent to require

n∑

i=1

(Ki,L +Ki,S)Xi(k) ≥ −1

for all k with probability one. Since xi,min ≤ Xi(k) ≤ xi,max for all i = 1, . . . , n and k =
0, 1, . . . , N − 1, it follows that

n∑

i=1

Ki,L min{xi,min, 0}+
n∑

i=1

Ki,S max{xi,max, 0} ≥ −1.

Therefore, the survival constraint is imposed as follows:

n∑

i=1

Ki,L|min {xi,min, 0}| −
n∑

i=1

Ki,S max {0, xi,max} ≤ 1.

Similar to the shorting and leverage constraint, the survival constraints described above form a
convex set.

6A detailed discussion on the survival condition is referred to [43].
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2.4.3 Diversified Holding Constraints.

From a risk management perspective, an exhibit of large concentrations in any specific asset
should be avoided; e.g., see [10, 35, 44]. Hence, it is natural to add a constraint restricting the
maximal holding weights in each asset. To this end, we set

Ki,min ≤ Ki,L +Ki,S ≤ Ki,max

for some Ki,min ≥ 0 and Ki,max ≤ 0 representing the lower and upper bounds of the weights of
Asset i. A typical choice is that Ki,min = 0 and Ki,max = L/m with L ≥ 1 being the leverage
constant and m being the number of assets in the portfolio. In the sequel, we shall use K to
denote the admissible set of the totality of these three constraints.

Remark 2.1. Since all three constraints above are formed by various linear inequalities, it is
readily verified that the constraint set K is convex and closed.

2.5 Distributional Robust Log-Optimal Portfolio

We are now ready to study a distributional robust version of the log-optimal portfolio problem
in which the probability distribution p is unknown. Rather, we assume that p ∈ P , a set of
possible return distributions or the so-called ambiguity set. Said another way, P is the set of all
possible return distributions under some available prior information. For k = 0, 1, . . . , N − 1 and
ci = 0,7 consider the expected logarithmic growth rate given by

gp(K) :=
1

N
Ep

[
log

VK(N,X)

V (0)

]

=
1

N
Ep

[
N−1∑

k=0

log(1 +KTX(k))

]

=
1

N

N−1∑

k=0

Ep

[
log(1 +KTX(k))

]

where the Ep[·] is the expectation taken with respect to the random vector X(k) given that it
follows the joint probabilities p. The subscript p in gp is used to emphasize the dependence on
the unknown probability p. With the assumption that X(k) are identically distributed in k, we
have

gp(K) = Ep[log(1 +KTX(0))]

=

m∑

j=1

pj log(1 +KTxj).

Our objective is to seek an optimal K ∈ K achieving the distributional robust expected logarith-
mic growth rate

g∗ := max
K∈K

inf
p∈P

gp(K) (3)

7In our setting, the percentage transaction costs can be lumped into original rate of returns to obtain the
fee-adjusted returns. In addition, since we assume a linear policy, the log-optimal portfolio optimization problem
without transaction costs is equivalent to that with transaction costs in the sense the optimal constant weighting
vector K remains unchanged.
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where K is the admissible set of K which captures the totality of the constraints described in
Sections 2.4. Note that infp∈P gp(K) is concave in K since it is an infimum of a family of concave
functions of K. This is indeed a concave distributional robust optimization problem. However,
as indicated in [45], such problems may not be tractable in general. To this end, in the sequel, our
aim is to show how such a problem can be tractably solved for a class of polyhedron probability
sets P . In addition, as seen in later sections to follow, with a hyperplane approximation, the
tractability can be improved further.

Remark 2.2. (i) Return compounds multiplicatively rather than additively. Hence, it is nat-
ural to consider maximizing E[log V (k)/V (0)] instead of E[V (k)/V (0)]. (ii) As mentioned pre-
viously, g(K) = E[log(1 +KTX(0))] is concave in K. Hence, if K is convex set, one obtains a
concave program. (iii) If K is compact, then, according to Weierstrass Extremum Theorem; see,
e.g., [46], a maximizing K∗ exists. (iv) It is readily verified that the log-optimal portfolio prob-
lem with percentage transaction costs consideration is equivalent to that without the transaction
costs in the sense that the optima are the same.

2.6 Polyhedron Ambiguous Return Distributions

Let p := [p1 p2 · · · pm]T ∈ R
m and take

Sm :=



p ∈ R

m
+ :

m∑

j=1

pj = 1, pj ≥ 0 j = 1, 2, . . . ,m





to be a probability simplex set where Rm
+ := {x = [x1 x2 · · ·xm]T ∈ R

m : xi ≥ 0, i = 1, 2, . . . ,m}.
We assume that the ambiguity set of possible distributions P is given by a finite set of linear
inequalities and equalities.8 That is, P takes the form of

P := {p ∈ Sm : A0p = d0, A1p ≤ d1}

where A0 ∈ R
m0×m, d0 ∈ R

m0 , A1 ∈ R
m1×m and d1 ∈ R

m1 . Then the worst-case expected
log-growth rate gP(K) := infp∈P gp(K) is given by the optimal value of the linear program:

Problem 2.1 (Worst-Case Expected Log-Growth).

min
p

m∑

j=1

pj log(1 +KTxj)

s.t.

n∑

i=1

pj = 1, pj ≥ 0, j = 1, 2, . . . ,m;

A0p = d0, A1p ≤ d1

with variables p = [p1 p2 · · · pm]T .

8There are many more forms of the ambiguous distributional set that can be found in the literature; e.g.,
see [47] and references therein.
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Theorem 2.1 (Distributional Robust Log-Optimal Portfolio Problem). Let P be a polyhedron
set for ambiguous return distributions. The distributional robust log-optimal portfolio problem
maxK∈K infp∈P gp(K) is equivalent to

max
K,v,λ

min
j

(
q(K) +AT

0 v +AT
1 λ
)
j
− vTd0 − λT d1

s.t. K ∈ K, λ � 0

where q(K) := [q1(K) q2(K) · · · qm(K)]T with qj(K) := log(1 + KTxj); v ∈ R
m0 and λ � 0

means that λ ∈ R
m1 is component-wise nonnegative. Moreover, the problem above is a concave

optimization problem.

Proof. We begin by writing down the Lagrangian

L(v, λ, p) = pT q(K) + vT (A0p− d0) + λT (A1p− d1) + 1Sm
(p).

where q(K) := [q1(K) q2(K) · · · qm(K)]T with qj(K) := log(1 +KTxj); v ∈ R
m0 and λ ∈ Rm1

with λj ≥ 0 are the Lagrange dual variables, and 1Sm
(p) is an indicator function that represents

the probability simplex constraint. Minimizing over p yields the Lagrange dual function; i.e.,

g(v, λ) = inf
p∈Sm

L(v, λ, p)

= min
p∈Sm

pT
(
q(K) +AT

0 v +AT
1 λ
)
− vTd0 − λT d1

= min
p∈Sm

m∑

j=1

pj
(
q(K) +AT

0 v +AT
1 λ
)
j
− vT d0 − λT d1

≥ min
j

(
q(K) +AT

0 v +AT
1 λ
)
j
− vTd0 − λT d1

where the last inequality holds since (q(K) + AT
0 v +AT

1 λ)j ≥ mini(q(K) +AT
0 v + AT

1 λ)i for all
j = 1, 2, . . . ,m and (z)j is the jth entry of the vector z ∈ R

m. The lower bound is attained if
pj = 1 for some j = 1, . . . ,m. Hence,

g(v, λ) = min
j

(
q(K) +AT

0 v +AT
1 λ
)
j
− vTd0 − λT d1

and the dual problem associated with Problem 2.1 is given by

max
v,λ

min
j

(
q(K) +AT

0 v +AT
1 λ
)
j
− vTd0 − λT d1

s.t. λ � 0.

With the aids of Slater’s condition, it is readily verified that the strong duality holds. Hence, it
follows that the dual problem above has the same optimal value as Problem 2.1. Therefore, the
distributional robust log-optimal portfolio problem can be written as

max
K,v,λ

min
j

(
q(K) +AT

0 v +AT
1 λ
)
j
− vTd0 − λT d1

s.t. K ∈ K, λ � 0.

To complete the proof, it suffices to show that the problem above is indeed a concave optimization
problem. Begin by observing that q(K) + AT

0 v + AT
1 λ are concave in K, v, λ. Hence, the point-

wise minimum is again concave. Now note that the remaining terms vT d0 and λTd1 are affine in
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v and λ. Hence, it is readily verified that the objective function minj
(
q(K) +AT

0 v +AT
1 λ
)
j
−

vT d0 − λT d1 is concave in K, v, λ. Lastly, we note that K is a convex set and that the set
λ � 0 forms a convex positive orthant; hence, the intersection is again convex. Therefore, the
problem considered has a concave objective with a convex constraint set; hence it is a concave
optimization problem.

Remark 2.3. In practice, while the true distributions for the returns may not be available for
the trader, it may be partially known in the sense that the trader may “estimate” or “forecast”
the distribution and form a “confidence interval” centered at some nominal guess. The idea
can be characterized by a “box”-type ambiguous return distributions, which can be shown as a
special case of the polyhedron set described above. See the following example to follow.

Example 2.1 (Box Ambiguous Distribution Set). Assuming that P is a box. That is, for each
pj with j = 1, 2, . . . ,m, it has a lower and upper bounds. Specifically, we consider

P := {p ∈ Sm : |pj − pj | ≤ ρj , j = 1, 2, . . . ,m}

where p ∈ Sm is the nominal distribution9 and ρj ≥ 0 is a prespcified radius for all j = 1, . . . ,m.
By setting ρ := [ρ1 ρ2 · · · ρm]T and p := [p1 p2 · · · pm]T , the box constraints can be written as
A1p ≤ d1 with

A1 =

[
I
−I

]
; d1 :=

[
ρ+ p
ρ− p

]
.

According to Theorem 2.1, the associated distributional robust log-optimal portfolio problem be-
comes

max
K,λ

min
j

(
q(K) +AT

1 λ
)
j
− λT d1

s.t. K ∈ K, λ � 0.

where (z)j is the jth component of vector z ∈ R
m.

Remark 2.4. As seen later in Section 5, we shall adopt this box-type distribution set in our
empirical studies with historical price data.

3 Supporting Hyperplane Approximation

In this section, we introduce the supporting hyperplane approximation approach to the distri-
butional robust log-optimal portfolio optimization problem described in Section 2.

3.1 Idea of Supporting Hyperplane Approximation

The main idea of the supporting hyperplane approximation is as follows. Given xmin ∈ (−1, 0]
and xmax ≥ 0, consider a mapping f : [xmin, xmax] → R with

f(x) = log(1 + x).

9The nominal distribution can be obtained by estimation using the historical data.
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It is straightforward to see that such function f is monotonic and concave in x. Thus, one
way to approximate f is to introduce a surrogate function consists of M hyperplanes as follows:
Partitioning the interval [xmin, xmax] and get M partitioned points, say zl for l = 1, 2, . . . ,M ,
with xmin = z1 < z2 < · · · < zM = xmax. Then we take the hyperplanes of the form

hl(x) := alx+ bl

where al = 1/(1 + zl) and bl = log(1 + zl) − alzl. Once the points zl are determined, the
hyperplanes are obtained. See Figure 1 for an illustration with M = 4 supporting hyperplanes
for log(1 + x).

z1 = 0 z2 = 2 z3 = 4 z4 = 6

Figure 1: Approximation for f(x) := log(1 + x) Via M = 4 Supporting Hyperplanes.

3.2 Linear Program Formulation Via Hyperplanes

The idea discussed previously in Section 3.1 enables us to approximate the expected log-portfolio
optimization problem formulated in Section 2.5 as a linear program. Specifically, for j = 1, . . . ,m,
we have

qj(K) = log(1 +KTxj)

≈ min
{
h1

(
KTxj

)
, . . . , hM

(
KTxj

)}
.

where xj := [xj
1 xj

2 · · · xj
n]

T and

hl(K
Txj) = al(K

Txj) + bl

= al

(
n∑

i=1

Kix
j
i

)
+ bl

for l = 1, 2, . . . ,M , which is clearly linear in K. Now, for j = 1, 2, . . . ,m, we define

Zj := min
{
h1

(
KTxj

)
, h2

(
KTxj

)
, . . . , hM

(
KTxj

)}
.

With the aid of the supporting hyperplanes, we are ready to reformulate the distributional robust
log-optimal portfolio problem as a linear program (LP) that involves the shorting and leverage,
survival, and diversified holding constraints as follows.
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Problem 3.1 (Log-Optimal Portfolio Problem Via Hyperplane Approximation). Given con-
stants Ki,min < 0,Ki,max > 0, L ≥ 1 and ci := 0, we consider the following (robust) linear
programming problem:

max
K,v,λ,W

W − vTd0 − λT d1

s.t. λ � 0

Ki,L ≥ 0; Ki,S ≤ 0, i = 1, . . . , n;

Ki,min ≤ Ki,L +Ki,S ≤ Ki,max i = 1, 2, . . . , n;
n∑

i=1

|Ki,L +Ki,S | ≤ L;

n∑

i=1

Ki,L|min {xi,min, 0}| −
n∑

i=1

Ki,S max {0, xi,max} ≤ 1

Zj ≤ al

(
n∑

i=1

(Ki,L +Ki,S)x
j
i

)
+ bl, j = 1, 2, . . . ,m; l = 1, 2, . . . ,M

W ≤ Zj + (AT
0 v)j + (AT

1 λ)j , j = 1, 2, . . . ,m.

where z � 0 means that component-wise non-negativity.

Subsequently, it is readily to solve for Ki,L, Ki,S, Zj and W for each i, j. The associated opti-
mal solution obtained by the hyperplane approximation-based linear programming is denoted by
Kh and the corresponding expected log-growth is g(Kh); see Example 3.1 for a simple illustration
of the theory.

Remark 3.1. By treating m as the number of scenarios, the formulation above can be viewed
as a scenario-based linear program; see [48].

Example 3.1 (A Toy Example). Consider a portfolio consisting of n = 2 assets whose returns
are identically distributed with X1(k) ∈ {x1

1, x
2
1} := {0.1,−0.25} and X2(k) ∈ {x1

2, x
2
2} :=

{−0.1, 0.3}. The joint probability is described as follows:

P (X1(k) = xj
1, X2(k) = xj

2) = pj ∈ (0, 1)

for j ∈ {1, 2} and the nominal probabilities p1 = 0.7 and p2 = 0.3. We assume that there is no
transaction costs ci = 0 for i = 1, 2 and the set of ambiguous distribution set is the box

P :=
{
(p1, p2) ∈ S2 : |pj − pj | ≤ γ · pj , j = 1, 2

}

with γ := 0.1 and S2 := {(p1, p2) :
∑2

j=1 pj = 1, pj ≥ 0, j = 1, 2}. With p = [p1 p2]
T , the

constraints |pj − pj | ≤ γ · pj , j = 1, 2 can be expressed as a matrix inequality A1p ≤ d1 where

A1 =




1 0
0 1
−1 0
0 −1


 ; d1 =




(γ + 1)p1
(γ + 1)p2
(γ − 1)p1
(γ − 1)p2


 .
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Assume that there is no transaction costs, i.e., ci = 0 and take M = 3 hyperplanes, Ki,min :=
0, Ki,max := 1/2, and L := 1. Then the associated linear programming problem is given by

max
K,v,λ,W

W − λT d1

s.t. λ � 0

Ki,L ≥ 0; Ki,S ≤ 0, i = 1, 2;

0 ≤ Ki,L +Ki,S ≤ 1/2; i = 1, 2;

2∑

i=1

Ki,L +Ki,S ≤ 1;

Zj ≤ al

(
n∑

i=1

(Ki,L +Ki,S)x
j
i

)
+ bl, j = 1, 2; l = 1, 2, 3

W ≤ Zj + (AT
1 λ)j , j = 1, 2.

Under ambiguity constant γ := 0.1, the associated portfolio weight obtained by the linear
program is given by

Kh = [Kh,1 Kh,2]
T = [0.3016 0.5]

and the corresponding log-growth is g(Kh) = 0.00755 approximately. Other approximate portfo-
lio weights under various γ are summarized in Table 1. On the other hand, the true log-optimal
portfolio weight under nominal distribution p is K∗ = [0.3698 0.5]T and the associated optimal
growth rate is g∗ ≈ 0.00761.

Table 1: Approximate Optimal Portfolio Weights with M = 3 Hyperplanes
Kh,1 Kh,2 g(Kh)

γ = 0 0.3016 0.5 0.00755
γ = 0.10 0.5 0.5 0.00740
γ = 0.15 0.5 0.4986 0.00738
γ = 0.2 0.5 0.4375 0.00623

Remark 3.2. In particular, the number of hyperplanesM can be viewed as a new design variable
such that one can reconcile the computational complexity largely. To reflect this point, in the
sequel, we may sometimes emphasis the dependence on M by denoting that an optimal solution
obtained via hyperplane approximation approach as Kh := Kh(M).

4 Optimal Number of Hyperplanes

In the previous section, we discussed the hyperplane approximation approach with ad-hoc tuning
for the number of hyperplanes. In this section, we establish an algorithm that is used to select a
“optimal” number of hyperplanes. That is, given an allowable approximation error, we seek the
minimal number of hyperplanes that are needed so that the error is respected.

12



4.1 Optimal Number of Hyperplanes

Given a constant ε > 0, let x ∈ [xmin, xmax] with xmin > −1. Our objective is to assure that the
maximum approximation error of the hyperplane approximation approach is less than or equal
to the specified constant ε. That is,

sup
x∈[xmin,xmax]

| log(1 + x)−min
i
{aix+ bi}| ≤ ε

where ai = 1/(1 + xi) and bi = log(1 + xi)− aixi.
10 To achieve this goal, we proceed as follows.

First we pick x0 := xmin, then compute the first hyperplane h0 := {x : a0x + b0 = 0} which is
tangent at x0 with the coefficient

a0 =
1

1 + x0
; b0 = log(1 + x0)− a0x0.

Now, let χ ∈ [x0, xmax] be a variable to be determined which is used for finding the second
hyperplane h1 := {x : a1x+ b1 = 0} with coefficients

a1 =
1

1 + χ
; b1 = log(1 + χ)− a1χ.

Denote the intersection point between these two hyperplanes h0 and h1 as (x′, y′) with

x′ =
b1 − b0
a0 − a1

; y′ = a0x
′ + b0.

It is readily verified that the maximum approximate error happens at the intersection point.
Hence, for χ > x0, a lengthy but straightforward calculation leads to

|y′ − log(1 + x′)| = a0x
′ + b0 − log

(
1 +

b1 − b0
a0 − a1

)

=
1 + χ

χ− x0
log

1 + χ

1 + x0
− log

(
1 + χ

χ− x0
log

1 + χ

1 + x0

)
− 1 (4)

:= e1(χ).

Lemma 4.1 (Limiting Behavior of An Approximation Error). For any x > x0 > −1, it follows
that limx→x0

e1(x) = 0.

Proof. First note that for x > x0 > −1, it follows that the ratio 1+x
1+x0

> 0. Hence, using the fact

that z−1
z

≤ log z ≤ z − 1 for z > 0, it implies that

x− x0

1 + x
≤ log

1 + x

1 + x0
≤ x− x0

1 + x0
. (5)

According to Equation (4), the approximate error is given by

e1(x) =
1 + x

x− x0
log

1 + x

1 + x0
− log

(
1 + x

x− x0
log

1 + x

1 + x0

)
− 1.

With the aid of Inequality (5), it follows that

− log
1 + x

1 + x0
≤ e1(x) ≤

1 + x

1 + x0
− 1.

10As seen in Section 3, the analysis with the difference log(1+x)−mini{aix+ bi} in this section is understood
with x := KTxj .
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Since e1(x) is continuous, the limit exists. In addition, note that

lim
x→x0

1 + x

1− x0
− 1 = lim

x→x0

(
− log

1 + x

1 + x0

)
= 0.

By the Squeeze Theorem; e.g., see [49], it follows that e1(x) → 0 as x → x0.

Now, solving e1(x) = ε for x and letting its solution to be denoted as x1. This procedure can
be easily to extend for finding the successive points {xi}i=1. For instance, given ε > 0 and the
partition point xi−1, to find the ith successive point xi, we proceed as follows: We first calculate
the approximate error

ei(x) =
1 + x

x− xi−1
log

1 + x

1 + xi−1
− log

(
1 + x

x− xi−1
log

1 + x

1 + xi−1

)
− 1.

Then x := xi is the solution of ei(x) = ε. The existence and uniqueness of xi is justified by the
following lemma.

Lemma 4.2 (Monotonic Approximate Error). For any x satisfying x > x0 > −1, the approxi-
mate error

ei(x) =
1 + x

x− xi−1
log

1 + x

1 + xi−1
− log

(
1 + x

x− xi−1
log

1 + x

1 + xi−1

)
− 1

for i = 1, 2, . . . ,M is strictly increasing in x.

Proof. Let x satisfying x > x0 > −1. It suffices to show that e1(x) is strictly increasing since ei(x)
takes the an almost identical form of e1. In particular, note that

e1(x) =
1 + x

x− x0
log

1 + x

1 + x0
− log

(
1 + x

x− x0
log

1 + x

1 + x0

)
− 1.

Taking derivative of e1(x) with respect to x, we obtain

d

dx
e1(x) = f(x)− g(x)

where

f(x) :=
x+ x0 + 2

(x+ 1) (x− x0)
;

g(x) :=
(x0 + 1) log

(
1+x
1+x0

)

(x− x0)
2 +

1

(1 + x) log
(

1+x
1+x0

) .

To prove that e1(x) is strictly increasing, it suffices to show that f(x)−g(x) > 0 for all x. Suppose
this is not the case by assuming that there exists x > x0 > −1 such that f(x)− g(x) ≤ 0. Take
such an x. Now substituting f(x) and g(x) back into the inequality f(x) − g(x) ≤ 0, a lengthy
but straightforward calculation yields

[(x0 + 1) (x+ 1) b− (x− x0) (x+ x0 + 2)] b+ (x− x0)
2 ≥ 0 (6)
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where b := log ((1 + x)/(1 + x0)) > 0 since x > x0 > −1. Note that the second term (x− x0)
2
>

0, Inequality (6) holds if (x0 + 1) (x+ 1) b − (x− x0) (x+ x0 + 2) ≥ 0. Equivalently,

b ≥ (x− x0) (x+ x0 + 2)

(x0 + 1) (x+ 1)
. (7)

Note that for x > x0 > −1, using the fact that log(1 + x) < x, it follows that b < x−x0

1+x0
. Hence,

in combination with Inequality (7), we conclude that

x− x0

1 + x0
> b ≥ (x− x0) (x+ x0 + 2)

(x0 + 1) (x+ 1)

However, the inequality on left-hand side and right-hand side yields 0 > x0+1 which contradicts
to x0 > −1. Therefore, f(x)− g(x) > 0, which proves that e1(x) is strictly increasing.

Remark 4.1 (Existence and Uniqueness of Partition Points). Given a specified approximate
error ε > 0, Lemma 4.2 tells us that the corresponding point x that solves ei(x) = ε can be
determined uniquely since ei(x) is strictly increasing.

4.2 Determination of The Successive Partition Points

Given the ith partition point xi and ε > 0, it is possible to determine the successive partition
point xi+1 by an iteration.

Lemma 4.3 (Iterative Formula for Successive Partition Point). Given ε > 0 and the partition
point xi > x0 > −1 that satisfies ei(xi) = ε. The successive partition point xi+1 that also satisfies
ei+1(xi+1) = ε can be written as

xi+1 = (1 + α∗)xi + α∗

where α = αǫ > 0 solves 1+α
α

log (1 + α) = β∗ with β∗ obtained as a solution of β− log β− 1 = ε.

Proof. Fix ε > 0. Take xi such that ei(xi) = ε and xi+1 such that ei+1(xi+1) = ε. Now consider
an auxiliary function f(β) := β − log β − 1− ε and we choose

β :=
1 + xi+1

xi+1 − xi

log
1 + xi+1

1 + xi

.

Then it solves f(β) = 0 since it satisfies the approximate error function ei+1(xi+1) = ε. Fur-
thermore, by Lemma 4.2, ei+1(x) is strictly increasing, which implies that f(β) is also strictly
increasing. Hence, β is uniquely determined, call such solution as β := β∗. Now, observe that

β∗ =
1+ xi+1

xi+1 − xi

log

(
1 +

xi+1 − xi

1 + xi

)

=

1+xi+1

1+xi

xi+1−xi

1+xi

log

(
1 +

xi+1 − xi

1 + xi

)

=
1 + xi+1−xi

1+xi

xi+1−xi

1+xi

log

(
1 +

xi+1 − xi

1 + xi

)

=
1 + α

α
log (1 + α)
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where

α =
xi+1 − xi

1 + xi

:= α∗. (8)

Note that α∗ > 0 since xi+1 > xi > −1. Then, by Equation (8), it is readily verified that

xi+1 = (1 + α∗)xi + α∗.

Remark 4.2. Having obtained the iterative formula in Lemma 4.3, it enables us to readily de-
termine the minimum number of supporting hyperplanes that assures an allowable approximate
error. This is summarized in Algorithm 1 to follow.

Algorithm 1 ε-Optimal Number of Hyperplanes

Require: Given ε > 0 and pick xmin, xmax with xmin > −1 and xmax ≥ 0 ≥ xmin;
Ensure: optimal partition points {xi}i=0

1: Initial Step: Set x0 := xmin. Compute a0 = 1
1+x0

and b0 = log(1+ x0)− a0x0 to get the first
hyperplane a0x+ b0;

2: repeat

3: Use Lemma 4.3 to find xi by solving ei(xi) = ε;
4: Use xi to compute ai = 1/(1 + xi) and bi = log(1 + xi)− aixi ;
5: Get the associated hyperplane aix+ bi;
6: until (xi ≥ xmax)

Theorem 4.1 (Optimal Number of Hyperplanes). Given ε > 0, xmax and xmin with xmax >
xmin > −1, Algorithm 1 leads to the minimum number of supporting hyperplanes satisfying the
approximation error ei(x) ≤ ε for all x ∈ [xi−1, xi] ⊂ [xmin, xmax] and i = 1, 2, . . . ,M .

Proof. Suppose that Algorithm 1 leads to a set of finite points {x0, x1, . . . , xM} satisfying

xmin = x0 < x1 < · · · < xM = xmax

which partitions the interval [xmin, xmax]. The corresponding approximation error is ei(x) ≤ ε
for all x ∈ [xi−1, xi] and all i. Hence, supi ei = ε. We now proceed a proof by contradiction.
Suppose that there is an alternative hyperplane generating algorithm that generates a less number
of hyperplanes than that generated by Algorithm 1; i.e., it leads to a new set of finite points
{z0, z1, . . . , zL} satisfying

xmin = z0 < z1 < · · · < zL = xmax

with L < M which also partitions the interval [xmin, xmax] and the associated approximation
error is ej(z) ≤ ε for all z ∈ [zj−1, zj ] and all j. Hence, supj zj ≤ ε. By Lemma 4.2, it follows
that the approximation error function ei(x) is strictly increasing. In addition, ei(xi) = ε for
all i. Hence, fix xi, there exist a point zj for some j ∈ {1, 2, . . . , L} such that zj > xi and the
associated approximation error ej(zj) > ei(xi) = ε. Hence, it follows that supj ej > ε which
is a contradiction to the fact that supj ej ≤ ε Therefore, Algorithm 1 leads to the minimum
hyperplanes satisfying the approximate error ei(x) = ε for all x ∈ [xmin, xmax].

Remark 4.3. If there is no ambiguity and the joint probabilities p are known in advance,
then Lemma 4.2 and Theorem 4.1 imply that the log-optimal portfolio K∗ and the approximate
optimal portfolio Kh can be made as close as possible as the number M of hyperplanes increases.
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5 Empirical Studies Using Historical Data

To illustrate the theory, we solve a distributional robust log-optimal portfolio problem via the
hyperplane approximation approach.

Example 5.1 (Experiments with Historical Stock Prices). We consider a portfolio consisting
of the top n = 15 companies in the S&P500 Index covering the period from January 2, 2021 to
June 30, 2021 (N = 124 trading days) as for in-sample optimization; see Table 2 for the symbols
of these companies. An additional six months, starting from July 01, 2021, to December 31, 2021,
are also included for the out-of-sample test. The data are obtained from the Yahoo! Finance
website. Figures 2 and 3 show the stock prices and corresponding rate of returns for the 15
companies in the period considered. In the figures, the trajectories with blue color are used for
in-sample optimization and that with red color are used later for the out-of-sample test.

Consistent with Section 2.6, we assume that the set of ambiguous return distributions is the
box

P :=



p ∈ R

m
+ : |pj − pj | ≤ γ · pj ,

m∑

j=1

pj = 1, pj ≥ 0 for j = 1, 2, . . . ,m





with γ ∈ (0, 1). Recalling the analysis in Example 2.1, it follows that

A1 =

[
Im×m

−Im×m

]
; d1 :=

[
(γ + 1)p
(γ − 1)p

]
∈ R

(2m)×1.

The corresponding (approximate) log-optimal portfolio problem to be solved is

max
K,v,λ,W

W − λT d1

s.t. λ � 0

Ki,L ≥ 0; Ki,S ≤ 0, i = 1, . . . , n;

Ki,min ≤ Ki,L +Ki,S ≤ Ki,max i = 1, 2, . . . , n;
n∑

i=1

|Ki,L +Ki,S | ≤ L;

n∑

i=1

Ki,L|min {xi,min, 0}| −
n∑

i=1

Ki,S max {0, xi,max} ≤ 1

Zj ≤ al

(
n∑

i=1

(Ki,L +Ki,S)x
j
i

)
+ bl, j = 1, 2, . . . ,m; l = 1, 2, . . . ,M

W ≤ Zj + (AT
1 λ)j , j = 1, 2, . . . ,m.

which is a linear program. In the sequel, we take ambiguity constant γ := 0.1. On a 3.2
GHz laptop with 16 GB RAM, the distribution log-portfolio optimization problem solved by the
hyperplane approximation approach is less than 1 second.

In-Sample Optimization. We estimate the joint probability pj = 1/m for all j = 1, 2, . . . ,m =
123 and take leverage constant L = 2, and the constants for holding constraints Ki,max = L/n =
2/15 and Ki,min = 0 for all i = 1, 2, . . . , 15. Hence, the trades are long-only but leverageable
up to twice of investor’s wealth.11 In addition, to invoke our supporting hyperplane approach,

11It is well-known that the portfolio optimization in practice suffers greatly from the estimation error. In [50],
they proved that constraining portfolio weights to be nonnegative can reduce the risk in estimated optimal
portfolios; see also [7] for a generalization along the line of research by constraining portfolio norms.
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Table 2: The Top 15 companies on the S&P 500 index.
# Company Symbol
1 Apple Inc. AAPL
2 Microsoft Corporation MSFT
3 Amazon.com Inc. AMZN
4 Tesla Inc. TSLA
5 Alphabet Inc. Class A GOOGL
6 Alphabet Inc. Class C GOOG
7 Meta Platforms Inc. Class A FB
8 NVIDIA Corporation NVDA
9 Berkshire Hathaway Inc. Class B BRK.B
10 JPMorgan Chase & Co. JPM
11 Johnson & Johnson JNJ
12 UnitedHealth Group Incorporated UNH
13 Procter & Gamble Company PG
14 Home Depot Inc. HD
15 Visa Inc. Class A V
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Figure 2: Stock Prices for the Top 15 Companies in the S&P 500 Index.

take ε := 0.01 for the allowable approximate error. Then by Algorithm 1, it yields M = 10
hyperplanes to be used. With these supporting hyperplanes, we solve the corresponding linear
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Figure 3: Rate of Returns for the Top 15 Companies in the S&P 500 Index

programming12 Problem 3.1 and obtain the associated robust portfolio weighting vector Kh :=
[Kh,1, · · · ,Kh,n]

T given by

Kh,2 = Kh,5 = K6,h = · · · = K10,h = K12,h = K13,h ≈ 0.133;

Kh,1 = Kh,4 = K11,h = K14,h = 0;

Kh,3 = 0.0658;

Kh,15 = 0.1057.

The associated logarithmic growth rate is gh(Kh) ≈ 0.0029. On the other hand, we also solve
the true log-optimal portfolio weight K∗ := [K∗

1 K∗
2 · · · K∗

n]
T and obtain a similar pattern as

seen in Kh obtained previously. Specifically,

K∗
1 = K∗

2 = K∗
3 = K∗

5 = · · · = K∗
10 = K∗

12 = K∗
13 = K∗

15 ≈ 0.133;

K∗
4 ≈ 0.0016; K∗

11 = 0.0819; K∗
14 ≈ 0.0041

and the associated optimal log-growth is g∗ ≈ 0.0029, which, as expected, is very close to
the gh(Kh). Figure 4 visualizes the portfolio weights Kh and K∗ obtained above in a bar plot.

Metrics Relative to a Benchmark. With the transaction costs ci > 0 for i = 1, . . . , n, recalling
that the portfolio realized return in period k is defined as

Rp(k) :=
V (k + 1)− V (k)

V (k)
.

12There are many efficient solution packages or software routines that solves a linear program; e.g., MATLAB
linprog function or using a modeling framework CVX; see [51, 52] for further details.
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Figure 4: The Approximate Optimal Weight Kh and the True Log-Optimal Weight K∗.

The (realized) cumulative return up to stage k = N is given by (V (N) − V (0))/V (0) and the
log-growth rate is the logarithm of the realized cumulative return; i.e., log(V (N)/V (0)). The
excess return denoted

Rp(k) := Rp(k)− rf

where rf is the risk-free rate. The realized (per-period) Sharpe ratio, denoted by SR, of the port-
folio is the average of the excess returns Rp over the standard deviation of the excess returns σ;
i.e.,

SR :=
Rp − rf

σ

and the N-period realized Sharpe ratio can be approximated by
√
N · SR; see [53]. Lastly, other

than standard deviation, to scrutinize the downside risks over multi-period trading performance,
we include the maximum percentage drawdown as our risk metrics.

d∗ := max
0≤ℓ<k≤N

V (ℓ)− V (k)

V (ℓ)
.

Henceforth, we assume that the transaction costs is ci := 0.01% of the trade value for each Asset i
and (per-period) risk-free rate is given by rf (k) := 0.01/N for all periods k = 0, 1, . . . , N − 1.

In-Sample Trading Performance. As described previously, the in-sample trading involves the
first six months with total N = 124 trading days. Figure 5 depicts the in-sample trading
performance in terms of the account value trajectories using Kh and K∗. Consistent with
our theory, a similar pattern of the two account value trajectories is seen in the figure. In
this specific example, we see that the approximate optimal weight Kh even leads to superior
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Figure 5: In-Sample Trading Performance

Table 3: In-Sample Trading Performance Summary
Kh K∗

Average Excess Return: R
p − rf 0.00262 0.00282

Standard Deviation of Excess Return: σ = std(Rp(k)− rf ) 0.0139 0.0168

Sharpe Ratio:
√
N · (Rp − rf )/σ 2.0841 1.8735

Cumulative Return: V (N)−V (0)
V (0) 37.82% 40.71%

Log-Growth Rate of Wealth: log V (N)
V (0) 0.3208 0.3415

Maximum Percentage Drawdown:

max0≤ℓ<k≤N
V (ℓ)−V (k)

V (ℓ)

6.86% 8.67%

performance to the true optimal weight K∗. Additionally, we summarize some performance
benchmarks mentioned previously in Table 3.

Out-of-Sample Trading Performance. We now carry out an out-of-sample test by considering
an additional sixty months within the period from July 01, 2021, to December 31, 2021. The
total trading days are N = 126 days. Again, we assume that the transaction costs ci := 0.01%
of the trade value for each Asset i. Beginning with V (0) = $1, we compare the account value
using the approximate weight Kh and log-optimal weight K∗. Figure 6 shows the account value
trajectories for VKh

(k) and VK∗(k) within the out-of-sample horizon. Consistent with our theory,
while there is an ambiguity in return distributions, the similar patterns of the account value
trajectories using K∗ and Kh, respectively, are similar enough. Specifically, after 126 trading
days, we see that the terminal account values are VKh

(N) ≈ 1.1817 and VK∗(N) ≈ 1.2467. This
shows that our hyperplane approximation approach is indeed a competitive alternative for solving
a distributional robust log-optimal portfolio problem. Table 4 reports some other performance
benchmarks.
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Figure 6: Out-of-Sample Trading Performance

Remark 5.1. In Example 5.1, we see that only 10 hyperplanes are needed for assuring approxi-
mate error to be less than ε = 0.01 when there is no ambiguity on return distributions. This idea
enables us to form the linear program; i.e., Problem 3.1, and solve it efficiently. Said another
way, the hyperplane approximation approach shows great potential as an alternative way for
solving the distributional log-optimal portfolio problem.

Table 4: Out-of-Sample Trading Performance Summary
Kh K∗

Average Excess Return: R
p − rf 0.00141 0.00173

Standard Deviation of Excess Return: σ = std(Rp(k)− rf ) 0.0134 0.0158

Sharpe Ratio:
√
N · (Rp − rf )/σ 1.1817 1.2467

Cumulative Return: V (N)−V (0)
V (0) 19.24% 23.70%

Log-Growth Rate of Wealth: log V (N)
V (0) 0.1760 0.2127

Maximum Percentage Drawdown:

max0≤ℓ<k≤N
V (ℓ)−V (k)

V (ℓ)

8.68% 10.91%

6 Conclusions and Future Work

In this paper, we provide a supporting hyperplane approximation approach for solving a class of
distributional robust log-optimal portfolio selection problems under a polyhedron set for ambigu-
ous return distributions. Our framework are flexible enough to allow various practical trading
requirements such as transaction costs, leverage and shorting, survival trades, and diversification
considerations. With the aid of these supporting hyperplanes, we reformulated the distributional
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robust optimization problem as a linear program and solve it in a very efficient way. We also
proved that the approximate solution obtained by linear programming can be arbitrary close to
the true log-optimal portfolio. Extra flexibility for reducing the computational complexity by
selecting the optimal number of supporting hyperplanes for approximation is also studied. To
pursue further along the line of this research, two interesting directions are listed as follows.

6.1 Moment Ambiguity Set

One interesting direction would be to replace the box ambiguity with some moment ambiguity.
The reason is that the investors are typically able to obtain the estimated mean and covariance
matrix subject to some bounds on the estimation errors; see [54]. To this end, one might
consider an ambiguity set with estimated mean µ and a positive definite covariance matrix Σ of
return r ∈ R

n. That is,

P :=
{
p ∈ Sm : Ep[r − µ]TΣ−1

Ep[r − µ] ≤ ρ1, Ep[(r − µ)(r − µ)T ] ≤ ρ2
}

for some constants ρ1, ρ2 where Sm is the probability simplex as defined previously. As men-
tioned in [32,34], the distributional robust log-optimal portfolio problem with the moment-based
ambiguity constraint above is equivalent to a semidefinite programming problem (SDP). How-
ever, via a similar hyperplane or a certain quadratic approximation approach, we envision that
such a problem may be approximated by a more computationally tractable second-order cone
program or even a simpler quadratic program.

6.2 Incorporating with Drawdown Risk

Another interesting direction would be incorporating some drawdown risk constraints into our
optimization formulation. In practice, control of drawdown is arguably the most important risk
management task for a trader or fund manager. According to [55], it is unlikely that a particular
one would tolerate more than 50% drawdown in the account. To address this, we provide a way
to incorporate our framework to involve a consideration regarding drawdown risk.

Given any sample path {V (k) : k ≥ 0}, the maximum percentage drawdown is defined as

d∗K := max
0≤ℓ<k≤N

VK(ℓ)− VK(k)

VK(ℓ)
.

In the sequel, we shall sometimes drop the word “percentage” in reference to this quantity. Take

DK := 1− d∗K ,

which represents the complementary drawdown. Then, given any δ ∈ (0, 1), the drawdown
constraint d∗K ≤ δ with probability one is equivalent to DK ≥ 1 − δ. Taking the logarithm on
both sides, we form a surrogate expected maximum drawdown constraint

E[logDK ] ≥ log(1− δ).

The surrogate is useful since it forms a convex constraint set and hence facilitates the optimiza-
tion. This result is stated in the following lemma.

Lemma 6.1 (Convex Drawdown Surrogate). Fix δ ∈ (0, 1), we have the following results.
(i) The following identity

E[logDK ] = E

[
min

0≤ℓ<k≤N

k−1∑

i=ℓ

log(1 +KTX(i))

]
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holds.
(ii) The associated constraint set

DK,δ := {K ∈ R
n : E[logDK ] ≥ log(1 − δ)}

is convex.

Proof. The results were originally stated in [56]. However, for the sake of completeness, a full
proof is provided here. To prove part (i), we fix δ ∈ (0, 1) and observe that

E[logDK ] = E[log(1− d∗)]

= E

[
log

(
1− max

0≤ℓ<k≤N

V (ℓ)− V (k)

V (ℓ)

)]

= E

[
log

(
min

0≤ℓ<k≤N

V (k)

V (ℓ)

)]

= E

[
min

0≤ℓ<k≤N

k−1∑

i=ℓ

log(1 +KTX(i))

]

which is desired.
To prove part (ii), we note that 1+KTX(i) is affine in K for any realization of X(i) and log(·)

is concave. Hence, the composition log(1+KTX(i)) is concave in K. By the fact that the sum of
concave functions is still concave and the pointwise minimum of concave functions is concave, it
follows that the term min0≤ℓ<k≤N

∑k−1
i=ℓ log(1+KTX(i)) is concave in K. Finally, the expected

value operator preserves concavity, hence, the surrogate expected drawdown E[logDK ] is concave
in K. This implies that the set DK,δ = {K ∈ R

n : E[logDK ] ≥ log(1 − δ)} is convex.

Theorem 6.1 (A Drawdown-Based Log-Optimal Portfolio Problem). Let δ ∈ (0, 1) be given.
Then the distributional robust log-optimal portfolio problem involving the surrogate drawdown
constraint; i.e.,

max
K∈K∩DK,δ

inf
p∈P

gp(K)

is a concave optimization problem where gp(K) = Ep[log(1 +KTX(0))].

Proof. Since Ep[log(1 +KTX(0))] is concave in K, the infimum of a family of concave functions
is concave. Hence, the objective function infp∈P gp(K) is concave in K. By Lemma 6.1, the
set DK,δ is convex. Since K is convex, K ∩ DK,δ is again convex. Therefore, the maximization
problem stated in the theorem above has a concave objective with a convex constraint, which
leads to a concave optimization problem.

Remark 6.1. In contrast to the work in [57] that uses arithmetic (uncompounded) returns for
calculating the drawdown risks. Here, we propose a convex drawdown surrogate that facilitates
the optimization. There are also some alternative approaches for controlling the drawdown within
the expected log-optimal portfolio framework; e.g., see [58] and [59].
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