
 1 

 
Intelligent Product Brokering for E-Commerce: 

An Incremental Approach to Unaccounted Attribute Detection  
 

Sheng-Uei Guan, Ping Cheng Tan and Tai Kheng Chan 

Department of Electrical & Computer Engineering 

National University of Singapore 

10 Kent Ridge Crescent, Singapore 119260 

 
 

ABSTRACT 

 

This research concentrates on designing generic product-brokering agent to understand 

user preference towards a product category and recommends a list of products to the user 

according to the preference captured by the agent. The proposed solution is able to detect 

both quantifiable and non-quantifiable attributes through a user feedback system. Unlike 

previous approaches, this research allows the detection of unaccounted attributes that are 

not within the ontology of the system. No tedious change of the algorithm, database, or 

ontology is required when a new product attribute is introduced. This approach only 

requires the attribute to be within the description field of the product. The system analyzes 

the general product descriptions field and creates a list of candidate attributes affecting the 

user’s preference. A genetic algorithm verifies these candidate attributes and excess 

attributes are identified and filtered off. A prototype has been created and our results show 

positive results in the detection of unaccounted attributes affecting a user.  
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1 Introduction 

 E-Commerce activities have been growing at a tremendous rate of 100% per annum in the 

past few years [1]. The tremendous increase in E-Commerce activities gives rise to the 

need of creation of new software technology in many areas. A major area of concern is to 

develop a good business to consumer environment on the various online stores found. 

This can be done through the creation of intelligent software agents to fulfill the needs of 

consumers patronizing online E-Commerce stores. This includes intelligent filtering 

services and product brokering services to understand user’s needs before alerting users of 

suitable products according to their needs and preference.   

1.1 Current Situation and Motivation for Research 

Although there is a tremendous increase in e-commerce activities, technology in 

enhancing consumers’ shopping experience remains primitive. Online stores and websites 

today often only provide filtering and search services to the users. Unlike real life 

department stores, there are no sales assistants to aid consumers in selecting the most 

appropriate product for users. Consumers are further confused by the large options and 

varieties of goods available. Thus there is a need to provide on top of the provided 

filtering and search services, an effective piece of software in the form of a product 

brokering agent to understand their needs and assist them in selecting suitable products.  

1.2 Definitions of Product Attributes 

A user’s choice in selecting a preferred product is often influenced by the product 

attributes that range from price to brand name. This research shall classify attributes as 

accounted, unaccounted, and detected. The same attributes may also be classified as 

quantifiable or non-quantifiable attributes. 
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Accounted attributes are predefined attributes that the system is specially catered 

to handle. A system may be designed to capture the user’s choice in terms of price and 

brand name, making them accounted attributes. Unaccounted attributes have the vice 

versa definition and such attributes are not predefined in the ontology of the system. The 

system does not understand whether an unaccounted attribute represents a model or a 

brand name. Such attributes merely appear in the product descriptions field of the 

database. The system will attempt to detect the unaccounted attributes that affect the 

user’s preference and consider them as detected attributes. Thus detected attributes are 

unaccounted attributes that are detected to be crucial in affecting the user’s preference. 

Quantifiable attributes contain specific numeric values (e.g. hard disk size) and 

thus their values are well defined. Non-quantifiable attributes on the other hand do not 

have any logical numeric values and their valuation may differ from user to user (e.g. 

brand name). 

The proposed system shall define Price and Quality of a product in the ontology 

and consider it to be quantifiable, accounted attributes. All other attributes defined in the 

system and considered as unaccounted attributes that will be detected by the system.  

1.3 Related Work on Handling Product Attributes in E-Commerce 

A lot of research and work has been done to aid transactions in electronic commerce. One 

of the research aims found is to understand a user’s needs before recommending products 

through the use of product brokering services. Due to the difference in complexity, 

different approaches are proposed to handle quantifiable and non-quantifiable attributes. 

One of the main approaches to handling quantifiable attributes is to compile these 

attributes and assign weights representing their relative importance to the user. The 
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weights are adjusted to reflect the user’s preference. One of the adopters of such an 

approach, “An Intelligent Product Brokering Agent for M-Commerce” [3] captures user 

preference by requesting the user to select the best product from a short list of products 

before adjusting the weights according to this feedback.  

A lot of research aimed at creating an interface to understand user preference in 

terms of non-quantifiable attributes. This represents a more complex problem than its 

quantifiable cousins, as attributes are highly subjective with no discrete quantity to 

measure their values. Different users will give different values to a particular attribute. 

“MARI” (Multi- Attribute Resource Intermediary) by Software Agent Group in the MIT 

Media Labs [2] proposed a “word of mouth approach” to solve this problem. The project 

split up users into general groups and estimated their preference to a specific set of 

attributes through the group the user belongs to. 

Another approach in the handling of non-quantifiable attributes involves 

specifically requesting the user for the preferred attributes. One project, “Intelligent 

Profile By Example” by MIT Labs [5] provides a learning tool for the user to explore his 

preference before requesting him to suggest desirable attributes.  

Some of the main problems in related work lie in the handling of non-quantifiable 

attributes, as the approaches are too general. Most work so far only attempts to understand 

user preference through generalization and stereotyping instead of understanding specific 

user needs. Another main problem is that most works are only able to handle a specific set 

of attributes. The attributes that they are able to handle are hard-coded into the design of 

the system and the consequence is that they are not able to handle attributes that are 

unaccounted and beyond the pre-defined list. However the list of product attributes is 
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often large, possibly infinite. The approach used in related research may not be able to 

cover all the attributes, as they need to classify them into the ontology. 

1.4 Objectives and Research Contribution 

The main objective is to introduce an approach to capture user preference to a product 

category in terms of quantifiable and non-quantifiable attributes and produce a list of 

highly desired products for a user.   After considering the flaws in current work and 

research, we propose an approach to capture user preference. 

Previous approaches concentrate on defining a specific solution to capture the 

reaction of particular users towards specific pre-defined quantifiable attributes (e.g. Price). 

As demonstrated in the project “MARI”, non-quantifiable attributes are often neglected or 

estimated by the general group each user belongs to. There is no capturing of the specific 

user’s response towards a non-quantifiable attribute. The solutions proposed are also 

specific to individual attributes or restricted by the underlying ontology defined. Addition 

of new product attributes is extremely tedious, often requiring re-designing of the system.  

This approach unlike previous ones presents a generic approach to capture 

individual user responding towards product attributes including non-quantifiable ones. 

The proposed solution does not generalize or stereotype user preference but capture the 

user’s unique taste and recommend a list of products to the user. Under the proposed 

generic approach, the system is able to handle the inclusion of any unaccounted attribute 

that is not predefined in the system, without re-programming the system. The system is 

able to cater for any unaccounted attribute through a general description field found in 

most product database. This is extremely useful as hundreds of new attributes of products 
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emerge each day making any complex analysis impossible. In addition, the system is self-

adjusting in nature and can adapt to changes in user’s preference. 

1.5 Proposed Approach 

The proposed approach attempts to capture user preference on the basis of two 

quantifiable accounted attributes, Price and Quality. These attributes affect the preference 

of almost all users and thus are constantly checked in the system. The proposed approach 

incrementally learns and detects any unaccounted attribute that affects the user’s 

preference. If any unaccounted attribute is suspected, the system attempts to come up with 

a list of highly controversial attributes and verify their importance through a genetic 

algorithm. Thus vital attributes that are unaccounted for previously will be considered. 

The unaccounted attributes are derived from the general description field of a product. 

Hence unlike most related work, the approach is generic in nature, as the system is not 

restricted by the attributes it is designed to cater to.  

 

2 GENERAL DESIGN ISSUES 

A product-brokering agent often has the ability to capture user preference. In the process 

of capturing consumer taste in our application, we shall attempt to inspect user preference 

towards two quantifiable attributes - price and quality. The system shall attempt to detect 

other attributes that affect user preference. As these attributes to be detected are not pre-

defined or accounted by the system, they are considered as unaccounted attributes. The 

system shall attempt to detect the presence of these unaccounted attributes and account for 

them in the analysis of the particular user’s preference. After the unaccounted attributes 

are detected, they become detected attributes.  
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2.1 Overall Design Architecture 

 

Fig. 1a: System Architecture 

The overall architecture is as shown in Fig.1a. User preference and feedback are gathered 

from a GUI based Java program at the UI layer. Following that, the product brokering 

application layer will process the feedback and preference in search of attributes. The 

genetic algorithm optimization layer will interface between the database and the 

intelligent software agents. With genetic algorithm, the agents will process the attributes 

and store relevant information in the database which allows the user to view from the 

GUI. All agents will evolve according to their fitness and some will survive and some will 

die. 
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Figure 1b shows the System Flow Diagram which illustrates how the system works. As 

the system is able to incrementally detect the attributes that affect user preference, the 

system firstly retrieves any information captured regarding the user from some previous 

feedback. The system generates a feedback in the form of a list of products for the user to 

rank. Next, the system attempts to investigate the presence of any unaccounted attribute 

affecting the user’s preference. The system shall compile a list of possible attributes that 

are unaccounted for by analyzing the user feedback and rank them according to their 

confidence levels. The most controversial attributes and any information captured from 
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ScoreQuality = (1.0-PrefWeight) * Quality    (2) 

ScorePriceCompetitive = PrefWeight * (MaxPrice – Price) / MaxPrice (1) 

previous feedback are then verified through a genetic algorithm. Redundant attributes that 

do not affect the user’s preference are dropped. After which, the system attempts to clear 

any controversy arising regarding the attributes captured by a new cycle of feedback. If 

two cycles of feedback are completed, the system attempts to detect any quantifiable 

attributes that are able to form a generic group of attributes (e.g. speed represented in 

MHz). The system finally optimizes all information accumulated by a genetic algorithm 

and recommends a list of products for the user according to the preference captured. 

2.2 Multiple-Agent System  

The system is generally made up of a family of 60 product-brokering agents with the 

fittest agents recommending suitable products for the user.  Before any recommendation 

can be made, each agent needs to grade the products according to a common score system. 

The score given to each product is based on a Tangible Score based on some attributes 

accounted by the system and Modification Score based on detected attributes. Detected 

attributes are unaccounted attributes outside the ontology of the system. 

2.3 Tangible Score 

In our application, we shall consider two quantifiable attributes, Price and Quality as the 

basis in deriving the Tangible Score. The effect of these two attributes is always 

accounted for. The equation to derive this score is as shown in equation 1-3. 

Equation 1 measures the price competitiveness of the product.  PrefWeight is the weight 

or importance the user places on price competitiveness as compared to quality with values 

ranging from 0 to 1.0. A value of 1.0 confirms that 100% of the user’s preference is based 
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on price competitiveness. A product with a price close to the most expensive product 

(MaxPrice) will have a low score in terms of price competitiveness and vice versa. 

Equation 2 measures the score given to quality. The quality attribute measures the 

quality of the product and takes a value ranging from 0.0 to 1.0. The value of “1.0 – 

PrefWeight” measures the importance of Quality to the user.  

The final score given to tangible attributes are computed by adding equation 1 and 

2 as shown in equation 3 below.  

TangibleScore = ScorePriceCompetitive  + ScoreQuality   (3) 

2.4 Modification Score for Detected Attributes 

The modification score is the score assigned to all detected attributes by the system. These 

detected attributes are previously unaccounted attributes but had been detected by the 

system to be a vital attribute in the user’s preference. These include all other attributes 

besides price and quality. As these attributes may not have a quantifiable value, the score 

is taken as a factor of the TangibleScore derived earlier. The Modification Score is as 

shown in equation 4 whereby the modification factor K is introduced. 

The values of each modification factor K; ranges between 0.0 and 2.0. A value of K shall 

be assigned for each newly detected attribute (e.g. each brand name will have a distinct 

value of K). The modification factor K takes a default value of 1.0 that gives a 

Modification Score of 0. Such a situation arise when the detected attribute do not affect 

the user’s choice. When K<1.0, we will have a negative or penalty score for the particular 

attribute. This will take place when the user dislikes products from a certain brand name 

or other detected attributes. When K >1.0 we will have bonus score to the attributes and it 

∑
=

−=

utesNoOfAttrib

i

i oreTangibleScK
1

*)1(          Scoreon  Modificati (4) 



 11 

takes place when the user has special positive preference towards certain attributes. By 

using a summation sign as shown in equation 4, we are considering the combined effects 

of all the attributes that are previously unaccounted by the system.  

The difference in design when deriving the Modification Score and Tangible Score 

lies in the uncertainty nature of the unaccounted attributes detected. The design in 

modification score allows detected attributes to be dropped without affecting other 

attributes if they are found to be unimportant.  

   With all new attributes captured, the final score for the product is as shown below 

in equation (5) as the summation of Tangible and Modification scores. 

 Final Score = TangibleScore + Modification Score (5) 

2.5 A Ranking System for User Feedback 

As shown in equation 1, 2 earlier, there is a need to capture user‘s preference in terms of 

the PrefWeight in equation 1 and the various Modification Factor K in equation 4. The 

system shall request the user to rank a list of products as shown in Fig. 2. The user is able 

to rank the products according to his preference with the up and down button and submit 

when done. The system shall make use of this ranked list to assess a best value for 

Selected Product  

Choice to influence 

ranking of selected 

product. 

Fig. 2:  Requesting the User to Rank a List of Products 
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PrefWeight in equation 1 and 2. In a case whereby no unaccounted attributes affect the 

user’s feedback, the agents will be evolved along the PrefWeight gradient to optimize a 

value for the PrefWeight.  

2.6 Fitness of Agents 

The fitness of each agent shall depend on the similarity between the agent’s ranking of the 

product and the ranking made by the user. It reflects the fitness of agents in capturing the 

user’s preference. Consider a case whereby the user is required to rank a list of 10 

products as shown in Fig. 3.  

 If a product is ranked 1
st
, it should have a higher score than the No. 2 to No. 10 

products. Thus 1 fitness point is awarded to an agent if the agent grades the No. 1 product 

to have a higher score than the No. 2 product. Similarly, 1 fitness point is awarded to the 

agent if the No. 1 product has a higher product score than the No. 3 product. Extending to 

all cases of comparison involving the No. 1 product, a maximum of 9 fitness points can be 

awarded to an agent. Similarly a maximum of 8 fitness points can be awarded to an agent 

with regard to the No. 2 product, as it should have a higher score than the other 8 products 

under it.  Considering all permutations, a total of 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 45 

fitness points can be awarded to an agent. 

 

 

 

 

 

 

No.1 product should possess 

higher score than 9 other 

products. 

No. 2 product should possess 

higher score than 8 other 

products. 

Fig. 3:  Relationships between Product Rankings 
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3 DETECTION OF UNACCOUNTED ATTRIBUTES 

This research unlike the related work is able to detect and handle attributes beyond the 

attributes classified under the ontology of the system. To demonstrate this ability, the 

system’s ontology shall contain only Price and Quality while all other attributes are 

unaccounted and remain to be detected, if they are vital to the user. These unaccounted 

attributes include non-quantifiable attributes that are subjective in nature (e.g. brand 

name). The unaccounted attributes can be retrieved by analyzing the description field of a 

product database thus allowing new attributes to be included without the need of change 

in ontology or system design. Each token or word in the description field is considered as 

an independent possible attribute and the system serves to detect and confirm their 

presence. 

The system goes through 2 stages to handle unaccounted attributes. The system 

firstly goes through a detection stage where it comes up with a list of attributes that affect 

the user’s preference. These attributes are considered as unaccounted attributes as the 

system has not accounted for them during this stage. A “Confidence Score” is assigned to 

each attribute according to the possibility of it being the governing attribute influencing 

the user’s preference. From this list, the system makes a set of hypothesis that 8 attributes 

with the highest Confidence Score affect the user’s preference. In the 2
nd

 stage, the system 

attempts to verify the hypothesis that each of these attributes is indeed a governing 

attribute. Attributes affecting the user’s preference in the previous set of feedback are also 

assumed to be a vital attribute and will be verified. The attributes that are not vital in 

determining the user’s preference (i.e. hypothesis fails) will be deleted, leaving a pool of 

vital product attributes affecting the user’s preference. These previously unaccounted 
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attributes are thus detected by the system to be vital and their status of being 

“unaccounted” shall become “detected”. 

3.1 Detection of Products Containing Unaccounted Attributes 

The presence of unaccounted attributes is detected when an illogical ranking occurs. Each 

agent shall consider Price, Quality and a list of detected attributes (previously 

unaccounted) to be governing the user’s preference. The system shall request the user to 

rank a list of products and analyze the feedback according to the process as shown in Fig. 

4. The agents shall attempt to explain the rankings by optimizing the PrefWeight value 

and various K values. The fittest agent shall give each product a score. 

The system shall loop through the 10 products that are ranked by the user and 

compare the score given to products. If the user ranks a product higher than another, this 

product should have a higher score than a lower ranked product. However if the agent 

awards a higher score to a product ranked lower than another, (e.g. product ranked 2
nd

 has 

higher score than 3
rd

), the product is deemed to contain an unaccounted attribute causing 

ScoreProduct N < 

ScoreProduct N+1? 

Agent Assign 

Score to Each 

Product (total = 

10) 

Analyze User 

feedback with 

available info. 

N = 1 

Illogical Ranking. 

Product N contains 

Unaccounted Attributes. 

N = N+1 

Extract All 

Attributes 

N = 10? 

1 

0 

1 

0 

Logical Ranking 

Fig. 4:  Process Identifying Products with Illogical Rankings 
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an illogical ranking. This process shall be able to identify all products containing positive 

unaccounted attributes that the user has preference for.    

The logic behind the process is demonstrated by the following example. The user 

ranks product A higher than product B. However, the agent awards product B a higher 

score creating an illogical ranking. Either A or B may be the product with illogical 

ranking. The system 1
st
 assumes that A contains some unaccounted positive attribute 

causing the illogical ranking and ranking of B is perfectly logical.  

However this assumption that product A contains an illogical ranking may be 

wrong. If indeed product B and not A contains an illogical ranking, it will cause all other 

products to be classified as having an illogical ranking. This is because the ranking of 

other products will be illogical compared to product B (e.g. the user ranks product B lower 

than C or D. However the agent had given B a higher score than C and D.). On this basis, 

in the case whereby more than half of the products are deemed to cause illogical rankings, 

the status of these products is reversed. Products that are deemed logical in ranking shall 

be considered illogical and vice versa. The products in such case consist of some negative 

unaccounted attributes that the user dislikes. 

3.2 Detection of Unaccounted Attributes 

As shown in section 3.1, we can detect the presence of unaccounted attributes when a few 

products show illogical rankings. The next step is to identify the unaccounted attributes 

inside these products that give rise to such illogical rankings. As shown in Fig. 5 the 

products with illogical rankings are tokenized. Each word in the product descriptions field 

is considered as a possible unaccounted attribute affecting the user’s preference. 

Attributes that have already been accounted for shall not be considered 
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Each of the tokens is considered as a possible attribute affecting the user’s taste. If 

a particular unaccounted attribute contains several tokens and is common (e.g. famous 

brand name), it will be more efficient to consider the full attribute as a whole rather than 

several tokens (e.g. Consider Creative Technologies as a single token). Thus the system 

can contain a small database of common attributes (e.g. database of brand names) and 

every token shall be checked for the possibility of it belonging to an attribute consisting of 

several tokens. The system can also compile a list of common attributes and give it a 

higher confidence score. Each token shall initially be awarded the same Confidence Score. 

The system shall next analyze the situation and modify the Confidence Score according to 

the cases as shown. 

1) The token appears in other products and shows no illogical ranking 

We can conclude that there is a low possibility of the unaccounted attribute being a 

crucial influencing attribute that causes the illogical rankings. This is because their 

presence in other products does not cause an illogical ranking situation. For every 

case in which other products contain the token we shall deduct 15 points from the 

Confidence Score.  

2) The token appears in other products and shows illogical ranking 

80GB Plus9 Maxtor DiamondMax 

Maxtor DiamondMax 80GB Plus9 

 

Fig. 5: Getting Intangible Attributes from Product Descriptions 
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We can conclude that the token in question here has a higher chance of containing 

an unaccounted attribute. This is because other products containing these tokens 

also have an illogical ranking. For every case that the product contains the token, 

we shall add 10 points to the Confidence Score.  

The design above only provides an estimate on the Confidence Points according the 2 

cases described and may not be 100% reliable. It is discovered that the 1
st
 case (penalty 

approach) is slightly more reliable than the 2
nd

 and thus the larger magnitude in affecting 

Confidence Points (15 penalty points compared to the 10 bonus points). 

3.3 Confirmation of Attributes 

The system has come up with a list of unaccounted attributes through the Confidence 

Score. It was found that most of the attributes affecting the user’s preference are within 6 

products containing the highest Confidence Score. Attributes captured in previous 

feedbacks may be relevant in the current feedback as the user may choose to provide more 

than 1 set of feedback. The system thus makes a hypothesis that the user’s preference is 

influenced by attributes affecting him in previous feedbacks if available and 8 other new 

attributes with the highest Confidence Score. The effect of these attributes on the user’s 

preference is verified next. 

Each agent in the system shall make estimation on the user’s preference by 

randomly assigning a modification factor (or “K” value) for each of the 8 attributes with 

high Confidence Score. Attributes identified to be positive (described in Sec. 3.2) are 

given K values greater than 1.0 while negative attributes have K values less than 1.0. The 

K values and PrefWeight are optimized by a genetic algorithm (as discussed later) to 

improve the fitness level of the agents. 
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The agents with the highest fitness level are the best agents that understand the 

user’s preference based on the rankings made in the feedback. Thus the “K” values of 

these agents form good estimations to describe the user’s preference. From the “K” values 

we can verify each of the hypotheses made earlier. Attributes that do not affect the user’s 

decision will have a “K” value close to 1.0 and the hypothesis fails for such attributes. 

Positive attributes having “K” values greater than 1.0, and negative attributes with K 

smaller than 1.0, are vital attributes and thus the hypothesis that such attributes affect the 

user’s preference is verified. The agents are put through a filtering process to filter off the 

unimportant attributes. Attributes with “K” values between 0.9 and 1.1 are removed as 

their effect is mild, affecting the Tangible Score by less than 10%. 

The remaining attributes undergo another filtering process as shown in Fig. 6 

whereby redundant attributes that do not affect the agent’s fitness are filtered off. The 

system loops through all the attributes detected and substitute K = 1.0 for all these 

attributes. If the fitness of the agent drops as a result of this substitution, the previous K 

value is restored and the process iterates for all detected vital attributes affecting the user’s 

preference. 

Fig. 6: Removing of Redundant Attributes 
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3.4 Optimization Using Genetic Algorithm 

The status of detected attributes perceived by the agents and the 8 most controversial 

attributes should be verified here. The attributes unimportant to the users shall be deleted 

here, as they assume a modification value (K) of 1.0. The PrefWeight and various K 

values shall be optimized here to produce maximum agent fitness. As this represents a 

multi-dimensional problem with each new K value introducing a new dimension, we shall 

optimize using a Genetic Algorithm that converts the attributes into binary strings. The 

agents shall evolve under the genetic algorithm to optimize the fitness of each agent. The 

PrefWeight and various K values are optimized in this algorithm. The PrefWeight and K 

values may not be accurate in some unique cases when multiple feedbacks from the user 

are obtained as the user preference may change. To aid the system adapt to any changes in 

user preference in terms of PrefWeight, four PrefWeight values 0.2,0.4,0.6,0.8 shall be 

conserved. This will allow quick adaptation especially if the user shows a huge change in 

PrefWeight (e.g. from 0.2 to 0.55) preference as the agents will have higher chances of 

adopting a better estimate (agents that adopt PrefWeight = 0.6 in mating process has better 

fitness).  

As mentioned earlier, 8 attributes with the highest Confidence Score are assumed 

to affect the user’s preference. However, the user may be affected by only 1 of the 8 

attributes (thus the 7 unimportant attributes should have K = 1.0). Thus agents with K 

values of 1.0 shall be preserved in the optimization process to allow other agents higher 

chances of adopting a K value closed to 1.0.  
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Throughout the optimization process, four agents having PrefWeight values of 0.2, 

0.4, 0.6, 0.8 and “K” values of 1.0 shall not be evolved.  The genetic algorithm adopts a 4-

step process as shown in Fig. 7.  

 

The system starts with a selection process whereby the parent agents are selected 

for mating. The system mates the selected agents to create offspring. Some of the 

offspring are mutated with a random mutation probability and the fitness of the entire 

population of parents and off spring is evaluated with respect to the rankings in the user 

feedback. The pseudo code of the algorithm can be found in Section 5, Figure 21. 

Genetic algorithm involves the theory of survival of the fittest. The strongest 

agents have a chance to mate to increase the chances of producing stronger offspring. 

Upon mating and random mutation, the resultant population is evaluated and the strongest 

of the population are selected in the next iteration for mating.  

3.4.1 Selection 

There are various selection models available and this research uses the tournament 

selection method as it is proven to be very efficient [4] (Pg 56 Advanced Evolutionary 

Algorithm). In tournament selection, the agents are divided into subgroups and the winner 

of each subgroup will have the chance to undergo mating in the mating pool. A binary 

subgroup consisting of 2 agents per subgroup is chosen to increase the chances of lower 

fitness agents being selected in the mating process. The process continues until 

Fig. 7: A Genetic Algorithm Process 
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convergence. Convergence occurs when no fitter generations or offspring can be produced 

in further iterations. This happens when the maximum possible fitness has been reached or 

the entire population is derived from a small number or ancestral parent agents.  

3.4.2 Mating and Mutation 

The attributes of each agent are converted into a binary string as shown in Fig. 8 and each 

binary bit representing a chromosome.  

 

In the design, 10 bits of data is used to represent the PrefWeight while 5 bits of data is 

used to represent the various K values. This allows us to estimate to a maximum error of 

0.001 for PrefWeight and 0.03 for K which represents high accuracy. The various 

attributes are converted into an integer before converting into a binary string.  As K ranges 

from 0.0 to 2.0, various values of K are divided by 2 in the conversion process. 

During the mating process, a random crossover point as illustrated by Fig. 9 is 

selected among the chromosomes between the 2 parents and the new generation is 

produced by swapping the chromosomes of the parent agents across the random crossover 

point. The offspring produced will have a chance to undergo a mutation process according 

to a specified probability of 0.15. During mutation, a random number of bits or 

chromosomes are mutated and the binary symbol of the chromosome inverted (e.g. 1 

becomes 0 and vice versa).  

Binary 10bits (PrefWeight* 1023) 

K1 = 0.2 K2 = 1.0 K3 = 1.8 

1011001100 000110 011111 111000 6 bits 

Binary 6bits (KN* 63.0 / 2.0 ) 

PrefWeight = 0.7 KN = 1.8 

Fig. 8: Chromosome Encoding 
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The fitness for each agent in the population is analyzed before the agents are 

selected into the mating pool for mating. The process continues until no improvement is 

noticed in the fitness level after 25 iterations. 

 

3.5 Controversial Situations 

The genetic algorithm performed will return a set of optimized modification factor values 

for the detected attributes. This will identify the attributes affecting the user’s preference. 

However some of the attributes identified may cause controversy as substituting them 

with other attributes may get the same level of fitness. This is shown in the screenshot in 

Fig. 10 whereby the 1
st
 product is suspected to contain an unaccounted attribute that gives 

it an illogical ranking. 

 
Fig. 10:  Unclear Situation -  Multiple Equally Possible Attributes 
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Attributes distinct in this product and does not appear in other products include 

“FUJITSU” and “17GB”. The Agents may capture “FUJITSU” as a detected attribute but 

“17GB” may have caused the illogical ranking instead. To solve this problem, the system 

compiles a list of attributes that are substitutes to the new list of detected attributes as 

shown in Fig. 11 below where we loop through each detected attribute and derive the 

potential substitutes from the products previously ranked. Consider the example in Fig.10 

whereby the agents detect “FUJITSU” as a vital attribute. The system finds that the 

products containing “FUJITSU” also contains “17GB” and “ATA-100”. The system loops 

through all other products (represented by PdtNo in Fig.11) and finds that “17GB” 

appears only when “FUJITSU” appears. The system also finds that “ATA-100” is not 

unique with the presence of “FUJITSU”. Thus “17GB” is a potential substitute while 

“ATA-100” is not a possible substitute for “FUJITSU”. 

Upon compiling the detected attributes and their substitutes, the system generates a 

list of products according to the rules below to clarify the controversial cases. 

1. Products containing the detected attribute and substitutes 

2. Products containing either detected attribute or substitutes 

 
Fig. 11:  Deriving Substitutes for Each Detected Attribute 
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The system will next substitute each detected attribute by the substitutes and check the 

fitness of the agent before and after the substitution. If the fitness level improves after 

substitution, the detected attribute shall be replaced by its substitute. 

3.6 Generic Group of Quantifiable Attributes 

Besides detecting unaccounted attributes, the system is also able to analyze the presence 

of generic groups of quantifiable attributes. The system checks for the possibility of 

classifying the detected attributes into generic groups and derive a formula to predict the 

user’s response towards other attributes in the same group. 

When two or more detected attributes are of the same format except for its numerical 

values, they are classified into a generic group as demonstrated by Fig. 12 where attributes 

of the format ***MHz (*** represent some numeric values) are detected. An initial list of 

6 attributes is detected. However, at least 2 attributes are detected to be of the form 

***MHz and thus classified into a generic group of attributes. Although the attribute 

“60MB” is in the form “***MB”, only 1 attribute of such property is found and thus 

Fig. 12: Generic Attributes Identified from Intangible Attributes 
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60MB is not sufficient to form a generic group. After detection, 1 generic group of 

attributes and 3 independent detected attributes are derived from the 6 original attributes. 

An equation is derived from the attributes in the generic group to anticipate user’s 

preference of other attributes in the generic group. This equation is derived as shown by 

the bold line in Fig. 13 using 2 detected attributes (Ovals) with highest and lowest K 

values (e.g. assume “100MHz” has K = 0.3 and “333MHz” has K = 1.6). 

 

From the bold line, the value of K for other attributes that are not detected but 

belongs to the same generic group is easily derived as shown by the squares. By utilizing 

the equation derived, “133MHz” although not detected, contains a Kvalue of 0.5. The 

straight line derived can further be optimized by shifting the gradient and Y-Intercept as 

shown by the arrows in Fig.13 to a best-fit line for the user.   

The equation for the generic group is passed into the same genetic algorithm as 

discussed in section 3.4. The Y-Intercept (essentially K) takes a value between –8.0 and 

2.0 for an equation with positive gradient and 8.0 to –2.0 for negative gradient equation. 7 

bits are used to estimate the Y-intercept allowing high accuracy of resolution 0.08.  The 

range of the gradient (possibly from 1.0 to 1000000!) may be too large to be optimized by 
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K 

Fig. 13: Deriving and Optimizing Equation for Generic Group Attributes 
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Fig. 14: One Set of Feedback Consisting of 2 Feedback Cycles   

genetic algorithm. Thus the gradient is randomly mutated in the genetic algorithm 

iterations by multiplying it with a random number ranging from 0.2 to 5.0. This proves to 

be an effective solution as the initial estimation of the gradient shows good accuracy.  

 

3.7 An Incremental Detection System and Overall Feedback Design 

The system takes an incremental detection approach in understanding user preference and 

the results show success in analyzing complex user preference situation. The system 

acknowledges that not all vital attributes may be captured within one set of feedback and 

thus considers the results of previous sets. The attributes that affect a user’s preference in 

1 feedback become the prime candidates in the next set of feedback. In this way, the 

attributes that are detected are preserved and verified while new unaccounted attributes 

are being detected allowing the software agents to incrementally learn about the attributes 

that affect the user’s preference. However some of the information captured by the system 

may be incorrect or no longer valid as the number of feedback cycles increase. This 

creates a problem in the incremental detection system, as the information may not be 

relevant. To solve this problem, the system checks the validity of past attributes 

influencing the user’s preference and delete attributes that are no longer relevant in the 

current feedback. Every set of feedback contains 2 feedback cycles as shown in Fig. 14.  
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Both feedback cycles will attempt to detect the presence of any unaccounted 

attributes. In addition, the 1
st
 cycle shall delete any attributes that are passed from 

previous feedbacks and no longer relevant. These attributes should have a K value of 1.0 

after we apply the genetic algorithm discussed earlier. Any controversial attributes 

detected by the 1
st
 cycle shall be clarified using the 2

nd
 feedback cycle as described by 

section 3.5. The 2
nd

 cycle shall attempt to detect unaccounted attributes from scratch to 

prevent getting trapped in a local minimum fitness that may be introduced by the 1st
 
cycle. 

The 1
st
 cycle may detect an attribute incorrectly and there may be a possibility that the 2

nd
 

cycle is not able to realize the mistake affecting detection of other attributes. All attributes 

detected by both cycles are finally optimized and checked for generic group of attributes 

described earlier.  

 

 

 

 

 

 

Upon completing one set of feedback, the user shall be able to view a list of 

recommended products from the agents by selecting the View Results button. The fittest 

agents shall interact to generate a list of the most suitable products for the user as shown 

in Fig. 15.  

 

Fig. 15: Recommended Products by the Agents 
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4 EVALUATION OF DESIGN 

In this section, the prototype performance is tested and evaluated. An independent 

program is written and run in the background to simulate a user. This program is used to 

provide feedback to the system and ranks the list of products on behalf of a simulated user 

who is affected by Price and Quality as well as a list of unaccounted attributes. The 

system is also affected by some generic groups of quantifiable attributes.  

The system performance shall be analyzed using 2 benchmarks, the Attribute 

Detection Rate and the Recommendation Fitness. The Attribute Detection Rate measures 

the percentage of the unaccounted attributes that are vital to the user being detected by the 

system. The Recommendation Fitness measures the fitness of the recommended list by the 

system. The system shall attempt to understand the user’s preference and recommend a 

list of 10 most desirable products. This list is compared with the ideal top 10 products 

generated by the simulated user.  Every product that appears in both lists is awarded 10 

points and a total of 100 points for the 10 products is attainable. 

4.1 Detection of Single Unaccounted Attribute  

One unaccounted attribute along with 2 accounted attributes, price and quality is assumed 

to be affecting the user’s preference and the user completes 3 sets of feedback with this 

preference. To test system adaptiveness, the user changes his preference during the 4
th

 set 

of feedback by adding another unaccounted attribute. The results are shown in Fig. 16 

where the Attribute Detection Rate and Recommendation Fitness are analyzed using 50 

samples. 
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The system obtains the Attribute Detection Rate at 76.7% after the user completes 

1 set of feedback. About 80% of the products recommended by the system are indeed 

highly desired by the user. The Attribute Detection Rate and Recommendation Fitness 

increases to 100% and 92% respectively after 3 sets of feedback. In comparison, if the 

unaccounted attributes concerned are ignored, the Recommendation Fitness will only 

reach a maximum of 33%. During the 4
th

 set of feedback the user changes his preference 

and the system is confused, resulting in a drop in performance. However this confusion is 

cleared at the next set of feedback and the Attribute Detection Rate and Recommendation 

Fitness restored. 

 4.2  Multiple Unaccounted Attributes 

The capability of the system to detect multiple unaccounted attributes affecting the user’s 

preference is analyzed and 2 unique cases are studied. The 1
st
 case involves 2 mutually 

exclusive attributes that will not be present simultaneously in 1 single product. Any 

product is affected by only 1 unaccounted attribute. The 2
nd

 case is more complex as 2 co-

existing unaccounted attributes may be present in 1 single product. 

A total of 50 samples are analyzed and results are as shown in Fig. 17 in which it 

is compared to the detection rate of having one unaccounted attribute. The user 

Fig. 16. Analysis of Attribute Detection Rate and Recommendation Fitness under the 

Influence of Single Unaccounted Attribute 
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experiences a shift of preference in the 6
th

 feedback to test the adaptiveness of the system. 

From the results obtained, it can be seen that the detection capability of having two 

unaccounted attributes is lower than having one such attribute. However, the system is 

still able to have a detection rate of more than 50% in one set of feedback. The gap 

between the detection rate of the complex and simpler cases decreases with an increasing 

number of feedbacks. This demonstrates the ability of the system to incrementally detect 

the user’s preference when a complex situation is present. The system also demonstrates 

its ability to adapt to changing user preference within two sets if feedback. 

 

  It is also observed that having co-existing attributes will cause the overall 

detection capability of the system to drop as demonstrated by comparing it to the mutually 

exclusive case. The result is expected as a product having two vital attributes to be 

detected creates a more complicated case as compared to only one attribute to be detected. 

However when the number of feedbacks increases, there is no significant difference in 

both situations. The system is able to incrementally detect almost all the attributes 

involved.  

The Recommendation Fitness of both cases involving two unaccounted attributes 

is also analyzed and results as shown in Fig. 18. The result is as similar to the result 

Fig. 17: Attribute Detection Capability for two Intangible Attributes 
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measuring the Detection Rate whereby performance drops when the test cases become 

more complex. However, the system is still able to produce high recommendation fitness 

using only 1 set of feedback. Out of 10 products recommended by the system, averages of 

5 products are highly desired by the user. This increases to 8 by the 3
rd

 set of feedback. 

 

4.3 Generic Group Detection Capabilities and Adaptiveness 

This measures the ability of the system to detect a generic group of quantifiable attributes 

and its ability to adapt to changes. In this test, the user considers speed of memory chips 

(represented by MHz) as a generic group of quantifiable attributes. Each speed is 

considered as a unique unaccounted attribute with a different Modification Factor, K, 

which increases with the speed of the memory chips. The Attribute Detection Rate for the 

generic group of attributes at different PrefWeight is analyzed using 15 test cases for each 

case and the results as shown in Fig. 19. 
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The Attribute Detection Rate is similar when PrefWeight takes the values of 0.2 and 0.5. 

However under the case when PrefWeight takes the value of 0.8, the system is not as 

capable in detecting the presence of the group of attributes. The user under such cases 

values the price competitiveness highly (represented by PrefWeight) and therefore desires 

a product with a lower price while placing less importance on quality. However, the user 

also prefers faster memory by indication of a positive “MHz” attribute creating confusion. 

Users who prefer fast memory in contrast should prefer a larger weight for quality and 

smaller weights for price competitiveness. Although the user’s preference may seem 

contradicting and highly complex, the system is still able to have the Attribute Detection 

Rate as 70% after 3 sets of feedback are completed. This illustrates the ability of our 

incremental approach being able to understand the user’s preference in a complex problem 

as illustrated when PrefWeight=0.8. 

Fig. 19: Detection of Generic Attributes under Different PrefWeight 
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Fig. 20: Recommendation Fitness under Different PrefWeight for a Generic Group 

of Attributes 

The Recommendation Fitness is also analyzed for the three PrefWeight using 15 

test cases for each value of PrefWeight with results shown in Fig. 20. The system is able 

to produce a high Recommendation Fitness for PrefWeight values of 0.2 and 0.5. The 

fitness level increases with increased feedback due to better understanding of the user. 

From the Recommendation Fitness, almost 7 out of the 10 most desired products for the 

user is recommended by the system. This is a large improvement compared to the 40% 

fitness if the system is not able to detect the attribute concerned.  

4.4 Design Choices 

Some of the recent solutions towards an optimization process include Genetic Algorithm 

(GA), Tabu Search (TS) and Simulated Annealing (SA). To justify our choice of GA 

instead of TS or SA, there are some comparisons we have taken into account. 

According to Jukka Kohonen [6], SA is very similar to GA, as SA can be thought 

as GA with a population size of one. Empirically, SA is able to reach good solution in a 

shorter time, but will not improve much as when given more time to progress. On the 

other hand, though GA is a slower starter, it is able to improve the solution consistently 
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over time, and can even reach more and better solutions. In fact, in our experiments, we 

are able to complete the optimization process using GA, in a relatively short time span. 

Tabu Search (TS) has been proven effective in target-specific problems with the 

best solution in mind. However, the problem of optimizing multiple-attribute fitness is not 

really a target-specific problem. We cannot determine exactly what the user’s preference 

is, and supposed “good” attribute may only have temporal wellness. Moreover, TS process 

concentrates on navigating towards a maxima or minima fitness and refrain from 

repeating a tested path. This will be a problem when user preference changes. 

On the other hand, Genetic Algorithm (GA) has many advantages towards our 

problem. Traditionally, GA may be a very computationally intensive algorithm, taking 

easily 15min to compute. However, our processing time takes only around 10 to 15s, 

which is extremely fast and effective. In addition, GA is highly adaptive. We need a 

highly adaptive algorithm for two reasons: the user taste may change, and the algorithm 

may need to adjust its path of search. Using GA, we can effectively re-visit some of the 

solutions which we have discarded. GA has also the capabilities of handling a large 

number of variables. According to Chu and Fang [8], GA can produce several different 

near optimal solutions simultaneously because of the fact that GA holds the whole 

generation of chromosomes which may not originate from the same parents. GA also 

exhibits the capability of parallelism [7], by searching solutions from many points in the 

search space, rather than just one starting point. 

In the following we compare our approach to the collaborative filtering approach 

[16]. At Amazon.com, though item-to-item collaborative filtering technique proved to be 

promising. The system relies mainly on the preferences of other customers in relation to 
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the current user. In traditional collaborative filtering recommendation, items are selected 

for a user when the items are also relevant to similar users. Based on the preferences of 

users who have similar taste as the current user, recommendation items are suggested. 

Building a recommendation list based on what other customers purchased or rated might 

not be useful, it can also be misleading and inefficient. Collaborative filtering functions 

primarily focus on the concept of suggesting what similar users have chosen, and not 

really focusing on what the current user really wants. Even with a well-thought algorithm, 

large product catalogs and customers’ base will lead to high computational costs when 

trying to build a complete similar-item recommendation list. 

Unquestionably, collaborative filtering is a popular way to model user preference. 

We might include collaborative filtering approach to extend our current research in future 

work. Within the focus of this research paper, we target only on identifying the current 

user preference. Our approach aimed to discover what the current user wants and we 

assumed the user has no access to or no interest in other users’ preferences. Besides, 

focusing on the analysis of user preference allows closer monitoring the changes of user 

shopping preference. It allows the detection of atypical preference of the user with respect 

to similar users. We also have the flexibility to track preference of user with unusual taste. 

In particular, we are able to detect unaccounted attributes within the product that affect the 

user. 

 

4.5 Summary of Results 

It can be seen that the performance of the system is closely related to the complexity of 

the problem. More complex problems will give a lower overall performance as shown in 
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the various cases. However, this is greatly alleviated by providing multiple sets of 

feedback. The system incrementally detected attributes affecting the user’s preference and 

in the cases shown, the gap in performance was negligible.  

The system also demonstrated its ability to adapt to changes in consumer 

preference. This is extremely important when multiple sets of feedback are involved as the 

user’s preference may vary between feedback cycles. It also demonstrated the system’s 

ability to correct its own mistakes and search for a better solution. 

 

5 IMPLEMENTATION DETAILS 

The prototype system is implemented using Java programming language. In this section, 

we summarize what kind of program and data structure is used for the genetic algorithm 

and agents. 

5.1 Program and Database Structure 

A Microsoft Access database file is used to store all the tables of information. Below are 

the tables used and their descriptions. 

Tables Descriptions 
AgentInfo Contains all information of the agents. 

AttributeInfo Contains all information about the attributes. 

RankListHistory Contains ranked user feedback. 

IntangibleAtt Contains highly controversial product information, which may contribute up to 

20% of the attribute score. 

Products Contains the database of all the products. Quality is being randomized with 

respect to price and the database is downloaded from a computer e-commerce 

website. 

Catinfo Contains the category information such as most and least expensive product 

price, and best and worst quality information. 

UserPref Contains the information of the simulated user. 

Table 1: Database Tables 
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The agents form a group with no particular structure or organization. The group of agents 

works as a team, exchanging vital information throughout the evolution process. All 

agents are stored using array structures during evolution, as arrays have lower time 

consumption overheads. Single standard random point crossover is used during mutation 

to save processing since single crossover proved sufficient in our experiments. 

5.2 Genetic Algorithm Design 

 Fig. 21: Pseudo Code for Genetic Algorithm 

 

As mentioned in Section 3, Genetic Algorithm is used to optimize the attributes. In 

particular, we coded the K values into binary chromosome as mentioned earlier in Section 

3.4. The value of K ranges from 0.0 to 2.0 in steps of 0.05. Thus, in total there are 40 

possible values of K. We convert this into a binary number and we have a set of binary 

chromosomes. For example, using 5 bits, we can encode K from 0.0 to 2.0 in 64 possible 

binary chromosomes as shown below. 

// Agents contain all info about the agents estimation towards user's 

// PrefWeight and K values 

// Agent 0 to 4 each contains PrefWeight Value 0.2,0.4,0.6,0.8 and K = 1.0 

// respectively 

// This is to act as a strong check to allow the system to evolve quickly for 

// PrefWeight by adding diversity and check for K=1.0 which is common in the 

// evolution process 

 

int NoOfCycleNoImprove = 0; // No Of Iterations No Improvement 

double BestFitness = 0; 

int FittestAgent = 4; 

 

Agents = GetAgentsFitness(); // Getting the fitness of the agents 

 

// Loop till no improvement in fitness for 20 cycles or 

// when maximum possible fitness for  

// the 16
th
 fittest agent is reached (Agents [20]>=1.0).  

while (NoOfCycleNoImprovement < 20 && Agents[20].Fitness < 1.0) 

{  

 BestFitness = Agents[intFittestAgents].Fitness; 

 Agents = SortAgents();// Sort Agents According to Agent's fitness 

// Only Agent 4 onwards is sorted. This will 

// allow the 1
st
 4 agents to be conserved. 

// These agents help to track changes in user 

// preference. Section 3.4 

 MatingSelection();  // Tournament Selection Process.  

     // Agents 0 to 3 is always selected 

 Agents = Mate();  // Selected Agents Mate 

 Agents = GetAgentsFitness(); // Getting the fitness of the agents 

if (Agents[intFittestAgent].Fitness <= BestFitness) 

intNoOfCycleNoImprovement++; 

} 
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00000 = 0/3*2.0 00001 = 1/63*2.0 00011 = 3/63*2.0 11111 = 63/63*2.0 

The numbers on the left hand side are binary strings forming the chromosomes. Figure 21 

shows the pseudo code of the genetic algorithm. 

 

6 CONCULSION & FURTHER IMPROVMENT 

In summary, this research work demonstrated a solution in the handling of previously 

unaccounted attributes without the need of change in the ontology or database design. An 

intelligent detection and verification scheme through the genetic algorithm has been 

implemented with success by using a prototype based on JAVA. 

6.1 Results and Discussions 

The results showed that the system designed is indeed capable of understanding the user’s 

needs and preferences even when previously unknown or unaccounted attributes were 

present. The system is also able to handle the presence of multiple unaccounted attributes 

and classify quantifiable attributes into a generic group of unaccounted attributes. 

In addition, the system demonstrated the power of incremental detection of 

unaccounted attributes by passing the detected attributes from within 1 feedback to the 

other. This is demonstrated by the usefulness of the system under extremely complex 

cases. The overall fitness of the system’s recommendation for the user increases through 

the use of incremental feedback. The system is also adaptive to changes in user 

preferences.  

6.2 Future Improvement 

The current system generated user feedbacks to clarify its doubts on controversial 

attributes. However, more than half of the feedbacks were generated in random to increase 
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the chances of capturing new attributes. These random feedbacks were generated with 

products of different brand names having equal chances of being selected to add to the 

variety of the products used for feedbacks. This could be improved by generating 

feedbacks to test certain popular attributes to increase the detection capabilities.  
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