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Sponsored links on search engines are an emerging advertising tool, whereby a number of slots are put on
sale through keyword auctions. This is also known as contextual advertising. Slot assignment and pricing
in keyword auctions are then essential for the search engine’s management since provide the main
stream of revenues, and are typically accomplished by the Generalized Second Price (GSP) mechanism.
In GSP the price of slots is a monotone function of the slot location, being larger for the highest slots.
Though a higher location is associated with larger revenues, the lower costs associated with the lowest
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Auctions get the optimal slot they aim at (the slot maximizing their expected profit) and that the GSP mechanism
Sponsored search may be unfair to all the winning bidders but the one who submitted the lowest bid.
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1. Introduction

Search engines, such as Google or Yahoo!, present users with a
set of hyperlinks in response to their queries. In addition to the
links deemed relevant to the query by the search engine (often
named organic links), a number of sponsored links are presented
as well (Battelle 2005), associated to the query through the key-
words specified in it. The addition of sponsored links represents
a form of contextual advertising (Kenny and Marshall 2000, Peyrat
2009) whereby advertisements are proposed to customers on the
basis of the content that is being displayed to them.

Advertisers are willing to pay for their ads to appear on the
search engine’s response page. Such sponsored links are then gen-
erally assigned through auctions, and the resulting revenues repre-
sent a significant source of income for search engines (Edelman
et al. 2007). On the other hand, advertisers are interested in mak-
ing their advertising strategy as effective as possible. Such auctions
have been studied for some time now in the context of game the-
ory, where the players in the game are the auctioneer (the search
engine) and the advertisers (see e.g., Varian 2007). The related
studies have been devoted mainly to examine if, and under which
conditions, the game exhibits a Nash equilibrium. Such conditions
are typically linked to the assignment and pricing rule on one
side and to the advertisers’ bidding strategies on the other side
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(in the following the terms advertiser and bidder will be used
interchangeably).

As to the former issue, the Generalized Second Price (GSP) rule
has reached a wide consensus; in GSP the bidders are ranked in
descending order according to their bids, and the slots containing
the sponsored links are assigned to the bidders submitting the
largest bids. The price is set so that each bidder pays for each click
on its hyperlink a price equal to the next lower bid. When the
advertiser pursues a strategic goal, it has to define its bidding strat-
egy, but the GSP mechanism is not helpful for this purpose. In fact,
GSP has been shown not to be an incentive-compatible mechanism
(it does not induce bidders into bidding their actual valuation),
since it leaves the field open as to the bidding strategy for the
advertiser as long as the bid is lower than the valuation of the slot
on sale.

Recently the balanced bidding (BB) strategy has been proposed
by Cary et al. (2008) for such purpose, where advertisers update
their bid at each auction round by exploiting the intelligence gath-
ered in the previous rounds. In this process each advertiser identi-
fies at each round its optimal slot as that maximing its profit. In
Cary et al. (2008), the convergence to a Nash equilibrium of the
game where users apply the BB strategy has been studied, but
the optimal slot determination process has not been explored in
detail, though its relationship with the subsequent slot assignment
is central to the advertiser’s satisfaction.

Actually, in the GSP mechanism the price paid per click by
advertisers is linked to the slot position, the highest slots achieving
prices that are higher than the lowest positioned ones. The ratio-
nale for such correspondence between location and price is that
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top-positioned slots receive more clicks (hence they are assumed
to generate more sales and revenues for the advertiser). However,
when the advertiser has to evaluate the return on its advertising
investment, it has to consider costs as well as revenues, that is, it
has to take into account that (clicks on) top-positioned slots cost
more. When balancing costs and revenues (or clicks, playing the
role of proxy for the revenues), the advertiser may then find out
that top-positioned slots are not the most convenient for it. It
has been argued, on the basis of a behavioural model of the search
engine user, that this may indeed be the case (Agarwal et al. 2008).
Supporting evidence is therefore needed to investigate the fairness
of GSP to advertisers.

In this paper we explore the issue of the actual value associated
to slots in the context of both balanced bidding and truthful bidding
(i.e., when the biddder submits its true valuation of the item for
sale). Our aim is to assess if the slot pricing mechanism in the cur-
rent GSP approach is aligned with the advertisers’ expectations.
Rather than assuming a particular navigational behaviour for the
user, as is done in Agarwal et al. (2008), we rely on the concept
of profit for the advertiser. We also exploit a variety of probability
models to describe the preference of users for slots (embodied by
the click-through rate), and the private valuations assigned by
advertisers to clicks. In addition, though Bakos and Katsamakis
(2008) have shown that the presence of the intermediary providing
the platform for the exchange (in our case the exchange consists in
bids vs. slots) has relevant effects on the value distribution in the
resulting two-sided network (the bidders on one side and the seller
on the other), we assume that either the intermediary is transpar-
ent to the business process or that it coincides with the auctioneer.

Through both analytical derivations and simulation, we provide
the following results in this article: (1) we provide closed form
expressions for the profit function for a large number of scenarios;
(2) we indicate the location of the optimal slot (i.e., that maximiz-
ing the advertiser’s profit); and (3) we provide evidence of the mis-
match between the optimal slot and the location actually assigned
to the same advertiser by the GSP mechanism. We show that bid-
ders pay the large prices associated with higher slots while their
profit might be maximized by lower-positioned ones, hence the
pricing mechanism embedded in GSP may penalize all but the win-
ning bidder with the lowest bid. The consequences of this finding
may be far reaching. In fact the GSP pricing model would be unfair
to top bidders, that end up paying too much for what they receive
in return. A new pricing model, taking into account the actual slot
value rather than its location only, is then needed.

2. Fundamentals of keyword auctions
2.1. Sponsored search advertising

Search engines act in response to users’ queries for websites
containing the information of interest. In such queries the informa-
tion of interest is synthetically expressed as a string of keywords,
possibly connected through Boolean operators. For example, in re-
sponse to the query “sea AND winds NOT ice” the search engine will
return pointers to all the documents related to the first two terms
but not to the third one. The hyperlinks returned by the search en-
gine are typically named organic links. The search engine can add
to this list (and show, e.g., on the right-hand side of the screen) a
number of sponsored links, which typically accomplish an adver-
tising task (hence the name sponsored search advertising) (Jansen
and Mullen 2008). The available positions for sponsored links are
named slots. Such links are provided by advertisers, who are will-
ing to pay to have their ad appear on the screen in relation to a
query containing a specific keyword. Hence, for any query, there
are a number of potential fillers of the screen space devoted to

sponsored links. It is assumed that the advertisers choose to ac-
quire keywords that are actually related to their product.

The payment rules may be freely defined in the contract rela-
tionship between the search engine manager and the advertiser.
The pricing schemes for advertising may be classified under three
classes (Hoffman and Novak 2000), respectively, based on expo-
sure, click-through, and outcomes (e.g., the actual purchase), corre-
sponding to different stages of the purchase process (and to
different scenarios of risk sharing between the auctioneer and
the advertisers). While schemes based on outcomes, where the
advertiser payment is related to the final result of the advertising
process, may appear as the most natural ones to evaluate the effec-
tiveness of advertising, they require the search engine owner to
have visibility over the whole process through the completion of
the order. They may be difficult to apply when the aim of the
advertiser is not selling a good or a service but rather increasing
the awareness, for example, of a brand or an event. In the click-
through-based schemes (also known as pay-per-click business mod-
els) the advertiser pays a pre-determined amount of money each
time a user actually clicks on the ad. Instead, in the impression-
based schemes the advertiser is charged for the number of times
the user is exposed to the advertisement. The main drawback of
the pay-per click model is that it may be fooled by automated
agents repeatedly clicking on an ad in order to increase the pay-
ments due by the advertiser. Learning algorithms have however
been proposed to fight against such click frauds (Immorlica et al.
2005). Despite such problems the pay-per-click model appears to
be the most widely used, for example, by Google and Yahoo!’s
Overture.

Since the number of slots is generally smaller than the number
of interested advertisers (i.e., advertisers who have opted to run for
a keyword appearing in the query), slots represent a scarce re-
source and a natural way to assign them to the advertisers is
through auctions, namely keyword auctions (Muthukrishnan
2009). Hence, advertisers declare how much they are willing to
pay for a click, and an auction is run for the slots among the adver-
tisers whose keywords match the query. Though, as mentioned be-
fore, queries may be conducted for quite complex combinations of
keywords, here we consider auctions conducted for a single key-
word, though the same advertiser may take part to different auc-
tions independently run for different keywords. We make no
attempt to compare auctions for different keywords (that may
have a different popularity), or for logical combinations of key-
words (e.g., AND or OR), though the number of bidders (which
we consider as a parameter in the investigation reported here)
may be taken as a proxy for the popularity of the keyword. We
have therefore a number of slots S € Z* and a larger number of
advertisers A € 7", with A > S. Actually, a new auction is run every
time a query is submitted, among the advertisers submitting bids
for keywords matching the query. For any given keyword we have
then a sequence of auctions. As will be seen in Section 3, the rep-
etition of auctions allows advertisers to update their bids by taking
into account their past observations of the collective behaviour of
the other bidders and of the output of previous auction runs.

In order to make the assignment process as effective as possible,
the auctioneer has to carefully design the auctioning rules, which
consists of choosing: (a) the assignment rule (i.e., the way advertis-
ers are assigned the slots); and (b) the price setting rule (i.e., the
price an advertiser has to pay when a user clicks on its ad).

As to the first issue, this is solved by using a straightforward
ordering of slots and advertisers. Slots are indexed progressively
by their vertical position on the screen: the slot appearing on top
of the screen is assigned index 1 by convention; the slot appearing
on the bottom of the ad-devoted space has index S.

If we now denote by b; the bid submitted by the ith advertiser,
and then by by; the jth highest bid, the assignment rule states that
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the kth slot is assigned to the advertiser submitting the bid by.
Other ranking mechanisms are possible: a family of ranking mech-
anisms is examined by Lahaie and Pennock (2007), where the rank
depends on the product of the bid and some weight function, while
in Vorobeychik and Reeves (2008), the two basic mechanisms of
ranking by bid and ranking by revenue are considered. Search en-
gines, such as Google or Yahoo!, are known to deviate from this
standard assignment scheme by using additional information (Jan-
sen and Mullen 2008). For example, Google computes a quality
score that, in addition to the bid amount, also considers the adver-
tisement’s click-through rate, the keyword relevancy along with
landing-page and site. However, the details about the quality score
computation are not known in the clear. Hence, in this paper we re-
strict ourselves to the analysis of bid-based ranking, as has been
done in the relevant literature (e.g., Varian 2007), and in the seminal
paper on the BB strategy that we examine here (Cary et al. 2008).

Setting the price is a less straightforward matter. A well-known
mechanism is the truthful Vickrey-Clarke-Groves rule, whereby
each advertiser is charged for the harm it causes to the other
advertiser; namely, the cost for the ith advertiser when assigned
an item is the difference between the social value should that
advertiser be removed from the auction and the social value should
both that advertiser and that item be removed form the auction.
The VCG scheme is known to be truthful, that is, it will lead each
participating advertiser to bid its true valuation (Clarke 1971,
Groves 1973). Its properties have been shown to hold under a
number of scenarios. For the case of private value, when the value
that a given buyer attaches to the good being sold is independent
of the information owned by other buyers Myerson 1981, Engelbr-
echt (1988) extended the revenue-equivalence results (i.e., that
different auction formats provide the seller with the same ex-
pected revenues), for single-item and multiple-item auctions. In
addition, Krishna and Perry (1998) have shown that in a multi-
ple-item auction setting, the Vickrey-Clarke-Groves mechanism
maximizes the seller’s expected revenue among all efficient auc-
tions (i.e., those maximizing social welfare). Dasgupta and Maskin
have shown that the Vickrey auction is still efficient for the case of
common values, that is, when one buyer’s valuation can depend on
the private information of another buyer (Dasgupta and Maskin
2000). However, it exhibits a number of weaknesses which limit
its practical application (Rothkopf 2007), among which its vulner-
ability to various kinds of cheating and the possibility of poor
revenues. Hence, search engines do not adopt the VCG mechanism
in practice, but rather the Generalized Second Price (GSP) rule.

2.2. The click-through rate

In Section 2.1 we have seen that the slots on sale rank differ-
ently in the customers’ preferences list. Such preferences can be
characterized by the click-through rate (CTR): the CTR 0; of slot i
is the probability that the user clicks on that slot. It can be esti-
mated by dividing the number of users who clicked on an ad in a
web page by the number of times the ad was delivered (impres-
sions) (Sherman and Deighton 2001). Larger click-through rates
are expected to generate more revenues, since they give rise to lar-
ger numbers of customers landing on the advertiser’s website. It is
generally accepted that the click-though rate depends on the slot’s
position, namely that it declines as the slot gets lower on the
screen, that is, 0; > 0;,1, where i = 1,...,S — 1. This assumption is
supported by the statistical data reported in Brooks (2004) pertain-
ing to Google AdWords and Overture Precision Match, where the
CTR drops monotonically as we go from the fist ranked ad down
to the tenth ranked ad. Hence, top-positioned slots are more valu-
able than bottom-positioned ones. As to the precise shape of the
click-through rate decaying function, here we consider a Zipf
distribution. This power law distribution has been assumed as

the most intuitive for the distribution of clicks on ads in Balakrish-
nana and Kambhampati (2008). In addition, in Xie and O’Hallaron
(2002), Regelson and Fain (2006) the popularity of search terms
has been shown, by fitting measurement data, to follow a Zipf dis-
tribution. In the Zipf model the probability that the user clicks on
the slot j is

1
0 x5 (1)

where o € R* is the Zipf parameter. For convenience (with no con-
sequence on the following results) we adopt the normalizing condi-
tion Zleoj =1, so that we are actually considering the probability
of clicking on a specific slot conditioned to the user clicking on a slot
(or, alternatively, the user clicks on a slot with probability 1).
Though in this paper we implicitly consider the click-through rate
being a function of the slot’s position only, other authors have
considered the more general case of click-through rates being a
function of the specific advertiser as well (Feldman and Muthu-
krishnan 2008, Aggarwal et al. 2006).

2.3. The generalized second price mechanism

In this section we review the basic characteristics of GSP as a
price setting mechanism. In GSP the natural assignment rule is
maintained whereby the advertiser submitting the kth highest
bid by, is assigned the kth slot. However the price p, it pays is
equal to the next lower bid, that is, p, = by1). Advertisers who
are not assigned a slot pay nothing. The most important decision
advertisers have to take is then to choose their bids. As a reference
they have their own private valuation of clicks: in the simplest sce-
nario the ith advertiser values a click worth v; (i.e., the click value
does not depend on the slot position itself and does not vary as the
auction is repeated). In general any bid of the generic ith advertiser
will satisfy the inequality

b; < v;. (2)

The most important property of the VCG mechanism is that it
induces the advertiser to declare its private valuation, so that
b; = v; (truthfulness property). On the contrary, GSP is not truthful,
hence advertisers’ bids are limited by the above inequality only. If
we consider the static game associated to GSP-driven auctions, a
Nash equilibrium has been shown to exist (Varian 2007). However,
in the dynamic version resulting from the repetition of the auction,
bidders can update their bid at each new issue of the auction by
taking advantage of the knowledge they have gained from the past
auction occurrences.

3. The balanced bidding strategy

In Section 2.3 we have seen that the GSP induces an untruthful
behaviour in the bidders, whereby the advertiser is led to submit a
bid strictly lower than its valuation. If that’s the case, the bidder is
free to choose its bid, with the only loose constraint represented by
inequality (2). It may then subject its bidding behaviour to a stra-
tegic intention, for example, reaching a business goal such as max-
imizing its profit. As stated in the Introduction, we are interested in
the specific strategic bidding behaviour represented by the bal-
anced bidding strategy proposed in Cary et al. (2008). In this sec-
tion we review its main characteristics.

Since keyword auctions are run continuously, they represent a
form of repeated auctions. In a repeated auction the bidder may
exploit the information it has gathered in the previous runs of the
auction, for example, the ranking of bidders, the assignments and
the prices of slots (which in the GSP assignment mechanism are just
a shifted replica of the set of submitted bids). At each new run each
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bidder can then formulate a best response bid, that is, a bid
embodying a best response strategy to all the bids submitted previ-
ously by the other bidders. In this context that bidder may assume
that all the other bidders will maintain their behaviour, so that they
will submit the same bids as in the previous run, and may use that
information to pursue its strategic goal. In the original formulation
of the BB strategy proposed in Cary et al. (2008), the bidding behav-
iour of an advertiser, depending on the previous outcomes of the
auction, is conditional on the collective behaviour of the other
advertisers. Actually, at each round each advertiser gets more infor-
mation about the value of the slots as perceived by the other adver-
tisers and could therefore update its valuation; in this paper we
take instead the same limiting assumption of Cary et al. (2008) that
the value of a slot for an individual advertiser stays unchanged over
the auction’s duration. In particular, the bidder may want to focus
its bidding by targeting a specific slot. In that case the range of use-
ful bid values is more restricted than that implied by inequality (2).
If the advertiser is targeting slot k, whose price has been set at p,, in
order to win that slot it will deem useful to submit any bid in the
(px, Pr_1) range (for the advertiser targeting the top slot the useful
range is that defined by just the lower bound p,). In fact, under
the hypothesis that all the other bidders maintain their bids, if
the bidder submits a bid lower than p, it will be ranked not higher
than in the (k + 1)th position and will not be awarded the kth slot.
On the other hand, if the bidder submits a bid larger than p,_; it will
be ranked at least in the (k — 1)th position and will be awarded a
higher-positioned slot than the kth it had targeted. Hence the gen-
eral best response strategy does not suggest a specific value for the
bid to be submitted, but rather a range of values.

A specific instance of a best response strategy is the balanced
bidding (BB) strategy proposed in Cary et al. (2008) and indepen-
dently analyzed by Vorobeychik and Reeves (2008). In BB the
advertiser chooses its next bid b so as to be indifferent between
successfully winning the targeted slot k at the price p,, or winning
the slightly more desirable slot k — 1 at price b. In a scenario where
a set of A advertisers, who compete for S slots and have their pri-
vate valuations {vy,Vvs,...,va} for a click, are assigned the S slots
according to the GSP rule, the BB strategy leads the generic win-
ning ith advertiser to:

1. target the slot k; that maximizes its profit (optimal slot):
ki = argmax {0c[vi — pi]}, 3)
where the function z = argmax,{y(x)} returns the value of the

argument x that maximizes the function y(x),
2. set its next bid b according to the expression

01&”
1

91{’”4

b,‘IV,'*

[vi - pk:q} . (4)

For losing advertisers the BB strategy instead prescribes a truthful
behaviour, so that they keep submitting bids equal to their valua-
tions. In the first run of the auction, where the advertisers have no
information about each other’s bids, we assume that each bidder
submits a bid equal to a fraction of its valuation, b; = {v;, with
{ < 1. Since the auction runs continuously, at each new run the
bidders have the chance to update their bid. We can therefore
envisage two alternative updating models for BB: the synchronous
version and the asynchronous one. In the synchronous version, at
each auction repetition all the bidders update their bid. In the
asynchronous version, at each auction repetition just one of the
bidders is allowed to update its bid. If the asynchronous version
is played in a deterministic fashion (as in a basic polling mecha-
nism), it therefore takes A auction rounds to have all the bidders
update their bids (at each run the set of bid is made of 1 new bid
and A — 1 stalebids).

The convergence of the BB strategy has been studied by Cary
et al. (2008). It has been shown that the dynamic system where
all bidders play this strategy in the asynchronous way converge
to a unique fixed point, which is also the Nash equilibrium of the
static game (Cary et al. 2008), while the convergence for the syn-
chronous updating model is guaranteed just for a limited number
of slots. However, the convergence time depends on the number
of bidders and may take some hundreds of auction runs, over
300 in the simulation run in Cary et al. (2008). The convergence
speed is of course quite faster in the synchronous version: in Naldi
and D’Acquisto (2008b), it has been shown, by simulation, that in
the synchronous version the steady state is reached within some
tens of runs. The convergence to an equilibrium identical to that
of the static game is accompanied by the property that advertisers’
payments to the search engine in the steady state are identical to
payments under the VCG mechanism.

4. Valuations and profit
4.1. Distribution of valuations

A fundamental role in the advertiser’s decisions about its bid-
ding behaviour is played by the value it attributes to a click. This
value represents the upper bound on the bid that the advertiser
submits and hence impacts on the profit the advertiser gains from
each click. It is generally assumed that each advertiser has its own
private valuation, that is, the value of a click for an advertiser is dif-
ferent from those of the other advertisers and unknown to them.
We assume that those values follow a probability distribution,
such that the values attributed by any advertiser are drawn from
a common probability distribution. In this section we present the
probability models we adopt in the following to evaluate the profit
gained by advertisers. It is to be remarked that the keyword auc-
tion we examine in this paper is not a common value auction. In
common value auctions the value of the unit for sale is the same
for all the bidders, though none knows it exactly and tries to esti-
mate it (Kagel and Levin 2002). Here (in our keyword auction) each
bidder has its own valuation of a click, though all the valuations are
drawn from the same probability distribution. In common value
auctions the well known phenomenon of the winner’s curse is
present, whereby winners’ estimates are overly optimistic and lead
them to overbid. Here bidders are not competing for the same goal,
since we have a multi-unit auction (the objects for sale are slots,
that are different from one another by their position on the screen),
and even non top bidders may end up with the slot they aimed for.

To the best of our knowledge, no statistical results are available
to endorse a specific probability model for the value of a click in
keyword auctions. Instead, some statistical analyses have been car-
ried out for bids (rather than valuations) in the context of procure-
ment auctions, suggesting mostly the normal probability model
(McCaffer and Pettitt 1976, Pin and Scott 1994). In order to reach
more reliable results, here we consider instead a variety of models,
following the selection done in Naldi and D’Acquisto (2008a).
Namely, we use the following models:

Uniform;
Normal;
Exponential;
Pareto.

These four models allow us to represent a large number of dif-
ferent advertisers’ beliefs and can in turn be grouped into two clas-
ses. In the first one, including the uniform and the normal model,
the valuations concentrate around a central value and may be con-
sidered to represent the case where the advertisers share approx-
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imately a common opinion about the value of a click. Instead, in
the exponential and Pareto models, making up the second class,
lower valuations predominate over larger ones, and wide differ-
ences may appear in the value attributed to a click.

We then consider A random variables {V4,...,V4}, where V; de-
scribes the value of a click for the ith advertiser. We assume that
these valuations are independent and identically distributed, fol-
lowing the common probability distribution function (cdf)
P[Vi <x]=Fy(x), i=1,...,A. In the following four subsections
we describe the cdfs pertaining to the four models named above.

4.2. Uniform model

The probability distribution function is

0 ifx<a

Fy(x) =< %8 ifa<x<b (5)
1 x=b

In the uniform model the valuations are always bounded by the
lower bound a and the upper bound b.

4.3. Normal model

The probability distribution function is

X _ 2
Fy(x) = [ a\}ﬁ exp { (yZG'lZL) } dy, (6)

and depends on the mean value p and on the standard deviation o,
which describes the degree of scattering around the central value.
This model would allow for negative values (absent in real auctions)
but not for a minimum bid (present in the other models). In order to
reduce the effect of these two shortcomings we introduce two
constraints:

1. We choose (u; o) pairs such that the probability of having neg-
ative values is extremely low;

2. We introduce a conventional definition of the range of values
(theoretically infinite in the normal model) as six-times the
standard deviation so that the probability of having values out-
side this range is again very low.

The second condition can be expressed as the following rela-
tionship between the standard deviation of the normal model
and the conventional values for the highest and the lowest bid
(introduced for the uniform model) (Naldi and D’Acquisto 2008a)

66=>b-a. (7)

4.4. Exponential model

The probability distribution function is
Fy(x)=1—-e**9 x> aq, (8)

which depends again on two parameters, the scale factor Z and the
lower bound a.

4.5. Pareto model

The probability distribution function is

a\ B
F=1-(3), x>a (9)
where a acts both as the minimum valuation and as a scale factor,
and p is the shape parameter. Though low values are commoner

than large ones, with the value of the shape parameter dictating

the relative weight of lower bids, very large valuations are possible.
Lower values of § correspond to a fatter tail of the probability den-
sity function, but if 8 < 1 not even the first moment of the valuation
is finite. In the following we will therefore consider g > 1.

4.6. Advertisers’ profit

As stated in the Introduction, any figure of merit for the adver-
tising investment of the bidder has to take into account the costs as
well as the revenues incurred. In this paper we incorporate both
quantities in the profit function. Here we follow the same defini-
tion of profit provided by Cary et al. (2008); the authors used the
term ‘utility’ instead, but utility is usually subjective and may
not be comparable across different advertisers. Every time a user
clicks on the hyperlink pertaining to an advertiser, that advertiser
may be deemed to receive a profit gain (profit per click) equal to
the difference between the value it attributes to a click and the
price it is paying for that click. As previously recalled, here we em-
ploy clicks as a proxy for revenues, though not all clicks convert
into sales. The imperfect role of the proxy is however a minor prob-
lem, since the lower-than-unitary conversion rate may be ac-
counted for in the value attributed to a click: the lower the
conversion rate the lower the click value. If we multiply the profit
per click by the number of clicks we then get the overall profit for
the advertiser. By employing the click-through rate rather than the
number of clicks, we obtain the following expression for the ex-
pected profit of the ith advertiser receiving the kth slot:

Ul(k) =0 {Vi — b(k+1)]. (10)

If we introduce the Zipf model defined in Section 2.2 for the click-
through rate, the above expression becomes a function of the Zipf
parameter as well:

Ui(ot, k) o kla [Vi = by (11)
Here the expected profit is expressed by the product of two terms
that move in opposite directions as the target slot lowers. Depend-
ing on the balance between the two terms, the profit may then
either be a monotone function of the target slot or exhibit a maxi-
mum, highlighting an optimal slot different from the top-positioned
one.

5. Optimal slot location

When bidding for a strategic goal, such as maximizing their
profit, advertisers implicitly look for the slot that best suits them,
by expressing the best trade-off between the price they pay (deter-
mined by their bid per click and the click-through rate) and the
revenue they can expect. These two aspects are summarized in
the profit function defined in Section 4.6. In this section we deter-
mine the optimal (profit-maximizing) slot both for the case of
truthful bidding and for the BB strategy, and examine the mis-
match between that optimal slot and the slot the advertiser actu-
ally gets.

5.1. Optimal slot location under truthful bidding

An auction mechanism is said to be truthful if the dominant
strategy for each bidder is to submit a bid equal to its valuation.
The most famous example of a truthful mechanism is the Vick-
rey-Clarke-Groves (VCG) auction, whose characteristics have been
briefly reviewed in Section 2.1. Though this mechanism is not used
in the context of keyword auctions, a goal of many research efforts
is to design truthful mechanisms (see e.g., Aggarwal et al. 2006).
Actually, truthful auctions are of limited interest in auctions that
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run repeatedly (such as keyword auctions). In fact, if participants
were the same in each repetition, the bids would be the same
and the auction results would not change. However, we have to
consider that participants do change in the subsequent runs of
the auction, so that there is a chance for participants with low val-
uations to get a slot if new participants have even lower valuations.
In addition, inducing truthful bidding has a cost, as shown by Naldi
and D’Acquisto (2008a), since, in order to induce bidders into
revealing their true valuation, the auctioneer has to relax the pay-
ment rule and let bidders pay less than their true valuations, with
an impact on its overall revenues. We can however consider truth-
fulness as a significant property of auction mechanisms, and a use-
ful basis for comparison with other mechanisms. Since, in this
paper, we are interested in the class of GSP auctions, we consider
the benchmark case where bidders submit their true valuations
(truthful bidding), though the assignment is accomplished through
the GSP rule. This provides an absolute upper bound for the auc-
tioneer’s profit under the GSP rule, though in a GSP auction bidders
would always bid less than their true valuation (hence this upper
bound would never be attained), and is therefore a natural bench-
mark, which allows us to consider in isolation the effect of devia-
tions from truthful bidding that balanced bidding involves.

Since in truthful auctions, bids are equal to valuations, the ex-
pected profit U;(a, k) for the bidder submitting the ith highest bid
when obtaining the kth slot is the product of the click-through rate
and the expected difference in the valuations of a click. By
retaining just the factors depending on the bidder and on the slot
location we can write

1

U)o 2 (Vi = Vi) = 2 (E V] — E[Viean]). (12

l o
A general result is that U;(a, k) < 0 when k <i—1 and Uj(o, k) =0
when k =i -1, so that, for the bidder with the ith valuation, only
the slots lower than i would exhibit a positive expected profit. Such
a condition thus limits the set of choices useful for the advertisers:
advertisers with lower valuations can target fewer slots. In this sec-
tion we provide results for the distribution of preferences for slot
locations in truthful auctions under the probability models intro-
duced in Section 4.1.

5.2. Uniform model

For the case of the uniform distribution of valuations, it is
straightforward to derive the expected value of the ordered valua-
tion of a click in a set of A advertisers. For the rth valuation we have
(Naldi and D’Acquisto 2008a)

A+1-r1
EVip]=a+ (b—a)ﬁ. (13)
The general expression of the expected profit (12) becomes
1[A+1—-i A+1—(k+1)] k+1-i
Ui(o, k) Sl e i A1 X (14)

It has to be noted that the both the lower and upper bound for val-
uations, as well as the number of advertisers, do not influence the
shape of the profit curve.

We first consider the location of the optimal slot, that is,

kmax = argmax, U;(a, k). (15)

The optimal location can be easily obtained from Eq. (14). In Fig. 1
we plot the optimal slot for the bidders for the case of 10 slots on sale
(quite a reasonable upper bound for the number of slots on sale, con-
sidering the available space on the screen) and three different values
of the Zipf parameter, namely o = 0.5, 1, 2, which span over the sin-
gle value o = 1.5 considered by Balakrishnana and Kambhampati
(2008). If the assigned slot (equal to the bid ranking) were optimal,
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Fig. 1. Optimal slot under the uniform distribution for click valuations.

the curve should be the straight line ky.x = i. Instead, we can see
that, as long as the Zipf parameter is lower than 1, the lowest-posi-
tioned slot results to be the profit-maximizing slot for all the bid-
ders. When the Zipf parameter is larger than 1 the preferences
distribute more evenly, but the lowest positioned slot still remains
the preferred one for most of the bidders. In the case of o =2 we
see that the optimal slot is anyway lower positioned than that as-
signed by the ranking (kma.x > i), excepting the two bidders submit-
ting the largest bids. We can conclude that the preferences for the
lowest slots are actually more marked the lower the Zipf parameter.

We now focus on the advertiser exhibiting the largest valuation
and analyse its profit U; («, k) as a function of the Zipf parameter in
the CTR power law and of the target slot. Eq. (14) representing
profit simplifies to

Uy (o, k) o k' (16)

If o > 1 this is a decreasing function of the target slot, so that the
optimal slot is the top positioned one. If instead o < 1 this is a
increasing function of the target slot, so that the optimal slot is
the lowest-positioned one. Then for the advertiser exhibiting the
largest valuation the solution to the optimal slot location problem
bounces between the two extremely located slots, depending on
the range of the Zipf parameter.

5.3. Normal model

For the Gaussian model no exact general expressions exist for
the order statistics. The approximations proposed by David
(1981), Cramer (1946)fail when applied to a wide range of orders
as in our case. In the Gaussian case we therefore resort to simula-
tion for the evaluation the metrics of interest. For the purpose of
simulation we set =1 and ¢ = 1/6 in the model of Section 4.3.
We begin with plotting the optimal slot locations in Fig. 2. We note
a remarkably similar behaviour as in the case of the uniform distri-
bution (the optimal locations for o = 0.5 and « = 2 are identical to
the uniform case). The profit profiles for the bidder submitting the
largest bid, shown in Fig. 3, reveal that the top-positioned slot is
the preferred one for most values of the Zipf parameter.

5.4. Exponential model
For the exponential model we can use the expression for the ex-

pected value of the generic ordered valuation provided in Epstein
and Sobel (1953):

A1
Z]f (17)

»\—'

V()
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Fig. 3. Expected profit for the largest bid under the normal distribution for click
valuations.

Introducing this expression in the general expression of the ex-
pected profit (12) we obtain

ak-lil (18)
e

Again the profit curve shape results to be independent of the model
parameters (in this case the minimum bid a and the scale factor /)
as well as of the number of advertisers. We plot the optimal slot as a
function of the bid ranking in Fig. 4 for the case of 10 slots on sale.
Though the flight to the lowest positioned slot is less marked than
in the case of the uniform distribution, for all but the advertisers
with the largest valuations the optimal slot is not that assigned
by the bid ranking. And again the phenomenon is more marked as
the Zipf parameter gets lower. If we focus on the advertiser with
the largest valuation, in the three cases examined its preference
goes to a lower slot than that assigned by the ranking (namely
the second highest position rather than the top one) just when
the Zipf parameter is 0.5, as shown in Fig. 5.

5.5. Pareto model

For the Pareto distribution we employ the expression for the ex-
pected value of the generic ordered valuation provided in Malik
(1970), Kulldorf and Vannman (1973). For the rth order statistics
we have
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Fig. 4. Optimal slot under the exponential distribution for click valuations.
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Fig. 5. Expected profit for the largest bid under the exponential distribution for
click valuations.

a_ I(r-j)
E[Vin] = . 19
[ ()] a("_l)!F<A+1—lp> (19)
The expected profit is then
Ui(o, k)o(l ri-1/p 1 F(k+l—1/ﬁ) (20)

Fi-DIG+1-1/p) ¥ K

By exploiting some properties of the factorial and of the Gamma
function, namely that

I'(z+1)=2z[(z) Vze %",
k
k!:(i—l)!Hj
j=i

and recalling that the useful range of slots is k >
the expected profit as

1 Ti-1/p) :
X I-DITNT1-1/p) [ H( ﬂ-(ﬂ)

Contrary to the other models, now the shape of the profit curve
depends on one parameter of the probability model, namely the
shape parameter . However, it is still independent of the minimum
valuation. As for the other models we plot in Fig. 6 the optimal slot
location when there are 10 slots on sale and the Pareto shape factor

(21)

i, we can rewrite

U,‘(OC, k)
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Fig. 7. Expected profit for the largest bid under the Pareto distribution for click
valuations.

is f = 2. We see here a more graceful movement towards the low-
est-positioned slot, but the conclusions drawn for other models are
confirmed. For the advertiser exhibiting the largest valuation we see
instead that the expected profit decreases monotonically with the
target slot, hence for this advertiser the top slot appears to be the
preferred one for any value of the Zipf parameter, as shown in Fig. 7.

5.6. Optimal slot location under balanced bidding

In Section 5.1 we have examined the position of the optimal slot
in the case of truthful bidding. In this section we turn to the
balanced bidding to perform the same analysis, namely the estima-
tion of the expected profit and the extraction of statistics on the
optimal slot. It has been proven that the BB strategy converges to
the same Nash equilibrium as the truthful VCG, hence we expect
the results of the analysis in the BB case to confirm the flight to
the lowest slots observed before. Since the bid values are continu-
ously changed in subsequent repetitions of the auction under the
BB strategy, obtaining analytical results is not feasible. We have
therefore resorted to simulation. In this section we provide the
set of simulation results for the same quantities and under the
same hypotheses considered in the previous section for truthful
bidding.

All the results in this section have been obtained by Monte Carlo
simulation, consisting in a number Ny, of simulation instances. For
each simulation instance we have generated the private valuations

of a click for the bidders (a value for each bidder), to be held con-
stant during the whole simulation instance (but to be changed at
the following instance). In turn, during each simulation instance
we have repeated the auction for a number of runs and updated
the bids of all the bidders at each run in the synchronous way.
Actually, the set of auction runs making up each simulation in-
stance has been divided into two phases: the first one, made up
of N, repetitions, represents the transient needed to have the BB
strategy converge towards a steady state. The auction outcomes
in that stage have not been considered for the purpose of estimat-
ing the profit, but just for the purpose of updating the bids and
advancing the simulation instance into the steady state. After
entering the steady state we have performed an additional number
Ny of auction runs. In this stage we have evaluated the profit for
each bidder and each slot. The estimate of the expected profit for
the ordered bidders (i.e., for the bidder submitting the largest
bid, for the bidder submitting the next-highest bid, and so on)
has been obtained by averaging the profit values over the
Nim - Nreg useful auction runs (i.e., those pertaining to the steady
state). After obtaining one such estimate for each slot we have
identified the slot maximizing the expected profit.

All the results presented in the following have been obtained
under the same simulation conditions, namely:

Number of simulation runs N, = 10,000;
Duration of transient N, = 100;

Steady state repetitions Ny, = 200;
Number of slots on sale S = 10;

Number of bidders A = 15;

Zipf parameter oo = 0.5,1,2;

First run factor { = 0.8.

The number of simulation runs and the number of steady state
repetitions have been chosen so to be large enough to warrant a
good statistical accuracy. Since Naldi and D’Acquisto (2008b) found
that some tens of repetitions are enough to reach the steady state,
the number of transient repetitions we have adopted is a safe
choice. As to the relationship between the number of slots and
the number of bidders, again from Naldi and D’Acquisto (2008b),
we know that, as long as the bidders outnumber the slots on sale,
the impact of their exact number is negligible. Finally, the range of
values considered for the Zipf parameter (the same as in the anal-
ysis of truthful bidding) is quite large and includes the single value
considered in Balakrishnana and Kambhampati (2008).

Also in the case of balanced bidding strategy, we have consid-
ered the four probability models for the bidders’ valuations as de-
scribed in Section 5.1. Though we are working with a scenario of
repeated auctions, we assume that the valuation of a click for a gi-
ven bidder is maintained during the whole set of auction repeti-
tions (while changing with each simulation instance). We
analyse the same characteristics as in Section 5.1, including the
location of the optimal slot for all the ranked bidders and the profit
profile for the bidder submitting the largest bid. For the profit pro-
file we adopt, for reading convenience, a normalization to the prof-
it value obtained for the top-positioned slot. In the following
subsections we report the results separately for each probability
model.

5.7. Uniform model

In Section 5.2 we have seen that the results obtained analyti-
cally for the uniform model in the case of truthful bidding are inde-
pendent of the minimum and maximum possible bids, that is, the
quantities a and b in Eq. (13). We expect the same to be true in the
case of BB. However, for the simulation purposes we have to set
values for those two quantities. Here we report the results
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obtained for a = 0 and b = 1. The results obtained for other values
of a and b are quite similar. In Fig. 8 we show the location of the
optimal slot. Here the flight to the lowest-positioned slots is quite
more gradual than in the corresponding Fig. 1, but anyway remark-
able: for the lowest value of the Zipf parameter six out of the ten
winning bidders have the lowest-positioned slot as their favourite.
If we focus on the bidders submitting the largest bid (see Fig. 9) we
see again that the unitary value of the Zipf parameter plays a wa-
tershed role: when o < 1 the optimal slot location becomes pro-
gressively lower.

5.8. Normal model

In the case of the normal model we set the same model param-
eters as in Section 5.3. In Fig. 10 we see a less steep movement of
the optimal slot location than in the truthful bidding case depicted
in Fig. 10, but the main trend is preserved. For the bidder with the
largest bid we see instead that the profit’s growth is more marked
now that in the truthful bidding case (see the curve plotted for
o= 0.5 in Fig. 11).

5.9. Exponential model

Again we note that the profit profiles obtained in Section 5.4
depend neither on the expected value of the bids nor on the min-
imum possible bid value. In the simulation conducted for the bal-
anced bidding strategy, we have set a = 0 and / = 1 in the model
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Fig. 10. Optimal slot under the normal distribution for click valuations (BB).
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Fig. 12. Optimal slot under the exponential distribution for click valuations (BB).

(17). The optimal slot location is shown in Fig. 12, where the pref-
erence for the lowest-positioned slots is confirmed once more. The
curves confirm that the trend is more marked as the Zipf parameter
gets lower. A quick comparison with Fig. 4 reveals that the trend
observed for BB is more gradual than that taking place in truthful
auctions: for the three values of the Zipf parameter we note that
in the case of BB the landing on slot 10 (the lowest-positioned slot)
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takes place first, respectively, for the bidders ranking 6, 7, and 8,
rather than for the bidders ranking 2, 5, and 7 of the truthful case.

In Fig. 13 we show some profit profiles for the bidders submit-
ting the largest bid, which resemble very closely those sketched for
the truthful case in Fig. 5.

5.10. Pareto model

In the case of the Pareto model we have to set both the scale and
the shape factor. As the reader will recall from Section 4.5, both
parameters are subject to constraints. The scale factor (which also
plays the role of minimum possible valuation) a has to satisfy the
inequality a > 0, and we must set the shape factor g > 1 to have a
finite expected value. In our simulation study we have set a = 1
and B =2, in accordance with the value adopted in Section 5.5.
We recall that in that same section it has been shown that the prof-
it profile does not depend on the scale factor, but just on the shape
factor. The analysis of Fig. 14 shows that the influence of the Zipf
parameter acts in exactly the same way as seen in all the previous
cases: lower values of « lead to a faster movement of preferences
towards the lowest-positioned slots. And the trend is confirmed
to be more gradual in the BB case than in truthful bidding (see
Fig. 6 for sake of comparison). If we turn to the profit profile for
the bidder submitting the largest bid, we see that, unlike in the
uniform, normal, or exponential model, in the Pareto model the
top-positioned slot is always the most preferred one (the profit
function is a monotonically decreasing function of the target slot)
(see Fig. 15).

6. Implications

In Section 5 we have found out that a mismatch exists between
what would be optimal for the advertisers and what they actually
get. In most cases, purely profit-maximizing advertisers would pre-
fer lower positioned slots than those they actually get. Hence, the
current assignment and pricing mechanisms may be considered
unfair to all advertisers excepting the one submitting the lowest
bid among the winners. In this section we discuss the major impli-
cations of these findings.

In the current configuration of displaying mechanisms the
advertisements are textual and they differ from one another just
by their position, hence their value is a function of their position
only. This is reflected in the price paid by advertisers, which de-
pends on the CTR, which in turn depends on the position only.
Our findings show that the degree of unfairness is linked to the rel-
evance of the position on the popularity of the slot (i.e., the value of
the slope parameter governing the Zipf law that models the decay
of the CTR with the slot position). Hence, the tight dependence of
the auction mechanisms on the position is a major factor in the
fairness of the auction.

The auctioneers who manage the sponsored space associated
with the search engine have then to revisit their assignment and
pricing mechanisms to make them fairer to bidders; at the same
time they wish to safeguard their revenues. A possible solution
for the first goal is to relax the position-based mechanisms and
introduce a pricing rule based on other factors in addition to posi-
tion. These factors may even add value to the sponsored link. A re-
cently proposed solution is to drive away from pure textual
advertising, for example, by introducing video and images. This
feature is not new to web-based advertising since banners, which
have a predominant graphic characteristic, have been present since
long. Well known search engines appear to move in that direction,
as testified by the “Rich Ads In Search” pilot service of Yahoo! and
“PlusBox” of Google. The use of videos and images also increases
the appeal of the ad and hence its click-through rate, thus satisfy-
ing also the second goal of auctioneers.

7. Conclusions

The value of slot locations in keyword auctions has been exam-
ined using the profit function under a variety of probability models
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for the users’ preferences for slots and for the valuation of clicks as
assessed by the advertisers. Analytical and simulation results have
been obtained for the profit profile and the optimal slot location,
with consistent conclusions for the cases of truthful bidding and
strategic bidding employing the BB strategy. In the overwhelming
majority of cases a slot lower than the assigned one results to be
the optimal one, in other words, that maximizing the expected
profit of the advertiser. The bottom-positioned slot appears to be
the most preferred one, thanks to its low price that compensates
for the lower proportion of clicks. The entity of the effect depends
on the decay rate of the click-through and is different for the two
types of bidding behaviour under examination. As expected, the
flight to lower-positioned slots is more marked for the lower val-
ues of the Zipf parameter (i.e., when the click-through rate gets
flatter). A less obvious finding is that the sliding of the optimal
location towards the bottom slot is more graceful in the balanced
bidding case than in truthful bidding. The overall consequence is
that in most cases advertisers pay more for something that is not
the optimal solution for them. The lack of alignment between opti-
mal and actual assignment appears to be significant especially for
the bidders ranking in the mid-position. These results corroborate
the view that the GSP pricing rule is generally unfair to advertisers
and that a revision of pricing rules could help align the interests of
the search engine owners with those of the advertisers. Possible
moves for auctioneers towards a larger degree of fairness, and pos-
sibly larger revenues, envisage the abandonment of tightly posi-
tion-based mechanisms, for example, through the use of non-
textual (employing images and video) advertising.

Some lines of research can be envisaged to extend the domain
covered by this paper, among which the most prominent concern
the dynamics of the population of bidders and the initial bidding
behaviour. As to the former issue, we have considered a fixed num-
ber of bidders, while in reality we will have to consider that the
number of bidders varies during the repetitions of the auction,
with losing bidders reneging to submit new bids and prospective
bidders entering the auction. As to the latter issue, we have consid-
ered so far that the initial bid (for which strategic bidding provides
no prescriptions and bidders may not exploit the information de-
rived from the observation of past auctions) is a fixed percentage
of the true valuation, while other strategies may be explored
(e.g., submitting one or more random bids with a prescribed upper
bound).
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