
RDRP: Reward-Driven Request Prioritization
for e-Commerce Web Sites

Alexander Totok∗,a, Vijay Karamchetib

aGoogle Inc., 76 9th Ave, 6th Floor, New York, NY 10011, USA
bDepartment of Computer Science, Courant Institute of Mathematical Sciences,
New York University, 715 Broadway, 7th Floor, New York, NY 10003, USA

Abstract

Meeting client Quality-of-Service (QoS) expectations proves to be a difficult task for the providers
of e-Commerce services, especially when web servers experience overload conditions, which cause
increased response times and request rejections, leading to user frustration, lowered usage of the
service and reduced revenues. In this paper, we propose a server-side request scheduling mecha-
nism that addresses these problems. Our Reward-Driven Request Prioritization (RDRP) algorithm
gives higher execution priority to client web sessions that are likely to bring more service profit (or
any other application-specific reward). The method works by predicting future session structure
by comparing its requests seen so far with aggregated information about recent client behavior,
and using these predictions to preferentially allocate web server resources. Our experiments using
the TPC-W benchmark application with an implementation of the RDRP techniques in the JBoss
web application server show that RDRP can significantly boost profit attained by the service, while
providing better QoS to clients that bring more profit.

Key words: e-Commerce services, profit maximization, performance, quality of service, request
scheduling, admission control, Bayesian inference analysis

1. Introduction

In recent decade, the role of the Internet has undergone a transition from simply being a data
repository to one providing access to a variety of sophisticated Internet services, such as e-mail,
shopping, social networking, and entertainment. Various e-Commerce services (e.g., online bank-
ing, shopping) constitute a significant portion of the services offered on the Internet. Typical inter-
action of users with such services is organized into sessions, a sequence of related requests, which
together achieve a higher level user goal. An example of such interaction is an on-line shopping
scenario for a retail e-Commerce web site, which involves multiple requests that search for par-
ticular products, retrieve information about a specific item, add it to the shopping cart, initiate the
check-out process, and finally commit the order. The success of the whole session now becomes
the ultimate QoS goal, which contrasts with the per-request success performance metrics of the
early Internet.

∗Corresponding author. Tel.: +1 646 678 4321; fax: +1 212 995 4123.
Email addresses: totok@google.com (Alexander Totok), vijayk@cs.nyu.edu (Vijay Karamcheti)

Preprint submitted to Electronic Commerce Research and Applications April 11, 2010

Accepted for publication in Journal "Electronic Commerce Research and Applications", March 2010

Providers of e-Commerce services frequently have to deal with service overload conditions. In
such situations, clients see increased response times and their requests (and the containing sessions)
may get rejected, which leads to user frustration, and as a consequence, to lowered usage of the
service and reduced service revenues (Barnes and Mookerjee, 2009). Recent studies showed that
33% of shoppers on a slow-loading e-Commerce web site abandoned the site entirely, while 75%
of visitors would never shop on that site again (Moskalyuk, 2006).
Numerous server-side performance management techniques have been proposed to deal with

server overload situations. For example, Session-based Admission Control (SBAC) (Cherkasova
and Phaal, 2002) admits only as many sessions as can be served by the service. More complex
service differentiation mechanisms have also been used to provide stable QoS guarantees (e.g.,
request throughput, response times) to different client groups, based on prenegotiated Service-
Level Agreements (SLAs). Common to such schemes is the consideration that QoS received by a
client is determined upfront by his association with a client group or by his service membership
status. However, most of these schemes fall short of delivering the best performance in situations
where it makes sense to differentiate among clients based on the (dynamic) activities these clients
perform in a session, rather than on their (static) identity, in order to boost service revenues, or for
other application-specific goals. Let’s consider the following two examples.

• In the online shopping scenario introduced earlier, the service provider might be interested in
giving a higher execution priority to the sessions that have placed something in the shopping
cart (potential buyer sessions), as compared to the sessions that just browse product catalogs,
making sure that clients that buy something (and so – bring profit to the service) receive better
QoS.

• For a service, some of whose web pages contain third party-sponsored advertisements, the
service provider’s profits may increase with more visits to these pages, as it may increase the
chances of the clients following the advertisement links. Consequently, the service provider
may wish to provide better QoS to the sessions that visit web pages with advertisements
more often.

These examples are unified by the idea that the service may benefit from providing better QoS
to sessions, that bring more profit (give more reward), where the notion of profit or reward is de-
fined in an application-specific fashion. What is important is that the information about the client’s
possible usage of a service (and its associated contribution to service reward) is not encoded in any
static profile, so application-logic-independent SLA-based service differentiation approaches are
not as beneficial here.
Instead, to be able to provide better QoS to the sessions that bring more reward, the service

provider now needs to predict the behavior of a client. If a client has used the service before and
his identity can be determined (e.g., using cookies), than decisions on QoS provided to this client
can be based on the history of his service usage (e.g., history of previous purchases). However, the
success of this per-client history-based approach, is, not unexpectedly, highly dependent on the
correlation between the past and the future behavior of a client, and may not work well if such a
correlation is absent or weak.
Instead of focusing on individual client behavior, we advocate the approach of predicting a ses-

sion’s activities by associating it with aggregated client behavior or broader service usage patterns,

2

obtained for example through online request profiling. Specifically, we propose Reward-Driven
Request Prioritization (RDRP) mechanisms that try to maximize reward attained by the service,
by dynamically assigning higher execution priority values to the requests whose sessions are likely
to bring more reward. Our methods compare the sequence of a session’s requests seen so far with
aggregated information about client behaviors, and use a Bayesian inference analysis to statisti-
cally predict the future structure of a session, and so – the reward the session will bring and the
execution cost it will incur. The predicted reward and execution cost values are used to compute
each request’s priority, which is used in scheduling “bottleneck” server resources, such as server
threads and database connections, to incoming client requests.
We have implemented our proposed methods as a set of middleware mechanisms, which are

seamlessly and modularly integrated in the open-source Java web application server JBoss (JBoss,
2010). A Request Profiling module performs automatic real-time monitoring of client requests to
extract parameters of service usage and to maintain the histories of session requests. It also per-
forms fine-grained request profiling to identify execution times for different service request types.
The RDRP module uses the information gathered by the Request Profiling module to compute and
assign request priorities, that in turn influences queueing behavior for various application server
resources.
We evaluate our approach on the TPC-W benchmark application (TPC-W, 2005), emulating an

e-Commerce web site selling books, and compare it with both the session-based admission con-
trol and per-client history-based approaches. Our experiments show that RDRP techniques yield
benefits in both underload and overload situations, for both smooth and bursty client behavior. In
underload situations, the proposed mechanisms give better response times for the clients that bring
more profit to the service, thus helping to secure their satisfaction and future return to the web site.
Note that it is often the case that the bulk of a service customers are returning clients, so providing
good QoS to long-time customers is a key factor in service success (VanBoskirk et al., 2001; Barnes
and Mookerjee, 2009). In overload situations, when some of the requests get rejected, the mecha-
nisms ensure that sessions that bring more profit are more likely to complete successfully and that
the aggregate profit attained by the service increases compared to other solutions. Additionally,
we show that the history-based approach matches the performance of our RDRP mechanisms on
the amount of profit gained and response times only if the correlation between the clients’ past and
future behavior is 75% or greater, and 50% or greater, respectively.
The rest of this paper is organized as follows. Section 2 presents models and assumptions

used throughout the paper. Section 3 describes the reward-driven request prioritization techniques.
Section 4 presents our testing methodology and experimental results. In Section 5 we discuss
related work, and we conclude in Section 6.

2. Models and Assumptions

2.1. Web application server architecture
We work with e-Commerce services implemented on top of modern middleware platforms,

such as the Java EE component framework (Java EE, 2010). Such services are usually built as
complex (and often distributed) software systems, consisting of several logical and physical tiers
(e.g., web tier, application tier, and database tier) and accessing multiple backend data sources.
We present our request prioritization algorithms in a centralized setting however, to focus on the

3

��������	�
�
���
���������
��	������	����

�����
���
���

�������
��	
���

��
�����
��	��	�	���	��

���������
�
�
��

����	
�
����

�
�
�
�

�
�
�

�����

�	��������
��
���
�������������

��
�����
���
��

���������
�
�
��

�	�	�	���
�����������

����

�
�
�
�

�
�
�

�����

�	��������
��
���
�������������

��
�����
���
��

Figure 1: The model of web application server architecture.

benefits of the proposed request prioritization techniques. We expect that the methods will show
their utility in a distributed setting as well, where they can be independently applied at every system
resource contention point that sees concurrent requests competing for server resources.
Our work uses middleware-level mechanisms for server performance optimization, specifically

control over request scheduling policies. We adopt this approach, because the middleware itself
often does not have control over the low-level OS resources (e.g., CPU and memory), and uses
higher-level mechanisms, such as request scheduling, component pool management, transaction
demarcation, etc., to improve server performance. It is often the case that middleware server per-
formance is limited by several “bottleneck” resources, that are held exclusively by a request for the
whole duration or some significant portion of it (as opposed to low-level shared OS resources),
such as server threads, or database (DB) connections. The default allocation policy of these re-
sources to requests is FIFO. In the absence of application errors, failing to obtain such a resource
is the major source of request rejection.
We advocate and use a request execution model, where a request is rejected (with an explicit

message) if it fails to obtain a critical server resource within a specified time interval. This ap-
proach is shared by a vast majority of robust server architectures that bound request processing
time in various ways (e.g., by setting a deadline for request completion), as opposed to a less ro-
bust approach, where a request is kept in the system indefinitely, until it is served (or is rejected by
lower-level mechanisms such as TCP timeout). The former approach has the advantage of more
efficiently freeing up server resources held by requests whose processing cannot be completed
because of server capacity limitations.
Fig. 1 illustrates this application server architecture and the flow of a request through the

system. Requests compete for two critical exclusively-held server resources: server threads and
database (DB) connections; these resources are pooled by the web server and the application server
respectively. Scheduling of requests to available threads and DB connections is done according to
the request priority set by the RDRP module. The request with the highest priority is served first,
with FIFO used as a tiebreaking policy. Timeout values for obtaining a thread and a DB connection
are set to be 10s. If this timeout expires, the request is rejected with an explicit message. Note that
some requests do not require database access, so they can be successfully served just by acquiring
a server thread.

2.2. TPC-W Application
To test the benefits of the proposed request prioritization mechanisms, we use the TPC-W

transactional web e-Commerce benchmark (TPC-W, 2005), that emulates an on-line store that

4

���� ����	

�������	
���

����
�������	
���

��������������	
����

���� ��������

����������������������

����
�
�������

����
�
�����

�� !

��"

���!

��#

"

���!

��$

��#!

��$

��#

��%

��$

��%
��#

��&

��&

��%

��%

" "

"

��#

���� ����	

�������	
���

����
�������	
���

��������������	
����

���� ��������

����������������������

����
�
�������

����
�
�����

��$

��&&

���!

��&!

"

���!

���#
��$

��%

��&

��%

��!

��!
��#

���!

��&!

��%

��$

" "

"

��&

Figure 2: Two CBMGs used for TPC-W web workload.

sells books. The TPC-W specification describes in detail the application data structure and the
14 web invocations (WI) that constitute the web site functionality, and defines how they change
the application data stored in the database. A typical TPC-W session consists of the following
requests: a user starts web site navigation by accessing the Home page, searches for particular
products (Search), retrieves information about specific items (Item Details), adds some of them
to the shopping cart (Add To Cart), initiates the check-out process, registering and logging in as
necessary (Register, Buy Request), and finally commits the order (Buy Confirm). We use our
own implementation of the TPC-W benchmark, realized as a Java EE component-based applica-
tion (TPC-W-NYU, 2005).

2.3. Web workload model
In this study, as in numerous other web server performance studies, we use synthetic web

workloads, which are injected into a working application server environment using a load generator
machine. Utilizing synthetic workloads is a common and widely adopted way to evaluate web
server performance. Although not as realistic as using real web traces, this approach is more
convenient for controlled exploration of the range of client behaviors.
Several session-based web workload models have been proposed, based on detailed analyses

of real web traces (Menascé et al., 1999; Akula and Menascé, 2007). A dominant fraction of these
models (Menascé et al., 1999; Carlstrom and Rom, 2002; Singhmar et al., 2004; Elnikety et al.,
2004; Chen and Mohapatra, 2002), as well as workload generators of web server performance
benchmarks, such as TPC-W (TPC-W, 2005), use first or higher-order Markov chains to model
session structure.
Our study follows this practice and adopts the Customer Behavior Model Graph (CBMG)

(Menascé et al., 1999) approach for session structure modeling. CBMG is a state transition graph
(i.e., a first-order Markov chain), where states denote results of service requests (web pages), and
transitions denote possible service invocations. Transitions in CBMG are governed by probabilities
pi,j of moving from state i to state j (

∑
j pi,j = 1). It was shown that web workloads consisting of

several different CBMG session structures can approximate any given sequence of user requests
(web request log) as “close” as desired, by appropriately choosing the model parameters (i.e., the

5

Table 1: Average breakdown of sessions by request type, for two CBMGs used for TPC-W web workload.

Request type Session request breakdown
Mostly Buyers Mostly Browsers

Home 10.0% 5.2%
Search 24.0% 36.0%
Item 24.7% 53.5%
Add To Cart 11.6% 1.2%
Cart 3.9% 1.1%
Register 8.6% 1.0%
Buy Request 8.6% 1.0%
Buy Confirm 8.6% 1.0%
Total 100.0% 100.0%

number of CBMGs and their transition probabilities), which in turn can be obtained from the web
request log by the proposed clustering algorithm (Menascé et al., 1999). The greater the number of
CBMGs in the workload model, the closer such an approximation can be made. In web workloads
consisting of several CBMGs, each one of them represents a typical navigational pattern exhibited
by the service users.

Session structure. Our workload for the TPC-W application is a 50%/50%mix of the two CBMGs
shown in Fig. 2. We use simplified user session structures, which use only a subset of the TPC-W
request types, but are rich enough to include essential application activities and represent requests
with a wide range of functional and execution complexity. Both of the CBMGs in Fig. 2 use the
same state transition structure, but with different transition probabilities. The “Mostly Buyers”
CBMG produces user sessions that tend to buy products, while the “Mostly Browsers” CBMG
produces more browsing-biased sessions. This results in different frequencies of requests being
invoked by the two kinds of sessions (Table 1). Note that not all “Mostly Buyers” sessions result in
a purchase, and analogously, not all “Mostly Browsers” sessions just browse the product catalog.
The 50%/50% mix of the given “Mostly Buyers” and “Mostly Browsers” sessions results in ap-
proximately 52% of sessions finishing with a purchase. This value may be higher than most retail
e-Commerce web sites see in real life, however such client behavior may be more characteristic
of web sites providing online brokerage services, where a greater portion of user sessions results
in completion of profit-bringing transactions of selling and buying stocks. We introduce this bias
towards purchasing sessions to highlight the benefits of our request prioritization approach. How-
ever, we expect our methods to exhibit the same relative improvements even in workloads with
fewer purchasing sessions.

Timing parameters. We model session inter-request user think times as exponentially distributed
with mean 5s for the “Mostly Buyers” sessions and 10s for the “Mostly Browsers” sessions. If
not stated otherwise, the flow of incoming new sessions is modeled as a Poisson process with
arrival rate λ, which determines the overall load produced on the system (average request rate
received by the service is λ · N , where N is the average session length, in requests). The Poisson
process produces relatively smooth sequence of events, and fails to model inherently bursty and
self-similar traffic often observed at web sites (Wang et al., 2002). To better model the latter,

6

�

&�

$�

'�

"#�

"!�

"(�

#"�

#%�

� $� "#� "(� #%�
��������	
���

�
��

��
��

���
��

��
�

�������)������ �*����+�,-.��$!/ �*����+�,-.�� !/

Figure 3: Event arrival patterns for the three processes: Poisson (λ = 1) and B-model (b=0.65 and b=0.75).

we additionally use the B-model (Wang et al., 2002), which has been shown to produce synthetic
traces with burstiness matching that of real traffic. We use this model to produce load with different
degrees of burstiness (determined by the b-parameter of the B-model), and do it in a way to only
imitate local (short-lived) burstiness to avoid substantial shifting of massive event clusters to short
time intervals. Specifically, we model two types of bursty load, one with b = 0.65 and another
with b = 0.75,1 and refer to these as “low-bursty” and “high-bursty” load respectively. In contrast
with these two methods, we refer to the Poisson arrival model as “smooth.” Fig. 3 shows the event
arrival patterns for a Poisson process (λ = 1), and for the two B-model processes (b = 0.65 and
b = 0.75) with the same average event arrival rate (1 event/s). This graph helps to visually assess
the degree of event arrival burstiness produced by the different models.

2.4. Session reward and request cost specification
It is the service provider responsibility to define the reward (profit) function associated with

the client session. The model we adopt in this study is simple yet general enough to encompass
several possible applications: a reward value is defined for every request type of the service. The
reward of the session is the sum of rewards of the requests in the session. Depending on the
specific application, the reward “counts” only if the session completes successfully, or alternatively,
whenever a reward-bringing request is invoked.
To illustrate the reward formulation, let us revisit the example scenarios presented in Section 1.

In the online shopping scenario the profit of the service is reflected by the volume of items sold.
So one way to define a reward function for the online store service is by assigning a reward value
of 1 for the Add to Cart request: the shopping cart will contain as many items in it as the number

1In the original B-model study (Wang et al., 2002), the authors analyzed real web traces and inferred that the b-
parameter for that traces ranged from 0.6 to 0.8, so we felt that values 0.65 and 0.75would be reasonably representative.

7

��������
0

��������

������

���1�	�������������������

��234
��23#

��23"

56�7 5	����7
���6�"

���6�#

�������
����
����������
��������6����238

���������	�
�	������
�����������
�9

����
���������������6����238

���6�&
���������	�
�	������

�����������
� ���6�%
�������
6�������

Figure 4: Logical steps of the RDRP method.

of times the Add to Cart request was executed. In the example of third party-sponsored advertise-
ments, one can assign each web page a reward value based on the number of advertisements on it,
or alternatively, on how much the advertisement sponsor would pay for a client’s (potential) click
on the advertisement link(s) displayed in the web page.
The cost of a session is similarly specified in terms of the relative request execution cost for

each request type. This choice has the following rationale. Processing times for individual requests
in typical e-Commerce services, including our TPC-W application, can vary widely by as much as
two-to-three orders of magnitude. However, there tends to be much more variation across request
types than for requests within the same type but with different request parameters (Chen et al.,
2001; Elnikety et al., 2004). Information about the relative execution costs permits the RDRP
Bayesian inference algorithm to be able to make adequate predictions of future server resource
consumption by a session. Note that request execution costs can either be specified by the service
provider (in abstract cost units), or determined by online request profiling as the average processing
time of requests of a particular type.

3. Reward-Driven Request Prioritization

Our reward-driven request prioritization (RDRP) algorithms work with the assumption that
information about the aggregate structure of the user load is known. Specifically, we assume that
the workload consists of K CBMGs: CBMG1, CBMG2, . . . , CBMGK . The probability of a
session having the structure of CBMGk is pk,

∑K

k=1 pk = 1. For the session of structure CBMGk,
the probability of transition from state i to state j is pk

i,j. We also assume that as stated earlier, that
for each request type i, its relative execution cost – costi – is known. We note that CBMG structures
can be extracted from web server request logs through offline or online cluster analysis (Menascé
et al., 1999), and the various probabilities and per-request type execution costs can be updated at
runtime through request profiling.
Given the above, the RDRP mechanism works in the following way. For every incoming

request, it looks at the sequence of requests already seen in the session and compares this sequence
with the known CBMG structures of the session types comprising the user load. A Bayesian
inference analysis estimates the probability that the given session is of type CBMGk, for each
k = 1, . . . , K (step 1). For each session type CBMGk, the algorithm computes the values of
expected reward and execution cost, resulting from the future requests of the session, assuming it
had the structure CBMGk (step 2). This information is used to get the non-conditional values of

8

expected reward and execution cost of the future session’s requests (step 3). These values are used
then to define the priority of the request (step 4), which governs the scheduling of available server
threads and DB connections to incoming requests (see Fig. 1). The logical sequence of the RDRP
algorithm steps is depicted in Fig. 4 and is explained in detail below.

Step 1. Pr{CBMGk | req hist}, the Bayesian estimate that the session is of certain type CBMGk

(for a given history of session requests) is given by the following formula:

Pr{CBMGk | req hist} = Pr{req hist|CBMGk}·pk

K∑
i=1

Pr{req hist|CBMGi}·pi

(1)

where Pr{req hist | CBMGk} is the probability of having a certain sequence of L requests
{i1, i2, . . . , iL} in a session of type CBMGk and is determined as

Pr{req hist | CBMGk} =

L−1∏

j=1

pk
ij ,ij+1

(2)

Note, that if the number of requests seen in the session so far is small or if the request sequence is
not unique enough to substantially differentiate the session’s structure among known session types
CBMGk, than most likely we will not be able to predict with high confidence which session type
this session belongs to. But as the session progresses and has more requests in it, it’s more likely
that we will be able to predict the type of the session. From our experience, it takes at least 4-5
requests in a session until one of the Pr{CBMGk | req hist} probabilities starts to dominate the
others.

Timing parameters. In the basic Bayesian analysis of distinguishing among possible session types
(equations (1) and (2)), we took into account only the CBMG state transition information. How-
ever, if session inter-request user think times differ for sessions of various CBMG types, than
this additional information can be used in an attempt to make the Bayesian inference analy-
sis more accurate. Imagine that we know the distribution of user think times for each CBMG
session type comprising the load, in particular – their PDF functions, PDFk(x), k = 1, . . . , K
(PDFk(x) = Pr{time < x}, for CBMGk), and that the observed session inter-request times are
t1, . . . , tL−1 (L is the number of requests seen in the session). Then equation (2) can be substituted
by the following one:

Pr{req hist, t1, . . . , tL−1 | CBMGk} =
L−1∏

j=1

pk
ij ,ij+1

·
L−1∏

j=1

PDFk(tj) · (Δt)L−1 (3)

where the infinitesimal time interval Δt appears in the equation, because the session inter-request
times have supposedly continuous distributions. When equation (3) is substituted in equation
(1), the infinitesimal value (Δt)L−1 appears in both the numerator and the denominator, and can-
cels each other out. We call the RDRP scheme that involves inter-request timing considerations
RDRP(state+time), and the basic method – RDRP(state).

9

���� ����	

�������	
���

����
�������	
���

����������
��������	
����	
����

���� ��������

����������������������

����
�
�������

����
�
�����

������
������

�
�������������

��������
�����
������

����

�����
	��

�
��	 �	������

����
����

����

����

����

Aregister = Abuy req = Abuy conf = 0

Asearch =
Pi,aPs,i

(1−Ps,s−Ps,cPc,s)·(1−Pi,i−Pi,aPa,i)−Pi,sPs,i−Pi,aPa,sPs,i

Aadd = Asearch · (Pa,s +
Pa,i·(1−Ps,s−Ps,cPc,s)

Ps,i
)

Aitem = Asearch ·
1−Ps,s−Ps,cPc,s

Ps,i

Acart = Asearch · Pc,s

Ahome = Asearch e.c. =
(1+Aadd)·Pie,aPse,ie

(1−Pse,se)·(1−Pie,ie)−Pie,sePse,ie

Aitem e.c. = Asearch e.c. ·
1−Pse,se

Pse,ie

Figure 5: The graph structure of the CBMG used to represent our browsing and shopping scenario (left). Expressions
for values Ai (right).

Step 2. To compute rew exp{CBMGk}, the value of reward expected from the session’s future
requests, assuming it is of particular type CBMGk, we just need to know the expected number of
future session requests, for each request type (i.e., the expected number of future visits to each
of the session’s CBMG states). This information, combined with the assumption that reward is
brought by individual requests allows us to compute the expected reward for the session. The
expected number of future visits to a CBMG state is a Markov property of the CBMG and is
determined only by the current state (i.e., by the current request) and the CBMG’s state transition
probabilities. For our sample shopping scenario, where reward is brought by the Add To Cart
request, we have to compute Ai – the expected number of future visits to the Add To Cart state,
if the current state is i. These values are determined by a set of linear equations, involving CBMG
transition probabilities and can be computed mechanically (Menascé et al., 1999). For the CBMGs
we showed earlier in Fig. 2, the general graph structure and expressions for Ai are shown in Fig. 5.
We refer the reader to the original work (Menascé et al., 1999), where the CBMG apparatus was
introduced and developed. The values of expected execution cost from the session’s future requests
are computed in a similar way.

Step 3. The (non-conditional) values of expected reward and execution cost of the future session’s
requests are computed as a linear combination of the corresponding conditional values (i.e., for
specific CBMG session types) weighted with the probabilities that the session is of that particular
type:

rew exp =
K∑

k=1

rew exp{CBMGk} · Pr{CBMGk | req hist}

cost exp =
K∑

k=1

cost exp{CBMGk} · Pr{CBMGk | req hist}

Step 4. The underlying idea of request prioritization is very simple – give higher priority to re-
quests from sessions that are expected to bring more reward, while consuming less server re-
sources. We use two different schemes to define request priority – one takes into account the cost
of the requests seen in the session (we call this scheme RDRP-1), and the other (RDRP-2) does
not:

priority1 =
rew attained + rew exp

cost incurred + cost exp
(4)

10

!����"!����
#�$����%�� &��'(�)����

����)���� (
* (
*�������������)���
+��,�-

Figure 6: The server configuration used in the experiments.

priority2 =
rew attained + rew exp

cost exp
(5)

rew attained and cost incurred are the reward and the execution cost of the requests already seen
in the session.

4. Evaluation

We start by describing the experimental setup and then present an evaluation of RDRP against
alternative server-side schemes for managing application server resources.

4.1. Experimental setup
Server configuration. Our experimental infrastructure consists of a web application server and
a separate database server, each running on a dedicated workstation, connected by a high-speed
local-area network (Fig. 6). We use open-source Java EE application server JBoss (JBoss, 2010),
bundled with Jetty HTTP/web server (Jetty, 2010), as a web application server andMySQL database
(MySQL, 2010) with transactional InnoDB tables, for the database server. The database is treated
as a black box and its configuration is kept default, with the exception of switching off database
query caching.2 JBoss/Jetty web application server is augmented as shown in Fig. 1 with the re-
quest profiling infrastructure and the RDRP mechanisms, implemented in a modular fashion as
pluggable middleware services. We set the size of the server thread pool and the DB connection
pool to 70 and 30 respectively (see Fig. 1)

Request profiling infrastructure. The Jetty HTTP/web server is used to gather high-level infor-
mation about client requests, which are classified by their type (based on the URL pattern) and
session affiliation. Various JBoss modules, such as the Database Connection Manager, are aug-
mented with additional execution hooks to gather low-level information about the breakdown of
request processing times spent at different request execution phases (e.g., waiting for a thread,
processing in the database, etc.). When a request completes, the information about its execution
is sent to the Request Profiling module (implemented as a separate middleware service), where it
is added to a server-wide in-memory store. The Request Profiling module uses the high-level re-
quest flow information to maintain histories of session requests. The low-level request processing
information is used to periodically update the values of relative request execution cost costi in the

2This was done intentionally to eliminate the effects of repeated request patterns in the synthetic workload, which
resulted in non-uniform request processing performance in presence of database query caching.

11

Table 2: Average response times for the TPC-W request types used in the study, when executed in isolation (only one
request is processed by the server at a time).

Request type Response time (ms)
Home 30
Search 450
Item 15
Add To Cart 20
Cart 5
Register 5
Buy Request 150
Buy Confirm 100

RDRP algorithm, defined in our experiments as the average request processing time, without the
time spent waiting for a thread or a DB connection.

TPC-W application. As stated earlier, this study uses our own implementation of the TPC-W
benchmark, realized as a Java EE component-based application (TPC-W-NYU, 2005). The TPC-
W application parameters (e.g., for database population) are chosen so as to achieve diverse exe-
cution complexity for different request types involved in the simulated sessions. Table 2 shows
average request response times for the TPC-W request types (ranging from 5 ms to 450 ms),
when executed in isolation (only one request is processed by the server at a time). This infor-
mation is presented to illustrate relative execution complexity of requests, which range from very
light (“Register” request, which does not require database access) to very heavy (“Search” request,
which performs execution of complex database queries). When executed concurrently, the requests
see larger response times, because of queueing delays for critical server resources (threads and DB
connections) and possible database contention.

Client load. A separate workstation is used to produce client load and to gather statistics (Fig. 6).
The client load simulates requests according to the CBMG structures discussed in Section 2.3.
The maximum sustainable request rate of the server configuration under the resulted request mix is
approximately 20 req/s, with the bottleneck being the MySQL database server.3 The overall load
produced on the system is determined by λ – the arrival rate of new sessions. We use different
values of this parameter to generate server overload as well as underload conditions and report
the load measured as a percentage of the system processing capacity. Each test run generates
approximately 5000 sessions, with statistics gathered from the middle 80% portion of the run time
to cut off warm-up and cool-down regions.

Reported metrics. For each experiment, we measure the reward attained by the service (measured
in number of items bought by successfully completed sessions) and average request response times
for sessions bringing different reward. We do not report the reward metric for the server underload

3This seemingly low server throughput is attributed, first, to the underprovisioned one generation old machines
we were using for the experiments, and second, to the fact that we did not perform scrutinized database and TPC-W
application tuning. However, we expect the relative performance improvements achieved by the RDRP methods to be
similar in more powerful server environments.

12

.

./

./0

./1

./2

./3

./4

./5

 136 5.6 0..6 03.6

����
��
��
������
��������

�
��
��
�

��

�
�
�
��
�
�

��
��
��

�
��

�
��
��
��

�,�-7 �8�����9 �,�-7 �8�����+����9 �,�-70�8�����9 �,�-70�8�����+����9

Figure 7: Comparison of benefits brought by the two flavors of the RDRP method. RDRP-1 takes into account the
execution cost of all session’s requests (seen and expected). RDRP-2 only takes into account the cost of current and
the future requests of the session.

situation, because in this situation all sessions complete successfully, and each request scheduling
algorithm produces the same reward value. Where absolute values of reward are reported, they are
counted per incoming user session. This is done to show how close the employed algorithms are
to the ideal situation, when all the buying sessions complete successfully, which brings the average
per-session reward of 0.7 (this value is determined by the mix and the structure of the involved
CBMGs shown in Fig. 2). In some of the experiments we show attained reward measured as a
percentage of the reward value produced by the default FIFO request scheduling algorithm. This
is done to emphasize the relative benefits that employed methods bring, compared with the default
web application server policies.

4.2. Comparison of two priority schemes
We ran a set of experiments comparing the performance of the RDRP-1 and the RDRP-2 meth-

ods, corresponding to the two priority formulations in equations (4) and (5), under various load
conditions. Fig. 7 compares the performance of the two methods under different amounts of server
overload, for “smooth” session arrivals. The RDRP-2 method outperforms RDRP-1 in all sce-
narios, but especially under high client load. To informally understand this outcome, consider a
session that is just one or two steps away from its completion (e.g., it is in the Register state in
the CBMG of Fig. 2). The RDRP-2 method, according to equation (5), gives this request a higher
priority than RDRP-1 (equation (4)), because it does not count the cost already incurred by the
session. Consequently, under RDRP-1, the request might get rejected due to a low priority value,
which will waste all the effort it took to bring the session to its nearly complete state. A careful
examination of the logs produced during the experiments supports this explanation: the primary
reason for the poor performance of RDRP-1 is the fact that some sessions are rejected with one
or two requests left to complete the session, a phenomenon that never happens with RDRP-2. By
ignoring the cost already incurred by the session, the RDRP-2 method appears to increase the like-

13

lihood of session completion as compared to its RDRP-1 counterpart. This also agrees with the
economics theory, which argues that sunk costs (i.e., costs that have already been incurred and
which cannot be recovered, like cost incurred in equation (4)), should not be taken into account
when making rational decisions (Varian, 2005). In the rest of the experiments we used only the
RDRP-2 algorithm, and refer to it from now on as simply the RDRP method.

4.3. Imitating the “history-based” approach
As stated in Section 1, an alternative method to prioritize client requests to boost service profit

(reward) is by using a per-client history-based approach. Broadly considered, such an approach
models the behavior of any application-specific technique in which all requests of a session are
assigned a constant priority value and are scheduled according to this priority. The priority as-
signment can have arbitrary logic, for example, it can be done in an attempt to predict the client’s
future behavior based on the history of the client’s previous purchases, or it can be determined
solely by the client’s membership status. The success of such approaches is determined, of course,
by how good they are in predicting the client’s behavior or, more precisely, the statistical correla-
tion between assigned session priority and the actual reward brought by this session. To the best
of our knowledge, prior work on workload characterization has not addressed such correlation in
behavioral patterns (especially with the information that we need). We therefore employed the
following scheme for producing a predefined correlation between the assigned session priorities
and the actual rewards brought by the sessions. Each session announces in advance the reward
it would bring, enabling the session prioritization mechanism to set the session’s priority so that
the statistical correlation (parameter c) between the assigned priorities and the sessions’ rewards
meets the predefined value. A value of c = 1.0 brings the best achievable performance because
the prioritization algorithm always assigns to requests from the session, a priority value in direct
correspondence with the reward the session will bring.

4.4. Performance of RDRP
We compare the relative costs and benefits of RDRP mechanisms against the following alter-

native server-side request scheduling and overload protection methods:

• Default FIFO request scheduling with no request prioritization.

• Session-Based Admission Control (SBAC), which admits approximately as many sessions as
can be processed by the server capacity; all of the admitted sessions are allowed to complete
successfully. This method is used only in the server overload situation.

• The per-client “history-based” approach described in Section 4.3. We run five sets of exper-
iments with c = 0, 0.25, 0.5, 0.75, and 1.0.

• Our RDRP(state) and RDRP(state+time) methods, described in Section 3.

4.4.1. Server overload
First, we evaluate the behavior of the methods in server overload situations. We run four sets

of experiments, modeling loads of 135%, 170%, 200%, and 250% of server capacity, for both
the “smooth” (Poisson) and “high-bursty” (B-model with b = 0.75) client loads (see Section 2.3
for details). Fig. 8 shows the reward attained by the service, relative to the performance of the

14

.6

3.6

 ..6

 3.6

0..6

03.6

1..6

13.6

 136 5.6 0..6 03.6
����
��
��
������
��������

�
��
��
��
�

��
�
��
�

��
�
�
��
�
�
��
��
��

�����������:����� ��
�
������7$�����8	;.9

������7$�����8	;./039
������7$�����8	;./3.9
������7$�����8	;./539

������7$�����8	; /.9 �,�-�8�����9 �,�-�8�����+����9

.6

036

3.6

536

 ..6

 036

 3.6

 536

0..6

0036

 136 5.6 0..6 03.6
����
��
��
������
��������

�
��
��
��
�

��
�
��
�

��
�
�
��
�
�
��
��
��

�����������:����� ��
�
������7$�����8	;.9

������7$�����8	;./039
������7$�����8	;./3.9
������7$�����8	;./539

������7$�����8	; /.9 �,�-�8�����9 �,�-�8�����+����9

Figure 8: Reward (number of items bought by successfully completed sessions, per user session), relative to the default
no-prioritization (FIFO) scheme, for the “smooth” Poisson (left) and “high-bursty” (right) client loads.

default FIFO request scheduling mechanism. Figs. 9 and 10 show average request response times
for sessions bringing different reward, for the “smooth” and “high-bursty” client loads. Several
conclusions can be drawn from the results of these experiments.

Reward attained. As expected, the default FIFO request scheduling policy shows the worst perfor-
mance, because a request may get rejected anywhere in the session, which results in low successful
session throughput. The SBAC method works better, because it at least allows the sessions that
have started to complete successfully, however it does not try to necessarily admit those sessions
that bring the greatest reward. The history-based approach shows an increase in reward attained
with an increase of the correlation between assigned session priorities and sessions’ rewards. Note
that even with values of c = 0.25, this method already outperforms the SBAC algorithm. Finally,
both RDRP methods significantly boost reward attained by the service. The RDRP(state+time)
method works slightly better than RDRP(state), because it takes into account the inter-request
time differences between more-profitable “Mostly Buyers” sessions and less-profitable “Mostly
Browsers” sessions and better distinguishes between them. The theoretically best history-based
(c = 1.0) method, of course, shows the best performance, however the history-based approach
matches the performance of the RDRP algorithms, only for values of c ≥ 0.75.4 The performance
of all algorithms goes down, when the client load experiences bursty behavior, because under
bursty conditions the queues for critical server resources are more susceptible to rapid build-ups,
which results in higher rates of request rejections. However, the relative advantages of RDRP over
the other methods stay the same.

Request response times. All algorithms that perform request/session prioritization, and manage to
correctly guess (at least to a certain degree) the session’s reward, decrease request response times
for sessions that bring non-zero reward, as compared to the SBAC method. Both RDRP methods
perform on par with the history-based approach for values of c ≥ 0.5. For the “smooth” client
load, the RDRP algorithms reduce response times by up to 40% compared to SBAC, and show up

4Whether such good prediction is possible in real life, remains an open question, due to the lack of publicly
available information with such statistics.

15

.

 ...

0...

1...

2...

3...

4...

5...

<...

. 0 1 2 3
 �����
��
�����
������
��
���
�������
�������

!
��
��
��

��
"�
��
�
�
��
��
��
�

���

��

��
�
������7$�����8	;.9
������7$�����8	;./039

������7$�����8	;./3.9
������7$�����8	;./539
������7$�����8	; /.9
�,�-�8�����9 �,�-�8�����+����9

2.6�����	����

0<6�����	����

.

 ...

0...

1...

2...

3...

4...

5...

<...

. 0 1 2 3
 �����
��
�����
������
��
���
�������
�������

!
��
��
��

��
"�
��
�
�
��
��
��
�

���

��

��
�
������7$�����8	;.9
������7$�����8	;./039

������7$�����8	;./3.9
������7$�����8	;./539
������7$�����8	; /.9
�,�-�8�����9 �,�-�8�����+����9

0=6�����	����

 <6�����	����136�����	����

Figure 9: Average request response times for sessions that bring different reward, for “smooth” traffic, for the 135%
server capacity (left) and the 170% server capacity (right) overload situations.

.

3..

 ...

 3..

0...

03..

1...

13..

2...

23..

3...

. 0 1 2 3
 �����
��
�����
������
��
���
�������
�������

!
��
��
��

��
"�
��
�
�
��
��
��
�

���

��

��
�
������7$�����8	;.9
������7$�����8	;./039

������7$�����8	;./3.9
������7$�����8	;./539
������7$�����8	; /.9
�,�-�8�����9 �,�-�8�����+����9

1=6�����	����

116�����	����

456�����	����

.

 ...

0...

1...

2...

3...

4...

. 0 1 2 3
 �����
��
�����
������
��
���
�������
�������

!
��
��
��

��
"�
��
�
�
��
��
��
�

���

��

��
�
������7$�����8	;.9
������7$�����8	;./039

������7$�����8	;./3.9
������7$�����8	;./539
������7$�����8	; /.9
�,�-�8�����9 �,�-�8�����+����9

506�����	����236�����	����

146�����	����

Figure 10: Average request response times for sessions that bring different reward, for “high-bursty” traffic, for the
135% server capacity (left) and the 170% server capacity (right) overload situations.

to 28% lower response times than the history-based approach with c = 0 and c = 0.25. For bursty
client load, the difference is more pronounced: response times from the RDRP methods are lower
than that from SBAC and the history-based approach with c = 0 and c = 0.25 by up to 72%, 45%,
and 36%, respectively.
Note, that for “smooth” client load, the sessions with zero reward (i.e., browsing sessions) see

significantly increased response times, when the history-based approach with c = 1.0 is applied
(Fig. 9). This happens, because with the history-based approach, all browsing sessions (48% of
all sessions, see Section 2.3 for an explanation) get the same (zero) priority, because the priority
is defined as the session’s reward, while the remaining 52% of sessions get a higher execution
priority. Being all stuck in a single lowest-priority queue (with a FIFO tiebreaking policy), brows-
ing sessions see higher rates of request rejections. This in turn produces higher response times
for the session because a rejected request spends at least 10s in the system (before experiencing a
timeout). Interestingly, this effect is reduced with bursty session arrivals (Fig. 10).

16

.

 ...

0...

1...

2...

3...

4...

5...

<...

=...

. 0 1 2 3
 �����
��
�����
������
��
���
�������
�������

!
��
��
��

��
"�
��
�
�
��
��
��
�

���

��

�����������:�����
������7$�����8	;.9
������7$�����8	;./039

������7$�����8	;./3.9
������7$�����8	;./539
������7$�����8	; /.9
�,�-�8�����9 �,�-�8�����+����9

<.6�����	����

3<6�����	����

246�����	����

.

3..

 ...

 3..

0...

03..

1...

13..

2...

. 0 1 2 3
 �����
��
�����
������
��
���
�������
�������

!
��
��
��

��
"�
��
�
�
��
��
��
�

���

��

�����������:�����
������7$�����8	;.9
������7$�����8	;./039

������7$�����8	;./3.9
������7$�����8	;./539
������7$�����8	; /.9
�,�-�8�����9 �,�-�8�����+����9

406�����	����

106�����	����

Figure 11: Average request response times for sessions that bring different reward, for ‘high-bursty” traffic, for 100%
server capacity (left) and the 80% server capacity (right) underload situations.

.

3..

 ...

 3..

0...

03..

1...

13..

2...

23..

3...

33..

4...

. 0 1 2 3
 �����
��
�����
������
��
���
�������
�������

!
��
��
��

��
"�
��
�
�
��
��
��
�

���

��

�����������:�����
������7$�����8	;.9
������7$�����8	;./039

������7$�����8	;./3.9
������7$�����8	;./539
������7$�����8	; /.9
�,�-�8�����9 �,�-�8�����+����9

446�����	����
256�����	����

126�����	����

.

1..

4..

=..

 0..

 3..

 <..

0 ..

02..

. 0 1 2 3
 �����
��
�����
������
��
���
�������
�������

!
��
��
��

��
"�
��
�
�
��
��
��
�

���

��

�����������:�����
������7$�����8	;.9
������7$�����8	;./039

������7$�����8	;./3.9
������7$�����8	;./539
������7$�����8	; /.9
�,�-�8�����9 �,�-�8�����+����9

226�����	����1.6�����	����

0.6�����	����

Figure 12: Average request response times for sessions that bring different reward, for “low-bursty” traffic, for the
100% server capacity (left) and the 85% server capacity (right) underload situations.

4.4.2. Server underload
For server underload situations, we ran experiments with both “smooth” (Poisson) and bursty

client loads. The Poisson-modeled web workload generated such a smooth flow of request arrivals,
that all request scheduling algorithms showed more or less the same performance. This happened
because the server queues for the critical resources (threads and DB connections) almost never
built up.
Experiments with the bursty client load showed very different behavior. Fig. 11 and 12 show

average request response times for sessions bringing different reward, for the two bursty client
loads.5 Several conclusions can be drawn from the results of these experiments.
The RDRP methods (as well as the history-based approaches) decrease request response times

for the sessions that bring non-zero reward. This happens because with bursty arrivals (unlike the

5The experiments labeled as “100% of server capacity” were actually ran at a rate slightly lower than the system
capacity, which experienced slight variations because of the non-deterministic behavior of the web application server.
This ensured that our experiment did not slide into the overload mode of server operation.

17

smooth arrival case described above), the queues for the critical server resources (server threads
and DB connections) occasionally build up, and the request prioritization mechanisms minimize
the queueing delays seen by the sessions that bring more reward by assigning their requests higher
priorities. For “high-bursty” traffic, the effects of request prioritization are visible for loads above
approximately 70% of server capacity (in Fig. 11 we show experiments with the load of 100% and
80% of server capacity), while for the “low-bursty” traffic, the effects are visible for the load in the
range of 85%–100% of server capacity.
As in the server overload situation, the performance of the RDRP methods is matched by the

history-based approach only for values of c ≥ 0.5. Under “high-bursty” traffic, RDRP outperforms
the history-based method by up to 58% (for c = 0) and 46% (for c = 0.25). This advantage
of RDRP over the history-based approach diminishes a bit under “low-bursty” traffic conditions
(Fig. 12). The default FIFO method performs worst of all. It is interesting to note that even the
history-based approach with c = 0, which is not supposed to ever correctly guess the session’s
reward, gives lower response times (for all reward values, including 0) than the default FIFO
request scheduling scheme.
To our understanding, this behavior happens for the following reason. The request scheduling

algorithm we adopt to imitate a history-based approach with c = 0 works by uniformly assigning
priorities to sessions as integer values in the range of 0 to 100 (this process does not correlate with
the session reward, therefore corresponds to c = 0). Some sessions get higher priorities than the
other, and all sessions are uniformly sorted into a discrete number of priority buckets. Unlike the
FIFO scheduling case, where all requests have to wait in one long queue produced by a traffic burst,
the uniform session prioritization scheme permits some sessions to sneak ahead of other sessions.
This perturbs the waiting times seen by requests sufficiently so as to achieve an average response
time lower than that seen by the FIFO case.

5. Related Work And Discussion

The notion of a web session — a cornerstone in this work — representing structural orga-
nization of client communication with Internet services was first investigated by Krishnamurthy
and Rolia (1998) and by Cherkasova and Phaal (2002). Since then several other studies have ex-
plored session characterization of web workloads (Menascé et al., 1999; Shi et al., 2002; Akula
and Menascé, 2007). The work by Llambiri et al. (2003) acknowledged that service usage patterns
affect the performance of Internet services, and that understanding the nature of user workloads is
crucial for properly designing and provisioning web servers. Our study follows this trend, by using
aggregated information about client usage of an e-Commerce service to boost the service profit or
other application-specific reward that clients bring to the service provider. Our work combines
information about the workload structures seen at a service with Bayesian inference analysis to
guide the scheduling of bottleneck server resources to incoming client requests.
The idea of profiling client requests and gathering service usage statistics, which later can be

used for various purposes, is itself not new (Srivastava et al., 2000; Ataullah, 2007). An array of
data mining techniques has been proposed to extract information from web access logs for myriad
applications, including one most relevant for this work: to discover customers’ behavioral pat-
terns (Lee and Yen, 2007; Chena et al., 2009). Our use of this information to influence scheduling
of server resources is somewhat novel, differing from past applications of such information that

18

have ranged from reducing user-perceived latencies for personalized web sites (Frias-Martinez and
Karamcheti, 2003) to improving web server caching and prefetching behavior (Yang et al., 2001).
User-perceived response times are determined by two factors: the quality of network transmis-

sion and the processing capacity of the server. With the rapid Internet expansion and the client base
moved away from the slow dial-up connections, most of the (non-mobile) users nowadays have fast
access to the Internet, which makes the server-side request processing time typically a dominant
factor in the overall response delay. Therefore, fast execution of requests at the server side has
become the key factor in providing user perceivable performance. In our work, we concentrate
on server-side mechanisms that improve service performance. Our mechanisms are orthogonal to
such approaches for improving service performance as service distribution, load balancing, and
content adaptation. They are also independent of any network-level performance improvement
mechanisms, application of which proved beneficial in the context of mobile e-Commerce (Awan
and Singh, 2006; Kim and Seo, 2006).
Various forms of admission control have been used to prevent services from being overwhelmed

in the presence of persistent or transient overload. Among these, Session-Based Admission Control
(SBAC) (Cherkasova and Phaal, 2002) is suitable for session-oriented client loads. An overloaded
service can experience a severe loss of throughput measured in completed (successful) sessions
while still maintaining its throughput measured in requests per second. This happens because a
request can be rejected anywhere in the session, even if the session has already had a lot of its
requests served and is very close to completion. The SBAC method works by admitting as many
sessions as can be processed by the service, trying to make sure that if a client starts a session
with the service, it will be successfully completed. However, this approach is oblivious to any
application-specific information, e.g., to the profit brought to the service by different sessions. A
variation of this approach was proposed by Guitart et al. (2007): the authors devised an adaptive
session-based overload control strategy based on SSL (Secure Socket Layer) connection differen-
tiation and admission control.
Several studies investigated the effects of request scheduling and prioritization on web server

performance, for general database-driven dynamic web sites (Elnikety et al., 2004), and for e-
Commerce web sites in particular (Schroeder et al., 2006; Alonso et al., 2007; Zhou et al., 2006). It
was shown that request response times and server throughput can be improved by employing such
scheduling algorithms as Shortest Job First (SJF) (Elnikety et al., 2004) and Shortest Remaining
Processing Time First (Verma and Ghosal, 2003). Some of these studies used request scheduling
algorithms combined with admission control policies (Chen et al., 2001; Elnikety et al., 2004).
Our work shares the same goals as these efforts, but its use of more sophisticated scheduling
policies is somewhat constrained by the hooks exposed by the underlying middleware. In web
studies focusing on static content, the cost of servicing a job is usually approximated by the size
of the downloaded file. For web sites serving dynamic content (e.g., e-Commerce services), it
was noticed that request processing times depend primarily on the request type rather than on
the parameters of the request (Chen et al., 2001; Elnikety et al., 2004). Our work shares the
same observation, using fine-grained request profiling to determine first absolute and then relative
request processing times for different request types. An analogous technique is used by Elnikety
et al. (2004).
A notable difference from our work is that for the most part, the request scheduling studies

above do not pursue the goal of increasing likelihood of session completion (even if they take into

19

account session-oriented nature of client workloads). An exception is the work of Chen and Mo-
hapatra (2002) on the Dynamic Weighted Fairing Sharing request scheduling algorithm (DWFS),
which, among other goals, tries to avoid processing of requests that belong to sessions that are
likely to be aborted in the near future. In trying to increase session completion rate, this study
shares a commonality with our work, which is oriented towards completion of sessions that bring
more service reward.
There have been a number of studies on profit-aware performance management and profit max-

imization for e-Commerce services. One of the first was Menascé et al. (2000), who described a
priority-based resource management policy for a retail e-Commerce web site aiming at maximizing
profit, where customers are classified based on session length and the accumulated money in their
shopping cart. A customer navigating the site for too long with not much value in their shopping
cart is given a low priority in terms of processor and disk use.
Several studies proposed, as we do in this work, profit-based admission control and request

scheduling techniques (Zhang et al., 2003; Carlstrom and Rom, 2002; Verma and Ghosal, 2003;
Tan et al., 2005). Zhang et al. (2003) developed a Profit Aware QoS policy (PAQoS), aimed at
maximizing the web site’s profit under SLA constraints. Carlstrom and Rom (2002) proposed
using queuing of requests based on their types, where a reward function corresponding to the ser-
vice provider’s objective is maximized using techniques for nonlinear optimization. Verma and
Ghosal (2003) proposed an admission control technique to maximize profit of a service, given a
set of Service-Level Agreements (SLAs) that specify reward and penalty parameters of the service.
There are some notable differences between these studies and our approach. These studies assume
that profit is brought by individual requests, while our RDRP approach also allows to count reward
as attained only if the session is completed successfully. Most of them also assume a Generalized
Processor Sharing (GPS) model for request execution, rather than a model of prioritized schedul-
ing of requests to exclusively-held resources, such as server threads and DB connections. In our
opinion, the latter model is a closer match to modern web application server architectures.
Ataullah (2007) shares our vision that (1) in overload conditions online businesses should iden-

tify valuable user sessions and ensure their completion; and that (2) taking into account user be-
havior is important for maximizing service profit. To this end, the author introduced MyQoS, a
framework for identifying valuable user sessions and collecting other service usage information,
which can be used in application-specific service differentiation mechanisms intended to boost ser-
vice profit. Wang and Yue (2009) proposed a simple profit-aware admission control mechanism
for shopping web sites that gives a higher execution priority to clients who made purchases before
and a lower execution priority to all other clients. This approach is similar to the history-based
approach described in this paper, which is shown to have inferior performance (both in profits
gained and response times) to our RDRP approach, if the correlation between the past and present
behaviors of service clients is weak.
Shaaban and Hillston (2009) proposed Cost-Based Admission Control (CBAC) for Internet

Commerce systems, in which rather than rejecting requests in an overload situation, price varia-
tion is used to encourage customers to postpone their requests and return later, by offering them
discounts. For those customers who decide to anyway move forward with the business transaction
(e.g., purchase) the prices are increased. First, this approach requires more tight integration of the
business and technical components of an e-Commerce service, than usually seen in modern Inter-
net Commerce systems. Such tight integration may not be always possible for various business

20

reasons. For example, the service provider (business owner) may not be willing to sacrifice some
profit, by giving away discounts to those customers who agree to return later. Second, increasing
the price for those clients who proceed with the transaction may persuade some of them from using
the service, perceived as expensive, in the future. On the contrary, our RDRP techniques are able
to achieve profit maximization without incurring the aforementioned drawbacks.
Although this paper has demonstrated our work on a sample TPC-W application emulating

an online store selling books, the underlying ideas and the approach are broadly applicable to all
e-Commerce services accessed in a session-oriented fashion, because of the generic way the profit
(reward) is specified in the RDRP method. This is in contrast to several recent studies that target
specific business application or function. For example, in the work of Menascé and Akula (2007), a
request dispatching framework was proposed that aims at improving performance of online auction
sites. While the work of Singhmar et al. (2004) focused specifically on improving performance of
online shopping services. In that work, the authors proposed a combined LIFO-Priority scheme
for overload control of a retail e-Commerce web site, where all service requests are divided among
browser and revenue-generating transaction requests. LIFO scheduling is applied to the browser
requests, while the revenue-generating requests are given the highest priority. Note however, that
while the study shows successful execution of revenue-generating requests, unlike our work, it
does not explicitly address the issue of ensuring successful completion of buying sessions that
contain such requests.
In this study, we have used synthetic web workloads. Utilizing artificial workloads is a common

and widely adopted way to evaluate web server performance. Although not as realistic as using
real web traces, this approach is more convenient for controlled exploration of the range of client
behaviors. The ultimate test of the proposed RDRP method, before one can claim that it can be
used universally in a real commercial setting, should be done utilizing real e-Commerce web logs,
so in the future we plan to evaluate our approach using real web traces.
In the future, we also would like to verify the applicability of the RDRP method to other

types of e-Commerce applications, such as online auctions, applications incorporating third party-
sponsored advertisements, e-Learning applications, and possibly online games. For example, there
has been a report from the industry that the success of a network game highly depends on the
response time and request rejections (Claypool and Claypool, 2006). Another interesting direction
for future work is to investigate the applicability of the RDRP method in mobile commerce (Awan
and Singh, 2006), for example in the context of Location-Based Services (Kupper, 2005).

6. Conclusion

In this paper we have proposed Reward-Driven Request Prioritization (RDRP) mechanisms,
which maximize the profit (or any other application-specific reward) attained by an e-Commerce
service, by dynamically assigning higher execution priorities to the requests whose sessions are
likely to bring more profit (reward) to the service. We have implemented the proposed meth-
ods as pluggable middleware mechanisms in the Java EE application server JBoss (JBoss, 2010),
and tested them on the TPC-W benchmark application (TPC-W, 2005) using CBMG-based web
workloads. Our experiments showed that RDRP techniques yield benefits in both underload and
overload situations, for both smooth and bursty client behavior, against state-of-the-art alternatives
such as session-based admission control and history-based session prioritization approaches. In

21

the situation of service underload the proposed mechanisms gave better response times for the
clients that brought more profit. In the situation of service overload, the mechanisms ensured that
sessions that brought more profit were more likely to complete successfully and that the aggregate
profit attained by the service increased compared to other solutions. Additionally, we showed that
the history-based approach matched performance of our RDRP mechanisms only if the correlation
between the clients’ past and future behaviors reached the mark of 75% for the profit attained, and
50% – for the request response times.

References

Akula, V., Menascé, D. Two-level workload characterization of online auctions. Electronic Com-
merce Research and Applications, 6, 2, 2007, 192–208.

Alonso, J., Guitart, J., Torres, J. Differentiated quality of service for e-Commerce applications
through connection scheduling based on system-level thread priorities. In Proceedings of the
15th Euromicro International Conference on Parallel, Distributed and Network-Based Process-
ing (PDP’07), Naples, Italy, February 2007.

Ataullah, A. MyQoS: A profit oriented framework for exploiting customer behavior in online e-
Commerce environments. In Proceedings of the 8th International Conference on Web Informa-
tion Systems Engineering (WISE’2007), Nancy, France, December 2007.

Awan, I., Singh, S. Performance evaluation of e-Commerce requests in wireless cellular networks.
Information and Software Technology, 48, 6, 2006, 393–401.

Barnes, D., Mookerjee, V. Customer delay in e-Commerce sites: Design and strategic implica-
tions. In G. Adomavicius and A. Gupta (eds.), Business Computing, Handbooks in Information
Systems, Vol. 3, Emerald Group Publishing, Bradford, England, UK, February 2009, 74–85.

Carlstrom, J., Rom, R. Application-aware admission control and scheduling in web servers. In
Proceedings of the 21st IEEE International Conference on Computer Communications (INFO-
COM’02), New York, NY, USA, June 2002.

Chen, H., Mohapatra, P. Session-based overload control in QoS-aware web servers. In Proceedings
of the 21st IEEE International Conference on Computer Communications (INFOCOM’02), New
York, NY, USA, June 2002.

Chen, X., Chen, H., Mohapatra, P. An admission control scheme for predictable server response
time for web accesses. In Proceedings of the 10th International World Wide Web Conference
(WWW’01), Hong Kong, China, May 2001.

Chena, Y.-L., Kuoa, M.-H., Wub, S.-Y., Tang, K. Discovering recency, frequency, and monetary
(RFM) sequential patterns from customers’ purchasing data. Electronic Commerce Research
and Applications, 8, 5, 2009, 241–251.

Cherkasova, L., Phaal, P. Session-based admission control: A mechanism for peak load manage-
ment of commercial web sites. IEEE Transactions on Computers, 51, 6, 2002, 669–685.

22

Claypool, M., Claypool, K. Latency and player actions in online games. Communications of the
ACM, 49, 11, 2006, 40–45.

Elnikety, S., Nahum, E., Tracey, J., Zwaenepoel, W. A method for transparent admission control
and request scheduling in dynamic e-Commerce web sites. In Proceedings of the 13th Interna-
tional World Wide Web Conference (WWW’04), New York, NY, USA, May 2004.

Frias-Martinez, E., Karamcheti, V. Reduction of user perceived latency for a dynamic and per-
sonalized web site using web-mining techniques. In Proceedings of the 5th ACM SIGKDD
Workshop on Web Mining and Web Usage Analysis (WEBKDD’03), Washington, DC, USA,
August 2003.

Guitart, J., Carrera, D., Beltran, V., Torres, J., Ayguadé, E. Designing an overload control strategy
for secure e-Commerce applications. Computer Networks, 51, 15, 2007, 4492–4510.

Java EE. Java Platform Enterprise Edition. http://java.sun.com/javaee/. Accessed in
February 2010.

JBoss. Java EE Application Server. http://www.jboss.org. Accessed in February 2010.

Jetty. HTTP Server and Servlet Container. http://jetty.mortbay.org. Accessed in
February 2010.

Kim, J.-S., Seo, S.-K. Experiment and analysis for QoS of e-Commerce systems. Journal of Theo-
retical and Applied Electronic Commerce Research, 1, 3, 2006, 1–15.

Krishnamurthy, D., Rolia, J. Predicting the performance of an e-Commerce server: Those mean
percentiles. In Proceedings of the 1st ACM SIGMETRICS Workshop on Internet Server Perfor-
mance (WISP’98), Madison, WI, USA, June 1998.

Kupper, A. Location-Based Services: Fundamentals and Operation. Wiley, Hoboken, NJ, USA,
2005.

Lee, Y.-S., Yen, S.-J. Mining web transaction patterns in an electronic commerce environment. In
Advances inWeb and Network Technologies, and InformationManagement: APWeb/WAIM’07
International Workshops, Huang Shan, China, June 2007, Springer, Lecture Notes in Computer
Science, Vol. 4537, 74–85.

Llambiri, D., Totok, A., Karamcheti, V. Efficiently distributing component-based applications
across wide-area environments. In Proceedings of the 23rd International Conference on Dis-
tributed Computing Systems (ICDCS’03), Providence, RI, USA, May 2003.

Menascé, D., Akula, V. A business-oriented load dispatching framework for online auction sites.
In Proceedings of the 4th IEEE International Conference on Quantitative Evaluation of Systems
(QEST’2007), Edinburgh, Scotland, UK, September 2007.

Menascé, D., Almeida, V., Fonseca, R., Mendes, M. A methodology for workload characteriza-
tion of e-Commerce sites. In Proceedings of the 1st ACM Conference on Electronic Commerce
(EC’99), Denver, CO, USA, November 1999.

23

Menascé, D., Almeida, V., Fonseca, R., Mendes, M. Business-oriented resource management poli-
cies for e-Commerce servers. Performance Evaluation, 42, 2–3, 2000, 223–239.

Moskalyuk, A. IT Facts: e-Commerce research blog on ZDNet.com, November 2006.
http://blogs.zdnet.com/ITFacts/?p=12030. Accessed in February 2010.

MySQL. Relational Database. http://www.mysql.com/. Accessed in February 2010.

Schroeder, B., Harchol-Balter, M., Iyengar, A., Nahum, E. Achieving class-based QoS for trans-
actional workloads. In Proceedings of the 22nd International Conference on Data Engineering
(ICDE’06), Atlanta, GA, USA, April 2006.

Shaaban, Y. A., Hillston, J. Cost-based admission control for Internet Commerce QoS enhance-
ment. Electronic Commerce Research and Applications, 8, 3, 2009, 142–159.

Shi, W., Wright, R., Collins, E., Karamcheti, V. Workload characterization of a personalized web
site – and its implications for dynamic content caching. In Proceedings of the 7th International
Workshop on Web Caching and Content Distribution (WCW’02), Boulder, CO, USA, August
2002.

Singhmar, N., Mathur, V., Apte, V., Manjunath, D. A combined LIFO-priority scheme for overload
control of e-Commerce web servers. In Proceedings of the IEEE RTSS International Infrastruc-
ture Survivability Workshop (IISW’04), Lisbon, Portugal, December 2004.

Srivastava, J., Cooley, R., Deshpande, M., Tan, P. Web usage mining: Discovery and applications
of usage patterns from web data. ACM SIGKDD Explorations, 1, 2, 2000, 12–23.

Tan, Y., Moinzadeh, K., Mookerjee, V. Optimal processing policies for an e-Commerce web server.
INFORMS Journal On Computing, 17, 1, 2005, 99–110.

TPC-W. Transactional Web e-Commerce Benchmark, 2005. http://www.tpc.org/tpcw/.
Accessed in February 2010.

TPC-W-NYU. A Java EE implementation of the TPC-W benchmark, November 2005.
http://www.cs.nyu.edu/totok/professional/software/tpcw/tpcw.html.
Accessed in February 2010.

VanBoskirk, S., Li, C., Parr, J. Keeping customers loyal. Industry report. Forrester Research, Cam-
bridge, MA, USA, May 2001.

Varian, H. R. Intermediate Microeconomics: A Modern Approach, Seventh Edition. W. W. Norton
& Company, New York, NY, USA, 2005.

Verma, A., Ghosal, S. On admission control for profit maximization of networked service
providers. In Proceedings of the 12th International World Wide Web Conference (WWW’03),
Budapest, Hungary, May 2003.

Wang, H., Yue, C. Profit-aware overload protection in e-Commerce web sites. Journal of Network
and Computer Applications, 32, 2, 2009, 347–356.

24

Wang, M., Chan, N., Papadimitriou, S., Faloutsos, C., Madhyastha, T. Data mining meets per-
formance evaluation: Fast algorithms for modeling bursty traffic. In Proceedings of the 18th
International Conference on Data Engineering (ICDE’02), San Jose, CA, USA, February 2002.

Yang, Q., Zhang, H., Li, I., Lu, Y. Mining web logs to improve web caching and prefetching. In
Proceedings of the 1st Asia-Pacific Conference on Web Intelligence (WI’01), Maebashi, Japan,
October 2001.

Zhang, Q., Smirni, E., Ciardo, G. Profit-driven service differentiation in transient environments. In
Proceedings of the 11th IEEE International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunications Systems (MASCOTS’03), Orlando, FL, USA, October
2003.

Zhou, X., Wei, J., Xu, C.-Z. Resource allocation for session-based two-dimensional service differ-
entiation on e-Commerce servers. IEEE Transactions on Parallel and Distributed Systems, 17, 8,
2006, 838–850.

25

