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Abstract: In sponsored search advertising (SSA), advertisers need to select keywords and 

determine matching types for selected keywords simultaneously, i.e., keyword targeting. An 

optimal keyword targeting strategy guarantees reaching the right population effectively. This paper 

aims to address the keyword targeting problem, which is a challenging task because of the 

incomplete information of historical advertising performance indices and the high uncertainty in 

SSA environments. First, we construct a data distribution estimation model and apply a Markov 

Chain Monte Carlo method to make inference about unobserved indices (i.e., impression and click-

through rate) over three keyword matching types (i.e., broad, phrase and exact). Second, we 

formulate a stochastic keyword targeting model (BB-KSM) combining operations of keyword 

selection and keyword matching to maximize the expected profit under the chance constraint of 

the budget, and develop a branch-and-bound algorithm incorporating a stochastic simulation 

process for our keyword targeting model. Finally, based on a realworld dataset collected from field 

reports and logs of past SSA campaigns, computational experiments are conducted to evaluate the 

performance of our keyword targeting strategy. Experimental results show that, (a) BB-KSM 

outperforms seven baselines in terms of profit; (b) BB-KSM shows its superiority as the budget 

increases, especially in situations with more keywords and keyword combinations; (c) the 

proposed data distribution estimation approach can effectively address the problem of incomplete 

performance indices over the three matching types and in turn significantly promotes the 

performance of keyword targeting decisions. This research makes important contributions to the 

SSA literature and the results offer critical insights into keyword management for SSA advertisers. 
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1. Introduction 

Sponsored search advertising (SSA) has become one of the most indispensable digital media 

channels. In the United States, SSA spending is projected to reach $171,641 million in 2021 

(Statista, 2021; IAB, 2021). SSA is a prosperous market with three types of players, i.e., search 

users, advertisers and search engines, where keywords serve as a bond tying all three together 

(Yang et al., 2019). In SSA, advertisers have to select an appropriate set of keywords and determine 

matching types for selected keywords simultaneously. This process is called keyword targeting 

(Yang et al., 2019). Keyword targeting controls the aggressive and restrictive degree to which 

consumers’ searches trigger sponsored search auctions, and helps advertisers better fit their 

promoted products to search engines (Kiritchenko and Jiline, 2008)1. Well-targeted keywords will 

guarantee that the right advertisements are delivered to the right consumers (Yang et al., 2017). 

Therefore, it is critical for advertisers to effectively make keyword targeting decisions for their 

SSA campaigns. 

In the literature on SSA, plenty of research efforts have been invested in formulating keyword 

selection models and developing corresponding solution algorithms (e.g., Rusmevichientong and 

Williamson, 2006; Kiritchenko and Jiline, 2008; Zhang et al., 2014), analyzing branded and 

competitor’s keywords (e.g., Desai et al., 2014), and examining keywords’ performance (e.g., Lu 

and Yang, 2017). In another independent research stream, keyword matching has been studied 

extensively in recent years from various aspects: identifying high-quality keywords (Radlinski et 

al., 2008; Gupta et al., 2009; Grbovic et al., 2016), profiling advertising metrics over matching 

types (e.g., Ramaboa and Fish, 2018), and bidding optimization over broad match (e.g., Singh and 

Roychowdhury, 2008; Even Dar et al., 2009; Amaldoss et al., 2016). Operationally, SSA systems 

require advertisers to select a set of keywords and determine how these keywords will be matched 

to search queries (i.e., broad match, phrase match or exact match) at the same time (Du et al., 

2017). In effect, decisions over multiple keywords might be interdependent to each other (Yang et 

al., 2019). Moreover, advertisers need to make advertising decisions in realtime due to the ever-

changing nature of SSA environments (Yang et al., 2022). Conceptually, joint optimization for 

several related advertising decisions can significantly improve the performance of SSA campaigns 

(Yang et al., 2012; Zhang et al., 2012; Nuara et al., 2022). Thus, from both operational and 

                                                 
1 https://support.google.com/google-ads/answer/7478529?hl=en 
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theoretical perspectives, it’s of necessity to address keyword selection and keyword matching 

problems in an integrated way (i.e., keyword targeting), in order to help advertisers effectively 

reach the targeted population. To the best of our knowledge, there is no study on keyword targeting 

for search advertising campaigns. This paper aims to fill this crucial gap in the literature.  

In SSA, advertisers have to face many challenges while making keyword targeting decisions. 

First, advertisers have no complete performance information over the three keyword matching 

types for each keyword. In practice, keyword-level historical records only contain performance 

indices (e.g., impressions and click-through rate) for a certain matching type chosen in past 

advertising campaigns. When making keyword selection decisions, advertisers have to take the 

uniform assumption about performance indices over the three keyword matching types, which 

certainly results in suboptimal solutions because advertising performance indices are 

systematically different over the three keyword matching types (Ramaboa and Fish, 2018; Yang 

et al., 2021a). Second, the SSA environment is highly uncertain (Yang et al., 2013; Li and Yang, 

2020). In such an uncertain market, advertisers must make keyword targeting decisions prior to 

the realization of values for keyword performance indices (Amaldoss et al., 2016). In addition, 

advertisers mostly have limited budgets for SSA campaigns (Yang et al., 2015). That is, advertisers 

need to select appropriate keywords and determine matching types with consideration of their 

budget constraints. 

The objective of this research is to address the keyword targeting problem in the SSA context. 

First, we construct a data distribution estimation model for keyword performance indices over the 

three keyword matching types. It is supposed that performance indices follow the multivariate 

normal distribution over the three matching types. The Markov Chain Monte Carlo method is 

applied to make inference about unobserved performance indices. Second, we formulate a 

stochastic keyword targeting model (BB-KSM for short) to maximize the expected profit under 

the chance constraint of the budget, and develop a branch-and-bound algorithm incorporating a 

stochastic simulation process for our keyword targeting model. Finally, using a realworld dataset 

collected from field reports and logs of past SSA campaign, a series of computational experiments 

are conducted to evaluate the performance of our keyword targeting strategy against seven 

baselines.  

Experimental results show that (a) BB-KSM performs better than seven baselines in terms of 

profit; (b) BB-KSM increasingly shows its superiority as the budget increases, especially in 
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situations with much more keywords and keyword combinations; (c) our data distribution 

estimation approach can effectively address the problem of incomplete information of performance 

indices over keyword matching types and in turn significantly promote the performance of 

keyword targeting decisions. In keyword targeting, strategies with mixed keyword matching 

enriches keyword portfolios and increases the expected profit, compared with those with a single 

matching type. BB-KSM can help advertisers find more high-profit yet low-cost keywords with 

appropriate matching types by searching the keyword targeting space for the global optimum. This 

research contributes to the SSA literature and offers critical implications for SSA advertisers. 

The remainder of this paper is structured as follows. Section 2 provides a brief literature 

review. In Section 3, we build a data distribution estimation model and a stochastic keyword 

targeting model in SSA, and develop algorithms for our models. In Section 4, we conduct 

computational experiments and report results. Finally, we conclude this research in Section 5. 

2. Related Work 

In the SSA field, plentiful research efforts have been made to explore search auction mechanism 

design (e.g., Huang and Kauffman, 2011; Yang et al., 2020) and search user behavior analysis 

(e.g., Lo et al., 2014; Vragov et al., 2019; Lian et al. 2021), empirical analysis of performance 

indices (e.g., Yang et al., 2018; Jeziorski and Moorthy, 2018; Schultz, 2020; Yang and Zhai, 2022), 

and advertising decisions including bidding optimization (e.g., Küçükaydin et al., 2020; Kim et al., 

2021), budget optimization (e.g., Yang et al., 2012; Yang and Xiong, 2020; Avadhanula et al., 

2021; Yang et al., 2021b), and keyword optimization (e.g., Qiao et al., 2017; Nie et al., 2019; 

Scholz et al., 2019; Song et al., 2021; Zhang et al., 2021). This study focuses on one particular 

type of keyword decisions, i.e., keyword targeting, which draws from two research streams, 

namely keyword selection and keyword matching.  

2.1 Keyword Selection  

Keyword selection is the basis for the effectiveness of SSA campaigns (Szymanski and Lininski, 

2018). Researchers have addressed the keyword selection problem through semantic mapping 

(Kiritchenko and Jiline, 2008; Arroyo-Cañada and Gil-Lafuente, 2019; Nagpal and Petersen 2020) 

and optimization techniques (Rusmevichientong and Williamson, 2006; Zhang et al., 2014; Yang 

et al. 2019; Symitsi et al., 2022). Based on the feature selection paradigm, Kiritchenko and Jiline 

(2008) analyzed the historical performance of individual words and phrases generated from users’ 
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queries, selected the most promising keywords extended with highly predictive (positive and 

negative) words to maximize the profit, and showed that their approach can obtain high-quality 

keywords and discover specific combinations of keywords. Arroyo-Cañada and Gil-Lafuente 

(2019) developed a TOPSIS (Technique for order of preference by similarity to ideal solution)-

based method sorting keywords according to their distance to the positive and negative ideal 

solutions, and proved that the proposed method was effective in increasing brand awareness and 

traffic volumes. Nagpal and Petersen (2020) constructed a conceptual framework to identify 

profitable keywords by controlling the endogeneity of competition to measure keyword relevance. 

Keyword selection decisions can also be taken as optimization problems. Rusmevichientong 

and Williamson (2006) identified a profitable set of keywords by sorting keywords in the 

decreasing order of profit-to-cost ratio, and formulated keyword selection as a multi-armed bandit 

problem, taking into account the uncertainty of click-through rate. Under the budget constraint, 

Zhang et al. (2014) took the keyword selection as a mixed integer programming problem with 

objectives of maximizing the profit and the relevance of selected keywords and minimizing the 

competitiveness of these keywords, presented a sequential quadratic programming solver, and 

showed that their method can help increase the revenue for advertisers and search engines. With 

consideration of the entire lifecycle of SSA campaigns, Yang et al. (2019) developed a multilevel 

keyword optimization framework to handle various keyword decisions (e.g., keyword generation, 

keyword selection and keyword assignment), and showed that the proposed framework could reach 

the optimum in a steady way. Based on Markowitz portfolio theory, Symitsi et al. (2022) utilized 

the risk-adjusted performance to construct diversified keyword portfolios and decide which 

keywords to be selected and how much to spend on selected keywords. 

Another research branch focuses on empirical analysis for keyword selection, e.g., analyzing 

the competitor’s keywords (Desai et al., 2014) and keyword attributes (Lu and Yang, 2017). In 

order to understand strategic benefits and costs of selecting keywords about advertisers’ own brand 

names and their competitors’ brand names, Desai et al. (2014) modeled the effectiveness of SSA 

campaigns depending on whether competitors’ advertisements are presented on the same results 

page, and found that selecting keywords about their own brand names can preclude their 

competitors from buying the same keywords, while if both advertisers and their competitors select 

their brand names, a prisoner’s dilemma may be created to hurt both of their profits. Lu and Yang 

(2017) regarded each keyword as a market and developed a structural model to empirically 
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investigate the spillover effects in advertisers’ keyword market entry decisions, i.e., the probability 

that advertisers use a keyword is affected by their competitors’ keyword decisions, and 

demonstrated that the keyword-specific competition can improve search engine’s revenue by 

around 5.7 percent.  

2.2 Keyword Matching 

Our work also builds on the literature on keyword matching in SSA. Choosing a suitable keyword 

matching type for each keyword is essential to the success of advertising campaigns (Ghose and 

Yang, 2009; Li et al., 2016; Ramaboa and Fish, 2018). In general, there are three keyword 

matching types (i.e., broad match, phrase match and exact match) to choose in SSA, as shown in 

Table 1.  

Table 1. Three Keyword Matching Types 

Matching Type Definition Example Keywords Matching Keywords 

Broad match2 searches that include misspellings, 

synonyms, related searches, and 

other relevant variations 

internet advertising Adwords 

Phrase match searches that match a phrase, or 

close variations of that phrase, 

which may include additional 

words before or after 

internet advertising internet advertising 

in China 

Exact match searches that match the exact term 

or are close variations of that 

exact term 

internet advertising internet advertising 

Different matching types lead to different advertising performance for keywords (Ramaboa 

and Fish, 2018). In the field of keyword matching, most research focuses on broad match. On one 

hand, broad match helps advertisers extend keywords that match users’ intent expressed by their 

queries (Radlinski et al., 2008). On the other hand, broad match helps search engines engage more 

competitors in keyword auctions through broader targeting, thus increasing their revenues (Levin 

and Milgrom, 2010).  

SSA allows advertisers to target a large amount of queries but only bids a few keywords with 

the support of broad match. Existing literature in this area has explored broad match from both 

direct and indirect perspectives in SSA. The first research stream studied broad match directly by 

investigating effective broad match mapping mechanisms to help advertisers identify similar 

                                                 
2 In Google Ads, there exists another type of matching option, “Broad match modifier”, which is similar to broad 

match, except that the broad match modifier option only shows ads in searches that includes the words with a plus 

sign. We don’t distinguish broad match and broad match modifier in this research. 
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keywords and thus increasing their advertising reach and reducing their campaign management 

burden (Jones et al., 2006; Radlinski et al., 2008; Gupta et al., 2009; Grbovic et al. 2016). Some 

approaches require offline training based on human-labeled relevance judgments and use similarity 

characteristics to identify associated keywords (Jones et al., 2006; Radlinski et al., 2008). Other 

approaches don’t assume the availability of human supervision. For example, Gupta et al. (2009) 

proposed a machine learning approach utilizing implicit feedback from click-through logs to 

identify high-quality broad match mappings and estimate click-through rate; Grbovic et al. (2016) 

proposed a matching strategy based on semantic embeddings to learn queries and ads from user’s 

search sessions, and showed that their strategy had a good performance in terms of relevance, 

coverage, and the growth of profit.  

The second research stream studied broad match indirectly by addressing optimization 

problems in the context of broad match (Singh and Roychowdhury, 2008; Even Dar et al., 2009; 

Mahdian and Wang, 2009; Amaldoss et al., 2016). Singh and Roychowdhury (2008) provided a 

framework to explore economic outcomes of broad match, and observed that if the quality of broad 

match is good, the auctioneers (i.e., search engines) can always improve their revenue by 

judiciously using broad match. Mahdian and Wang (2009) developed a clustering-based bidding 

language to reduce the bidding complexity and avoid the negative economic effect of broad match. 

Researchers at Google studied bid optimization over broad match (Even Dar et al., 2009), and 

developed a linear programming based polynomial-time algorithm to obtain the optimal profit. 

Focusing on equilibrium analysis of broad match, Amaldoss et al. (2016) examined advertisers’ 

strategies and profits over broad match using a game-theoretic model, and showed that there exists 

an accuracy degree of broad match where advertisers are willing to choose broad match and search 

engines get the highest profit. 

Recent studies have the role of keyword matching types in achieving the advertising 

effectiveness. Ramaboa and Fish (2018) analyzed the influence of various SSA metrics (i.e., the 

length, click-through rate, cost-per-click, position, and quality score) on bidding results over the 

three matching types, and showed that as the keyword matching types become narrower, almost 

all the keyword performance indices increase, but there is no significant change in cost per click. 

Du et al. (2017) constructed a hierarchical Bayesian framework to study the influence of keyword 

matching types on the advertising performance, and demonstrated the importance of differentiating 

bidding strategies over various matching types. Yang et al. (2021a) empirically explored the 
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relationship between matching types and the advertising performance, and showed that exact 

match led to better performance than broad match. 

2.3 Budget Optimization 

How to efficiently allocate the limited advertising budget is the first and foremost problem faced 

by SSA advertisers (Yang et al., 2012; Yang and Xiong, 2020; Avadhanula et al., 2021; Yang et 

al., 2021b), which heavily affects other advertising decisions including keyword selection and 

keyword matching (Rusmevichientong and Williamson, 2006; Zhang et al., 2014; Yang et al., 

2019).  

With consideration of the entire life cycle of advertising campaigns, Yang et al. (2012) 

developed a hierarchical budget optimization framework (BOF) to handle budget decisions at three 

levels: allocation across search markets, temporal distribution over a series of slots (e.g., days) and 

adjustment of the remaining budget (e.g., daily budgeting), and presented a set of solution 

algorithms to efficiently solve identified budget decision problems in SSA. In a consequent work, 

Yang et al. (2014) proposed a dynamic multi-campaign budget planning strategy using optimal 

control techniques, with consideration of the substitution relationship between campaigns from 

three dimensions, i.e., campaign contents, promotional periods, and target regions, and showed 

that the overlapping degree between campaigns has serious effects on budgeting decisions and 

advertising performance.  

With consideration of the budget constraint, the inventory constraint during the promotion 

season and the unknown relationship between the advertising expenditure and consequent sales, 

Yang and Xiong (2020) developed a nonparametric dynamic budget allocation strategy combining 

the exploration of learning the market sales response and the exploitation of planning the budget, 

and showed that their strategy was asymptotically optimal as the market size increases and 

achieved the near-best asymptotic performance in a worst-case. By explicitly considering the long-

term influence of ad exposures to users, Hao et al. (2020) formulated a bi-level optimization 

framework for bidding strategy learning for each user and budget allocation among all users, and 

showed that their algorithm performed well in terms of cumulative revenue. Avadhanula et al. 

(2021) took the budget allocation across multiple platforms as a stochastic bandit with knapsacks 

problem, and developed an algorithm for both the discrete and continuous bid-spaces. Yang et al. 

(2021b) formulated the budget allocation as an optimal control problem with a generalized Vidale–

Wolfe model (Yang et al., 2021c) as advertising dynamics, taking into account two useful indexes 
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representing the advertising elasticity and the word-of-mouth (WoM) effect, and showed that their 

strategy outperforms other VW derivatives in terms of both payoff and ROI in either concave or 

S-shaped settings.  

2.4 Summary 

Table 2 summarizes the related literature on keyword selection and keyword matching from four 

aspects of techniques used, whether it considers keyword selection, includes the three matching 

types, and provides solutions.  

Table 2. Keyword Targeting Related Research 

Reference Techniques Keyword 

Selection 

Keyword 

Matching Types 

Solution 

Jones et al. (2006) Linear regression, Linear SVMs, 

Decision trees 

No Broad match Yes 

Rusmevichientong 

and Williamson 

(2006) 

Adaptive approximation  Yes None Yes 

Kiritchenko and 

Jiline (2008) 

Feature selection Yes None Yes 

Radlinski et al. 

(2008) 

Support vector regression No Broad match 

and exact match 

Yes 

Singh and 

Roychowdhury 

(2008) 

Graph model No Broad match Yes 

Even Dar et al. 

(2009) 

Linear programming  No Broad match 

and exact match 

Yes 

Mahdian and Wang 

(2009) 

Approximation algorithm No Broad match Yes 

Gupta et al. (2009) Max-margin voted perceptron No Broad match Yes 

Desai et al. (2014) Game-theoretic model Yes None No 

Zhang et al. (2014) Mixed integer optimization Yes None Yes 

Amaldoss et al. 

(2016) 

Game-theoretic model No Broad match 

and exact match 

No 

Grbovic et al. 

(2016) 

Distributed language model No Broad match Yes 

Du et al. (2017) Hierarchical Bayesian model, MCMC Yes All three types No 

Lu and Yang 

(2017) 

Hierarchical Bayesian model, MCMC Yes None No 

Ramaboa and Fish 

(2018) 

Hypothesis testing No All three types No 
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Arroyo-Cañada and 

Gil-Lafuente 

(2019) 

Technique for order of preference by 

similarity to ideal solution (TOPSIS) 

Yes None Yes 

Yang et al. (2019) Multilevel optimization Yes None Yes 

Nagpal and 

Petersen (2020) 

Tobit model, Latent semantic analysis Yes None Yes 

Yang et al. (2021a) Difference-in-difference-in-difference 

(DDD) 

Yes All three types No 

Symitsi et al. 

(2022) 

Markowitz portfolio theory  Yes None Yes 

This study MCMC, Stochastic programming Yes All three types Yes 

As illustrated in Table 2, prior research explored either keyword selection or keyword 

matching separately, while ignoring the necessity of addressing keyword selection and keyword 

matching problems in an integrated manner. This study fills the research gap by providing an 

effective optimization strategy for keyword targeting to select keywords and determine matching 

types simultaneously. To the best of our knowledge, this is the first study in this direction.  

3. The Model and Solution 

This section is split into two stages, i.e., the data distribution estimation for keyword performance 

indices and stochastic optimization for keyword targeting. In the first stage, we construct a data 

distribution estimation model and apply a Markov Chain Monte Carlo method (Chen et al., 2000) 

to make inference about unobserved keyword performance indices over the three matching types. 

In the second stage, based on the data estimation results, we construct a stochastic keyword 

targeting model combining operations of keyword selection and keyword matching, and develop 

a branch-and-bound algorithm incorporating a stochastic simulation process to solve our keyword 

targeting model. The notations used in this paper are listed in Table 3. 

Table 3. Notations 

Notation Definition 

𝑑𝑘,𝑗,𝑖 The number of impressions of keyword 𝑘 in ad-group 𝑗 over matching type 𝑖  

𝑐𝑘,𝑗,𝑖 The click-through rate (CTR) of keyword 𝑘 in ad-group 𝑗 over matching type 𝑖 

𝑣𝑘,𝑗 The value-per-click (VPC) of keyword 𝑘 in ad-group 𝑗 

𝑝𝑘,𝑗 The cost-per-click (CPC) of keyword 𝑘 in ad-group 𝑗 

𝜃𝑗
𝑑(𝜃𝑗

𝑐) The 3-dimensional mean vector of a multivariate normal distribution for impressions 

(or CTRs) in ad-group 𝑗 



11 

 

Σ𝑗
𝑑(Σ𝑗

𝑐) The 3 × 3 covariance matrix of a multivariate normal distribution for impressions (or 

CTRs) in ad-group 𝑗 

𝜇0
𝑑(𝜇0

𝑐) The prior mean of 𝜃𝑗
𝑑(𝜃𝑗

𝑐) for impressions (or CTRs) 

Λ0
𝑑(Λ0

𝑐 ) The prior variance of 𝜃𝑗
𝑑(𝜃𝑗

𝑐) for impressions (or CTRs) 

𝜈0
𝑑(𝜈0

𝑐) The prior scalar parameter of Σ𝑗
𝑑(Σ𝑗

𝑐) for impressions (or CTRs) 

𝑆0
𝑑−1

(𝑆0
𝑐−1

) The prior matrix parameter of Σ𝑗
𝑑(Σ𝑗

𝑐) for impressions (or CTRs) 

x𝑘,𝑗,𝑖 The binary decision variable indicating whether matching type 𝑖 is determined for 

keyword 𝑘 in ad-group 𝑗 or not 

𝐵 The budget for a SSA campaign 

𝛼 The prescribed probability of the budget chance constraint  

𝑛𝑗 The number of keywords in ad-group 𝑗 

𝑚 The number of ad-groups 

 

3.1 Data Distribution Estimation for Keyword Performance Indices 

In SSA, advertisers choose a matching type for each selected keyword. In practice, keyword 

performance indices only over the chosen matching type can be observed in the promotional period. 

This results in a problem of incomplete information about performance indices over the keyword 

matching types. Thus, before making keyword targeting decisions, advertisers have to make 

inference about keyword performance indices over the three matching types. More specifically, 

given a set of keywords and performance indices for each keyword over a certain matching type 

in a promotional period, how to make inference about unobserved performance indices for each 

keyword over the other keyword matching types? 

3.1.1 Data Distribution Estimation Model 

We use a fully Bayesian model (Carrigan et al., 2007) to jointly simulate distributions of keyword 

performance indices with unobserved data over all the three matching types. Let 𝑑𝑘,𝑗,𝑖 denote the 

number of impressions of keyword 𝑘 (𝑘 = 1,2, … , 𝑛)  in ad-group 𝑗 (𝑗 = 1,2, … , 𝑚)  over 

matching type 𝑖 in a search market, 𝑖 = 1,2,3 indicates exact match, phrase match and broad match, 

respectively. Let 𝑐𝑘,𝑗,𝑖 denote click-through rate (CTR) of keyword 𝑘 in ad-group 𝑗 over matching 

type 𝑖. Since cost-per-click (CPC) and value-per-click (VPC) are not significantly influenced by 
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matching types (Ramaboa and Fish, 2018), we denote CPC and VPC of keyword 𝑘 in ad-group 𝑗 

as 𝑝𝑘,𝑗 and 𝑣𝑘,𝑗, respectively.  

Keywords in the same ad group focus on one or more common promotional products (or 

services) 3 , and thus are closely related. Hence, we assume that performance indices (i.e., 

impression and CTR) for keywords in the same ad-group over the three matching types follow the 

same multivariate normal (MVN) distribution. Then the data distribution estimation problem for 

keyword performance indices can be transferred into the one for ad-group performance indices. 

Specifically, given an advertising campaign with 𝑚 ad-groups where there are 𝑛𝑗  keywords in ad-

group 𝑗 (𝑗 = 1, … , 𝑚), we denote the number of impressions of keyword 𝑘 over the three matching 

types in ad-group 𝑗 as 𝑑𝑘,𝑗 = (𝑑𝑘,𝑗,1, 𝑑𝑘,𝑗,2, 𝑑𝑘,𝑗,3)𝑇, 𝑘 = 1, … , 𝑛𝑗.4  

As impressions are non-negative ( 𝑑𝑘,𝑗,𝑖 ≥ 0 ), we use the log function to transform 

impressions from the interval [0, +∞)  into the real line (−∞, +∞) , i.e., 𝑑𝑘,𝑗
′ =

(𝑑𝑘,𝑗,1
′ , 𝑑𝑘,𝑗,2

′ , 𝑑𝑘,𝑗,3
′ )𝑇 = (𝑙𝑜𝑔(𝑑𝑘,𝑗,1), 𝑙𝑜𝑔(𝑑𝑘,𝑗,2), 𝑙𝑜𝑔(𝑑𝑘,𝑗,3))

𝑇
.5 We assume 𝑑𝑘,𝑗

′ ~𝑀𝑉𝑁(𝜃𝑗
𝑑 , Σ𝑗

𝑑), 

where 𝑀𝑉𝑁(𝜃𝑗
𝑑, Σ𝑗

𝑑) is a MVN distribution characterized by a 3-dimensional mean vector (𝜃𝑗
𝑑) 

and a 3 × 3 covariance matrix (Σ𝑗
𝑑 ). Formally, the distribution estimation model for ad-group 

impressions is given as 

𝑑𝑘,𝑗
′ ~𝑀𝑉𝑁(𝜃𝑗

𝑑, Σ𝑗
𝑑),  

𝜃𝑗
𝑑 = [

𝐸(𝑑𝑗,1
′ )

𝐸(𝑑𝑗,2
′ )

𝐸(𝑑𝑗,3
′ )

],  

Σ𝑗
𝑑 = [

Σ𝑗,11
𝑑 Σ𝑗,12

𝑑 Σ𝑗,13
𝑑

Σ𝑗,21
𝑑 Σ𝑗,22

𝑑 Σ𝑗,23
𝑑

Σ𝑗,31
𝑑 Σ𝑗,32

𝑑 Σ𝑗,33
𝑑

],  

𝑘 = 1,2, … , 𝑛𝑗 , 𝑗 = 1,2, … , 𝑚.            (1) 

                                                 
3 https://support.google.com/google-ads/answer/2375404?hl=en 
4 In the rest of this paper we use “the number of impressions” and “impressions” interchangeably.  
5 Since the log function is undefined at zero, when the number of impressions is equal to zero, we add a very small 

positive number close to zero to it to ensure the smooth operation in the transformation. 
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In Bayesian statistics, the conjugate prior of the mean vector 𝜃𝑗
𝑑 of a MVN is another MVN, 

while the conjugate prior of the covariance matrix Σ𝑗
𝑑 of a MVN is an inverse-Wishart distribution, 

which are given as 

𝜃𝑗
𝑑~ 𝑀𝑉𝑁(𝜇0

𝑑, Λ0
𝑑),           (2) 

Σ𝑗
𝑑~ 𝑖𝑛𝑣𝑒𝑟𝑠𝑒𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝜈0

𝑑, 𝑆0
𝑑−1

),           (3) 

where 𝜇0
𝑑 and Λ0

𝑑 are the prior mean and variance of 𝜃𝑗
𝑑 for impressions, respectively; 𝜈0

𝑑 is the 

degree of freedom and 𝑆0
𝑑−1

 is the scale matrix.  

Analogously, we denote the CTR for keyword 𝑘 over the three matching types 𝑖 = 1,2,3 in 

ad-group 𝑗 (𝑗 = 1, … , 𝑚) as 𝑐𝑘,𝑗 = (𝑐𝑘,𝑗,1, 𝑐𝑘,𝑗,2, 𝑐𝑘,𝑗,3)𝑇, 𝑘 = 1, … , 𝑛𝑗 . We use the logit function 

(i.e., the inverse of the sigmoid function) to transform the CTR values from the interval [0,1] into 

the real line (−∞, +∞) . 6 Then 𝑐𝑘,𝑗
′ = (𝑐𝑘,𝑗,1

′ , 𝑐𝑘,𝑗,2
′ , 𝑐𝑘,𝑗,3

′ )𝑇 =

(𝑙𝑜𝑔𝑖𝑡(𝑐𝑘,𝑗,1), 𝑙𝑜𝑔𝑖𝑡(𝑐𝑘,𝑗,2), 𝑙𝑜𝑔𝑖𝑡(𝑐𝑘,𝑗,3))
𝑇
 obeys a MVN distribution 𝑀𝑉𝑁(𝜃𝑗

𝑐, Σ𝑗
𝑐), where 𝜃𝑗

𝑐 =

(𝐸[𝑐𝑗,1
′ ], 𝐸[𝑐𝑗,2

′ ], 𝐸[𝑐𝑗,3
′ ])𝑇 is a 3-dimensional mean vector, and Σ𝑗

𝑐 is a 3 × 3 covariance matrix for 

CTRs. Formally, the distribution estimation model for ad-group CTRs is given as 

𝑐𝑘,𝑗
′ ~𝑀𝑉𝑁(𝜃𝑗

𝑐, Σ𝑗
𝑐),  

𝜃𝑗
𝑐 = [

𝐸(𝑐𝑗,1
′ )

𝐸(𝑐𝑗,2
′ )

𝐸(𝑐𝑗,3
′ )

],  

Σ𝑗
𝑐 = [

Σ𝑗,11
𝑐 Σ𝑗,12

𝑐 Σ𝑗,13
𝑐

Σ𝑗,21
𝑐 Σ𝑗,22

𝑐 Σ𝑗,23
𝑐

Σ𝑗,31
𝑐 Σ𝑗,32

𝑐 Σ𝑗,33
𝑐

],  

𝑘 = 1,2, … , 𝑛𝑗 , 𝑗 = 1,2, … , 𝑚.           (4) 

𝜃𝑗
𝑐~ 𝑀𝑉𝑁(𝜇0

𝑐, Λ0
𝑐 ).           (5) 

Σ𝑗
𝑐~ 𝑖𝑛𝑣𝑒𝑟𝑠𝑒𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝜈0

𝑐, 𝑆0
𝑐−1

).            (6) 

                                                 
6 Since the logit function is undefined at zero and one, when the CTR is equal to zero, we add a very small positive 

number close to zero to it; when the CTR is equal to one, we subtract a very small positive number close to zero from 

it.  
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Based on the above distribution estimation models for impressions and CTRs, we apply the 

Markov Chain Monte Carlo method (MCMC) method (Gamerman and Lopes, 2006) to make 

inference about the model parameters and unobserved performance indices. 

3.1.2 Gibbs Sampling 

The process of solving the distribution estimation models for impressions and CTRs through Gibbs 

sampling are similar. In the following, we take impressions to illustrate the process. To simplify 

notations, we use 𝑑𝑗 = {𝑑1,𝑗, 𝑑2,𝑗, … , 𝑑𝑛𝑗,𝑗} to represent the log-transformed impressions7. For ad-

group 𝑗, the distribution of the mean vector 𝜃𝑗
𝑑 is 

𝑝(𝜃𝑗
𝑑) =  𝑀𝑉𝑁(𝜇0

𝑑, Λ0
𝑑)  

= (2𝜋)−3/2|Λ0
𝑑|−1/2exp {−

1

2
(𝜃𝑗

𝑑 − 𝜇0
𝑑)

𝑇
Λ0

𝑑−1
(𝜃𝑗

𝑑 − 𝜇0
𝑑)}  

= (2𝜋)−3/2|Λ0
𝑑|−1/2exp {−

1

2
𝜃𝑗

𝑑𝑇
Λ0

𝑑−1
𝜃𝑗

𝑑 + 𝜃𝑗
𝑑𝑇

Λ0
𝑑−1

𝜇0
𝑑 −

1

2
𝜇0

𝑑𝑇
Λ0

𝑑−1
𝜇0

𝑑}  

∝ exp {−
1

2
𝜃𝑗

𝑑𝑇
Λ0

𝑑−1
𝜃𝑗

𝑑 + 𝜃𝑗
𝑑𝑇

Λ0
𝑑−1

𝜇0
𝑑}  

= exp {−
1

2
𝜃𝑗

𝑑𝑇
𝐴0

𝑑𝜃𝑗
𝑑 + 𝜃𝑗

𝑑𝑇
𝑏0

𝑑},          (7) 

where 𝐴0
𝑑 = Λ0

𝑑−1
 and 𝑏0

𝑑 = Λ0
𝑑−1

𝜇0
𝑑.  

Equation (7) implies that, if 𝜃𝑗
𝑑  has a density on ℝ3  that is proportional to 

𝑒𝑥𝑝 {−
1

2
𝜃𝑗

𝑑𝑇
𝐴0

𝑑𝜃𝑗
𝑑 + 𝜃𝑗

𝑑𝑇
𝑏0

𝑑}, then it  must have a MVN with covariance 𝐴0
𝑑−1

 and mean 𝐴0
𝑑−1

𝑏0
𝑑. 

In our sampling model, keyword impressions in ad-group 𝑗 , i.e., {𝑑1,𝑗, … , 𝑑𝑛𝑗,𝑗} , are 

independent and identically distributed 𝑀𝑉𝑁(𝜃𝑗
𝑑 , Σ𝑗

𝑑) . Then the joint sampling density of 

impressions is given as 

𝑝 (𝑑1,𝑗, … , 𝑑𝑛𝑗,𝑗|𝜃𝑗
𝑑 , Σ𝑗

𝑑)  

= ∏ (2𝜋)−3/2𝑛𝑗

𝑘=1 |Σ𝑗
𝑑|−1/2exp {−

1

2
(𝑑𝑘,𝑗 − 𝜃𝑗

𝑑)
𝑇

Σ𝑗
𝑑−1

(𝑑𝑘,𝑗 − 𝜃𝑗
𝑑)}  

= (2𝜋)−3𝑛𝑗/2|Σ𝑗
𝑑|−𝑛𝑗/2 exp {−

1

2
∑ (𝑑𝑘,𝑗 − 𝜃𝑗

𝑑)
𝑇

Σ𝑗
𝑑−1

(𝑑𝑘,𝑗 − 𝜃𝑗
𝑑)

𝑛𝑗

𝑘=1 }  

∝ exp {−
1

2
𝜃𝑗

𝑑𝑇
𝐴1

𝑑𝜃𝑗
𝑑 + 𝜃𝑗

𝑑𝑇
𝑏1

𝑑},          (8) 

                                                 
7 In the model and experiments, estimated impressions and CTRs are transformed back from (−∞, +∞) to [0, +∞) 

and [0,1] using the inverse functions, separately.  
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where 𝐴1
𝑑 = 𝑛Σ𝑗

𝑑−1
, 𝑏1

𝑑 = 𝑛Σ𝑗
𝑑−1

𝑑̅𝑗, and 𝑑̅𝑗 is the vector of impression-specific averages over the 

three matching types, i.e.,  

𝑑̅𝑗 = (
1

𝑛𝑗
∑ 𝑑𝑘,𝑗,1

𝑛𝑗

𝑘=1 ,
1

𝑛𝑗
∑ 𝑑𝑘,𝑗,2

𝑛𝑗

𝑘=1 ,
1

𝑛𝑗
∑ 𝑑𝑘,𝑗,3

𝑛𝑗

𝑘=1 )𝑇.           (9) 

Combining Equations (7) and (8) yields 

𝑝 (𝜃𝑗
𝑑|𝑑1,𝑗, … , 𝑑𝑛𝑗,𝑗 , Σ𝑗

𝑑)  

∝ exp {−
1

2
𝜃𝑗

𝑑𝑇
𝐴0

𝑑𝜃𝑗
𝑑 + 𝜃𝑗

𝑑𝑇
𝑏0

𝑑} × exp {−
1

2
𝜃𝑗

𝑑𝑇
𝐴1

𝑑𝜃𝑗
𝑑 + 𝜃𝑗

𝑑𝑇
𝑏1

𝑑}  

= exp {−
1

2
𝜃𝑗

𝑑𝑇
𝐴𝑛

𝑑𝜃𝑗
𝑑 + 𝜃𝑗

𝑑𝑇
𝑏𝑛

𝑑},          (10) 

where 𝐴𝑛
𝑑 = 𝐴0

𝑑 + 𝐴1
𝑑 = Λ0

𝑑−1
+ 𝑛Σ𝑗

𝑑−1
 and 𝑏𝑛

𝑑 = 𝑏0
𝑑 + 𝑏1

𝑑 = Λ0
𝑑−1

𝜇0
𝑑 + 𝑛Σ𝑗

𝑑−1
𝑑̅𝑗.  

Equation (10) implies that the conditional distribution of the mean vector for impressions (𝜃𝑗
𝑑) 

must be a MVN with covariance 𝐴𝑛
𝑑−1

 and mean 𝐴𝑛
𝑑−1

𝑏𝑛
𝑑. Then we have 

𝐸 [𝜃𝑗
𝑑|𝑑1,𝑗, … , 𝑑𝑛𝑗,𝑗, Σ𝑗

𝑑] = 𝜇𝑛
𝑑 = (Λ0

𝑑−1
+ 𝑛Σ𝑗

𝑑−1
)

−1

(Λ0
𝑑−1

𝜇0
𝑑 + 𝑛Σ𝑗

𝑑−1
𝑑̅𝑗),           (11) 

𝐶𝑜𝑣 [𝜃𝑗
𝑑|𝑑1,𝑗, … , 𝑑𝑛𝑗,𝑗, Σ𝑗

𝑑] = Λ𝑛
𝑑 = (Λ0

𝑑−1
+ 𝑛Σ𝑗

𝑑−1
)

−1

,           (12) 

𝑝 (𝜃𝑗
𝑑|𝑑1,𝑗, … , 𝑑𝑛𝑗,𝑗 , Σ𝑗

𝑑) = 𝑀𝑉𝑁(𝜇𝑛
𝑑, Λ𝑛

𝑑 ),           (13) 

The density of covariance matrix Σ𝑗
𝑑 is given by the inverse-Wishart (𝜈0

𝑑 , 𝑆0
𝑑−1

), i.e,  

𝑝(Σ𝑗
𝑑) = [2

3𝜈0
𝑑

2 𝜋
3

2|𝑆0
𝑑|

−
𝜈0

𝑑

2 ∏ Γ (
[𝜈0

𝑑+1−𝑖]

2
)3

𝑖=1 ]

−1

× |Σ𝑗
𝑑|

−(𝜈0
𝑑+4)/2

× exp {−
1

2
𝑡𝑟(𝑆0

𝑑Σ𝑗
𝑑−1

)}. (14) 

To combine the above prior distribution 𝑝(Σ𝑗
𝑑) with the sampling distribution for impressions, 

we can rewrite the sampling distribution in Equation (8) as 

𝑝 (𝑑1,𝑗, … , 𝑑𝑛𝑗,𝑗|𝜃𝑗
𝑑 , Σ𝑗

𝑑)  

= (2𝜋)−
3𝑛𝑗

2 |Σ𝑗
𝑑|

−
𝑛𝑗

2 exp {−
1

2
∑ (𝑑𝑘,𝑗 − 𝜃𝑗

𝑑)
𝑇

Σ𝑗
𝑑−1

(𝑑𝑘,𝑗 − 𝜃𝑗
𝑑)

𝑛𝑗

𝑘=1 }  

= (2𝜋)−
3𝑛𝑗

2 |Σ𝑗
𝑑|−

𝑛𝑗

2 exp {−
1

2
𝑡𝑟(𝑆𝜃

𝑑Σ𝑗
𝑑−1

)},           (15) 

where 𝑆𝜃
𝑑 = ∑ (𝑑𝑘,𝑗 − 𝜃𝑗

𝑑)
𝑛𝑗

𝑘=1 (𝑑𝑘,𝑗 − 𝜃𝑗
𝑑)

𝑇
. 

Combining Equations (14) and (15), we have the conditional distribution of the covariance 

matrix Σ𝑗
𝑑, given as 
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𝑝 (Σ𝑗
𝑑|𝑑1,𝑗, … , 𝑑𝑛𝑗,𝑗, 𝜃𝑗

𝑑)  

∝ 𝑝(Σ𝑗
𝑑) × 𝑝 (𝑑1,𝑗, … , 𝑑𝑛𝑗,𝑗|𝜃𝑗

𝑑 , Σ𝑗
𝑑)  

∝ (|Σ𝑗
𝑑|

−(𝜈0
𝑑+4)/2

× exp {−
1

2
𝑡𝑟(𝑆0

𝑑Σ𝑗
𝑑−1

)}) × (|Σ𝑗
𝑑|−

𝑛𝑗

2 exp {−
1

2
𝑡𝑟(𝑆𝜃

𝑑Σ𝑗
𝑑−1

)})  

= |Σ𝑗
𝑑|

−(𝜈0
𝑑+𝑛𝑗+4)/2

exp {−
1

2
𝑡𝑟([𝑆0

𝑑 + 𝑆𝜃
𝑑]Σ𝑗

𝑑−1
)}.           (16) 

Thus, we have 

{Σ𝑗
𝑑|𝑑1,𝑗, … , 𝑑𝑛𝑗,𝑗, 𝜃𝑗

𝑑} ~𝑖𝑛𝑣𝑒𝑟𝑠𝑒𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝜈0
𝑑 + 𝑛𝑗 , [𝑆0

𝑑 + 𝑆𝜃
𝑑]−1).           (17) 

Let 𝑂𝑘,𝑗 = (𝑂𝑘,𝑗,1, 𝑂𝑘,𝑗,2, 𝑂𝑘,𝑗,3)𝑇 be a binary vector where 𝑂𝑘,𝑗,𝑖 = 1 implies that in ad-group 

𝑗, the number of impressions of keyword 𝑘 over matching type 𝑖 (i.e., 𝑑𝑘,𝑗,𝑖) is observed, whereas 

𝑂𝑘,𝑗,𝑖 = 0 implies that 𝑑𝑘,𝑗,𝑖 is unobserved. In SSA, we can assume that unobserved impressions 

are missing at random, i.e., 𝑂𝑘,𝑗 and 𝑑𝑘,𝑗 are statistically independent, and that the distribution of 

𝑂𝑘,𝑗 does not depend on 𝜃𝑗
𝑑 or Σ𝑗

𝑑. The sampling probability for impressions from keyword 𝑘 in 

ad-group  𝑗 is 𝑝(𝑂𝑘,𝑗)  multiplied by the marginal probability of observed impressions after 

integrating out unobserved impressions, i.e.,  

𝑝(𝑂𝑘,𝑗, {𝑑𝑘,𝑗,𝑖: 𝑂𝑘,𝑗,𝑖 = 1}|𝜃𝑗
𝑑, Σ𝑗

𝑑)  

= 𝑝(𝑂𝑘,𝑗) × 𝑝({𝑑𝑘,𝑗,𝑖: 𝑂𝑘,𝑗,𝑖 = 1}|𝜃𝑗
𝑑, Σ𝑗

𝑑)  

= 𝑝(𝑂𝑘,𝑗) × ∫ {𝑝(𝑑𝑘,𝑗,1, 𝑑𝑘,𝑗,2, 𝑑𝑘,𝑗,3)|𝜃𝑗
𝑑, Σ𝑗

𝑑) ∏ 𝑑(𝑑𝑘,𝑗,𝑖)𝑑𝑘,𝑗,𝑖:𝑂𝑘,𝑗,𝑖=0 }.           (18) 

The integration in Equation (18) can be done using Gibbs sampling to make inference about 

𝜃𝑗
𝑑, Σ𝑗

𝑑 and impressions over unobserved keyword matching types. 

Let 𝑑𝑗  be a 𝑛𝑗 × 3  matrix of the observed and unobserved impressions over the three 

matching types in ad-group 𝑗, 𝑂𝑗 be a 𝑛𝑗 × 3 matrix. Then 𝑑𝑗 can be assumed to be composed of 

two parts: one is the observed impressions 𝑑𝑗
𝑜𝑏𝑠 = {𝑑𝑘,𝑗,𝑖: 𝑂𝑘,𝑗,𝑖 = 1}; another is the unobserved 

impressions 𝑑𝑗
𝑢𝑛𝑜𝑏𝑠 = {𝑑𝑘,𝑗,𝑖: 𝑂𝑘,𝑗,𝑖 = 0}. To approximate the posterior distribution of unknown 

and unobserved quantities 𝑝(𝜃𝑗
𝑑, Σ𝑗

𝑑, 𝑑𝑗
𝑢𝑛𝑜𝑏𝑠|𝑑𝑗

𝑜𝑏𝑠), we build a Gibbs sampling scheme as follows. 

Given starting values {Σ𝑗
𝑑(0)

,  𝑑𝑗
𝑢𝑛𝑜𝑏𝑠(0)

} , we generate {𝜃𝑗
𝑑(𝑠+1)

, Σ𝑗
𝑑(𝑠+1)

,  𝑑𝑗
𝑢𝑛𝑜𝑏𝑠(𝑠+1)

}  from 

{𝜃𝑗
𝑑(𝑠)

, Σ𝑗
𝑑(𝑠)

, 𝑑𝑗
𝑢𝑛𝑜𝑏𝑠(𝑠)

} through the following process: 

1) sampling 𝜃𝑗
𝑑(𝑠+1)

 from 𝑝 (𝜃𝑗
𝑑|𝑑𝑗

𝑜𝑏𝑠,  𝑑𝑗
𝑢𝑛𝑜𝑏𝑠(𝑠)

, Σ𝑗
𝑑(𝑠)

); 



17 

 

2) sampling Σ𝑗
𝑑(𝑠+1)

 from 𝑝 (Σ𝑗
𝑑|𝑑𝑗

𝑜𝑏𝑠,  𝑑𝑗
𝑢𝑛𝑜𝑏𝑠(𝑠)

, 𝜃𝑗
𝑑(𝑠+1)

); 

3) sampling 𝑑𝑗
𝑢𝑛𝑜𝑏𝑠(𝑠+1)

 from 𝑝 (𝑑𝑗
𝑢𝑛𝑜𝑏𝑠|𝑑𝑗

𝑜𝑏𝑠, 𝜃𝑗
𝑑(𝑠+1)

, Σ𝑗
𝑑(𝑠+1)

). 

In steps 1 and 2, for ad-group 𝑗, the fixed observed impressions (𝑑𝑗
𝑜𝑏𝑠) is combined with the 

current sampled unobserved impressions ( 𝑑𝑗
𝑢𝑛𝑜𝑏𝑠(𝑠)

) to shape a complete matrix of impressions 

in the 𝑠-th round of sampling (𝑑𝑗
(𝑠)

). The 𝑛𝑗  rows of the impression matrix (𝑑𝑗
(𝑠)

) can be plugged 

into Equations (13) and (17) to obtain the full conditional distributions of the MVN parameters 

(𝜃𝑗
𝑑 and Σ𝑗

𝑑). In Step 3, we sample the unobserved elements conditional on the observed elements 

of the keyword impression matrix: 

𝑝(𝑑𝑗
𝑢𝑛𝑜𝑏𝑠|𝑑𝑗

𝑜𝑏𝑠, 𝜃𝑗
𝑑 , Σ𝑗

𝑑)  

∝ 𝑝(𝑑𝑗
𝑢𝑛𝑜𝑏𝑠, 𝑑𝑗

𝑜𝑏𝑠|𝜃𝑗
𝑑, Σ𝑗

𝑑)  

= ∏ 𝑝(𝑑𝑘,𝑗
𝑢𝑛𝑜𝑏𝑠, 𝑑𝑘,𝑗

𝑜𝑏𝑠|𝜃𝑗
𝑑, Σ𝑗

𝑑)
𝑛𝑗

𝑘=1   

∝ ∏ 𝑝(𝑑𝑘,𝑗
𝑢𝑛𝑜𝑏𝑠|𝑑𝑘,𝑗

𝑜𝑏𝑠, 𝜃𝑗
𝑑 , Σ𝑗

𝑑)
𝑛𝑗

𝑘=1 .           (19) 

This is made possible through the following result about MVNs. Let 𝑑𝑗  ~𝑀𝑉𝑁(𝜃𝑗
𝑑, Σ𝑗

𝑑), 𝑎 be 

a subset of indices {1,2,3}, and 𝑏 be the complement of 𝑎. According to inverses of partitioned 

matrices, we have 

{𝑑𝑘,𝑗[𝑏]
|𝑑𝑘,𝑗[𝑎]

, 𝜃𝑗
𝑑 , Σ𝑗

𝑑} ~𝑀𝑉𝑁(𝜃𝑗
𝑑

𝑏|𝑎
, Σ𝑗

𝑑

𝑏|𝑎
),  

𝜃𝑗
𝑑

𝑏|𝑎
= 𝜃𝑗

𝑑

[𝑏]
+ Σ𝑗

𝑑

[𝑏,𝑎]
(Σ𝑗

𝑑

[𝑎,𝑎]
)

−1

(𝑑𝑘,𝑗[𝑎]
− 𝜃𝑗

𝑑

[𝑎]
), 

Σ𝑗
𝑑

𝑏|𝑎
= Σ𝑗

𝑑

[𝑏,𝑏]
− Σ𝑗

𝑑

[𝑏,𝑎]
(Σ𝑗

𝑑

[𝑎,𝑎]
)

−1

Σ𝑗
𝑑

[𝑎,𝑏]
, 

𝑘 = 1,2, … , 𝑛𝑗,           (20) 

where 𝑑𝑘,𝑗[𝑏]
 represents the elements of 𝑑𝑘,𝑗 corresponding to indices in 𝑏, 𝜃𝑗

𝑑

[𝑏]
 represents the 

elements of 𝜃𝑗
𝑑 corresponding to indices in 𝑏, and Σ𝑗

𝑑

[𝑎,𝑏]
 is the matrix made up of elements that 

are in rows 𝑎 and columns 𝑏 of Σ𝑗
𝑑. 

3.2 Stochastic Keyword Targeting Optimization 

Based on the data estimation results of keyword performance indices over the three matching types 

discussed in Section 3.1, we construct a stochastic model for keyword targeting to maximize the 

expected profit from SSA campaigns. The decision scenario of keyword targeting under 
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consideration by this research is described as follows: given a set of keywords, how to select 

appropriate keywords and determine matching types for these selected keywords simultaneously?  

3.2.1 The Objective of Keyword Targeting Optimization 

The decision variable 𝑥𝑘,𝑗,𝑖 indicates whether matching type 𝑖 is chosen for keyword 𝑘 in ad-group 

𝑗 or not. Let 𝑥𝑘,𝑗,0 = 1 denote the case when keyword 𝑘 in ad-group 𝑗 is not chosen over any of 

the three matching types. Then we have ∑ 𝑥𝑘,𝑗,𝑖
3
𝑖=0 = 1. As a matter of fact, 𝑖 = 0 means that 

keyword 𝑘 is not selected by the advertiser, i.e., 𝑑𝑘,𝑗,0 = 0 and 𝑐𝑘,𝑗,0 = 0. For a SSA campaign, 

the cost is ∑ ∑ ∑ 𝑥𝑘,𝑗,𝑖𝑑𝑘,𝑗,𝑖𝑐𝑘,𝑗,𝑖𝑝𝑘,𝑗
3
𝑖=0

𝑛
𝑘=1

𝑚
𝑗=1 , and the expected profit is  

𝑧(𝑥𝑘,𝑗,𝑖) = ∑ ∑ ∑ 𝑥𝑘,𝑗,𝑖𝑑𝑘,𝑗,𝑖𝑐𝑘,𝑗,𝑖(𝑣𝑘,𝑗 − 𝑝𝑘,𝑗)3
𝑖=0

𝑛
𝑘=1

𝑚
𝑗=1 .           (21) 

In this research, we use the data distribution estimation of performance indices for an ad-

group to approximate those for keywords in that ad-group. We regard 𝑑𝑘,𝑗,𝑖 and 𝑐𝑘,𝑗,𝑖 as random 

vectors capturing the uncertainty in SSA. Then 𝑧(𝑥𝑘,𝑗,𝑖) is also a random variable. The keyword 

targeting decision aims to maximize the expected profit generated from a SSA campaign, which 

is given as  

max 𝐸[𝑧(𝑥𝑘,𝑗,𝑖)] = 𝐸[∑ ∑ ∑ 𝑥𝑘,𝑗,𝑖𝑑𝑘,𝑗,𝑖𝑐𝑘,𝑗,𝑖(𝑣𝑘,𝑗 − 𝑝𝑘,𝑗)3
𝑖=0

𝑛
𝑘=1

𝑚
𝑗=1 ].           (22) 

3.2.2 The Chance Constraint of the Budget 

It is naturally assumed that the available budget for an advertiser is relatively less than a sufficient 

amount. In a SSA campaign, let 𝐵 > 0 denote the advertising budget for a SSA campaign, then 

we have 

∑ ∑ ∑ 𝑥𝑘,𝑗,𝑖𝑑𝑘,𝑗,𝑖𝑐𝑘,𝑗,𝑖𝑝𝑘,𝑗
3
𝑖=0

𝑛
𝑘=1

𝑚
𝑗=1 ≤ 𝐵.           (23) 

Due to the stochastic nature of 𝑑𝑘,𝑗,𝑖 and 𝑐𝑘,𝑗,𝑖, we can use the chance constraint of the budget 

to control the cost of a SSA campaign. Specifically, the probability that the cost of a SSA campaign 

is less than the available budget is larger than or equal to a specific confidence level 𝛼, i.e., 

𝑃{∑ ∑ ∑ 𝑥𝑘,𝑗,𝑖𝑑𝑘,𝑗,𝑖𝑐𝑘,𝑗,𝑖𝑝𝑘,𝑗
3
𝑖=0

𝑛
𝑘=1

𝑚
𝑗=1 ≤ 𝐵} ≥ 𝛼.           (24) 

3.2.3 The Stochastic Keyword Targeting Model 

In summary, based on the data distribution estimation for keyword performance indices discussed 

in Section 3.1, we formulate the keyword targeting problem as a stochastic optimization model, 

given as 
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max 𝐸[∑ ∑ ∑ 𝑥𝑘,𝑗,𝑖𝑑𝑘,𝑗,𝑖𝑐𝑘,𝑗,𝑖(𝑣𝑘,𝑗 − 𝑝𝑘,𝑗)3
𝑖=0

𝑛
𝑘=1

𝑚
𝑗=1 ], 

s.t. 𝑃{∑ ∑ ∑ 𝑥𝑘,𝑗,𝑖𝑑𝑘,𝑗,𝑖𝑐𝑘,𝑗,𝑖𝑝𝑘,𝑗
3
𝑖=0

𝑛
𝑘=1

𝑚
𝑗=1 ≤ 𝐵} ≥ 𝛼, 

∑ 𝑥𝑘,𝑗,𝑖
3
𝑖=0 = 1,  

(𝑙𝑜𝑔(𝑑𝑘,𝑗,1), 𝑙𝑜𝑔(𝑑𝑘,𝑗,2), 𝑙𝑜𝑔(𝑑𝑘,𝑗,3))
𝑇

~𝑀𝑉𝑁(𝜃𝑗
𝑑, Σ𝑗

𝑑), 

(𝑙𝑜𝑔𝑖𝑡(𝑐𝑘,𝑗,1), 𝑙𝑜𝑔𝑖𝑡(𝑐𝑘,𝑗,2), 𝑙𝑜𝑔𝑖𝑡(𝑐𝑘,𝑗,3))
𝑇

~𝑀𝑉𝑁(𝜃𝑗
𝑐, Σ𝑗

𝑐), 

𝜃𝑗
𝑑 = [

𝐸(𝑑𝑗,1
′ )

𝐸(𝑑𝑗,2
′ )

𝐸(𝑑𝑗,3
′ )

],  

Σ𝑗
𝑑 = [

Σ𝑗,11
𝑑 Σ𝑗,12

𝑑 Σ𝑗,13
𝑑

Σ𝑗,21
𝑑 Σ𝑗,22

𝑑 Σ𝑗,23
𝑑

Σ𝑗,31
𝑑 Σ𝑗,32

𝑑 Σ𝑗,33
𝑑

],  

𝜃𝑗
𝑐 = [

𝐸(𝑐𝑗,1
′ )

𝐸(𝑐𝑗,2
′ )

𝐸(𝑐𝑗,3
′ )

], 

Σ𝑗
𝑐 = [

Σ𝑗,11
𝑐 Σ𝑗,12

𝑐 Σ𝑗,13
𝑐

Σ𝑗,21
𝑐 Σ𝑗,22

𝑐 Σ𝑗,23
𝑐

Σ𝑗,31
𝑐 Σ𝑗,32

𝑐 Σ𝑗,33
𝑐

],  

𝑥𝑘,𝑗,𝑖 = 0/1, 𝑑𝑘,𝑗,0 = 0, 𝑐𝑘,𝑗,0 = 0, 𝑣𝑘,𝑗 ≥ 0, 𝑝𝑘,𝑗 ≥ 0,  

𝑘 = 1,2, … , 𝑛𝑗 , 𝑖 = 0,1,2,3, 𝑗 = 1,2, … , 𝑚.           (25) 

In our stochastic keyword targeting model (Equation 25), the decision variable 𝑥𝑘,𝑗,𝑖  is 0-1 

binary. The objective function is to maximize the expected profit from a SSA campaign. The first 

constraint is the chance constraint of advertiser’s budget. The second constraint limits each 

keyword being selected over only one matching type or not selected at all. In addition, we also 

state the estimated data distributions and non-negative performance indices. 

3.2.4 BB-KSM Algorithm 

The stochastic keyword targeting model can be solved by branch-and-bound algorithm combined 

with stochastic simulation. The branch-and-bound consists of a systematic enumeration of feasible 

solutions which helps reduce computational efforts and find the optimal keyword targeting result 

(Kosuch and Lisser, 2010). In particular, given a set of keywords and a fixed budget, based on the 

estimated distribution of keyword performance indices over the three matching types, an optimal 
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solution should adaptively select appropriate keywords and determine matching types to maximize 

the expected profit in an uncertain market. Since a same keyword in different ad-groups can have 

different matching types, which leads to different performance indices. Thus, we regard an 

identical keyword in different ad-groups as different keywords. As each keyword can only choose 

no more than one matching type, we treat the keyword-matching combinations as the basic unit 

and develop a branch-and-bound algorithm called BB-KSM (i.e., the branch-and-bound for 

keyword selection and matching) to solve our stochastic keyword targeting model. In the following, 

we first describe the stochastic simulation process in the branch-and-bound. Then we explain how 

to calculate the upper bound for BB-KSM. Finally, we present the BB-KSM algorithm. 

First, the stochastic simulation process is used to confirm whether the chance constraint is 

satisfied in the branch-and-bound process, i.e., the probability that the current cost for selected 

keywords has not exceeded campaign budget is above the acceptable threshold value. Specifically, 

in ad-group 𝑗, once keyword 𝑘 is selected over matching type 𝑖, we sample random variables from 

their estimated distributions and check whether the chance constraint of the budget 

𝑃{∑ ∑ ∑ 𝑥𝑘,𝑗,𝑖𝑑𝑘,𝑗,𝑖𝑐𝑘,𝑗,𝑖𝑝𝑘,𝑗
3
𝑖=0

𝑛
𝑘=1

𝑚
𝑗=1 ≤ 𝐵} ≥ 𝛼 is satisfied, which is performed in lines from 4 to 

8 of the pseudocode of the BB-KSM algorithm. 

Next, to obtain the upper bound (i.e., SUP) for BB-KSM, we relax 𝑥𝑘,𝑗,𝑖 from a 0-1 binary 

variable to a continuous variable in the interval of [0,1] in the stochastic keyword targeting model 

(Equation 25). Under the continuous relaxation, the chance constraint of the budget 

𝑃{∑ ∑ ∑ 𝑥𝑘,𝑗,𝑖𝑑𝑘,𝑗,𝑖𝑐𝑘,𝑗,𝑖𝑝𝑘,𝑗
3
𝑖=0

𝑛
𝑘=1

𝑚
𝑗=1 ≤ 𝐵} ≥ 𝛼  defines a convex set if 

∑ ∑ ∑ 𝑥𝑘,𝑗,𝑖𝑑𝑘,𝑗,𝑖𝑐𝑘,𝑗,𝑖𝑝𝑘,𝑗
3
𝑖=0

𝑛
𝑘=1

𝑚
𝑗=1  is quasi-convex and 𝑠𝑘,𝑗,𝑖 = 𝑑𝑘,𝑗,𝑖𝑐𝑘,𝑗,𝑖𝑝𝑘,𝑗  has a log-concave 

density (Prekopa, 1995). The first condition is well satisfied since the left-hand side of the 

inequation ∑ ∑ ∑ 𝑥𝑘,𝑗,𝑖𝑑𝑘,𝑗,𝑖𝑐𝑘,𝑗,𝑖𝑝𝑘,𝑗
3
𝑖=0

𝑛
𝑘=1

𝑚
𝑗=1  is quasi-convex due to its linear formulation. As for 

the second condition, according to Cholette et al. (2012), the number of clicks from a keyword is 

binomial distributed with parameters (𝑑𝑘,𝑗,𝑖, 𝑐𝑘,𝑗,𝑖), which can be accurately approximated by the 

normal distribution provided that 𝑑𝑘,𝑗,𝑖 ∙ 𝑐𝑘,𝑗,𝑖 ≥ 10 and 𝑑𝑘,𝑗,𝑖 ∙ (1 − 𝑐𝑘,𝑗,𝑖) ≥ 10. In general, we 

could assume that 𝑑𝑘,𝑗,𝑖 and 𝑐𝑘,𝑗,𝑖 reasonably well meet these two inequalities. For a keyword, the 

cost is equal to the product of the number of clicks (the random variable) and the average cost per 

click (constant), which also obeys the normal distribution. Thus, the second condition can be 

satisfied. Consequently, after the continuous relaxation, the chance constraint of the budget 
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𝑃{∑ ∑ ∑ 𝑥𝑘,𝑗,𝑖𝑑𝑘,𝑗,𝑖𝑐𝑘,𝑗,𝑖𝑝𝑘,𝑗
3
𝑖=0

𝑛
𝑘=1

𝑚
𝑗=1 ≤ 𝐵} ≥ 𝛼  defines a convex set with normally distributed 

keyword costs. 

Then the continuous relaxed stochastic keyword targeting model (25) can be reformulated as 

an equivalent, deterministic second-order-cone-programming (SOCP) problem (Lobo et al., 1998). 

Through sampling from estimations for impressions and CTR, we can get the mean 𝜇(𝑠)  and 

variance 𝜎(𝑠)
𝑘,𝑗,𝑖
2

of the cost 𝑠𝑘,𝑗,𝑖  for each keyword. As the budget 𝐵  is a fixed constant, the 

inequality constraint ∑ ∑ ∑ 𝑥𝑘,𝑗,𝑖𝑠𝑘,𝑗,𝑖
3
𝑖=0

𝑛
𝑘=1

𝑚
𝑗=1 ≤ 𝐵 is equal to  

∑ ∑ ∑ 𝑥𝑘,𝑗,𝑖𝑠𝑘,𝑗,𝑖
3
𝑖=0

𝑛
𝑘=1

𝑚
𝑗=1 −𝐵−(∑ ∑ ∑ 𝑥𝑘,𝑗,𝑖𝐸[𝑠𝑘,𝑗,𝑖]3

𝑖=0
𝑛
𝑘=1

𝑚
𝑗=1 −𝐵)

√∑ ∑ ∑ 𝑥𝑘,𝑗,𝑖
2 𝑉𝑎𝑟[𝑠𝑘,𝑗,𝑖]3

𝑖=0
𝑛
𝑘=1

𝑚
𝑗=1

≤ −
∑ ∑ ∑ 𝑥𝑘,𝑗,𝑖𝐸[𝑠𝑘,𝑗,𝑖]3

𝑖=0
𝑛
𝑘=1

𝑚
𝑗=1 −𝐵

√∑ ∑ ∑ 𝑥𝑘,𝑗,𝑖
2 𝑉𝑎𝑟[𝑠𝑘,𝑗,𝑖]3

𝑖=0
𝑛
𝑘=1

𝑚
𝑗=1

,           (26) 

where the left side of the inequality represents a standard normal variant.  

Thus, the chance constraint of the budget 𝑃{∑ ∑ ∑ 𝑥𝑘,𝑗,𝑖𝑑𝑘,𝑗,𝑖𝑐𝑘,𝑗,𝑖𝑝𝑘,𝑗
3
𝑖=0

𝑛
𝑘=1

𝑚
𝑗=1 ≤ 𝐵} ≥ 𝛼 

becomes  

𝑃 {𝜂 ≤ −
∑ ∑ ∑ 𝑥𝑘,𝑗,𝑖𝐸[𝑠𝑘,𝑗,𝑖]3

𝑖=0
𝑛
𝑘=1

𝑚
𝑗=1 −𝐵

√∑ ∑ ∑ 𝑥𝑘,𝑗,𝑖
2 𝑉𝑎𝑟[𝑠𝑘,𝑗,𝑖]3

𝑖=0
𝑛
𝑘=1

𝑚
𝑗=1

} ≥ 𝛼,           (27) 

where 𝜂 follows a standard normal distribution.  

Then, the chance constraint of the budget can be reformulated as 

𝜙−1(𝛼) ≤ −
∑ ∑ ∑ 𝑥𝑘,𝑗,𝑖𝐸[𝑠𝑘,𝑗,𝑖]

3
𝑖=0

𝑛
𝑘=1

𝑚
𝑗=1 − 𝐵

√∑ ∑ ∑ 𝑥𝑘,𝑗,𝑖
2 𝑉𝑎𝑟[𝑠𝑘,𝑗,𝑖]

3
𝑖=0

𝑛
𝑘=1

𝑚
𝑗=1

 

⟹ ∑ ∑ ∑ 𝑥𝑘,𝑗,𝑖𝐸[𝑠𝑘,𝑗,𝑖]
3
𝑖=0

𝑛
𝑘=1

𝑚
𝑗=1 + 𝜙−1(𝛼)√∑ ∑ ∑ 𝑥𝑘,𝑗,𝑖

2 𝑉𝑎𝑟[𝑠𝑘,𝑗,𝑖]
3
𝑖=0

𝑛
𝑘=1

𝑚
𝑗=1 ≤ 𝐵, 

⟹ ∑ ∑ ∑ 𝑥𝑘,𝑗,𝑖
3
𝑖=0

𝑛
𝑘=1

𝑚
𝑗=1 𝜇(𝑠)

𝑘,𝑗,𝑖
+ 𝜙−1(𝛼)√∑ ∑ ∑ 𝑥𝑘,𝑗,𝑖

2 𝜎(𝑠)
𝑘,𝑗,𝑖
23

𝑖=0
𝑛
𝑘=1

𝑚
𝑗=1 ≤ 𝐵.           (28) 

Consequently, we obtain a convex optimization model which can be solved by the interior 

point method (Wächter and Biegler, 2006). Its solution can be used as upper bound (SUP) in the 

branch-and-bound process. 
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In the following we develop a branch-and-bound algorithm (i.e., BB-KSM) to solve our 

stochastic keyword targeting model. The BB-KSM algorithm systematically enumerates the 

candidate solutions for optimal keyword targeting, where a set of candidate solutions is thought of 

as forming a rooted tree with the full set at the root. It explores branches of the tree, i.e., subsets 

of keyword targeting solutions. Before enumerating the candidate solutions of a branch, the branch 

is checked against upper (SUP) and lower (INF) estimated bounds on the optimum, and is 

discarded if it cannot produce a better keyword targeting solution than the existing best one found 

so far by the BB-KSM algorithm. In the exploring process, we sort keywords by the decreasing 

profit, then select keywords one-by-one and use stochastic simulation to check whether the chance 

constraint of the budget is still satisfied when selecting the next keyword. The overall framework 

and details of BB-KSM algorithm are given as follows. 

The BB-KSM Algorithm 

Input:  

{𝑖|𝑖 = 1,2,3} – The three keyword matching types (i.e., exact match, phrase match and broad match) 

{𝑗|𝑗 = 1,2, … , 𝑚} –Ad-group set 

{𝑘|𝑘 = 1,2, … , 𝑛𝑗} – The keyword set in ad-group 𝑗 

𝐵 – The budget constraint for the SSA campaign 

𝛼– The acceptable probability for the chance constraint of the budget 

𝜃𝑗
𝑑 , Σ𝑗

𝑑 – The mean vector and covariance matrix for keyword impressions in ad-group 𝑗 over the three matching 

types 

𝜃𝑗
𝑐 , Σ𝑗

𝑐– The mean vector and covariance matrix for the keyword CTRs in ad-group 𝑗 over the three matching types 

𝑣𝑘,𝑗 – The VPC of keyword 𝑘 in ad-group 𝑗  

𝑝𝑘,𝑗 – The CPC of keyword 𝑘 in ad-group 𝑗 

Output:  

𝑥𝑘,𝑗,𝑖  – The binary decision variable for keyword targeting 

Procedure: 

Sort keywords in the order decreasing of profit, 𝑥𝑘,𝑗,𝑖 = 0, Keyword_Targeting_List = ∅. 

1: For ad-group 𝑗 from 1 to 𝑚  

2:     For keyword 𝑘 from 1 to 𝑛𝑗  
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3:         For matching type 𝑖 from 1 to 3 

4:             𝑡′ = 0 and 𝑥𝑘,𝑗,𝑖 = 1 

5:             Extract 𝑑𝑘,𝑗,𝑖 and 𝑐𝑘,𝑗,𝑖 samples from 𝑀𝑉𝑁(𝜃𝑗
𝑑, Σ𝑗

𝑑) and 𝑀𝑉𝑁(𝜃𝑗
𝑐 , Σ𝑗

𝑐) 

6:             If ∑ ∑ ∑ 𝑥𝑘,𝑗,𝑖𝑑𝑘,𝑗,𝑖𝑐𝑘,𝑗,𝑖𝑝𝑘,𝑗
3
𝑖=0

𝑛
𝑘=1

𝑚
𝑗=1 ≤ 𝐵 then 𝑡′ + + 

7:             Repeat steps 5 and 6 for 𝑡 times, and 𝛼′ = 𝑡′/𝑡 

8:       If 𝛼′ ≥ 𝛼  and ∑ 𝑥𝑘,𝑗,𝑖
3
𝑖=1 ≤ 1 , then INF = max{the expected profit}, add the feasible solution to 

Keyword_Targeting_List, and SUP =  ∞; else 𝑥𝑘,𝑗,𝑖 = 0 

9:         End for 

10:     End for 

11: End for 

12: If Keyword_Targeting_List = ∅ , then go to step 16; else current_solution = solution in Keyword_ 

Targeting_List with max{the expected profit}, go to step 13. 

13: If SUP > INF for current_solution, then go to step 14; else delete the solution from Keyword_ Targeting_List 

and go to step 12. 

14: If there is no accepted keyword-matching left in the targeting solution that does not already have a plunged or 

rejected subset, then delete the solution from Keyword_Targeting_List, go to step 12; else following the ranking, 

choose the first accepted keyword-matching that does not already have a plunged or rejected subset and calculate 

SUP for the subset defined by rejecting this keyword-matching, and go to step 15.  

15: If SUP ≤ INF, then delete this subset, go to step 14; else plunge the subtree as described in steps 1-11 and add 

the found branch together with SUP to Keyword_Targeting_List, if the expected profit of this solution > INF, then 

update INF, go to step 12.  

16: Return the result of keyword targeting 𝒙. 

 

4. Experimental Validation 

4.1 Data Descriptions 

We conduct a series of computational experiments to validate our keyword targeting strategy (i.e., 

BB-KSM) using a realworld dataset. The purpose of our experiments is two-fold. First, we aim to 

evaluate the performance of our keyword targeting strategy by comparing with seven baselines, in 

terms of the expected profit and the number of selected keywords. Second, we are intended to 

evaluate the effectiveness of our distribution estimation method described in Section 3.1.  

Our experimental dataset is collected from field reports and SSA logs of advertising 

campaigns performance of an e-commerce retailer selling gift cards and Christmas presents. The 

dataset records the daily performance at the keyword level from September 2011 to June 2017, 
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including impressions, click-through rate (CTR), value-per-click (VPC), average cost-per-click 

(CPC) and chosen matching types. The dataset contains 34 ad-groups with 627 keywords. In Table 

4, we give examples of our dataset with keyword ID, ad-group ID, matching types, and observed 

keyword performance indices (i.e., impression, CTR, VPC and CPC) over chosen matching types. 

The unobserved keyword performance indices (over unchosen matching types) are marked with 

symbolic hyphens “-”. Table 5 shows summary statistics of the dataset, including proportions of 

chosen matching types, and the mean and standard deviation of keyword performance indices over 

chosen matching types.  

Table 4. Examples of the Dataset 

Day Keyword ID Ad Group ID Matching Type Impression CTR VPC CPC 

2012/6/13 keyword-31 ad-group-13 exact - - - - 

phrase - - - - 

broad 36 0.06 50 0.31 

2012/6/20 keyword-31 ad-group-13 exact - - - - 

phrase - - - - 

broad 18 0.17 18.3 0.25 

2012/8/2 keyword-31 ad-group-13 exact - - - - 

phrase - - - - 

broad 37 0.22 25 0.26 

2012/9/3 keyword-31 ad-group-13 exact - - - - 

phrase - - - - 

broad 49 0.16 25 0.29 

2012/10/20 keyword-31 ad-group-13 exact - - - - 

phrase - - - - 

broad 35 0.11 35 0.33 

2013/3/16 keyword-31 ad-group-13 exact - - - - 

phrase - - - - 

broad 12 0.16 24.5 0.16 

…… 

2016/3/8 keyword-402 ad-group-25 exact - - - - 

phrase 2 0.5 75 0.31 

broad - - - - 

2016/11/12 

 

keyword-402 ad-group-25 exact - - - - 

phrase 7 0.29 39.5 0.42 

broad - - - - 

2016/11/30 

 

keyword-402 ad-group-25 exact - - - - 

phrase 8 0.13 53.5 0.46 

broad - - - - 

2016/12/14 keyword-402 ad-group-25 exact - - - - 

phrase 26 0.35 10 0.33 

broad - - - - 

2016/12/17 keyword-402 ad-group-25 exact - - - - 

phrase 25 0.24 27.3 0.28 

broad - - - - 

2016/12/21 keyword-402 ad-group-25 exact - - - - 
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phrase 52 0.13 4 0.35 

broad - - - - 

…… 

2013/1/8 keyword-527 ad-group-9 exact 21 0.38 39.8 0.27 

phrase - - - - 

broad - - - - 

2013/5/20 keyword-527 ad-group-9 exact 21 0.14 6.67 0.12 

phrase - - - - 

broad - - - - 

2013/6/24 keyword-527 ad-group-9 exact 8 0.5 14.8 0.15 

phrase - - - - 

broad - - - - 

2013/9/10 keyword-527 ad-group-9 exact 11 0.09 100 0.15 

phrase - - - - 

broad - - - - 

2014/1/11 keyword-527 ad-group-9 exact 8 0.25 95 0.14 

phrase - - - - 

broad - - - - 

2015/1/10 keyword-527 ad-group-9 exact 8 0.38 64.5 0.17 

phrase - - - - 

broad - - - - 

…… 

 

Table 5. Summary Statistics of the Dataset 

Matching Type Proportion（%） Impression CTR VPC CPC 

\ \ Mean SD Mean SD Mean SD Mean SD 

Exact 32.31 87.06 243.12 0.45 0.24 

35.59 287.14 0.23 0.20 Phrase 15.98 83.25 175.33 0.29 0.29 

Broad 51.71 189.60 226.00 0.42 0.22 

4.2 Experimental Setup 

In the stage of data distribution estimation, we make inference about keyword performance indices 

(i.e., impression and click-through rate) by using the statistical tool WinBUGS to implement 

Bayesian models with the MCMC methodology (Spiegelhalter et al., 2003). We run each process 

for 50,000 iterations through referring to the reasonable range suggested by related research (e.g., 

Carrigan et al., 2007; Voleti et al., 2015).  

In the stage of stochastic keyword targeting optimization, experiments are coded and run in 

Python 3.9.7. We set the confidence level (i.e., 𝛼) for the chance constraint of the budget as 0.95, 

which is a widely used default number in stochastic programming (Shapiro et al., 2021). In the 

dataset, the total cost of all keywords is 1175.74. In the following experiments, we gradually 
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increase the budget setting from 100 to 1000 by step of 100 to evaluation the performance of our 

keyword targeting strategy at different budget levels. 

4.3 Experimental Results 

4.3.1 Performance Comparisons 

We compare BB-KSM with seven baselines with respect to the expected profit and the profit-cost 

distribution. The first baseline (BASE1-Past) selects keywords based on the used frequency of 

keywords in past SSA campaigns by the advertiser. There is limited research on keyword targeting 

optimization and no suitable approach can be directly compared with ours. For comparison, we 

derive three baselines from the literature on keyword selection. The second baseline (BASE2-

PrefixOrder) derived from (Rusmevichientong and Williamson, 2006) adaptively selects keywords 

based on a prefix ordering (i.e., sorting keywords in descending order of profit-to-cost ratio) until 

the expected cost is close to the budget. The third baseline (BASE3-Competitiveness) derived from 

(Zhang et al., 2014) selects keywords with goals of maximizing the advertiser’s profit and 

minimizing the keyword competitiveness under the budget constraint. The index of “impression 

confidence based on competitiveness” in Zhang et al. (2014) is defined as 𝑐 = 1 − 1/(1 + 𝑒−𝜏𝑑) 

in the baseline, where 𝜏 > 0 is a coefficient and 𝑑 is keyword impression. The fourth baseline 

(BASE4-SharpeRatio) derived from (Symitsi et al., 2022) treats keywords as risky stocks and 

applies mean-variance optimization to select keywords in the optimal risky portfolio with the 

highest Sharpe ratio. In order to validate the effectiveness of our data distribution estimation 

approach, we develop the fifth baseline (BASE5-SelectNomatch), which uses the stochastic 

keyword targeting model derived from Section 3.2, with no data distribution estimation process in 

Section 3.1. As far as we knew, there is no reported research that recommends a specific keyword 

matching strategy in the literature. For comparison, we designed two baselines related to keyword 

matching. The sixth baseline (BASE6-RandMatch) selects keywords in a descending order of 

keyword profit, and then randomly chooses the matching type for each keyword based on the 

partially observed keyword performance indices, under the budget constraint. The seventh baseline 

(BASE7-OptMatch) selects keywords in a descending order of keyword profit, and then chooses 

the optimal matching type for each keyword based on the complete information of keyword 

performance indices over the three matching types, under the budget constraint. Note that the 1st-

5th baselines deal with keyword selection based on the partially observed keyword performance 
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indices, ignoring keyword matching optimization, while the 6th and 7th baselines are about 

keyword matching.  

Figure 1 shows the expected profit obtained by BB-KSM and seven baselines at various 

budget levels. Figure 2 illustrates the profit and cost of selected keywords by BB-KSM and seven 

baselines with the budget constraint of 500.  

 

Figure 1. The Expected Profit Obtained by BB-KSM and Seven Baselines at Various Budget 

Levels 
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Figure 2. The Profit and Cost of Keywords Selected by BB-KSM and Seven Baselines 
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distribution estimation approach can produce accurate estimations for keyword performance 

indices over the three matching types, which can substantially help enrich keyword portfolios and 

increase the profit. 

Third, among the five baselines of keyword selection, BASE5-SelectNomatch performs 

slightly better than the other four baselines (i.e., BASE1-Greedy, BASE2-PrefixOrder, BASE3-

Competitiveness and BASE4-SharpeRatio). This result could be attributed to the superiority of 

using our stochastic optimization model which takes the uncertainty of SSA market into account. 

That is, our branch-and-bound algorithm combined with stochastic simulation can explore every 

possibility in the solution space of keyword targeting. Moreover, BASE1-Greedy performs the 

worst, possibly due to the fact that advertisers usually have limited knowledge and experience on 

advertising decisions (Yang et al., 2012). In the meanwhile, BASE4-SharpeRatio obtains the 

second lowest profit. This can be explained as follows. BASE4-SharpRatio assumes that an 

increase in keyword popularity (i.e., impressions) is associated with an increase in profit, and thus 

selects keywords based on the mean and variance of the growth rate in keyword popularity. 

However, there is a complex mechanism connecting keyword popularity and monetization in SSA. 

That is, impressions do not lead to profits in a simple and direct manner. 

Fourth, among the two baselines of keyword matching (i.e., BASE6-RandMatch and BASE7-

OptMatch), BASE7-OptMatch performs better than BASE6-RandMatch. This is also owing to the 

proposed data distribution estimation approach which provides the complete information of 

performance indices. 
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4.3.2 The Number of Selected Keywords 

 

Figure 3. The Number of Keywords Selected by BB-KSM and Seven Baselines 
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4.3.3 Keyword Matching Types 

 

Figure 4. The Percentage of Keyword Matching Types 
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competition through the wider targeting (Levin and Milgrom, 2010), and thus harm their earnings 

(Amaldoss et al., 2016; Yang et al., 2021a).  

Compared with a single matching type, mixed matching types help balance the tradeoff 

between reaching the wide target population and avoiding the unnecessary spending on irrelevant 

clicks. BB-KSM can choose a suitable matching type for each keyword based on historical 

keyword performance indices, rather than set a one-size-fits-all matching option for all keywords.  

5. Conclusions 

In this paper, we construct a data distribution estimation model and apply the Markov Chain Monte 

Carlo method to make inference about unobserved performance indices (i.e., impression and click-

through rate) over the three matching types. Based on the estimation results, we propose a 

stochastic keyword targeting model to maximize the expected profit under the chance constraint 

of the budget, and develop a BB-KSM solution to solve our keyword targeting model. Using a 

realworld dataset collected from field reports and logs of past SSA campaigns, we conduct a series 

of experiments to validate the effectiveness of our keyword targeting strategy. Experimental results 

illustrate that our keyword targeting strategy outperforms seven baselines in terms of the expected 

profit and our data distribution estimation approach can effectively address the problem of 

incomplete performance indices over keyword matching types. 

5.1 Theoretical Contributions 

This research makes important contributions in the following aspects. From an academic 

perspective, to the best of our knowledge, this is the first research effort on the keyword targeting 

problem in SSA. Previous literatures have studied keyword selection (e.g., Rusmevichientong and 

Williamson, 2006; Kiritchenko and Jiline, 2008; Zhang et al., 2014; Desai et al., 2014; Lu and 

Yang, 2017) and keyword matching (e.g., Radlinski et al., 2008; Singh and Roychowdhury, 2008; 

Even Dar et al., 2009; Gupta et al., 2009; Grbovic et al. 2016; Amaldoss et al. 2016) separately. 

This study also adds to the advertising optimization literature by conducting the joint optimization 

of keyword selection and keyword matching in SSA in the framework of stochastic optimization 

under the chance constraint of the budget. From the methodology perspective, we construct a 

stochastic keyword targeting model and develop a corresponding branch-and-bound algorithm. 

This provides a feasible way for advertisers to make keyword targeting decisions in practice. 

Moreover, we propose a data distribution estimation approach using a fully Bayesian model to 
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address the problem of unobserved keyword performance indices over keyword matching types. 

Last but not the least, this research enhances the understanding of keyword decisions and is 

promising to be adapted to other keyword-based advertising forms, e.g., social media advertising 

and native advertising (Yang and Gao, 2021).  

5.2 Practical Implications 

The results from this research suggest critical managerial insights into keyword decisions for 

advertisers in SSA. First, keyword targeting is a vitally important advertising decision in SSA. 

Especially, when the SSA market becomes more complicated, advertisers with a larger number of 

keywords and keyword combinations should pay more attention on keyword targeting. Second, 

various factors (e.g., selected keywords, matching types, the control of uncertainty and the budget) 

have influences on the performance of keyword targeting decisions. Advertisers need to 

comprehensively evaluate and utilize these factors to get an optimal keyword targeting decision. 

Third, in the optimal keyword targeting solutions, exact and phrase matching types take up a 

considerable proportion. This is not well aligned with the common knowledge that broad match is 

the most popular option (Amaldoss et al., 2016). This reminds advertisers to explore keyword 

targeting strategies with mixed matching types. 

5.3 Future Research 

In the future, we seek to explore dynamic keyword targeting strategies in SSA, that is, continuously 

adjusting keyword targeting based on immediate market responses. Moreover, joint optimization 

of various advertising decisions such as budget planning and keyword portfolios is an interesting 

perspective to explore in the SSA context. Furthermore, we also plan to adapt our keyword 

targeting model in other online advertising forms. 
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