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Abstract

We slightly improve the pruning technique presented in Dantsin et. al. (2002) to obtain an
O∗ (1.473n) algorithm for 3-SAT.
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1 Introduction

An instance of 3-SAT is a boolean formula ϕ in n variables x1, . . . , xn, de-
fined as the conjunction of a set C of disjunctive clauses of length at most 3.
Satisfiability of ϕ can be tested in a straightforward manner in time

O (
2n · n3

)
= O∗ (2n) .

Here, as usual, we use the O∗-notation to indicate that polynomial factors are
suppressed.

During the last years so-called exact algorithms have been designed solving
3-SAT in time O∗ (αn) with α < 2, see Schoening [3] for an overview. The cur-
rently fastest randomized algorithms run in time O∗ (1.3302n) (see Hofmeister,
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Schoening, Schuler and Watanabe [2]) and the fastest deterministic algorithm
(see Dantsin et. al. [1]) takes O∗ (1.481n). We slightly improve the pruning
technique used in Dantsin et. al. [1] to obtain a running time of O∗ (1.473n).

2 Local search

Let ϕ be an instance of 3-SAT given by a set C of clauses in variables x1, . . . , xn.
For a ∈ {0, 1}n let Br (a) ⊆ {0, 1}n denote the set of 0-1 vectors with Hamming
distance at most r from a. The currently fastest algorithms for 3-SAT are
based on local search: First, a covering code of suitable radius r ≤ n is
constructed, i.e. a set A ⊆ {0, 1}n such that

{0, 1}n =
⋃
a∈A

Br (a)

holds. Next we search for a truth assignment for ϕ in each Br (a), a ∈ A,
separately. To make our paper self-contained, we briefly describe the basic
idea for constructing a covering code and (to some extent) the local search
within a given Br (a) as presented in Dantsin et. al. [1].

Covering codes.

As Br := Br (0) contains exactly

V (n, r) =
r∑

i=1

(
n

i

)

elements, a covering code A ⊆ {0, 1}n of radius r ≤ n must necessarily satisfy

|A| ≥ 2n

V (n, r)
.

Covering codes of approximately this size indeed exist and can be constructed
randomly: Choose

t =
n2n

V (n, r)

elements from {0, 1}n uniformly at random, resulting in a set A ⊆ {0, 1}n of
size |A| ≤ t. The probability that a particular a∗ ∈ {0, 1}n is not covered by
any Br (a), a ∈ A is at most

P [a∗ not covered] =

(
1 − V (n, r)

2n

)t

≤ e−n,
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using 1 + x ≤ ex for x ∈ R. So the probability that A is not a covering code
is at most 2ne−n, which tends to 0 as n → ∞.

This procedure can be de-randomized by taking in each step a new code
word a ∈ {0, 1}n that is best possible in the sense that it covers as many as
possible of the yet uncovered elements in {0, 1}n. Note, however, that this
greedy construction takes O∗ (2n) per step and thus almost O (22n) = O∗ (4n)
in total (which is far too slow). Dantsin et. al. [1] therefore propose the
following. Let K ∈ N be a constant and assume w.l.o.g. that n = Kn0 and
r = Kr. Then construct a covering code A0 ⊆ {0, 1}n0 in time O (4n0) =

O∗
(

K
√

4
n
)

and take

A = A0 × . . . × A0︸ ︷︷ ︸
K times

as a covering code for {0, 1}n. Proceeding this way, the time needed for
constructing the covering code becomes negligible.

Local search.

Assume we want to search for a truth assignment for ϕ in Br (a) ⊆ {0, 1}n.
We may assume w.l.o.g. that a = 0, i.e., we search in Br = Br (0). (Inter-
change xi with xi if necessary.) If a = 0 is not a truth assignment for ϕ,
there must exist a false clause, i.e. a clause C ∈ C that is false under a = 0,
say C = (xi ∨ xi′ ∨ xi′′). It then suffices to search for a truth assignment in
Br−1 ⊆ {0, 1}n−1 w.r.t. each of the formulae

ϕ1 = ϕ [xi = 1] , ϕ2 = ϕ [xi′ = 1] and ϕ3 = ϕ [xi′′ = 1] ,

obtained by fixing a variable as indicated in brackets. If necessary, we may
even fix in addition some variables to zero, e.g., define ϕ1 := ϕ [xi = 1] , ϕ2 :=
ϕ [xi′ = 1, xi = 0] and ϕ3 := ϕ [xi′′ = 1, xi = 0, xi′ = 0].

Continuing this way, our search can be described by a search tree Tr, con-
structed by branching on false clauses (one false clause per node), as indicated
in figure 1.

ϕ1

ϕ

ϕ2 ϕ3

Fig. 1. The search tree Tr

Needless to say that we never branch to formulas ϕ′ = ϕ [xi = 1, . . .] that
are obviously non-satisfiable because they contain an empty (non-satisfiable)
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clause. (For example, if (xi) ∈ C, we would only branch to ϕ2 and ϕ3 in figure
1.) We denote the number of leaves of Tr by |Tr| and refer to it as the size of
Tr. Clearly,

|Tr| ≤ 3r (1)

holds, an immediate consequence of the recursion |Tr| ≤ 3|Tr−1| (see figure 1).
In case ϕ contains a false 2-clause C ∈ C, then branching on C would yield
|Tr| ≤ 2|Tr−1|.

As pointed out in Dantsin et. al. [1], this simple argument already gives

an O∗
(

2
√

3
n
)
≈ O∗ (1.7321n) algorithm: Take r = n

2
and search Br (0) and

Br (1) separately in time O∗ (3r) = O∗
(

2
√

3
n
)

each.

Smaller search trees.

The trivial bound (1) on the size of the search tree can be improved by
a clever branching technique, as shown in Dantsin et. al. [1]: Assume that
ϕ contains three pairwise disjoint false clauses C = (xi ∨ xi′ ∨ xi′′) , C1 =
(xj ∨ xj′ ∨ xj′′) and C ′

1 = (xk ∨ xk′ ∨ xk′′) and a (true) clause (xi ∨ xj ∨ xk).
We may then branch along (xi ∨ xj ∨ xk), i.e. first branch on C at the root
node ϕ, then branch on C1 at ϕ1 = ϕ [xi = 1] and finally branch on C ′

1 at
ϕ′

1 = ϕ1 [xj = 1] = ϕ [xi = 1, xj = 1]. The resulting search tree is indicated in
figure 2.

ϕ′
1

ϕ3ϕ2

ϕ

ϕ1

Fig. 2. Branching along (xi ∨ xj ∨ xk)

Note that the node corresponding to ϕ′
1 has only two descendants because

ϕ [xi = 1, xj = 1, xk = 1] is ruled out by the clause (xi ∨ xj ∨ xk).

If a similar branching was possible also at ϕ2 and ϕ3, we would get a search
tree satisfying a recursion

|Tr| ≤ 6|Tr−2| + 6|Tr−3|. (2)

Indeed, this is what Dantsin et. al. [1] show. Assuming inductively that
|Tk| ≤ cαk holds for some constant c > 0, (2) implies that

|Tr| ≤ O (αr) , (3)
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where α = 3
√

4 + 3
√

2 ≈ 2.848 is the largest root of α3 − 6α − 6 = 0.

The main result of our paper slightly improves this bound as follows.

Theorem 2.1 By branching on false clauses we can ensure that

|Tr| ≤ cβr,

where β = 1+
√

21
2

≈ 2.792 is the largest root of β3 − 6β − 5 = 0.

Running time.

Let � < 1
2

and r = �n. By Stirling’s formula, the size of a covering code
we construct is (up to a polynomial factor) bounded by

|A| = O∗
([

2�� (1 − �)1−�]n
)

.

According to (3), the number of nodes in Tr is bounded by n|Tr| = O∗ (|Tr|)
and hence the total running time is thus bounded by

O∗ (|A||Tr|) = O∗
([

2(α�)� (1 − �)1−�]n
)

.

This expression is minimal for � ≈ 0.26, yielding the bound of O∗ (1.481n) in
Dantsin et. al. [1].

Similarly, replacing α by β from Theorem 2.1, we obtain for � ≈ 0.264 an
exact algorithm that runs in O∗ (1.473n).
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