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Abstract

We slightly improve the pruning technique presented in Dantsin et. al. (2002) to obtain an
O* (1.473") algorithm for 3-SAT.
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1 Introduction

An instance of 3-SAT is a boolean formula ¢ in n variables x1,...,z,, de-
fined as the conjunction of a set C of disjunctive clauses of length at most 3.
Satisfiability of ¢ can be tested in a straightforward manner in time

O (2" n*) =0 (2").

Here, as usual, we use the O*-notation to indicate that polynomial factors are
suppressed.

During the last years so-called exact algorithms have been designed solving
3-SAT in time O* (o) with « < 2, see Schoening [3] for an overview. The cur-
rently fastest randomized algorithms run in time O* (1.3302") (see Hofmeister,
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Schoening, Schuler and Watanabe [2]) and the fastest deterministic algorithm
(see Dantsin et. al. [1]) takes O* (1.481"). We slightly improve the pruning
technique used in Dantsin et. al. [1] to obtain a running time of O* (1.473™).

2 Local search

Let ¢ be an instance of 3-SAT given by a set C of clauses in variables z1, . . ., x,.
Fora € {0,1}" let B, (a) C {0, 1}" denote the set of 0-1 vectors with Hamming
distance at most r from a. The currently fastest algorithms for 3-SAT are
based on local search: First, a covering code of suitable radius r < n is
constructed, i.e. a set A C {0,1}" such that

.13 = B (@

acA

holds. Next we search for a truth assignment for ¢ in each B, (a), a € A,
separately. To make our paper self-contained, we briefly describe the basic
idea for constructing a covering code and (to some extent) the local search
within a given B, (a) as presented in Dantsin et. al. [1].

Covering codes.
As B, := B, (0) contains exactly

,
n
V(n,r)= .
mn=32(7)
elements, a covering code A C {0, 1}" of radius r < n must necessarily satisfy

2n

> .
A= v

Covering codes of approximately this size indeed exist and can be constructed
randomly: Choose

n2"
V(n,r)
elements from {0, 1}" uniformly at random, resulting in a set A C {0,1}" of
size |A| < t. The probability that a particular a* € {0,1}" is not covered by
any B, (a), a € A is at most

t
P [a* not covered]| = (1 - %) <e™,

t:
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using 1 + x < e” for x € R. So the probability that A is not a covering code
is at most 2"e™", which tends to 0 as n — oc.

This procedure can be de-randomized by taking in each step a new code
word a € {0,1}" that is best possible in the sense that it covers as many as
possible of the yet uncovered elements in {0,1}". Note, however, that this
greedy construction takes O* (2") per step and thus almost O (22") = O* (4™)
in total (which is far too slow). Dantsin et. al. [1] therefore propose the
following. Let K € N be a constant and assume w.l.o.g. that n = Kngy and
r = Kr. Then construct a covering code Ag C {0,1}"™ in time O (4™) =

o ( I\(/Z_Ln> and take
A= AQ X ... X AO
—_—
K times

as a covering code for {0,1}". Proceeding this way, the time needed for
constructing the covering code becomes negligible.

Local search.

Assume we want to search for a truth assignment for ¢ in B, (a) C {0, 1}".
We may assume w.l.o.g. that a = 0, i.e., we search in B, = B, (0). (Inter-
change z; with Z; if necessary.) If a = 0 is not a truth assignment for ¢,
there must exist a false clause, i.e. a clause C' € C that is false under a = 0,
say C' = (x; Vay V ). It then suffices to search for a truth assignment in
B,_1 €{0,1}"! w.r.t. each of the formulae

plzy =1] and @3 = @[z = 1],

A

I
AS)
E

I
=
©
i)

I

obtained by fixing a variable as indicated in brackets. If necessary, we may
even fix in addition some variables to zero, e.g., define @1 := @ [x; = 1], 9 1=
elry = 1,2, =0] and @3 1= @ [x;» = 1,2, = 0,2y = 0].

Continuing this way, our search can be described by a search tree T,., con-
structed by branching on false clauses (one false clause per node), as indicated
in figure 1.

A

Y1 P2 ¥3

Fig. 1. The search tree T}

Needless to say that we never branch to formulas ¢’ = ¢ [z; = 1,...] that
are obviously non-satisfiable because they contain an empty (non-satisfiable)
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clause. (For example, if (Z;) € C, we would only branch to ¢5 and ¢3 in figure
1.) We denote the number of leaves of T, by |T,| and refer to it as the size of
T.. Clearly,
T <3 (1)
holds, an immediate consequence of the recursion |T,| < 3|7,_;]| (see figure 1).
In case ¢ contains a false 2-clause C' € C, then branching on C' would yield
T <2|T,_4].
As pointed out in Dantsin et. al. [1], this simple argument already gives
an O* (f/ﬁ") ~ O*(1.7321") algorithm: Take r = Z and search B, (0) and

2

B, (1) separately in time O* (3") = O* (\2/§n> each.

Smaller search trees.

The trivial bound (1) on the size of the search tree can be improved by
a clever branching technique, as shown in Dantsin et. al. [1]: Assume that
¢ contains three pairwise disjoint false clauses C' = (x; Vay Vaxm),C; =
(xjVayVay) and Cp = (xp Vap Vo) and a (true) clause (T; VT; V Ty).
We may then branch along (T; V T; V Ty), i.e. first branch on C at the root
node ¢, then branch on C; at ¢ = ¢[r; = 1] and finally branch on C] at
¢y = ¢1|z; =1] = ¢ [x; = 1,z; = 1]. The resulting search tree is indicated in
figure 2.

A

®1 P2 ¥3

Fig. 2. Branching along (Z; VT; V Ty)

Note that the node corresponding to ¢/ has only two descendants because
lr; =1,2; = 1,2, = 1] is ruled out by the clause (z; V T; V Ty).

If a similar branching was possible also at @9 and @3, we would get a search
tree satisfying a recursion

‘Tr| < G‘TT—Q‘ + 6|Tr—3|- (2)

Indeed, this is what Dantsin et. al. [1] show. Assuming inductively that
|Tx| < ca® holds for some constant ¢ > 0, (2) implies that

T < O(a"), 3)
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where ov = V4 + /2 ~ 2.848 is the largest root of a® — 6a — 6 = 0.
The main result of our paper slightly improves this bound as follows.

Theorem 2.1 By branching on false clauses we can ensure that

T, < B,

where § = ”%/ﬁ ~ 2.792 is the largest root of 3> — 63 — 5 = 0.

Running time.

Let o < % and r = pn. By Stirling’s formula, the size of a covering code
we construct is (up to a polynomial factor) bounded by

4] = 0 ([20° (1= 0)"") .

According to (3), the number of nodes in 7, is bounded by n|T,| = O* (|T}|)
and hence the total running time is thus bounded by

O (|AIT]) = 0" ([2(a0)* (1 - 2)"]").

This expression is minimal for ¢ &~ 0.26, yielding the bound of O* (1.481") in
Dantsin et. al. [1].

Similarly, replacing a by 8 from Theorem 2.1, we obtain for o ~ 0.264 an
exact algorithm that runs in O* (1.473").
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