
An improved local search algorithm for 3-SAT

Tobias Brueggemann1 , Walter Kern2

Department of Applied Mathematics, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands

Abstract

We slightly improve the pruning technique presented in Dantsin et. al. (2002) to obtain an
O∗ (1.473n) algorithm for 3-SAT.

Keywords: exact algorithm, local search, 3-SAT
MSC2000: 68Q25

1 Introduction

An instance of 3-SAT is a boolean formula ϕ in n variables x1, . . . , xn, de-
fined as the conjunction of a set C of disjunctive clauses of length at most 3.
Satisfiability of ϕ can be tested in a straightforward manner in time

O (
2n · n3

)
= O∗ (2n) .

Here, as usual, we use the O∗-notation to indicate that polynomial factors are
suppressed.

During the last years so-called exact algorithms have been designed solving
3-SAT in time O∗ (αn) with α < 2, see Schoening [3] for an overview. The cur-
rently fastest randomized algorithms run in time O∗ (1.3302n) (see Hofmeister,

1 Email: t.brueggemann@math.utwente.nl. Supported by the Netherlands Organization
for Scientific Research (NWO) grant 613.000.225 (Local Search with Exponential Neighbor-
hoods)
2 Email: kern@math.utwente.nl. Corresponding author.

Electronic Notes in Discrete Mathematics 17 (2004) 69–73

1571-0653/$ – see front matter © 2004 Published by Elsevier B.V.

www.elsevier.com/locate/endm

doi:10.1016/j.endm.2004.03.021

mailto: t.brueggemann@math.utwente.nl
mailto: kern@math.utwente.nl
http://www.elsevier.com/locate/endm

Schoening, Schuler and Watanabe [2]) and the fastest deterministic algorithm
(see Dantsin et. al. [1]) takes O∗ (1.481n). We slightly improve the pruning
technique used in Dantsin et. al. [1] to obtain a running time of O∗ (1.473n).

2 Local search

Let ϕ be an instance of 3-SAT given by a set C of clauses in variables x1, . . . , xn.
For a ∈ {0, 1}n let Br (a) ⊆ {0, 1}n denote the set of 0-1 vectors with Hamming
distance at most r from a. The currently fastest algorithms for 3-SAT are
based on local search: First, a covering code of suitable radius r ≤ n is
constructed, i.e. a set A ⊆ {0, 1}n such that

{0, 1}n =
⋃
a∈A

Br (a)

holds. Next we search for a truth assignment for ϕ in each Br (a), a ∈ A,
separately. To make our paper self-contained, we briefly describe the basic
idea for constructing a covering code and (to some extent) the local search
within a given Br (a) as presented in Dantsin et. al. [1].

Covering codes.

As Br := Br (0) contains exactly

V (n, r) =
r∑

i=1

(
n

i

)

elements, a covering code A ⊆ {0, 1}n of radius r ≤ n must necessarily satisfy

|A| ≥ 2n

V (n, r)
.

Covering codes of approximately this size indeed exist and can be constructed
randomly: Choose

t =
n2n

V (n, r)

elements from {0, 1}n uniformly at random, resulting in a set A ⊆ {0, 1}n of
size |A| ≤ t. The probability that a particular a∗ ∈ {0, 1}n is not covered by
any Br (a), a ∈ A is at most

P [a∗ not covered] =

(
1 − V (n, r)

2n

)t

≤ e−n,

T. Brueggemann, W. Kern / Electronic Notes in Discrete Mathematics 17 (2004) 69–7370

using 1 + x ≤ ex for x ∈ R. So the probability that A is not a covering code
is at most 2ne−n, which tends to 0 as n → ∞.

This procedure can be de-randomized by taking in each step a new code
word a ∈ {0, 1}n that is best possible in the sense that it covers as many as
possible of the yet uncovered elements in {0, 1}n. Note, however, that this
greedy construction takes O∗ (2n) per step and thus almost O (22n) = O∗ (4n)
in total (which is far too slow). Dantsin et. al. [1] therefore propose the
following. Let K ∈ N be a constant and assume w.l.o.g. that n = Kn0 and
r = Kr. Then construct a covering code A0 ⊆ {0, 1}n0 in time O (4n0) =

O∗
(

K
√

4
n
)

and take

A = A0 × . . . × A0︸ ︷︷ ︸
K times

as a covering code for {0, 1}n. Proceeding this way, the time needed for
constructing the covering code becomes negligible.

Local search.

Assume we want to search for a truth assignment for ϕ in Br (a) ⊆ {0, 1}n.
We may assume w.l.o.g. that a = 0, i.e., we search in Br = Br (0). (Inter-
change xi with xi if necessary.) If a = 0 is not a truth assignment for ϕ,
there must exist a false clause, i.e. a clause C ∈ C that is false under a = 0,
say C = (xi ∨ xi′ ∨ xi′′). It then suffices to search for a truth assignment in
Br−1 ⊆ {0, 1}n−1 w.r.t. each of the formulae

ϕ1 = ϕ [xi = 1] , ϕ2 = ϕ [xi′ = 1] and ϕ3 = ϕ [xi′′ = 1] ,

obtained by fixing a variable as indicated in brackets. If necessary, we may
even fix in addition some variables to zero, e.g., define ϕ1 := ϕ [xi = 1] , ϕ2 :=
ϕ [xi′ = 1, xi = 0] and ϕ3 := ϕ [xi′′ = 1, xi = 0, xi′ = 0].

Continuing this way, our search can be described by a search tree Tr, con-
structed by branching on false clauses (one false clause per node), as indicated
in figure 1.

ϕ1

ϕ

ϕ2 ϕ3

Fig. 1. The search tree Tr

Needless to say that we never branch to formulas ϕ′ = ϕ [xi = 1, . . .] that
are obviously non-satisfiable because they contain an empty (non-satisfiable)

T. Brueggemann, W. Kern / Electronic Notes in Discrete Mathematics 17 (2004) 69–73 71

clause. (For example, if (xi) ∈ C, we would only branch to ϕ2 and ϕ3 in figure
1.) We denote the number of leaves of Tr by |Tr| and refer to it as the size of
Tr. Clearly,

|Tr| ≤ 3r (1)

holds, an immediate consequence of the recursion |Tr| ≤ 3|Tr−1| (see figure 1).
In case ϕ contains a false 2-clause C ∈ C, then branching on C would yield
|Tr| ≤ 2|Tr−1|.

As pointed out in Dantsin et. al. [1], this simple argument already gives

an O∗
(

2
√

3
n
)
≈ O∗ (1.7321n) algorithm: Take r = n

2
and search Br (0) and

Br (1) separately in time O∗ (3r) = O∗
(

2
√

3
n
)

each.

Smaller search trees.

The trivial bound (1) on the size of the search tree can be improved by
a clever branching technique, as shown in Dantsin et. al. [1]: Assume that
ϕ contains three pairwise disjoint false clauses C = (xi ∨ xi′ ∨ xi′′) , C1 =
(xj ∨ xj′ ∨ xj′′) and C ′

1 = (xk ∨ xk′ ∨ xk′′) and a (true) clause (xi ∨ xj ∨ xk).
We may then branch along (xi ∨ xj ∨ xk), i.e. first branch on C at the root
node ϕ, then branch on C1 at ϕ1 = ϕ [xi = 1] and finally branch on C ′

1 at
ϕ′

1 = ϕ1 [xj = 1] = ϕ [xi = 1, xj = 1]. The resulting search tree is indicated in
figure 2.

ϕ′
1

ϕ3ϕ2

ϕ

ϕ1

Fig. 2. Branching along (xi ∨ xj ∨ xk)

Note that the node corresponding to ϕ′
1 has only two descendants because

ϕ [xi = 1, xj = 1, xk = 1] is ruled out by the clause (xi ∨ xj ∨ xk).

If a similar branching was possible also at ϕ2 and ϕ3, we would get a search
tree satisfying a recursion

|Tr| ≤ 6|Tr−2| + 6|Tr−3|. (2)

Indeed, this is what Dantsin et. al. [1] show. Assuming inductively that
|Tk| ≤ cαk holds for some constant c > 0, (2) implies that

|Tr| ≤ O (αr) , (3)

T. Brueggemann, W. Kern / Electronic Notes in Discrete Mathematics 17 (2004) 69–7372

where α = 3
√

4 + 3
√

2 ≈ 2.848 is the largest root of α3 − 6α − 6 = 0.

The main result of our paper slightly improves this bound as follows.

Theorem 2.1 By branching on false clauses we can ensure that

|Tr| ≤ cβr,

where β = 1+
√

21
2

≈ 2.792 is the largest root of β3 − 6β − 5 = 0.

Running time.

Let � < 1
2

and r = �n. By Stirling’s formula, the size of a covering code
we construct is (up to a polynomial factor) bounded by

|A| = O∗
([

2�� (1 − �)1−�]n
)

.

According to (3), the number of nodes in Tr is bounded by n|Tr| = O∗ (|Tr|)
and hence the total running time is thus bounded by

O∗ (|A||Tr|) = O∗
([

2(α�)� (1 − �)1−�]n
)

.

This expression is minimal for � ≈ 0.26, yielding the bound of O∗ (1.481n) in
Dantsin et. al. [1].

Similarly, replacing α by β from Theorem 2.1, we obtain for � ≈ 0.264 an
exact algorithm that runs in O∗ (1.473n).

References

[1] E. Dantsin, A. Goerdt, E.A. Hirsch, R. Kannan, J. Kleinberg, C. Papadimitriou, O. Raghavan,
U. Schoening [2002]: A deterministic (2−2/(k+1))n algorithm for k-SAT based on local search.
In: Theoretical Computer Science 289 (2002), 69-83. Elsevier Science B.V.

[2] T. Hofmeister, U. Schoening, R. Schuler, O. Watanabe [2002]: A Probabilistic 3-SAT Algorithm
Further Improved. In: H. Alt, A. Ferreira (Eds.): STACS 2002, LNCS 2285, 192-202. Springer-
Verlag Berlin Heidelberg.

[3] U. Schoening [2002]: A Probabilistic Algorithm for k-SAT Based on Limited Local Search and
Restart. In: Algorithmica 32 (2002), 615-623. Springer-Verlag New York Inc.

T. Brueggemann, W. Kern / Electronic Notes in Discrete Mathematics 17 (2004) 69–73 73

	Introduction
	Local search
	References

