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Abstract

Using results by McKee and Woodall on binary matroids, we prove that the set of postman sets
has odd cardinality, generalizing a result by Toida on the cardinality of cycles in Eulerian graphs.
We study the relationship between T-joins and blocks of the underlying graph, obtaining a decom-
position of postman sets in terms of blocks. We conclude by giving several characterizations of
T-joins which are postman sets and commenting on practical issues.
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1 Introduction

We will consider undirected graphs G = (V,E). The set of odd degree vertices
of G will be denoted by O(G), or simply by O when it is clear what the
underlying graph is. Given a subset T of vertices with |T | even, a set of edges
J ⊂ E is a T-join if O(GJ) = T where GJ = (V, J). We will be interested in
the family T of minimal T-joins: an inclusion-wise minimal T-join is just a T-
join such that GJ is acyclic. Of course, T is a clutter. When T = ∅, the empty
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set is the unique minimal ∅-join, and it is convenient to work instead with the
clutter of cycles (regarded as edge-sets) C, so that every non-empty ∅-join may
be written as a union of disjoint cycles. When T = O(G), the minimal T-joins
are called postman sets, and we will indicate the corresponding clutter by P.
We observe that although there are always postman sets, perhaps only the
empty set (i.e. P = {∅}), we may have T = ∅ if some connected component
of G contains an odd number of vertices of T . Similarly, C could be empty.

In 1973, S. Toida [4] proved that in an Eulerian graph there is an odd
number of cycles passing through any given edge. This can be shown by
deleting the edge, say with endpoints u and v, from the graph and showing
that there is an odd number of (simple) u, v-paths in the resulting graph
G′. In this case O(G′) = {u, v}, and the u, v-paths in G′ are precisely the
postman sets in G′. T. McKee [2] showed in 1984 that Toida’s result actually
characterizes Eulerian graphs: every edge is in an odd number of cycles if and
only if O(G) = ∅. It is worth mentioning that in 1990, D. Woodall [6] gave an
alternative proof of McKee’s converse, and both McKee and Woodall obtained
it as a consequence of more general results in the frame of binary matroids,
which we reproduce here as Theorem 2.3.

We use McKee’s and Woodall’s results directly to show a characterization
of the family of postman sets through a condition involving all minimal T-
joins and cycles, the precise statement being given in Corollary 2.4. As a
consequence of this characterization, in Corollary 2.5 we generalize Toida’s
result to postman sets in any graph, obtaining that P has odd cardinality.
Although to prove this extension we rely on the McKee’s and Woodall’s results,
it could also be proved inside graph theory (without explicit mention of binary
matroids), for example by induction on the number of edges.

In view of McKee’s result, it is natural to wonder whether |T | odd implies
T = O. However, this is not true. A simple way of looking at McKee’s converse
of Toida’s result is to consider the symmetric difference of all cycles. Similarly,
E will be itself a T-join (see Lemma 2.1 below) and therefore T = O if every
edge is in an odd number of minimal T-joins. However, even for postman sets
not always do we have the latter property.

The blocks of the graph play an important role in the structure of T-
joins and postman sets, and we study this interplay in Section 3. We show
that if ET = {e ∈ E : e ∈ J for some J ∈ T } and HT = {e ∈ E : e /∈
J for all J ∈ T }, then ET and HT are the union of (the edges of) blocks of
G, necessarily disjoint. This is strengthened for postman sets, which gives
a block decomposition of postman sets. We go on to show in Theorem 4.1
that the set of edges EO may be written as a symmetric difference of an
odd number of postman sets, sharpening Corollary 2.5. Our last result gives
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further characterizations of postman sets. In the final Section we comment on
how our results are reflected on the structure of the matrix associated with
the clutter T of minimal T-joins, and how they could be used in practice to
identify those T ’s which may be looked at as families of postman sets.

2 Toida and McKee’s results for postman sets

Denoting by A ∆ Z the symmetric difference of the sets A and Z, we will make
frequent use of the following well known result (see e.g. [1, p. 168]):

Lemma 2.1 If J ′ is a T ′-join, then J is a T-join if and only if J ∆ J ′ is a
(T ∆ T ′)-join.

Since non-empty ∅-joins are disjoint unions of cycles, T-joins and cycles
are inter-related:

Corollary 2.2 If J is a non-minimal T-join, then it is the disjoint union of
a minimal T-join and cycles.

Following Woodall [6], a binary matroid is a pair (S,W ) where S is a finite
set and W is a subspace of 2S (with scalar operations modulo 2). Also, a circuit
in a binary matroid (S,W ) is a minimal non-empty set in W (identifying
subsets and characteristic functions). One of the main results in McKee [2]
and Woodall [6] is:

Theorem 2.3 (McKee 1984, Woodall 1990) Suppose (S,W ) is a binary
matroid. Then S ∈ W if and only if each element of S lies in an odd number
of circuits. Equivalently, S is the Boolean sum of some set of circuits if and
only if S is the Boolean sum of the set of all circuits.

By considering S = E and W the linear subspace spanned by minimal
T-joins and cycles, we have:

Corollary 2.4 E is the symmetric difference of all postman sets and cycles.
Conversely, if O �= ∅ and E is the symmetric difference of all minimal T-joins
and cycles, then T = O.

Since the symmetric difference of all postman sets and cycles is either an
O-join or a ∅-join depending on whether there is an odd number of postman
sets, and since E is an O-join, there must be an odd number of postman sets.
This is true even if O = ∅, where P = {∅}. Thus,

Corollary 2.5 The family of postman sets of G has odd cardinality.
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3 T-joins and Blocks

According to West [5, p. 155], a block of a loopless graph is a maximal con-
nected subgraph with no cut-vertex. For these graphs, the only possible blocks
are isolated vertices, cut-edges or maximal 2-connected subgraphs. When
loops are present, it is rather tricky to include them within blocks with this
definition. As no loop is in any minimal T-join and we are only interested in
edges, in this paper we will adopt the following:

Definition 3.1 A block of the graph G is a cut-edge, a loop, or the set of
edges of a maximal 2-connected loopless subgraph of G.

We will need the following result on the intersection of two clutters:

Lemma 3.2 Let Y and Z be clutters on the same base set X, and suppose
Y ∈ Y is such that for every Z ∈ Z there exist Y ′ ∈ Y and Z ′ ∈ Z with
Y ′ ∩ Z ′ = ∅ and Y ′ ∪ Z ′ ⊂ Y ∆ Z. Then Y ∩ Z = ∅ for all Z ∈ Z.

A first consequence of Lemma 3.2 is the following:

Lemma 3.3 Suppose T �= ∅ and let e ∈ E be such that e /∈ J for all minimal
T-join J , i.e. e ∈ HT . Then C ⊂ HT , for every cycle C with e ∈ C.

Lemma 3.3 considers 2-connected blocks of G: either for any edge e in such
a block there exists J ∈ T with e ∈ J , or else the edges of the block do not
intersect any minimal T-join. Since loops are in no minimal T-join, the other
interesting blocks to us are the cut-edges (bridges), and these are taken care
of by Lemma 3.5. To prove it, we will use the following well known result [1]:

Lemma 3.4 If S ⊂ V and J is a T-join, then |S ∩ T | ≡ |δ(S) ∩ J | (mod 2),
where δ(S) is the set of edges having exactly one endpoint in S. In particular,
if |S ∩ T | is odd then δ(S) ∩ J �= ∅.
Lemma 3.5 Suppose T �= ∅.
(a) If e ∈ E is a cut-edge of G, then either e ∈ J for all T-join J or e /∈ J for

all J ∈ T .

(b) If e is not a cut-edge, then there exists a T-join J with e /∈ J .

Combining Lemmas 3.3 and 3.5 we have:

Theorem 3.6 With the previous notations, ET is the union of some of the
blocks of G, and HT is the union of the remaining blocks of G.

When dealing with postman sets we can say more.

Lemma 3.7 Let HO = {e ∈ E : e /∈ P for all P ∈ P}. Then:
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(a) If HO �= ∅ then HO is a union of cycles, and if e ∈ HO then every cycle
containing e is contained in HO.

(b) HO is a ∅-join, i.e. either it is a disjoint union of cycles or HO = ∅.
(c) For arbitrary T , either no T-join intersects HO or else every T-join does.

Lemma 3.8 e ∈ E is a cut-edge if and only if e ∈ P for all P ∈ P.

Let B1, B2, . . . , Br be (the edges of) the blocks of G = (V,E). For i =
1, . . . , r, let Gi = (Vi, Bi), where Vi is the set of endpoints of the edges in Bi,
and Pi, the family of postman sets in Gi.

Theorem 3.9 With the previous notations, there is a one to one correspon-
dence between P and P1 × · · · × Pr, given by

P → (P ∩ B1, . . . , P ∩ Br) and (P1, . . . , Pr) → P1 ∆ · · ·∆ Pr.

4 T -joins and Postman Sets

We now show that we need not consider cycles in Corollary 2.4 if HO = ∅:

Theorem 4.1 Let EO = {e ∈ E : e ∈ P for some P ∈ P}. Then there
exists {P1, P2, . . . , Ps} ⊂ P with s odd and EO = P1 ∆ P2 ∆ · · ·∆ Ps. Con-
sequently, if HO �= ∅, there also exist {C1, C2, . . . , Ct} ⊂ C ∩ HO such that
E = P1 ∆ · · ·∆ Ps ∆ C1 ∆ · · ·Ct.

Let us denote by R the symmetric difference O ∆ T (which may be empty),
and by R the corresponding clutter of minimal R-joins (which may only have
the empty set). We have:

Theorem 4.2 With the previous notations, if T �= ∅ and GT = (V,ET ), then
the following conditions are equivalent:

(i) T is the set of postman sets of GT .

(ii) ET = J1 ∆ J2 ∆ · · ·∆ Js, for some {J1, J2, . . . , Js} ⊂ T and odd s.

(iii) |T | is odd, and ET = J1 ∆ J2 ∆ · · ·∆ Js for some {J1, J2, . . . , Js} ⊂ T .

(iv) For every P ∈ P there exists J ∈ T such that J ⊂ P .

(v) For every P ∈ P there exist JP ∈ T and DP ∈ R such that JP and DP

are disjoint and P = JP ∪ DP .

(vi) E is the disjoint union of ET , ER and HO.

(vii) ET and ER are disjoint.
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5 The Clutter Matrix associated with T
Many of our results may be visualized via the 0-1 matrix M(T ) associated
with the clutter T , in which the rows are the characteristic functions of the
minimal T-joins and the columns are indexed by the edges of G. If we know
that a matrix M is associated with a clutter of T-joins of a graph G, but
do not know what G or T is, it is nevertheless very simple to test whether
T = O(GT ):

(a) check if |T | is odd, i.e. if there is an odd number of rows, and,

(b) in case |T | > 1, check if ET (the set of indices of the non-zero columns of
M) can be written as a symmetric difference of minimal T-joins.

Since the symmetric difference of sets corresponds to addition modulo 2
of characteristic vectors, for (b) we may eliminate the zero-columns (and even
the all-ones columns) and try to express a row of ones as a sum (mod 2) of
some of the rows of the reduced matrix. This can be done quite efficiently
(bounded by small powers of |T | and |ET |) by using Gaussian elimination or
matrix triangularization modulo 2.

We should add that, according to Novick and Sebö [3], a clutter may be
recognized as a T-join clutter in polynomial time by considering the sixteen
nonisomorphic minimally non T-join (binary) clutters. Therefore, the recog-
nition of a matrix as coming from a clutter of postman sets can be done
polynomially.
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