
Stabilized Branch-and-cut-and-price for the

Generalized Assignment Problem ∗

Alexandre Pigatti, Marcus Poggi de Aragão
Departamento de Informática, PUC do Rio de Janeiro

{apigatti, poggi}@inf.puc-rio.br

Eduardo Uchoa
Departamento de Engenharia de Produção, Universidade Federal Fluminense

uchoa@producao.uff.br

October, 2004

Abstract

The Generalized Assignment Problem (GAP) is a classic scheduling
problem with many applications. We propose a branch-and-cut-and-
price for that problem featuring a stabilization mechanism to accelerate
column generation convergence. We also propose ellipsoidal cuts, a new
way of transforming the exact algorithm into a powerful heuristic, in
the same spirit of the cuts recently proposed by Fischetti and Lodi.
The improved solutions found by this heuristic can, in turn, help the
task of the exact algorithm. The resulting algorithms showed a very
good performance and were able to solve three among the last five open
instances from the OR-Library.

1 Introduction

The Generalized Assigment Problem (GAP) is defined as follows. Let I =
{1, ..., m} be a set of machines and J = {1, ..., n} a set of tasks. Each
machine i ∈ I has a capacity bi. Each task j ∈ J when assigned to machine
j ∈ J consumes aij units of capacity and implies in a cost of cij units. One
searches for an assignment of every task to one of the machines, respecting
the machine capacities and minimizing the total cost. This classical NP-
hard problem has many applications in industrial scheduling. Some recent
applications of the GAP in other contexts include the allocation of patients
to medical flies in the US army [10] and in the operation of the international
spatial telescope ROSAT [7].

∗The results in this article were already presented in [8]

1

The current best exact algorithms for the GAP appear to be the branch-
and-price by Savelsbergh [11] and the branch-and-cut by Farias and Nemhauser
[2]. Good heuristics include [5][1][13][12].

A natural formulation for the GAP is defined over binary variables xij ,
meaning that task i is assigned to machine j:

F1





min
m∑

i=1

n∑
j=1

cijxij (1)

s.t.
n∑

j=1
aijxij ≤ bi i ∈ I (2)

m∑
i=1

xij = 1 j ∈ J (3)

xij ∈ {0, 1} i ∈ I, j ∈ J (4)
The bounds obtained by solving the linear relaxation of this formulation

are not good on many instances. A stronger formulation, with an exponen-
tial number of variables, can be obtained as follows. For a given machine
i, let vk

i =
{
vk
i1, v

k
i2, . . . , v

k
in

}
be a 0-1 vector representing one of the Ki

possible solutions of
∑n

j=1 aijvij ≤ bi; vij ∈ {0, 1} , j ∈ {1, . . . , n} . In
other words, vk

ij = 1 if task j is assigned to machine i in the allocation with
number k, 1 ≤ k ≤ Ki. Let yk

i be a binary variable indicating if allocation
vk
i is selected to machine i. The GAP can be reformulated as follows:

F2





min
m∑

i=1

Ki∑
k=1

(
n∑

j=1
cijv

k
ij

)
yk

i (1)

s.t.
m∑

i=1

Ki∑
k=1

vk
ijy

k
i = 1 j ∈ J (2)

Ki∑
k=1

yk
i ≤ 1 i ∈ I (3)

yk
i ∈ {0, 1} i ∈ I, k ∈ {1, . . . , Ki} (4)

The exponential number of variables in F2 requires the use of column
generation. The pricing subproblem is a binary knapsack problem, which is
NP-hard but can be solved by pseudo-polinomial algorithms with an excel-
lent practical performance [6].

A fractional solution of the linear relaxation of F2 can be converted into
a fractional solution of F1 by the relation xij =

∑
1≤k≤Ki

vk
ijy

k
i . Therefore

one can branch over x variables, even while working with F2. This leads
to a branch-and-price algorithm, as the one proposed in [11]. Moreover, as
indicated in [9], a generic cut over x variables

∑
i∈I

∑
j∈J dijxij ≤ e can

be included in F2 as
∑m

i=1

∑Ki
k=1

(∑n
j=1 dijv

k
ij

)
yk

i ≤ e . The dual variable
corresponding to this new cut will not change the structure of the pricing
subproblem. When both column generation and cut separation are per-
formed we have a branch-and-cut-and-price (BCP) algorithm.

Our BCP algorithm included the family of cuts used in [2]. Unhappily,
those cuts (which are effective in their branch-and-cut) had little impact

2

in bound quality. However, the BCP mechanism developed was used with
success to introduce the ellipsoidal cuts, as discussed in Section 4.

2 Stabilizing the column generation

Column generation is known to be prone to convergence difficulties. Worse,
on some situations the convergence can be erratic: even when solving in-
stances of the same size, the number of iterations can vary by one or two
orders of magnitude. This can be a serious obstacle when implementing
branch-and-price and BCP algorithms. Du Merle et al. [3] proposed a dual
stabilization technique to alleviate this, based on a simple observation: the
columns that will be part of the final solution are only generated in the very
last iterations, when the dual variables are already close to their optimal
values. They also observed that dual variables may oscillate wildly in the
first iterations, leading to “extreme columns” that have no chance of being
in the final solution.

In this work we introduce a simplified variant of this technique that was
crucial in our BCP for the GAP. We explain this variant in a general setting.
Suppose we have a linear problem P with a large number of variables and
let π be the corresponding vector of dual variables.

P =





min f =
n∑

j=1
cjxj

s.t.
n∑

j=1
αijxj = bi i = 1, . . . , m

xj ≥ 0 j = 1, . . . , n

Let π̄ be an educated guess about the values in some optimal dual solution
and ε a parameter. Instead of solving P , we solve (by column generation)
the following stabilized problem:

P (x̄, ε) =





min f(x̄, ε) =
n∑

j=1
cjxj −

m∑
i=1

π̄iwi +
m∑

i=1
π̄izi

s.t.
n∑

j=1
αijxj − wi + zi = bi i = 1, . . . ,m π irrestricted

0 ≤ wi ≤ ε i = 1, . . . , m ωi ≥ 0
0 ≤ zi ≤ ε i = 1, . . . ,m ζi ≥ 0
xj ≥ 0 j = 1, . . . , n

We have introduced two sets of artificial variables. The w variables have
coefficients corresponding to a negative identity and the z to a positive
identity. Such variables have costs π̄ and are restricted to be lesser or equal
to ε. The dual variables corresponding those new constraints (as shown in
the right of P (x̄, ε)) are ω and ζ. It can be seen that, for any values of x̄ and
ε, f(x̄, ε) ≤ f . Solving P (x̄, ε) by column generation may require much less

3

iterations than P . This can be explained by the fact that the dual variables
π are now subject to the following constraints:

π̄i − ωi ≤ πi ≤ π̄i + ζi i = 1, . . . , m.

In other words, when πi deviates from π̄i there is a penalization of ε · |π̄i−πi|
units. Therefore, π is not likely to oscillate much from one iteration to
another. Moreover, if we are very lucky in our guess and π̄ is an optimal
dual solution or if ε = 0, f(x̄, ε) = f .

We apply this stabilization in our BCP in the following way. In the root
node, we start guessing π̄ by solving the linear relaxation of F1 and taking
the optimal dual variables of constraints (F1.3). Then we solve P (x̄, 0.1) as
the first step. The second step takes the optimal values of π from the first
step as the new guess to π̄ and solves P (x̄, 0.01). The third step updates π̄
with the solution of the second step and solves P (x̄, 0.001). In the last step,
we solve P (x̄, 0), which is equivalent to solving P . To make possible a fast
convergence, it is necessary to keep in the LP all columns generated from
previous steps. In fact, solving the fourth step only differs from solving P
from scratch due to the presence of such columns, which are supposed to be
good because they were priced with π values close to our sequence of guesses
x̄. Those four steps are done in all nodes along the BCP. On the non-root
nodes, we use the optimal dual values of the father node to set π̄ on the first
step.

3 Computational Results

The OR-Library contains a set of benchmark instances for the GAP that are
widely used in the literature. This set is divided into 5 series: A, B, C, D and
E. Series A and B are too easy for todays standards and can be solved by
commercial MIP solvers using formulation F1. So we present results on the
remaining series. The hardest instances are those from series D, 5 out of 6
such instances were open before this work. The experiments here described
were performed in a Pentium 2GHz with 512Mb of RAM.

The first table, below, presents the gains obtained by the stabilization
described in the previous section on the root node of instances from series
D. It can be seen that even on instances where convergence is not a problem,
like D 20 100, that stabilization is not harmful. However, on instances like
D 5 200, where traditional column generation performs poorly, stabilization
leads to remarkable gains. Similar gains were observed not only in the root
node, but all along the BCP.

The next table presents the results of the complete BCP on all instances
from series C, D and E. Column best known shows the previously best known
solutions, values in bold indicate proven optima. Columns time to best and
node best give the time and number of solved nodes at the moment that the

4

root best time before time after
series m n LB known stabilization stabilization

D 5 100 6350 6353 18.71 3.59
D 5 200 12741 12743 6610.31 138.03
D 10 100 6342 6349 1.98 0.78
D 10 200 12426 12433 181.25 19.23
D 20 100 6177 6196 0.79 0.53
D 20 200 12230 12244 26.12 5.01

Table 1: Results of stabilization in the root node.

BCP found the optimal solution. Two instances, D 10 200 and D 20 200,
could not be solved in two days of cpu time. Three instances from series D
were solved for the first time, the optimal solutions found improved upon
the previous best known heuristic solutions. The solution of value 6185 for
instance D 20 100 was not found by the BCP itself, but by the heuristic
technique described in the next section. In that case, total time and total
nodes are statistics on proving the optimality of that solution.

root best this time total node total
series m n LB known work to best time best nodes

C 5 100 1930 1931 1931 0.93 1.17 3 5
C 5 200 3455 3456 3456 420.38 422.98 46 47
C 10 100 1400 1402 1402 1.12 1.84 9 17
C 10 200 2804 2806 2806 224.78 266.17 22 35
C 20 100 1242 1243 1243 1.92 2.12 25 29
C 20 200 2391 2391 2391 53.81 55.38 22 23
D 5 100 6350 6353 6353 61.74 96.30 106 171
D 5 200 12741 12743 12742 312.68 583.68 11 57
D 10 100 6342 6349 6347 705.76 818.62 2416 2687
D 10 200 12426 12433
D 20 100 6177 6196 6185 * 1043.92 * 2807
D 20 200 12230 12244
E 5 100 12673 12681 12681 27.68 30.09 57 63
E 5 200 24927 24930 24930 1080.56 1305.62 27 31
E 10 100 11568 11577 11577 12.53 22.85 47 87
E 10 200 23302 23307 23307 135.62 670.62 19 155
E 20 100 8431 8436 8436 6.60 6.81 36 37
E 20 200 22377 22379 22379 36.79 40.74 18 21

Table 2: Complete Stabilized BCP Results.

5

4 Ellipsoidal Cuts

Suppose we have a 0-1 IP on variables xj , j ∈ N . Assume for simplicity
that all feasible solutions have exactly n variables with value 1, as in the
case of formulation F1 for the GAP. Let x̄ be an heuristic solution and let
N1(x̄) be the set of variables in that solution with value 1. A classical local
search to improve this solution is k-opt, try all solutions obtained from x̄
by changing at most k variables from N1(x̄). The complexity of performing
k-opt by complete enumeration grows exponentially with k, therefore it is
only practical for very small values of k (say, up to 5).

Fischetti and Lodi [4] proposed a way to perform k-opt for larger values
of k by using a generic MIP solver to perform the search. This is done by
simply adding to the IP the following constraint:

∑

j∈N1(x̄)

xj ≥ n− k

The idea is that even if the MIP solver is not able to solve the original
problem, it may be capable of solving the much more restricted problem
obtained after this cut is added. Of course, if one finds a better solution
within this k-opt, this new incumbent solution can be used as base for
another cut of the same kind. And after one is sure that no better solution
exists in that neighborhood, one can add the reverse cut:

∑
j∈N1(x̄) xj ≤

n − k − 1. In fact, Fischetti and Lodi have proposed this scheme as a
branching strategy designed to find better solutions quickly.

In an attempt to improve the best known solutions for the open instances
of series D, we have used our BCP code to perform k-opt for large values
of k, starting from several different heuristically constructed solutions (from
rounding LP fractional solutions). On instance D 20 100, even performing
16-opt on dozens of base solutions, we could never improve the best known
solution from the literature with value 6196. The root LB for those instance
is 6177, our BCP had no hope of closing a gap of 19 units.

Then we changed the strategy. Instead of searching a ball neighborhood
centered on a single base solution, we selected pairs of good solutions as
different to each other as possible. Let x̄1 and x̄2 be such a pair of solutions
with N1(x̄1) and N1(x̄2) as the sets of variables with value 1. We introduced
the following ellipsoidal cuts:

∑

j∈N1(x̄1)∩N1(x̄2)

2xj +
∑

j∈(N1(x̄1)∪N1(x̄2))\(N1(x̄1)∩N1(x̄2))

xj ≥ α(x̄1, x̄2)− k

where α(x̄1, x̄2) is the value obtained by making x equal to x̄1 or x̄2 on the
left side of the cut and k is the amount of slack to define the ellipsoidal
neighborhood. Those cuts produced much better results and we found sev-
eral improving solutions including the optimal one of value 6185. Using

6

this value as upper bound the exact BCP had little trouble to close this
instance. There is a clear parallel between ellipsoidal cuts and the path
relinking strategy, used for instance in [12], both try to obtain better solu-
tions by exploring the region between two given base solutions. We believe
that MIP based local search schemes may have a lot to borrow from the
metaheuristics experience.

References

[1] P.C. Chu and J.E. Beasley. A genetic algorithm for the generalised
assignment problem. Computers and Operations Research, 24:17–23,
1997.

[2] I. R. de Farias and G. L. Nemhauser. A family of inequalities for the
generalized assignment polytope. Operations Research Letters, 29:49–
51, 2001.

[3] du Merle, O. Villeneuve, J. Desrosiers, and P. Hansen. Stabilized col-
umn generation. Discrete Mathematics, 194:229–237, 1999.

[4] M. Fischetti and A. Lodi. Local branching. Mathematical Programming,
98:23–47, 2003.

[5] M. Laguna, J.P. Kelly, J.L. Conzlez-Velarde, and F. Glover. Tabu
search for the generalized assignment problem. European Journal of
Operations Research, 82:176–189, 1995.

[6] S. Martello, D. Pisinger, and P. Toth. New trends in exact algorithms
for the 0-1 knapsack problem. European Journal of Operational Re-
search, 123:325–332, 2000.

[7] J. Nowakovski, W. Schwrzler, and E. Triesch. Using the generalized
assignment problem in scheduling the ROSAT space telescope. Eur.
Journal of Oper. Research, 112:531–541, 1999.

[8] A. Pigatti. Modelos e algoritmos para o problema de alocação general-
izada e aplicações. Master’s thesis, Pontif́ıcia Universidade Católica do
Rio de Janeiro, Brazil, July 2003.

[9] M. Poggi de Aragão and E. Uchoa. Integer program reformulation for
robust branch-and-cut-and-price. In Annals of Mathematical Program-
ming in Rio, pages 56–61, Brazil, 2003.

[10] K.S. Ruland. A model for aeromedical routing and scheduling. Inter-
national Transactions in Operational Research, 6:57–73, 1999.

[11] M. Savelsbergh. A branch-and-price algorithm for the generalized as-
signment problem. Operations Research, 45:831–841, 1997.

7

[12] M. Yagiura and T. Ibaraki. A path relinking approach for the general-
ized assignment problem. Proc. International Symposium on Schedul-
ing, Hamamatsu, Japan, 2002.

[13] M. Yagiura, T. Ibaraki, and F. Glover. An ejection chain approach
for the generalized assignment problem. Technical Report 99013, De-
partament of Applied Mathematics and Physics, Graduate School of
Informatics, Kyoto University, 1999.

8

