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Abstract

Denote by R(L, L, L) the minimum integer N such that any 3-coloring of
the edges of the complete graph KN contains a monochromatic copy of a graph
L. Bondy and Erdős conjectured that for an odd cycle on n vertices Cn,

R(Cn, Cn, Cn) = 4n − 3 for n > 3.

This is sharp if true.
 Luczak proved that if n is odd, then R(Cn, Cn, Cn) = 4n+o(n), as n → ∞.

We prove here the exact Bondy-Erdős conjecture for sufficiently large values
of n. We also describe the Ramsey-extremal colorings and prove some related
stability theorems.
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1. Introduction

For graphs L1, . . . , Lk, the Ramsey number R(L1, . . . , Lk) is the minimum integer N
such that for any edge-coloring of the complete graph KN by k colors there exists a
color i for which the corresponding color class contains Li as a subgraph.

The Ramsey number R(Cn, Cm) has been studied by several authors, for example,
Bondy and Erdős, [4], Faudree and Schelp, [8], Rosta, [22], and it is completely
described and known that

R(Cn, Cn) =

{
2n − 1, if n ≥ 5 is odd,
3n
2
− 1, if n ≥ 6 is even.

(1)

Bondy and Erdős [4] conjectured that if n > 3 is odd, then

R(Cn, Cn, Cn) = 4n − 3. (2)

This is sharp if true, as shown by Colorings 1 and 2 in Section 1.2.  Luczak [20]
proved that if n is odd, then

R(Cn, Cn, Cn) = 4n + o(n), (3)

as n → ∞. In this paper we shall prove the existence of an n0 for which the
exact Bondy-Erdős conjecture holds if n > n0. Our main result actually determines
R(Cn1

, Cn2
, Cn3

) for all odd and sufficiently large n1, n2, n3.

Theorem 1. There exists an n0 such that for all odd n1, n2, n3 > n0, we have

R(Cn1
, Cn2

, Cn3
) = 4 max{n1, n2, n3} − 3.

In particular, for n > n0 odd,

R(Cn, Cn, Cn) = 4n − 3.

1.1. Notation

Our notation is quite standard. For graphs, the first subscripts mostly indicate the
number of vertices, e.g., GN is always a graph of N vertices, Cn a cycle on n vertices,
Pℓ is a path of ℓ vertices. We shall often “patch up” cycles from paths, and in these
cases it is sometimes useful to specify the first and the last vertices of those paths.
Hence, denote by P (u, v) a path whose first vertex is u and the last one is v, and we
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shall refer to it as a (u, v)-path. For non-empty disjoint sets X and Y we denote by
K(X,Y ) the complete bipartite graph with bipartition X ∪ Y .

For a graph G we denote by e(G) its number of edges. Given a set X of vertices
of G, G[X] stands for the subgraph of G induced by the vertices of X. G\X denotes
the subgraph obtained by deleting the vertices of X and the edges incident to X.
We put e(X) := e(G[X]).

Given two disjoint sets of vertices, X and Y , E(X,Y ) denotes the set of edges
joining them, e(X,Y ) := |E(X,Y )|, and G[X,Y ] is the bipartite subgraph of G with
bipartition X ∪ Y and edge set E(X,Y ). We also call

d(X,Y ) :=
e(X,Y )

|X||Y |
the density of the pair (X,Y ) in G. When there is no danger of confusion, we use
uv ∈ G[X,Y ] to mean u ∈ X, v ∈ Y , and uv ∈ E(X,Y ).

For a vertex x we denote by N(x) the set of all vertices adjacent to x and set
deg(x) := |N(x)| and deg(x, Y ) := |N(x) ∩ Y | (the degree of x into Y ). Similarly,
for two vertices x and y, we denote by N(x, y) the set of vertices adjacent to both x
and y, and we set deg(x, y) := |N(x, y)|.

Let δ(G) and ∆(G) denote the minimum and the maximum degree of G, respec-
tively. We call G t-complete if δ(G) ≥ |V (G)| − 1 − t. For a bipartite graph G with
bipartition U ∪V , we say that G is t-complete if deg(u, V ) ≥ |V | − t for every u ∈ U
and deg(v, U) ≥ |U | − t for every v ∈ V . We remark that the induced subgraphs of
a t-complete graph are also t-complete.

Whenever we speak of colorings, we mean edge-colorings. Mostly we “use” three
colors, red, blue and green, and the subgraphs of given colors will be indicated by
superscripts: Gb is the blue subgraph of G, Grg := Gr ∪Gg is the red-green subgraph
of G. However, the corresponding graph theoretical parameters (e.g., numbers of
edges, degrees) will be indicated by subscripts: er(X,Y ) denotes the number of red
edges between X and Y in an edge-colored graph, degg(x, Y ) is the number of green
edges joining x to Y .

1.2. Extremal colorings and stability

Below we describe two colorings of K4m, providing the lower bound in Theorem 1.

Coloring 1 (EC1(m)). Take 4 sets X1 . . . , X4 of m vertices each. Color the pairs
inside each group by green, the edges of K(X1, X3)∪K(X2, X4) by red, K(X1, X2)∪
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K(X3, X4) by blue, and the edges of K(X1, X4) ∪ K(X2, X3) arbitrarily, by red and
blue.

The special feature of the second coloring is that it contains both blue and green
complete graphs Km.

1 2

3 4

Fig 1: Coloring EC1(m)

1 2

3 4

Fig 2: Coloring EC2(m)

Coloring 2 (EC2(m)). Take 4 groups, X1 . . . , X4, of m vertices each. Color all pairs
in X1 and X2 by green, in X3 and X4 by blue. Then color K(X3, X4) by green and
K(X1, X2) by blue. Finally, color the edges of K(X1 ∪ X2, X3 ∪ X4) by red.

In the proof of the lower bound, we may assume that the color of the longest
cycle is green, that is, n := n3 = max ni.

Claim 2. For n odd, colorings EC1(n − 1) and EC2(n − 1) do not contain mono-
chromatic Cn. Moreover, EC1(n− 1) contains neither blue nor red odd cycles at all.
Consequently, R(Cn1

, Cn2
, Cn3

) ≥ 4 max{n1, n2, n3} − 3.

Proof. In both colorings, each monochromatic subgraph is the vertex disjoint union
of complete graphs Kn−1 and bipartite graphs (or just one of them). Hence these
colorings do not contain green odd cycles of length n = n3. In EC1(n − 1), both
red and blue subgraphs are bipartite, thus EC1(n− 1) does not contain any odd red
or blue cycles at all. (EC2(n − 1) is an extremal coloring exactly if at least two of
n1, n2, n3 are maximal.)

We shall say that a 3-coloring of a graph G contains EC1(m) (EC2(m), respec-
tively) if there exists disjoint subsets U1, . . . , U4 of V (G), each of size m, and an
injection f : Ui → Xi, i = 1, 2, 3, 4, such that for every edge xy in G[U1 ∪ . . . ∪ U4],
xy has the same color in G as f(x)f(y) in EC1(m) (EC2(m), respectively).

We shall also say that a 3-coloring of a graph G can be embedded into coloring
EC1(m) (EC2(m), respectively) if there exists an injection f : V (G) → X1 ∪ X2 ∪
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X3 ∪ X4 such that for all edges xy, vw ∈ E(G), xy and vw have the same color in
G if and only if f(x)f(y) and f(v)f(w) have the same color in EC1(m) (EC2(m),
respectively).

Our main result follows from Claim 2 combined with the following stability the-
orem.

Theorem 3. There exist constants c > 0 and N0 ∈ N with the following property.
For all odd integers n1, n2, n3 > N0 set n = max{n1, n2, n3} and let N ≥ (4 − c)n
be a natural number. Suppose that KN is 3-colored without red Cn1

, blue Cn2
, and

green Cn3
.

Then N < 4n − 3 and there is a subgraph G of KN such that e(G) ≥
(

N
2

)
− 10N

and the induced 3-coloring of G can be embedded either into EC1(n − 1) or into
EC2(n − 1).

Remark 4. The idea of using stability theorems in graph theory was initiated by
the second author, back in the 60’s and 70’s, see, e.g., Simonovits [23], Erdős and
Simonovits [7], Lovász and Simonovits [18, 19]. Since then this method has been
successfully applied to many extremal problems, e.g., to find maximal triangle-free
subgraphs of random graphs [1] or some recent exact hypergraph extremal theorems
by Füredi and Simonovits [12], Keevash and Sudakov [14], and Füredi, Pikhurko and
Simonovits [10, 11].

The proof of Theorem 3 comes in two stages: First we prove Theorem 5, a weak-
ening of Theorem 3, where we have one additional condition that G contains either
EC1(m) or EC2(m), for some m slightly larger than n/2.

Theorem 5. Given three odd integers n1, n2, n3 ≥ 11, set n = max{n1, n2, n3}.
Let N and t be natural numbers for which n > 4t + 25, and N ≥ 2n + 8t + 26.
Suppose that an N -vertex t-complete graph G is 3-colored (in red, blue and green)
without red Cn1

, blue Cn2
, and green Cn3

. Furthermore, suppose that there exists
a t-complete subgraph G′ of G such that the induced 3-coloring of G′ contains either
EC1(

1
2
(n + 13) + 2t) or EC2(

1
2
(n + 13) + 2t).

Then N < 4n − 3 and there exists a subgraph G′′ of G such that e(G) − e(G′′) ≤
10N and the induced 3-coloring of G′′ is embeddable either into EC1(n − 1) or into
EC2(n − 1).

Then we shall prove that if a graph GN with large minimum degree is 3-colored
and this 3-coloring has no long monochromatic cycles, then it must contain a rela-
tively large colored subgraph of the structure described in Colorings 1 or 2.
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Theorem 6 (Ensuring The Additional Condition). There exists an η6 > 0 such that
for every η ∈ (0, η6) there is an n6 = n6(η) with the following property.

Let n > n6 and (4 − η)n ≤ N < (4 + η)n be integers. Suppose that G = GN is a
graph with δ(G) ≥ (1−η4)N . Then for any 3-coloring of the edges of G, if G contains
no monochromatic odd cycle longer than (1 + η/100)n, then one can find a subset
W ∗ ⊂ V (G) of 4⌈(1/2 + η/4)n⌉ vertices such that the induced 3-coloring of G[W ∗]
can be embedded either into EC1(⌈(1/2 + η/4)n⌉) or into EC2(⌈(1/2 + η/4)n⌉).

We prove Theorem 3 in the following way: by combining Szemerédi’s Regularity
Lemma with Theorem 6, we find a large copy of Coloring 1 or 2 in a given 3-coloring
of KN without red Cn1

, blue Cn2
, and green Cn3

. Then we apply Theorem 5. The
details of the proof can be found in Section 5.

Remark 7.
(a) Since one of our main tools is the Szemerédi Regularity Lemma [24] (see

Section 4), we cannot push down the threshold n0 from which on our theorems hold
(at least, not in this way).

(b) We do not really have to care for getting the exact length of a cycle: the
Regularity Lemma enables us to get a monochromatic (odd) cycle of any length
between a large constant and m if we can find a monochromatic (odd) cycle longer
than m + εm. Mainly for this reason the proof of Theorem 3 reduces to the proof of
Theorem 6.

(c) Our proof of Theorem 1 has roots in the work of  Luczak [20] into which we
incorporated some new stability results.

The rest of this paper is organized as follows: In the next section we prove
Theorem 5 and, in Section 3, we prove Theorem 6. Szemerédi’s Regularity Lemma
is given in Section 4. The details of the proof of Theorem 3 follow in Section 5.

2. Proof of Theorem 5

2.1. Density statements

We first list several results concerning cycles and paths in graphs with large minimum
degree that we later use in the proof of Theorem 5.

Theorem 8 (Erdős, Gallai, [5]). For any graph GN with

e(GN) ≥ 1

2
(ℓ − 1)(N − 1) + 1,
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GN contains a cycle of length at least ℓ.

When a graph has large minimum degree we can say a bit more. The following
is a consequence of the well-known result of Bondy.

Theorem 9 (Bondy, [3]). Suppose that GN is a graph on N vertices with δ(GN) >
N/2. Then Ck ⊆ GN for each k = 3, . . . , N .

The next two lemmas provide sufficient conditions under which any two vertices
of a given graph are connected by a path of prescribed length.

Lemma 10 (Williamson, [25]). Suppose that GN is a t-complete graph on N vertices
for some integer 1 ≤ t ≤ N/2 − 2. Then for every 2 ≤ ℓ ≤ N − 1 and for any two
vertices u, v ∈ V (GN) there is a (u, v)-path of length ℓ in GN .

Lemma 11. Let H be a t-complete bipartite graph with bipartition U ∪ V . Then

(A) for any two vertices u, u′ ∈ U there exists a (u, u′)-path of length 2ℓ for every
1 ≤ ℓ ≤ min{|U |−1, |V |−2t}; the analogous statement, obtained by exchanging
the two vertex classes, also holds.

(B) for any two vertices u ∈ U , v ∈ V there exists a (u, v)-path of length 2ℓ + 1 for
every odd 1 ≤ ℓ ≤ min{|U |, |V |} − 2t − 1;

(C) there is a cycle of length 2ℓ for every 2 ≤ ℓ ≤ min{|U |, |V |} − 2t.

Proof. Without loss of generality, we may assume |V | > 2t. Fix any 2 vertices
u, u′ ∈ U . Since deg(u, u′, V ) ≥ |V | − 2t > 0, there exists a common neighbor v ∈ V
and, thus, a (u, u′)-path of length 2.

Suppose u1 = u, v1, u2, v2, . . . , vℓ, uℓ+1 = u′ is a (u, u′)-path of length 2ℓ for
some ℓ < min{|U | − 1, |V | − 2t}. Since ℓ < |U | − 1, there is a vertex w ∈ U \
{u1, u2, . . . , uℓ+1}. We have ℓ < |V | − 2t, deg(w, uℓ+1, V ) ≥ |V | − 2t, deg(uℓ, w, V ) ≥
|V | − 2t, and, therefore,

|N(w, uℓ+1)\{v1, v2, . . . , vℓ−1}|, |N(uℓ, w)\{v1, v2, . . . , vℓ−1}| ≥ |V |−2t− (ℓ−1) ≥ 2.

Hence, there exist two distinct neighbors, v′ of w, uℓ+1 and v′′ of uℓ, w, so that
u1 = u, v1, u2, v2, . . . , uℓ, v

′′, w, v′, uℓ+1 = u′ is a (u, u′)-path of length 2ℓ + 2.

To see (B), for given u ∈ U , v ∈ V we first find neighbors u′ 6= u ∈ U of v and
v′ 6= v ∈ V and then apply (A) to the t-complete bipartite graphs H − v and H − u.
Finally, (C) follows from (B) by taking any edge uv of H.
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2.2. Proof of Theorem 5

Let the odd integers n1, n2, n3 ≥ 11 be given and set n = max{n1, n2, n3}. Let N and
t be natural numbers satisfying t < 1

4
(n − 25), and N ≥ 2n + 8t + 26. Suppose that

a t-complete graph G = GN is 3-colored without red Cn1
, blue Cn2

, and green Cn3
.

Furthermore, suppose that there exists a t-complete subgraph G′ ⊂ G whose
induced 3-coloring contains either EC1(

1
2
(n + 13) + 2t) or EC2(

1
2
(n + 13) + 2t).

Hence, there exist four disjoint sets of vertices U1, . . . , U4, |Ui| = 1
2
(n+ 13) + 2t, such

that either

(a1) G′[U1] and G′[U2] are green, the other two, G′[U3] and G′[U4], are blue, and
G′[Ui] is t-complete for i = 1, 2, 3, 4;

(a2) G′[U1, U2] is a blue t-complete bipartite graph, G′[U3, U4] is a green t-complete
bipartite graph and G′[U1 ∪ U2, U3 ∪ U4] is a red t-complete bipartite graph;

or

(b1) G′[U1], G′[U2], G′[U3] and G′[U4] are green t-complete graphs;
(b2) G′[U1, U2] and G′[U3, U4] are blue t-complete bipartite graphs, G′[U1, U3] and

G′[U2, U4] are red t-complete bipartite graphs, and G′[U1, U4] and G′[U2, U3] are
t-complete bipartite graphs without green edges.

The t-completeness of G′[Ui] and |Ui| = 1
2
(n + 13) + 2t imply that δ(G′[Ui]) ≥

|Ui| − 1 − t > |Ui|/2 for each i = 1, 2, 3, 4. By Theorem 9, G′[Ui], i = 1, 2, 3, 4,
contains a cycle of every length between 3 and |Ui|. So we conclude that either

(a3) n2 > |U1|, |U2| and n3 > |U3|, |U4|,

or

(b3) n3 > |Ui| for i = 1, 2, 3, 4.

Let W := V (G) \ (U1 ∪ U2 ∪ U3 ∪ U4) be the set of “leftover” vertices in V (G). We
shall partition W into 4 classes:

W = U∗
1 ∪ U∗

2 ∪ U∗
3 ∪ U∗

4

and show that coloring of GN induced on the union of classes Ũi := Ui ∪ U∗
i , i =

1, 2, 3, 4, is of the same type as the “special” coloring of G′, apart from ten vertices.

More precisely, we shall prove the following:
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(A) for each i = 1, 2, 3, 4, all the edges in Ui and all the edges between Ui and U∗
i

have the same color as the edges in G′[Ui];
(B) For i = 1, 2, 3, 4, we have |Ũi| < n. Thus, N < 4n − 3;
(C) the sets Ũi, i = 1, 2, 3, 4 determine either EC1(n − 1) or EC2(n − 1), with the

exception of edges incident to at most 10 vertices.

Clearly, statements (A)-(C) prove the theorem.

We distinguish two cases depending on whether the conditions (a1)-(a3) or the
conditions (b1)-(b3) apply.

2.2.1. Case 1, corresponding to Coloring 1.

Here the conditions (b1)-(b3) apply. We first show that

all the edges of G[Ui] have the same color as the edges of G′[Ui]. (4)

Let u1v1 ∈ G[U1] \ G′[U1]. By Lemma 11 and since G′[U1, U2] is a blue t-complete
bipartite graph, there is a blue (u1, v1)-path of length n2 − 1. Note that

3 ≤ n2 − 1 ≤ n − 1 < 2

(
1

2
(n + 13) + 2t

)

− 4t − 2 ≤ 2 min{|U1| − 1, |U2| − 2t}

and Lemma 11 applies. Similarly, since G′[U1, U3] is a red t-complete bipartite graph,
there is a red (u1, v1)-path of length n1 − 1. Thus, to avoid a red Cn1

and blue Cn2
,

u1v1 must be green. By symmetry, all the edges of G[Ui], i = 1, 2, 3, 4, are green.

Consider an arbitrary vertex x ∈ W . We claim that, for some i = i(x), x is
adjacent to all the vertices of Ui in green. Suppose this is not the case. Then in red
or blue, x has at least one neighbor ui in each Ui. Since G′[U1, U2] is a blue t-complete
bipartite graph, by Lemma 11, it contains a blue path P (u1, u2) of length n2 − 2.
Note that in this case, we have 3 ≤ n2 − 2 ≤ n − 2 < 2(1

2
(n + 13) + 2t) − 4t − 1 =

2(min{|U1|, |U2|} − 2t − 1) + 1.

Hence, at least one of xu1, xu2 must be red (otherwise we could find a blue Cn2

using xu1, xu2 and P (u1, u2)). Assume that xu1 is red. Then, since G′[U1, U3] is a red
t-complete bipartite graph, xu3 must be blue (by the same argument as above). The
blue t-complete G′[U3, U4] implies that xu4 is red, and the red t-complete G′[U2, U4]
implies that xu2 is blue.

Suppose there exists a blue edge v1v4 such that v1 ∈ U1 and v4 ∈ U4. By
Lemma 11 and since G′[U1, U2] and G′[U3, U4] are blue t-complete bipartite graphs,
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there are a blue (v1, u2)-path of length n2 − 6 and a blue (u3, v4)-path of length 3.
These two paths together with xu2, xu3, and v1v4 form a blue Cn2

, which is a con-
tradiction. Therefore, G[U1, U4] is red and t-complete. By Lemma 11 again, we find
a red (u1, u4)-path of length n1 − 2. This path forms a red Cn1

with u1x and xu4 –
a contradiction.

Thus we can partition W into U∗
1 ∪U∗

2 ∪U∗
3 ∪U∗

4 by putting a vertex w ∈ W into
U∗

i if all the edges in the set E(w,Ui) are green. If there are two such Ui’s, choose
one of them arbitrarily. This completes the proof of (A).

To see (B), assume that one of the sets Ũi has at least n ≥ n3 vertices. In case
of strict inequality, we omit some vertices from U∗

i so that |Ũi| = |Ui| + |U∗
i | = n.

Recall that 1
2
(n3 + 3) < 1

2
(n + 13) + 2t = |Ui| < n3 by (b3) and 6 ≤ |U∗

i | = n−|Ui| =
1
2
(n−13)−2t. Since Gg[Ui, U

∗
i ] is t-complete, using Lemma 11 we find an (u, v)-path

P of length min{2|U∗
i |, n3 − 1} for some green edge uv, u, v ∈ Ui. Note that in order

to avoid a green Cn3
, we must have 2|U∗

i | < n3 − 1 and P covers all the vertices
of U∗

i . A simple counting shows that G[(Ui \P )∪{u, v}] is a green t-complete graph
satisfying |(Ui \ P ) ∪ {u, v}| = |Ui| − |U∗

i | + 1 = 14 + 4t > 2(t + 2). Since

2 ≤ n3 − 2|U∗
i | ≤ n − 2|U∗

i | = |Ui| − |U∗
i | = |(Ui \ P ) ∪ {u, v}| − 1,

by Lemma 10, G[(Ui \ P ) ∪ {u, v}] contains a (u, v)-path P ′ of length n3 − 2|U∗
i |.

Clearly, P ∪ P ′ is a green Cn3
.

From now on, we call two edges independent if they are vertex disjoint. In order
to verify (C), first we prove that

Claim 12. There are no two independent green edges between Ũi and Ũj, for i 6= j.

Proof. Assume there are two green independent edges e1, e2 between Ũ1 and Ũ2.
We claim that there exist distinct vertices u1, v1 ∈ U1, u2, v2 ∈ U2, a green path
P (u1, u2), and a green path P (v1, v2), vertex-disjoint from the previous one, both of
length at most 3.

Indeed, we set ui = e1 ∩ Ui if e1 ∩ U∗
i = ∅, i = 1, 2. Otherwise, we define ui as

any green neighbor of the vertex in e1 ∩ U∗
i in Ui. Similarly, we set vi = e2 ∩ Ui if

e2 ∩ U∗
i = ∅, i = 1, 2, otherwise, vi is any green neighbor of the vertex in e2 ∩ U∗

i

in Ui \ {ui}. This is always possible because the bipartite graphs G[U∗
1 , U1] and

G[U∗
2 , U2] are green and t-complete.

Since G[U1] and G[U2] are green and t-complete, there is a path P (ui, vi) ⊂ G[Ui]
of any length ℓi, 2 ≤ ℓi ≤ |Ui|, for i = 1, 2. Since |U1|+|U2| > n+13+4t > n3 ≥ 11, we
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can choose 2 ≤ ℓ1 ≤ |U1| and 2 ≤ ℓ2 ≤ |U2| so that ℓ1 +ℓ2 + |P (u1, u2)|+ |P (v1, v2)| =
n3. Clearly, P (u1, v1), P (u2, v2) together with P (u1, u2) and P (v1, v2) form a green
Cn3

– a contradiction.

Hence there are no two independent green edges between Ũ1 and Ũ2 and, by
symmetry, neither between any Ũi and any Ũj, i 6= j. By removing the centers of
at most 6 green stars we get that all G[Ũi, Ũj] are t-complete and contain no green
edges. Furthermore, we remove at most 3 vertices from each Ũi.

Now we distinguish 4 sub-cases:

(1a) there exists either a red edge in one of G[U1, U2]\G′[U1, U2], G[U3, U4]\G′[U3, U4]
or a blue edge in one of G[U1, U3] \ G′[U1, U3], G[U2, U4] \ G′[U2, U4];

(1b) G[U1, U2], G[U3, U4] are blue, G[U1, U3], G[U2, U4] are red, and there exists
either a red edge in one of G[U∗

1 , U2], G[U1, U
∗
2 ], G[U∗

3 , U4], G[U3, U
∗
4 ] or a blue

edge in one of G[U∗
1 , U3], G[U1, U

∗
3 ], G[U∗

2 , U4], G[U2, U
∗
4 ];

(1c) all the edges of G[Ũ1, Ũ2] \ G[U∗
1 , U∗

2 ] and G[Ũ3, Ũ4] \ G[U∗
3 , U∗

4 ] are blue, all
the edges of G[Ũ1, Ũ3] \G[U∗

1 , U∗
3 ] and G[Ũ2, Ũ4] \G[U∗

2 , U∗
4 ] are red, and either

one of G[U∗
1 , U∗

2 ], G[U∗
3 , U∗

4 ] contains a red edge or one of G[U∗
1 , U∗

3 ], G[U∗
2 , U∗

4 ]
contains a blue edge;

(1d) all the edges of G[Ũ1, Ũ2] and G[Ũ3, Ũ4] are blue and all the edges of G[Ũ1, Ũ3]
and G[Ũ2, Ũ4] are red.

We will show that sub-case (1a) reduces to (1b), (1c) or (1d), sub-case (1b) reduces
to (1c) or (1d), sub-case (1c) reduces to (1d), and (1d) implies (C). This will conclude
the proof in the Case 1.

(1a) reduces to (1b), (1c) or (1d).

By symmetry, suppose that v3v4 ∈ G[U3, U4] \G′[U3, U4], v3 ∈ U3, v4 ∈ U4, is red.
We are going to show that all the edges of G[U1, U4], G[U2, U3] are blue and all the
edges of G[U1, U3], G[U2, U4] are red. By renaming Ui to Ui+1 and U∗

i to U∗
i+1, we see

that one of (1b), (1c), (1d) must hold. The assertion of this sub-case follows from
the following two claims.

Claim 13. All the edges of G[U1, U4] and G[U2, U3] are blue.

Proof. To the contrary, let w1w4 ∈ G[U1, U4] be a red edge. By Lemma 11, there is
a path P (v4, w4) of length 2 (or 0 if v4 = w4) in the red t-complete G′[U3, U4]. Since
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G′[U1, U3] is also red and t-complete, the same lemma implies the existence of a red
path P (w1, v3) of length n1 − 2−|P (v4, w4)|. Clearly, P (v4, w4), P (w1, v3), v3v4, and
w1w4 form a red cycle of length n1 - a contradiction. Similarly, G[U2, U3] is blue.

Claim 14. All the edges of G[U1, U3] and G[U2, U4] are red.

Proof. To the contrary, suppose that w2w4 ∈ G[U2, U4] is a blue edge. Since
G′[U3, U4] is blue and t-complete, there exists a blue edge w3w4 for some w3 ∈ U3.
By the previous claim, G[U2, U3] is a blue t-complete bipartite graph, hence, by
Lemma 11, there is a (w2, w3)-path P of length n2 − 2. Clearly, P , w2w3, and w3w4

form a blue cycle of length n2 - a contradiction. For G[U1, U3] we proceed similarly.

(1b) reduces to (1c) or (1d). Without loss of generality we may assume that
there exists a red edge u1u2 with u1 ∈ U∗

1 and u2 ∈ U2. We are going to show that
all the edges of G[Ũ1, Ũ3] \ G[U∗

1 , U∗
3 ] and G[Ũ2, Ũ4] \ G[U∗

2 , U∗
4 ] are red, and all the

edges of G[Ũ2, Ũ3] \G[U∗
2 , U∗

3 ] and G[Ũ1, Ũ4] \G[U∗
1 , U∗

4 ] are blue. By renaming Ui to
Ui+1 and U∗

i to U∗
i+1, we see that either (1c) or (1d) must hold.

Since G[U2, U4] is red and t-complete, every vertex in U2 is connected to each
vertex in U4 by a red path of length n1 − 2, by Lemma 11. To avoid a red Cn1

, all
the edges from u1 to U4 are blue. Similarly, every vertex in U4 is connected to any
vertex in U3 by a blue path of length n2 − 2. To avoid a blue Cn2

, all the edges from
u1 to U3 must be red.

We claim that all the edges of G[U1, U4] are red. Indeed, let w1w4 ∈ G[U1, U4] be
a red edge and let w3 ∈ U3 be any common neighbor of u1 and w1. Since G[U2, U4] is
red and t-complete, there is a red (w4, u2)-path of length n1 − 4. This path together
with red edges w1w4, u1u2, u1w3, w3w1 form a red Cn1

– a contradiction again. So
G[U1, U4] is completely blue. Similarly, all the edges of G[U2, U3] are blue.

The assertion of this sub-case follows from the following two claims.

Claim 15. All the edges of G[U1, U
∗
3 ], G[U∗

1 , U3], G[U2, U
∗
4 ] and G[U∗

2 , U4] are red.

Proof. Suppose that w2w4 ∈ G[U∗
2 , U4], w2 ∈ U∗

2 , w4 ∈ U4, is a blue edge and
consider arbitrary neighbors w1 ∈ U1, w3 ∈ U3 of w2. If either w1w2 or w2w3 is blue,
then we have a blue Cn2

because we can join w1 and w4 by a blue path of length
n2−2 in G[U1, U4] and w3 and w4 by a blue path of length n2−2 in G[U3, U4]. (Both
graph are t-complete and Lemma 11 applies.) Hence w1w2 and w2w3 are both red
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and we obtain a red Cn1
by finding a red (w1, w3)-path of length n1 − 2 in the red

t-complete graph G[U1, U3]. We would proceed similarly if there were any blue edges
in G[U1, U

∗
3 ], G[U∗

1 , U3], or G[U2, U
∗
4 ].

Claim 16. All the edges of G[U1, U
∗
4 ], G[U∗

1 , U4], G[U2, U
∗
3 ], and G[U∗

2 , U3] are blue.

Proof. To the contrary, let v1v4 ∈ G[U1, U
∗
4 ] be any red edge. By (b2) and Claim 15,

G[Ũ1, U3] is red and t-complete, thus, by Lemma 11, there is an (u1, v1)-path of
length n1 − 5. Similarly, since G[U2, Ũ4] is red and t-complete, there exists a red
(u2, v4)-path of length 3. Clearly, these two red paths and u1u2, v1v3 form a red Cn1

– a contradiction. We would proceed in the same way if there were any red edges in
G[U∗

1 , U4], G[U2, U
∗
3 ], or G[U∗

2 , U4].

(1c) reduces to (1d). One of our assumptions in this sub-case is that either
G[U∗

1 , U∗
2 ] ∪ G[U∗

3 , U∗
4 ] contains a red edge or G[U∗

1 , U∗
3 ] ∪ G[U∗

2 , U∗
4 ] contains a blue

edge. Without loss of generality we may assume that

there exists a red edge u1u2 ∈ G[U∗
1 , U∗

2 ].

In Claims 17 and 18 below we are going to prove that all the edges of G[Ũ1, Ũ3] and
G[Ũ2, Ũ4] are red and all the edges of G[Ũ1, Ũ4] and G[Ũ2, Ũ3] are blue. However, now
we are in the sub-case (1d) with the rôle of Ui and U∗

i played by Ui+1 and U∗
i+1.

Claim 17. All the edges of G[Ũ1, Ũ4] and G[Ũ2, Ũ3] are blue.

Proof. Indeed, suppose that some v1v4 ∈ G[Ũ1, Ũ4] is red. Since G[Ũ1, U3] is red and
t-complete, by Lemma 11 there is a (u1, v1)-path P of length 2. (If u1 = v1, we set
P = u1.) Both G[Ũ2, U4] and G[U2, Ũ4] are red t-complete bipartite graphs with at
least 1

2
(n + 13) + 2t− 3 vertices in each partite set. By Lemma 11 there exists a red

(u2, v4)-path P ′ of length n1 − 2 − |P | in G[Ũ2, U4] because

n1 − 2 − |P | ≤ 2

(
1

2
(n + 13) + 2t − 3

)

− 4t − 1

≤ 2
(

max {|Ũ2|, |U4|} − 2t − 1
)

+ 1.

Clearly, P, P ′, u1u2, v1v4 form a red Cn1
– a contradiction. We proceed in the same

way for any red edge in G[Ũ2, Ũ3].
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Claim 18. All the edges of G[Ũ1, Ũ3] and G[Ũ2, Ũ4] are red.

Proof. By the assumptions of (1c), we know that all the edges of G[Ũ1, Ũ3]\G[U∗
1 , U∗

3 ]
and G[Ũ2, Ũ4] \G[U∗

2 , U∗
4 ] are red. Hence what remains to verify is that all the edges

of G[U∗
1 , U∗

3 ] and G[U∗
2 , U∗

4 ] are red.

To the contrary, let u2u4 ∈ G[U∗
2 , U∗

4 ] be a blue edge. Since G[U1, Ũ2] and
G[Ũ1, Ũ4] are blue and t-complete (by the assumptions of (1c) and Claim 17), there
are two distinct vertices w1, w

′
1 ∈ U1 such that u2w1 and u4w

′
1 are blue. By Lemma 11,

w1 and w′
1 are joined by a blue path of length n2 − 3 in the blue t-complete graph

G[U1, U2]. This path together with u2u4, u2w1 and u4w
′
1 form a blue Cn2

– a contra-
diction. We can rule out the existence of any blue edge in G[U∗

1 , U∗
3 ] similarly.

(1d) implies (C). We know that all the edges of G[Ũ1, Ũ2] and G[Ũ3, Ũ4] are
blue, all the edges of G[Ũ1, Ũ3] and G[Ũ2, Ũ4] are red, and all 4 graphs are t-complete.
For every i = 1, 2, 3, 4, we also have |Ũi| ≥ 1

2
(n+13)+2t−3 > max{1

2
(n1−1)+2t+1,

1
2
(n2 − 1) + 2t + 1}. Therefore, Lemma 11 implies that any two vertices of U∗

i are
connected by a red path of length n1 − 1 and by a blue path of length n2 − 1. Hence
all the edges within U∗

i are green and (C) holds. The second part of (C) follows from
the fact that in the above argument we ignored only edges incident to at most six
vertices.

2.2.2. Case 2, corresponding to Coloring 2.

This is the easier case, since here the coloring is “more” unique. Now the conditions
(a1)-(a3) apply. First of all, similarly to (4), all the edges of G[Ui] must have the
same color as the edges of G′[Ui].

Secondly, since G′[U1 ∪U2, U3 ∪U4] is a red t-complete bipartite graph and |U1 ∪
U2|, |U3 ∪U4| = n + 13 + 4t > 1

2
(n1 − 3) + 2t + 1, Lemma 11 implies that every vertex

of U1 ∪U2 can be connected to any vertex of U3 ∪U4 by a red path of length n1 − 2.
Hence, no vertex of W can be adjacent to both U1 ∪ U2 and U3 ∪ U4 by a red edge,
because that would imply having a red cycle of length n1. Thus the set W splits into
two disjoint subsets W12 and W34 so that the vertices of W12 are adjacent to U1 ∪U2

only in blue and green and the vertices of W34 are adjacent to U3 ∪ U4 only in blue
and green (again, ties are decided arbitrarily).

Since G′[U1, U2] is blue and it is a t-complete bipartite graph, by Lemma 11, for
each u1 ∈ U1 and u2 ∈ U2, it contains a blue (u1, u2)-path of length n2 − 2. Hence



15

no vertex of W12 can be adjacent to both U1 and U2 by a blue edge. We divide
W12 into U∗

1 , U∗
2 so that the vertices of U∗

1 (U∗
2 respectively) are adjacent to vertices

of U1 (U2 respectively) by green edges only. We do the same (except we use green
instead of blue) to split W34 into U∗

3 , U∗
4 so that the vertices of U∗

3 (U∗
4 respectively)

are adjacent to all vertices of U4 (U3 respectively) by blue edges. This completes the
proof of part (A). The proof of part (B) is exactly the same as in Case 1.

Lemma 11 also implies that any two vertices of U1∪U2 or U3∪U4 can be connected
by a red path of length n1−1. Hence, there is no red edge in G[U1∪U2] and G[U3∪U4].

The argument used to prove Claim 12 in Case 1 also yields that there are no two
green independent edges between Ũ1 and Ũ2 and there are no two independent blue
edges between Ũ3 and Ũ4. Hence, by removing the centers of one green and one blue
star we obtain that G[Ũ1, U2] and G[Ũ2, U1] are blue and t-complete and G[Ũ3, U4]
and G[Ũ4, U3] are green and t-complete. Moreover, there are no green edges between
U∗

1 and U∗
2 and no blue edges between U∗

3 and U∗
4 .

From Lemma 11 and from the t-completeness of G[Ũ1, U2] we conclude that any
two vertices of Ũ1 are joined by a blue paths of length n2 − 5 and n2 − 7. Since
G[U∗

3 , U3] and G[U3] are t-complete and blue, we conclude that any two vertices of
Ũ3 can be joined by a blue path of length 3 or 5. Consequently, any two vertex
disjoint blue edges between Ũ1 and Ũ3 would yield a blue cycle of length n2 – a
contradiction.

Hence, by symmetry, there are no two independent blue edges between Ũi and
Ũj for (i, j) = (1, 3), (1, 4), (2, 3), (2, 4). Similarly, there are no two independent
green edges between Ũi and Ũj for (i, j) = (1, 3), (1, 4), (2, 3), (2, 4). We remove at
most 8 centers of green and blue stars and achieve that G[Ũ1 ∪ Ũ2, Ũ3 ∪ Ũ4] is a red
t-complete bipartite graph.

From Lemma 11 we immediately have that any two vertices in Ũ1 ∪ Ũ2 and any
two vertices in Ũ3 ∪ Ũ4 can be joined by a red path of length n1 − 1. Hence there are
no red edges in G[Ũ1 ∪ Ũ2] and in G[Ũ3 ∪ Ũ4]. Consequently, all the edges between
U∗

1 and U∗
2 are blue and all the edges between U∗

3 and U∗
4 are green. It is easy to see

now that the all edges in U∗
1 and U∗

2 are green and all edges in U∗
3 and U∗

4 are blue.

The second part of (C) follows from the observation that in the above argument
we ignored only edges incident to at most 10 vertices.
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3. Structure of 3-colorings without long monochro-

matic odd cycles

In this section we prove Theorem 6. First we state two lemmas.

3.1. Some results about 2-colorings of graphs with large min-
imum degree

We know that R(Cn, Cn) = 2n − 1 for every odd n > 4. In [20],  Luczak needed
a similar, but in some sense more general result on 2-colorings of “almost complete”
graphs on slightly more than 2n vertices.

Lemma 19 (Claim 8 in [20]). Let 0 < η < 10−5 and n ≥ n19(η) := exp(η−49).
Furthermore, let G = GN be a graph with N = (2 + η)n vertices and let

e(G) >

(
N

2

)

− 14η3n2.

Then every 2-coloring of G yields a monochromatic odd cycle of length at least (1 +
η/10)n.

We shall use an improved version of this lemma, in which it is strengthened in two
ways: by adding structural stability and bringing down the size of N from (2+o(1))n
to (3/2 + o(1))n.

Lemma 20 (2-color stability lemma). There exists a positive integer n20 with the
following property. Let n > n20, s be any integer in (20n2/3, n/160), and N =
3n/2 + 80s. Suppose that G = GN is (s/100)-complete. Then any 2-coloring of G
either contains a monochromatic odd cycle longer than n + s or else V (G) can be
partitioned into V1 ∪ V2 so that

(a) all the edges of G[V1] and G[V2] are of the same color and |V1|, |V2| ≤ n + s,
(b) all the edges of G[V1, V2] are of the other color, with the possible exception of

edges incident to one fixed vertex.

The proof of this lemma can be found in [15]. For complete graphs (i.e., when
s = 0) this result was observed by Nikiforov and Schelp [21].
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3.2.  Luczak’s even-odd decomposition

If we know only that a graph G does not contain odd cycles longer than m, then it
easily can be the union of complete graphs of size at most m and a bipartite graph.
 Luczak showed that up to some error the converse is also true.

Lemma 21 ( Luczak’s decomposition lemma, Claim 7 in [20]). For every 0 < δ <
10−15 and m,N satisfying

max

{

2δN,
N

log(N)δ16

}

< m < N

the following holds. If a graph G = GN contains no odd cycles longer than m, then
G contains two subgraphs F and B for which

(A) V (F )∪V (B) = V (G), V (B)∩V (F ) = ∅, and each of V (B) and V (F ) is either
empty or contains at least δm/2 vertices,

(B) B is bipartite,
(C) e(F ) ≤ 1

2
m|V (F )|, and

(D) e(G) − e(B) − e(F ) < δN2.

Notice that  Luczak’s decomposition lemma defines a natural decomposition of
V (G) into at most three sets: the vertex set of F , called the odd part , and the two
sets of B, defining the even – or bipartite – part. We will refer to this decomposition
as the  Luczak decomposition.

3.3. Proof of Theorem 6

First we sketch the proof, then give the details.

Let G be a graph on at least (4−η)n vertices and with large minimum degree, let
η > 0 be sufficiently small, and let n be sufficiently large. We consider a 3-coloring
of G with no monochromatic odd cycle longer than (1 + η/100)n . By symmetry,
we may assume that the green subgraph has the smallest edge-set. Then we apply
Lemma 21 to the red and blue subgraphs, obtaining the red  Luczak decomposition
V1 (odd part), V2, V3 (bipartite part), and the blue  Luczak decomposition W1 (odd
part), W2,W3 (bipartite part).
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V1

W

V2 V3
W2

W1

3

We shall distinguish three cases:

(a) The first case occurs when both sets V2, V3 in the red even part or both sets
W2,W3 in the blue even part are “large” – larger than (3/2 + η)n.

(b) The second case is when only one of V2, V3 or one of W2,W3, say V2, is larger
than (3/2 + η)n and |V1| + |V2| ≥ (2 + η)n.

(c) The last case covers the remaining part when |V2|, |V3|, |W2|, |W3| ≤ (3/2 +
η)n. This is the most involved case, requiring the most work.

In the first case, using the 2-color stability lemma, Lemma 20, we show that the
subgraph of G induced by the red even part or by the blue even part is basically an
EC1(⌈(1/2 + η/4)n⌉) or EC2((⌈1/2 + η/4)n⌉).

In the second case, again by using Lemma 20, we show that the subgraph of
G induced by V1 ∪ V2 contains a monochromatic (blue or green) odd cycle longer
that (1 + η/100)n, which is a contradiction with our assumptions on the original
3-coloring.

In the last case we find a monochromatic odd cycle longer that (1 + η/100)n by
patching together long paths in monochromatic dense subgraphs of G induced by
the sets Vi ∩Wj, which is again a contradiction with our assumptions on the original
3-coloring.

Let us turn to the details. We set η6 := 10−5 and, for a given 0 < η ≤ η6, we
let n6 := exp(8η−128). Suppose that n > n6, (4 − η)n ≤ N < (4 + η)n and G = GN

is a graph with minimum degree δ(G) ≥ (1 − η4)N . Let G = Gr ∪ Gb ∪ Gg be an
arbitrary 3-coloring of its edges by red, blue and green, with

no monochromatic odd cycle longer than (1 + η
100

)n. (5)

Without loss of generality we may assume that e(Gr) ≥ e(Gb) ≥ e(Gg). Hence

e(Grb) = e(Gr) + e(Gb) ≥ 2e(G)

3
≥ (1 − η4)

N(N − 1)

3
. (6)

We apply the  Luczak decomposition lemma, Lemma 21, with δ = η8 and m =
(1+η/100)n to the red graph Gr and obtain a decomposition of V (G) into V1, V2 and
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V3 and two subgraphs F r and Br so that the vertex set of F r is V1, Br is bipartite
with bipartition V2 ∪ V3,

e(F r) ≤ 1

2

(

1 +
η

100

)

n|V1|, (7)

and
e(Gr) − e(F r) − e(Br) < η8N2. (8)

Similarly, we apply Lemma 21 to the blue graph Gb and obtain the decomposition
of V (G) into W1, W2 and W3 and two subgraphs F b and Bb so that the vertex set
of F b is W1, Bb is bipartite with bipartition W2 ∪ W3,

e(F b) ≤ 1

2

(

1 +
η

100

)

n|W1|, (9)

and
e(Gb) − e(F b) − e(Bb) < η8N2. (10)

Note that after removing at most η8N2 red edges and η8N2 blue edges from the
original 3-coloring

(A) the graphs induced by V2 and by V3 and the bipartite graph induced by V1 and
V2 ∪ V3 are 2-colored by blue and green only,

(B) the graphs induced by W2 and by W3 and the bipartite graph induced by W1

and W2 ∪ W3 are 2-colored by red and green only,
(C) for i, j ∈ {2, 3}, the graphs induced by Vi∩Wj and the bipartite graphs induced

by V1 ∩ W1 and Vi ∩ Wj, are completely green.

Furthermore, there are at most 2η4N vertices incident to more than 2η4N edges
removed above. We delete these vertices and obtain

(D) a ⌈3η4N⌉-complete subgraph of G with at least (4 − 2η)n vertices. Without
loss of generality we identify G with this subgraph, at least in this part of the
proof.

We distinguish three cases, as discussed in the outline of this proof.
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3.4. Either both V2 and V3 or both W2 and W3 are “large”

Throughout this section we will assume that

|V2|, |V3| >

(
3

2
+ η

)

n.

(The case when |W2|, |W3| > (3/2 + η)n is handled in the same way.) By (A) and
(D) we know that for the blue-green graph Gbg,

δ(Gbg[Vi]) ≥ |Vi| − 3η4N for i = 2, 3.

We apply Lemma 20 with s = η/100 to Gbg[Vi] for i = 2, 3. Since Gbg[Vi] does
not contain any monochromatic odd cycles longer than (1 + η/100)n, there must
be a partition Vi1 ∪ Vi2 of Vi such that Gbg[Vi1] and Gbg[Vi2] are monochromatic in
the same color (blue or green), and Gbg[Vi1, Vi2] is monochromatic in the other color,
with a possible exception of some edges incident to one vertex. We remove this
vertex.

By (D), for the monochromatic graph G[Vij] = Gbg[Vij],

δ(Gbg[Vij]) ≥ |Vij| − 3η4N for i = 2, 3, and j = 1, 2.

Suppose |Vij| > (1 + η/2)n. Since δ(G[Vij]) ≥ |Vij| − 3η4N > |Vij|/2, by Lemma 9,
G[Vij] ⊂ G contains a monochromatic odd cycle longer than |Vij|−2 ≥ (1+η/100)n,
which is a contradiction.

Hence each of four vertex sets V21, V22, V31, V32 must be smaller than (1 + η/2)n
which in turn implies that each of these sets must have size at least (1/2 + η/2)n.
We need two consider two sub-cases:

(a) the induced subgraphs Gbg[V21], Gbg[V22], and Gbg[V31, V32] are green and
Gbg[V31], G[V32] and Gbg[V21, V22] are blue;

(b) the induced subgraphs Gbg[V21], Gbg[V22], Gbg[V31], Gbg[V32] are green, and
Gbg[V21, V22] and Gbg[V31, V32] are blue.

Observe that in both sub-cases, by Lemmas 10 and 11 applied with t = ⌈3η4N⌉,

(E) any two vertices in Vij are connected (in Gbg[Vij]) by a monochromatic path of
length ℓ for every 2 ≤ ℓ ≤ (1 + η/4)n;

(F) every vertex in Vi1 is connected (in Gbg[Vi1, Vi2]) to every vertex in Vi2 by
a monochromatic path of length ℓ for every odd 3 ≤ ℓ ≤ (1 + η/4)n and
i = 2, 3;
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(G) any two vertices in Vi1 are connected (in Gbg[Vi1, Vi2]) by a monochromatic path
of length ℓ for every even 2 ≤ ℓ ≤ (1 + η/4)n and i = 2, 3.

Statements (E) – (G) remain true after removing arbitrary set of ηn/10 vertices
from G.

3.4.1. Sub-case (a): Distinct color patterns

Sparse Red Bipartite Red Sparse Red Bipartite Red

In this sub-case, there are no two independent blue or green edges in G[V2i, V3j] for
any i, j ∈ {1, 2}. Indeed, if there were two blue edges uv and u′v′ with u 6= u′ ∈ V2i

and v 6= v′ ∈ V3j, then using (G) and (E) we could find a blue even (u, u′)-path of
length at least (1 + η/100)n in G[V21, V22] and also a blue (v, v′)-path of length 3
in G[V3j]. These two paths, uv and u′v′, would form an odd blue cycle longer than
(1+η/100)n – a contradiction. We would obtain a contradiction for two independent
green edges similarly.

Hence each of the four graphs G[V2i, V3j] contains at most one green star, one
blue star, and all the other edges are red. We remove the 8 centers of these stars
together with all the edges incident to them. All the edges of the remaining graph
G[V21 ∪V22, V31 ∪V32] are red and, by (D), this graph is still ⌈3η4N⌉-complete. Since
|V21 ∪ V22|, |V31 ∪ V32| > 3n/2, Lemma 11, applied with t = ⌈3η4N⌉, implies that any
two vertices of V21 ∪ V22 and V31 ∪ V32 are connected by an even red path of length
(1 + η)n. Hence there are no red edges in G[V21 ∪ V22] neither in G[V31 ∪ V32].

Clearly, by removing vertices, we can reduce each Vij to size ⌈(1/2 + η/4)n⌉ and
these four sets induce a coloring embeddable into EC2(⌈(1/2 + η/4)n⌉). This was to
be proven.
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3.4.2. Sub-case (b): The same color patterns

Sparse Red Bipartite Red

V

V

V

1

2

3

21 22

31 32

Sparse Red Bipartite Red

Similarly to Sub-case (a), there are no two independent green edges between V2i and
V3j, i, j ∈ {1, 2}. Hence, by removing the centers of at most 4 green stars, we achieve
that all the edges of G[V21 ∪ V22, V31 ∪ V32] are red and blue only.

By (F), there is an odd blue path of length at least (1 + η/100)n between any
vertex in V21 and any vertex in V22 (V31 and V32, respectively). Since there is no blue
odd cycle longer than (1 + η/100)n, no vertex of V3 (V2, respectively) is adjacent
to both V21 and V22 (V31 and V32, respectively) by a blue edge. Furthermore, suppose
there are vertices u, v ∈ V21, u′ ∈ V31, v′ ∈ V32 such that uu′ and vv′ are both blue.
By (G), there exists a w ∈ V22 such that uw and vw are blue and, by (F), there is
an odd blue (u′, v′)-path of length at least (1 + η/100)n in G[V31, V32]. This path
and uu′, vv′, uw and vw form a blue odd cycle longer than (1 + η/100)n, which is
a contradiction.

Thus, by symmetry, the graphs G[V2i, V3j], i, j ∈ {1, 2}, are monochromatic and
either G[V21, V31] and G[V22, V32] or G[V21, V32] and G[V22, V31] have red edges only.
As before, we can reduce the size of each Vij to ⌈(1/2 + η/4)n⌉ and these four sets
induce a coloring embeddable into EC1(⌈(1/2 + η/4)n⌉).

3.5. Exactly one of V2, V3 or one of W2, W3 is “large”

Throughout this section we will assume that

|V2| > (3/2 + η)n, |V3| ≤ (3/2 + η)n and |V1| + |V2| > (2 + η)n.

We start exactly as in Section 3.4 and apply Lemma 20 (with s = ⌈ηn/100⌉)
to Gbg[V2]. Since Gbg[V2] does not contain any monochromatic odd cycles longer
than (1 + η/100)n, there must be a partition V21 ∪ V22 of V2 such that Gbg[V21]
and GbgG[V22] are monochromatic in the same color (say, green), and Gbg[V21, V22]
is monochromatic in blue, with a possible exception of some edges incident to one



23

vertex that we remove. Moreover, V21, V22 satisfy

(
1

2
+

η

2

)

n ≤ |V21|, |V22| ≤
(

1 +
η

2

)

n.

and also, by Lemmas 10 and 11 applied with t = ⌈3η4N⌉ (cf. Section 3.4),

(E’) any two vertices in V2j are connected (in Gbg[V2j]) by a green path of length ℓ
for every 2 ≤ ℓ ≤ (1 + η/4)n and j = 2, 3;

(F’) every vertex in V21 is connected (in Gbg[V21, V22]) to every vertex in V22 by
a blue path of length ℓ for every odd 3 ≤ ℓ ≤ (1 + η/4)n;

(G’) any two vertices in V2j are connected (in Gbg[V21, V22]) by a blue path of length
ℓ for every even 2 ≤ ℓ ≤ (1 + η/4)n and j = 2, 3.

Statements (E’)–(G’) again remain true after removing arbitrary set of ηn/10 vertices
from G.

By (D), Gbg[V1, V2] is a ⌈3η4N⌉-complete bipartite graph. Suppose that one of
the vertices v ∈ V1 has blue neighbors u ∈ V21 and u′ ∈ V22. By (F’), u and u′ are
connected in Gbg[V21, V22] by a blue odd path of length at least (1 + η/100)n. This
path and vu, vu′ form an odd blue cycle longer than (1 + η/100)n – a contradiction.
Therefore, each v ∈ V1 has either only green neighbors in V21 or only green neighbors
in V22. We split V1 into two sets V11 and V12 such that there are only green edges
between V1j and V2j. Since

|V11| + |V12| + |V21| + |V22| = |V1| + |V2| ≥ (2 + η)n,

either |V11| + |V21| ≥ (1 + η/2)n or |V12| + |V22| ≥ (1 + η/2)n. Without loss of
generality, we may assume that |V12| + |V22| ≥ (1 + η/2)n.

Now we find a green odd cycle of length longer than (1 + η/100)n in V12 ∪ V22.
Since Gg[V12, V22] is ⌈3η4N⌉-complete bipartite graph, by Lemma 11 there exists
a green even (v, v′)-path P of length at least 2 min{|V22|−ηn/8, |V12|−2⌈3η4N⌉} for
some v, v′ ∈ V22. Set P− = P \ {v, v′} and notice that, by (D), Gg[V22 \ V (P−)] is
⌈3η4N⌉-complete. Furthermore,

|V22 \ V (P−)|
2

− 2 ≥ |V22| −
(
|V22| − ηn

8

)

2
− 2 > ⌈3η4N⌉.

Therefore, by Lemma 10, the graph Gg[V22\V (P−)] contains a green odd (v, v′)-path
P ′ of length at least |V22 \ V (P )| − 1. Thus, P ∪ P ′ is an odd green cycle of length
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at least

2 min
{

|V22| −
ηn

8
, |V12| − 2⌈3η4N⌉

}

+ |V22 \ V (P )| − 1

= |V22| + min
{

|V22| −
ηn

8
− 1, |V12| − 2⌈3η4N⌉ − 1

}

≥ min
{

|V22| + |V12|, 2|V22|
}

− ηn

7
.

By our assumptions we have |V22|+ |V12|−ηn/7 ≥ (1 +η/4)n−ηn/7 > (1 +η/100)n
and 2|V22| − ηn/7 ≥ 2(1/2 + η/2)n− ηn/7 > (1 + η/100)n. Hence, P ∪ P ′ is an odd
green cycle of length at least (1 + η/100)n, which is again a contradiction.

The case when |Wi| > (3/2 + η)n and |W5−i| ≤ (3/2 + η)n, i = 2, 3, is handled
similarly.

3.6. V2, V3, W2, W3 are all “small”

Now we deal with the last case. It is impossible to have |V2| > (3/2 + η)n, |V3| ≤
(3/2 + η)n, and |V1|+ |V2| ≤ (2 + η)n because, by (D), |V1|+ |V2|+ |V3| ≥ (4− 2η)n.
Hence,

|V2|, |V3| ≤
(

3

2
+ η

)

n (11)

must hold, and, consequently,

|V1| ≥ (4 − 2η)n − 2

(
3

2
+ η

)

n = (1 − 4η)n. (12)

By the same argument, we also have |W1| ≥ (1 − 4η)n and |W2|, |W3| ≤ (3/2 + η)n.

Let S := (V2 ∩ W2) ∪ (V2 ∩ W3) ∪ (V3 ∩ W2) ∪ (V3 ∩ W3) and Q := V1 ∩ W1. We
also set σ := |S|/n and τ := |Q|/n and make the following observation.

Claim 22.
(i) σ ≥ 0.48;

(ii) if τ ≥ σ, then σ ≥ 0.66;
(iii) if τ, σ ≥ 1/2 + η, then there is an odd green cycle of length (1 + η/100)n.

The proof of Claim 22 is deferred to Section 3.6.3. Now we show how Claim 22
implies the existence of an odd monochromatic cycle longer than (1 + η/100)n. We
distinguish two sub-cases.
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3.6.1. Sub-case (a): σ > 1 + 35η

We call Vi ∩ Wj, i, j ∈ {2, 3}, “negligible” if |Vi ∩ Wj| < 11ηn and “non-negligible”
otherwise. By (C) and (D), G[Vi ∩Wj] is a green t-complete graph with t = ⌈3η4N⌉.
Since each “non-negligible” set Vi∩Wj has at least 11ηn > 2t+2 vertices, Theorem 9
applies. In particular, each “non-negligible” set Vi ∩Wj contains an odd green cycle
of length at least |Vi ∩Wj| − 1. Since G[Vi ∩Wj] contains no odd green cycle longer
than (1 + η/100)n, we must have |Vi ∩Wj| < (1 + η/50)n. As σ > 1 + 35η, there are
at least 2 “non-negligible” sets Vi ∩ Wj.

(a1) Suppose first that τ > η and all four sets Vi ∩ Wj are “non-negligible”. As
each Gg[Q, Vi ∩ Wj] is a t-complete graph (see (C) and (D)) and |Q|, |Vi ∩ Wj| >
t + 2, where t = ⌈3η4N⌉, there are six distinct vertices q22, q23, q32, q33 ∈ Q and
uij, vij ∈ Vi ∩ Wj, i, j ∈ {2, 3} for which all the edges q22u22, v22q23, q23u23, v23q33,
q33u33, v33q32, q32u32, v32q22 are green. Since |Vi ∩ Wj| ≥ 11ηn > 2t + 4, Lemma 10
applies and each Gg[Vi∩Wj] contains a path P (uij, vij) of length at least |Vi∩Wj|−1
and such that |P (u22, v22)|+ |P (u23, v23)|+ |P (u32, v32)|+ |P (u33, v33)| is odd. These
four paths and eight edges form an odd green cycle of length at least σn−3·11ηn−4 >
(1+η/100)n. The same argument works when we have two or three “non-negligible”
sets only.

(a2) Assume now that τ ≤ η. From (12) we conclude that

|V1 \ Q|, |W1 \ Q| ≥ (1 − 5η)n.

Notice that, by (A) and (B),

G[V1 \ Q,W1 \ Q] ⊂ G[V1, V2 ∪ V3] ∩ G[W2 ∪ W3,W1]

is a green bipartite graph. By (D), it is also t-complete. Therefore Lemma 11 implies
that any two vertices in V1 \ Q or in W1 \ Q are joined by an even green path of
length at least (2 − 10η)n − 4t > 3n/2.

This means that if we find two green independent edges between any “non-
negligible” set Vi ∩Wj and V1 \Q or W1 \Q, then we join their endpoints in Vi ∩ Vj

by a path of length 3 and the endpoints in V1 \ Q (or in W1 \ Q) by an even green
path of length at least 3n/2, thus obtaining an odd green cycle of length at least
3n/2 > (1 + η/100)n.

By symmetry, we may assume that V2 ∩ W2 is a “non-negligible” set, i.e., |V2 ∩
W2| ≥ 11ηn ≥ 2⌈3η4N⌉. If either |V2 ∩ W1| or |W2 ∩ V1| is at least 11ηn, then there
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are two green independent edges in either G[V2 ∩W2, V1 ∩W2] or G[V2 ∩W2, V2 ∩W1]
because both graphs are green (by (A) and (B)) and ⌈3η4N⌉-complete (see (D)).

Otherwise, we have |V2∩W1|, |W2∩V1| ≤ 11ηn. Since |V1\Q|, |W1\Q| ≥ (1−5η)n,
we get

|V3 ∩ W1| = |W1 \ Q| − |V2 ∩ W1| ≥ 11ηn ≥ 2⌈3η4N⌉
and

|W3 ∩ V1| = |V1 \ Q| − |W2 ∩ V1| ≥ 11ηn ≥ 2⌈3η4N⌉.
There exist at least two “non-negligible” sets, thus one of the sets V2 ∩W3, V3 ∩W2,
V3 ∩W3 must be “non-negligible”. The bipartite graphs G[V2 ∩W3, V1 ∩W3], G[V3 ∩
W2, V3∩W1], G[V3∩W3, V3∩W1] are all green (by (A) and (B)) and ⌈3η4N⌉-complete
(by (D)). Hence any one of them whose both partition sets are “non-negligible”
contains two green independent edges.

3.6.2. Sub-case (b): 0.48 < σ ≤ 1 + 35η

Claim 22(iii) implies that we cannot have σ, τ ≥ 1/2 + η. By (ii) of Claim 22, we
cannot have σ ≤ 1/2 + η ≤ τ either. Hence we may assume that τ < 1/2 + η, and,
therefore, |Q| = τn < (1/2 + η)n. (12) implies that |V1 \Q|, |W1 \Q| ≥ (1/2− 5η)n.

If there are at least two “non-negligible” sets Vi∩Wj, i, j ∈ {2, 3}, then we obtain
an odd green cycle of length at least (1 + η/100)n similarly to (a2) above: first we
find two green vertex disjoint edges e, f between some “non-negligible” set Vi ∩ Wj

and V1 \Q or W1 \Q. Then we join their endpoints in Vi ∩Vj by a green odd path P
of length at least |Vi ∩Wj|−1 in a green ⌈3η4N⌉-complete graph G[Vi ∩Wj] (see (C)
and (D)). We also connect the endpoints of e, f in V1 \ Q (or in W1 \ Q) by an even
green path P ′ of length at least 2(1/2 − 5η)n − 4⌈3η4N⌉. Clearly, P ∪ P ′ ∪ {e, f} is
an odd green cycle of length at least

|Vi∩Wj|−1+2

(
1

2
− 5η

)

n−4⌈3η4N⌉ > 11ηn+(1−10η)n−5⌈3η4N⌉ >
(

1 +
η

100

)

n.

Thus, by symmetry, we may assume that |V2 ∩ W2| > σn − 3 · 11ηn is the only
“non-negligible” set. If |V1∩W2| ≥ ηn/2 or |W1∩V2| ≥ ηn/2, then we again proceed
as above to obtain a green odd cycle longer than (1 + η/100)n.

Consequently, we also assume |V1 ∩ W2|, |W1 ∩ V2| ≤ ηn/2. Since |V | = |S| +
|Q| + |V1 ∩ W2| + |W1 ∩ V2| + |V1 ∩ W3| + |W1 ∩ V3|, we get

|V1 ∩ W3| + |W1 ∩ V3| ≥ (4 − 2η)n − σn − τn − ηn − 2
ηn

2
> (2.5 − 40η)n.
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Since |V3|, |W3| ≤ (3/2 + η)n by (11), we obtain (1 − 41η)n, |V1 ∩ W3| ≥ (1 − 41η)n.
The induced bipartite subgraph G[V1∩W3,W1∩V3] ⊂ G[V1, V2∪V3]∩G[W1,W2∪W3]
has all its edges green by (A) and (B), and it is also ⌈3η4N⌉-complete by (D). Lemma
11 implies that any two vertices of W1 ∩ V3 (V1 ∩W3, respectively) are connected by
an even path of length at least 2((1 − 41η)n) − 4⌈3η4N⌉ > (1 + η/100)n. Hence,
there are no green edges in W1 ∩ V3 and in V1 ∩ W3.

By (A), there are no red edges in W1 ∩ V3 either. Hence, by (D), G[W1 ∩ V3] is
a ⌈3η4N⌉-complete blue graph. Since 2⌈3η4N⌉ < (1−41η)n ≤ (1−41η)n, Theorem 9
applies and G[W1 ∩ V3] contains green cycles of all lengths between 3 and |W1 ∩ V3|.
Using (5) we obtain that |W1 ∩ V3| ≤ (1 + η/100)n + 2.

Similarly, using the red ⌈3η4N⌉-complete graph G[W3∩V1], we obtain |W3∩V1| ≤
(1+η/100)n+2. Equation |V | = |S|+|Q|+|V1∩W2|+|W1∩V2|+|V1∩W3|+|W1∩V3|
yields

σn ≥ (4 − 2η)n − τn − 2
ηn

2
− 2

(

1 +
η

100

)

n − 4 ≥
(

3

2
− 5η

)

n.

We know that |V2 ∩ W2| ≥ σn − 33ηn ≥ (3/2 − 38η)n. Since G[V2 ∩ W2] is a green
⌈3η4N⌉-complete graph (see (C) and (D)), by Theorem 9, it contains a green odd
cycle of length at least |V2 ∩ W2| − 1 ≥ (3/2 − 38η)n − 1 > (1 + η/100)n. This is
again a contradiction with (5).

What remains to prove is Claim 22.

3.6.3. Proof of Claim 22

To get (i), first we need an upper bound on e(Grb). By (A), there are no red edges
between V1 and W1 \ V1 or in W1 \ V1. Similarly, by (B), there are no blue edges
between W1 and V1 \ W1 or in V1 \ W1. Thus, by (7) and (9), there are at most

1

2

(

1 +
η

100

)

n|V1| +
1

2

(

1 +
η

100

)

n|W1| ≤ 2 ·
(

1 +
η

100

)

n
|V1 ∪ W1|

2

≤
(

1 +
η

100

)

n(N − σn)

red and blue edges in V1 ∪ W1. We have at most

∑

i,j∈{2,3}

(

|V2 ∩ Wi||V3 ∩ Wj| + |W2 ∩ Vi||W3 ∩ Vj|
)

≤ σ2n2

2
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red and blue edges in V (G) \ (V1 ∪W1) and the number of (potentially) red and blue
edges between S and V1 ∪ W1 \ Q is bounded by

σn(N − σn − τn).

Finally, by (8) and (10), the number of red and blue edges not included above is
bounded by 2η8N2. From this we obtain that

e(Grb) ≤
(

1 +
η

100

)

n(N − σn) +
σ2n2

2
+ σn(N − σn − τn) + 2η8N2.

This upper bound is decreasing in τ , hence using τ = 0 and combining it with (6)
and (4− η) ≤ N ≤ (4 + η)n results in a quadratic inequality that yields σ > 0.48 for
every η < 10−3. To obtain (ii), we just replace τ by σ (instead of 0) and proceed as
above.

Now we prove (iii). It follows from (C) and (D) that Gg[Q, Vi ∩ Wj] and Gg[Vi ∩
Wj] are ⌈3η4N⌉-complete graphs; therefore, Gg[Q,S] is also ⌈3η4N⌉-complete. We
assume that σ ≥ (1/2 + η)n, therefore at least one set Vi ∩ Wj must have size at
least n/8. Since Gg[Vi ∩ Wj] has minimum degree at least n/8 − ⌈3η4N⌉ > 4, we
deduce that it contains an (u, v)-path P of length 3 for some u, v ∈ Vi ∩ Wj. Let
P− = P \ {u, v}.

By Lemma 11, there exists a green (u, v)-path P ′ of length 2 min{|S| − |P−| −
2⌈3η4N⌉, |Q|} in Gg[Q,S \ P−]. We have |Q| = τn ≥ (1/2 + η)n and |S| − |P−| −
2⌈3η4N⌉ > σn− 7η4N > (1/2 + η/2)n. Hence, P ∪P ′ form a green odd cycle longer
than (1 + η/100)n.

4. Regularity Lemma for graphs

The Szemerédi Regularity Lemma [24] asserts that each graph of positive edge-
density can be approximated by a union of a bounded number of random-like bi-
partite graphs. To formulate it, we need the concept of ε-regular pairs.

Definition 23. Let G = (V,E) be a graph and let 0 < ε ≤ 1. A pair (A,B) of two
disjoint subsets of V is called ε-regular (with respect to G) if

|d(A′, B′) − d(A,B)| < ε

for any two subsets A′ ⊂ A, B′ ⊂ B satisfying |A′| ≥ ε|A|, |B′| ≥ ε|B|.
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This definition states that the edges are uniformly distributed in a regular pair.
The Regularity Lemma of Szemerédi [24] asserts that we can partition the vertex set
V (G) of a graph G into ν sets V1 ∪ . . . ∪ Vν so that most of the pairs (Vi, Vj) satisfy
Definition 23. The precise statement, extended to edge-colored graphs, is as follows.

Theorem 24 (Multicolor Regularity Lemma). For every ε > 0 and k, κ ∈ N there
exist two integers N0 = N0(ε, k, κ) and T0 := T0(ε, k, κ) with the following property:
if we color the edges of any graph G on N ≥ N0 vertices with k colors and denote by
G1, . . . , Gk the subgraphs defined by these colors, then there is a partition of V (G)
into ν classes

V (G) = V1 ∪ . . . ∪ Vν

such that

(A) κ ≤ t ≤ T0,
(B) |Vi| ≥ ⌊N/ν⌋ for every i, 1 ≤ i ≤ ν, and
(C) all but at most ε

(
ν
2

)
pairs (Vi, Vj), 1 ≤ i < j ≤ ν, are ε-regular with respect to

every Gi, 1 ≤ i ≤ k.

Remark 25. The original Regularity Lemma refers to the case k = 1. The proof
is (basically) the same for an arbitrary fixed number k of colors. This version was
used, for example, in [6], and formulated in the survey [17].

In our proof we also use some simple properties of ε-regular pairs. One of them is
that they contain paths of any prescribed length between almost all pairs of vertices
provided that some natural parity condition is satisfied (see also [20]).

Claim 26. Suppose 0 < ε < 1/100. Let (V1, V2) be an ε-regular pair in a graph G
and d(V1, V2) > ε1/4. Then, for all but at most ε|V1| vertices v1 ∈ V1, for all but at
most ε|V2| vertices v2 ∈ V2, and for every ℓ, 2 ≤ ℓ ≤ (1 − 2

√
ε) min{|V1|, |V2|}, the

bipartite graph G[V1, V2] contains a (v1, v2)-path of length 2ℓ − 1.

This implies the following:

Claim 27. Suppose that 0 < ε < 1/100. Let V1, V2, . . . , V2r+1 be disjoint subsets
of vertices of a graph G such that |Vi| ≥ m, the pair (Vi, Vi+1) is ε-regular, and
dG(Vi, Vi+1) > ε1/4 for each i ∈ [2r + 1]. (Take V2r+2 := V1.) Then,

(A) for every ℓ, r ≤ ℓ ≤ (1 − 5
√

ε)rm, G contains a cycle of length 2ℓ + 1;
(B) for all but at most ε|V1| vertices u1, v1 ∈ V1, and for every ℓ, 2r ≤ ℓ ≤ (1 −

5
√

ε)rm, G contains a (u1, v1)-path of length ℓ.
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Claim 28. Suppose 0 < ε < 1/100. Let V1, V2, . . . , V2r be disjoint subsets of vertices
of a graph G such that |Vi| ≥ m, the pair (Vi, Vi+1) is ε-regular, and dG(Vi, Vi+1) >
ε1/4 for each i ∈ [2r − 1]. Then, for all but at most ε|V1| vertices v1 ∈ V1, for all but
at most ε|V2r| vertices v2r ∈ V2r, and for every ℓ, r < ℓ ≤ (1 − 5

√
ε)rm, G contains

a (v1, v2r)-path of length 2ℓ.

5. Proof of Theorem 3: Getting the exact result

Proof. First we define all the constants. We set η = 1/2000 and define ε := η64,

c1 := η16 and c2 := ε = η64.

Since (2η)2 < 10−5 = η6, Theorem 6 gives n6 := n6((2η)2). The Multicolor Regularity
Lemma (Theorem 24) used with κ := max{2n6,

1
ε
} yields constants T0 = T0(ε, 3, κ)

and n24 = n24(ε, 3, κ). Finally, we let

N0 := max{2T0, n24}.

Let n1, n2, n3 > N0 be odd, n = max{n1, n2, n3}, and N be an integer satisfying

N > (4 − c1)n.

Suppose a graph GN with δ(GN) ≥ N − c2n is colored with 3 colors, red, blue,
green, without red Cn1

, blue Cn2
, and green Cn3

. Denote the corresponding graphs
– defined by the colors – by Gr

N , Gb
N and Gg

N . Without loss of generality we may
assume that

N < (4 + c1)n. (13)

Now we apply Theorem 24 (the Multicolor Regularity Lemma) to Gr
N , Gb

N and Gg
N

and obtain a partition V1∪. . .∪Vν of V := V (GN), where κ ≤ ν ≤ T0, that is ε-regular
with respect to each of Gr

N , Gb
N and Gg

N and each Vi satisfies |Vi| ≥ m := ⌊N/ν⌋.
We define the 3-colored cluster-graph Hν on {1, . . . , ν}, by joining the vertices

i and j in color c if the pair (Vi, Vj) is ε-regular, it has density at least 3ε1/4 and
color c is used the most. (Ties are decided arbitrarily.) The partition is ε-regular
for each of Gr

N , Gb
N and Gg

N , therefore there are at most 3ε
(

ν
2

)
irregular pairs. Since

δ(GN) ≥ N − c2n and each pair with density smaller than 3ε1/4 ≤ 1/4 contains at
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least 3(N/ν)2/4 non-edges, there are at most 4c2nN/(3N2/ν2) < ε
(

ν
2

)
pairs with

density smaller than 3ε1/4. Hence

e(Hν) ≥ (1 − 4ε)

(
ν

2

)

.

By removing at most 2
√

εν vertices whose degree is less than (1 − 3
√

ε)ν, we get
a subgraph H ′ of Hν with

ν ′ ≥ (1 − 3
√

ε)ν

vertices and minimum degree

δ(H ′) ≥ (1 − 5
√

ε)ν ≥ (1 − (2η)8)ν ′.

We claim that the induced 3-coloring of H ′ has no monochromatic odd cycle
longer than (1 + (2η)2/100)ν ′/4. Indeed, suppose that i1, . . . , i2r+1 are the vertices
of a monochromatic odd cycle with 2r + 1 > (1 + (2η)2/100)ν ′/4. We may assume
that it is red. Then all pairs (Vij , Vij+1

) are ε-regular with respect to Gr
N and each

pair has density at least 1
3
(3ε1/4) (by the definition of H ′ and H). By Claim 27, Gr

N

contains every odd cycle of length between 2r + 1 and (1 − 5
√

ε)2r⌊N/ν⌋. Since

2r + 1 ≤ ν ′ ≤ ν ≤ T0 < N0 ≤ n1

and

(1 − 5
√

ε)2r

⌊
N

ν

⌋

> (1 − 6
√

η64)

(

1 +
(2η)2

100

)
(1 − 3

√
ε)ν

4
· (4 − c1)n

ν
> n ≥ n1,

there exists a red Cn1
in KN – contradicting our assumption.

Since ν ′ satisfies ν ′ ≥ (1−3
√

ε)κ ≥ (1−3
√

ε)2n6 ≥ n6, we can apply Theorem 6
to H ′ and obtain that there exists a set W ⊂ V (H ′) ⊂ V (H) = {1, . . . , ν} of size 4w,
where

w :=

⌈(
1

2
+

(2η)2

4

)
ν ′

4

⌉

,

such that the induced 3-coloring of H ′[W ] is embeddable into either EC1(w) or into
EC2(w). We may assume, by permuting the names of the colors if necessary, that
the induced 3-coloring of H ′[W ] is actually EC1(w) or EC2(w).

We will deal only with the harder case, when the coloring is EC1(w). The case
when the coloring is EC1(w) follows essentially the same proof line. Hence, suppose
that W splits into 4 sets W1, . . . ,W4, each of size w, so that there is an injection
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f : Wi → Xi, i = 1, 2, 3, 4, such that for every edge xy in H ′[W ], xy has the
same color in H ′ as f(x)f(y) in EC1(w). Let U∗

i :=
⋃

Vj∈Wi
Vj, i = 1, 2, 3, 4, and

U∗ := U∗
1 ∪U∗

2 ∪U∗
3 ∪U∗

4 . Now we show that GN [U∗] has a large and dense subgraph
whose coloring is EC1(⌈(1/2 + η2)n⌉).

First, we delete from GN [U∗] all the edges in the pairs corresponding to the edges
in the complement H̄ ′ of H ′. Since e(H̄ ′) ≤ e(H̄) ≤ 4ε

(
ν
2

)
, we remove this way at

most 4ε
(

ν
2

)
· (m + 1)2 ≤ 3η64N2 edges.

Secondly, we delete from KN [U∗] all the edges within clusters Vj, where j ∈
W1 ∪ W2 ∪ W3 ∪ W4, discarding at most ν · (N/ν)2 ≤ εN2 = η64N2 edges.

We also remove at most
(

ν
2

)
· 3ε1/4(m + 1)2 ≤ 2η16N2 edges from the pairs with

density smaller than 3ε1/4. Finally, we delete one more set of edges, but we need to
state the following claim first.

Claim 29. There exists a permutation (α1, α2, α3, α4) of (1, 2, 3, 4) for which all of
the following hold:

(a) For every j ∈ {1, 2, 3, 4} and for every i, i′ ∈ Wαj
, i 6= i′, we have er(Vi, Vi′) ≤

ε1/4(m + 1)2 and eb(Vi, Vi′) ≤ ε1/4(m + 1)2.
(b) Suppose that i ∈ Wαj

, i′ ∈ Wαj′
for some 1 ≤ j < j′ ≤ 4. Then eg(Vi, Vi′) ≤

ε1/4(m + 1)2.
(c) Let i ∈ Wαj

, i′ ∈ Wαj′
, where (j, j′) = (1, 3) or (2, 4). Then eb(Vi, Vi′) ≤

ε1/4(m + 1)2.
(d) Let i ∈ Wαj

, i′ ∈ Wαj′
, where (j, j′) = (1, 2) or (3, 4). Then er(Vi, Vi′) ≤

ε1/4(m + 1)2.

The proof of Claim 29 appears at the end of this section. We remove all the red
edges given by (a) and (d) from the pairs (Vi, Vi′), all the blue edges given by (a)
and (c) from the pairs (Vi, Vi′), and all the green edges given by (b) from the pairs
(Vi, Vi′). It follows from Claim 29 that we deleted at most

3 ·
(

ν

2

)

· ε1/4(m + 1)2 ≤ 2η16N2

edges. Thus we obtain a subgraph G′ ⊂ GN [U∗] such that

e(GN [U∗] \ G′) ≤ 3η64N2 + η64N2 + 2η16N2 + 2η16N2 ≤ 5η16N2.

Each set U∗
i has at least

|Wi| · m ≥ w

⌊
N

ν

⌋

≥ (1 + 2η2)(1 − 3
√

ε)ν

8
· (4 − c1)n

ν
≥

(
1

2
+

3η2

2

)

n
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vertices. We remove all the vertices of U∗ that are adjacent to at most |U∗|−⌈4η4N⌉
vertices of U∗. Since e(GN [U∗]\G′) ≤ 5η16N2, we remove at most 3η4N vertices. By
removing a few further vertices (if needed), we obtain the sets Ui ⊂ U∗

αi
, i = 1, 2, 3, 4,

of the same size such that for t := ⌈4η4N⌉, we have

(i) |Ui| = 1
2
(n + 13) + 2t

(13)

≤ (1/2 + 3η2/2)n − 3η4N ;
(ii) G′[U1 ∪ U2 ∪ U3 ∪ U4] is t-complete;
(iii) the induced 3-coloring of G′[U1 ∪ U2 ∪ U3 ∪ U4] is EC1(

1
2
(n + 13) + 2t).

Applying Theorem 5, we obtain Theorem 3. What remains to prove is Claim 29.

Proof.
Part (a): Let i, i′ ∈ W1. Since H ′ is ⌈5√εν⌉-complete, by Lemma 11, there is

a blue (i, i′)-path of length 2(w − 2⌈5√εν⌉) in H ′[W1,W2]. By Claim 28, all but at
most 2ε(m + 1)2 pairs of vertices vivi′ , vi ∈ Vi, vi′ ∈ Vi′ are joined by a blue path of
any prescribed length 2ℓ satisfying

2(w − 2⌈5√εν⌉) < 2ℓ ≤ 2(1 − 5
√

ε)(w − 2⌈5√εν⌉)m.

For 2ℓ = n2 − 1, we have

2(w − 2⌈5√εν⌉) ≤ (1 + 2η2)ν ′

4
≤ ν ≤ T0 < n − 1 ≤ n2 − 1 = 2ℓ

and

2(1 − 5
√

ε)(w − 2⌈5√εν⌉)m

≥ (1 − 5
√

ε)

(
(1 + 2η2)ν ′

4
− 4⌈5√εν⌉

) ⌊
N

ν

⌋

≥ (1 − 6
√

ε)

(
(1 + 2η2)(1 − 3

√
ε)ν

4
− 4⌈5√εν⌉

)
(4 − c1)n

ν

≥ (1 − 6
√

η64)

(
1 + 2η2

4
− 21

√

η64

)

(4 − η16)n

> n ≥ n2 − 1 = 2ℓ.

Hence, since Gn does not contain a blue Cn2
, none of these pairs vivi′ can be blue

either.

There is also a red (i, i′)-path of length 2(w − 2⌈5√εν⌉) in H ′[W1,W3] and, the
same argument as above yields that there are at most 2ε(m + 1)2 < ε1/4(m + 1)2 red
edges in (Vi, Vi′). We obtain the same conclusion for i, i′ ∈ Wj, j = 2, 3, 4.
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Part (b): Let i ∈ W1 and i′ ∈ W2 be arbitrary. Since H ′ is ⌈5√εν⌉-complete
and w > 2⌈5√εν⌉+4, by Lemma 10, there is a green odd cycle containing i of length
at least w−1 in H ′[W1]. Similarly, there is a green odd cycle containing vi′ of length
at least w − 1 in H ′[W2].

Consequently, by Claim 27(B), all but at most 2ε(m + 1)2 pairs of vertices in Vi

(Vi′ , respectively) are joined by a green path of any prescribed length between w− 1
and (1 − 5

√
ε)(w − 1)m. Notice that

w − 1 ≤ (1 + 2η2)ν ′

4
≤ ν

2
≤ T0

2
<

n − 1

2
≤ n3 − 1

2

and

(1 − 5
√

ε)(w − 1)m ≥ (1 − 5
√

ε)(w − 2⌈5√εν⌉)m ≥ n − 1

2
≥ n3 − 1

2

(see the calculation in part (a)).

If the pair (Vi, Vi′) contained more than ε1/4(m + 1)2 green edges, we could find
two green independent edges uiui′ and vivi′ , ui, vi ∈ Vi, ui′ , vi′ ∈ Vi′ , such that ui, vi

and ui′ , vi′ can be joined by disjoint green paths of any length between w − 1 and
(1 − 5

√
ε)(w − 1)m. Hence, we could find an odd green (ui, vi)-path P and an even

green (ui′ , vi′)-path P such that

|P | + |P ′| = n3 − 2.

This is a contradiction because P ∪ P ′ ∪ {uiui′ , vivi′} is a green Cn3
. Therefore,

eg(Vi, Vi′) ≤ ε1/4(m + 1)2.

Part (c): If eb(Vi, Vi′) ≤ ε1/4(m + 1)2 for all i ∈ Wj, i
′ ∈ Wj′ and for (j, j′) =

(1, 3), (2, 4), then we set αi = i for i = 1, 2, 3, 4.

Hence, without loss of generality, suppose that 1 ∈ W1, 3 ∈ W3, (V1, V3) is
ε-regular w.r.t. Gb

N , and eb(V1, V3) > ε1/4(m + 1)2. Now we show that

eb(Vi, Vi′) ≤ ε1/4(m + 1)2 for all i ∈ Wj, i
′ ∈ Wj′ , ii′ ∈ H ′, and

(j, j′) = (1, 4), (2, 3).
(14)

Indeed, suppose that i ∈ W1, i
′ ∈ W4 are such that ii′ ∈ H ′ and eb(Vi, Vi′) >

ε1/4(m + 1)2. By Lemma 11, there is a (1, i)-path P of length 2 (or 0 if i = 1)
in the blue ⌈5√εν⌉-complete graph H ′[W1,W2]. Since H ′[W3,W4] is also blue and
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⌈5√εν⌉-complete, the same lemma implies the existence of a blue odd (i′, 3)-path P ′

of length 2w − 4⌈5√εν⌉ − 1 in H ′[W3,W4]. The edges 13, ii′ and paths P , P ′ form
an odd cycle of length at least 2w − 4⌈5√εν⌉ + 1. Every two consecutive clusters in
this cycle form an ε-regular pair with the blue edge density at least ε1/4. Claim 27
implies that G contains a blue cycle of length 2ℓ + 1 provided

2(w − 2⌈5√εν⌉) + 1 ≤ 2ℓ + 1 ≤ 2(1 − 5
√

ε)(w − 2⌈5√εν⌉)m + 1.

From part (a), we have

2(w − 2⌈5√εν⌉) + 1 ≤ n2 ≤ 2(1 − 5
√

ε)(w − 2⌈5√εν⌉)m + 1,

hence G contains a blue Cn2
, which is a contradiction. We obtain a contradiction in

the same way for i ∈ W2, i′ ∈ W3.

From (14) it follows that α1 = 1, α2 = 2, α3 = 4, α4 = 3 is a permutation
satisfying (a)-(c).

Part (d): If er(Vi, Vi′) ≤ ε1/4(m + 1)2 for all i ∈ Wαj
, i′ ∈ Wαj′

and (j, j′) =
(1, 2), (3, 4), then the proof is finished. Otherwise, there exist i ∈ Wαj

and i′ ∈ Wαj′
,

where (j, j′) = (1, 2) or (j, j′) = (3, 4), such that (Vi, Vi′) is ε-regular w.r.t. Gr
N and

er(Vi, Vi′) > ε1/4(m + 1)2. Then the following holds:

er(Vi, Vi′) ≤ ε1/4(m + 1)2 for all i ∈ Wαj
, i′ ∈ Wαj′

, ii′ ∈ H ′, and
(j, j′) = (1, 4), (2, 3).

The proof of this statement is analogous to the proof of (14) and we omit it here.
By replacing α2 with α4 and α4 with α2, we obtain a permutation (α1, α2, α3, α4) of
(1, 2, 3, 4) satisfying (a)-(d).

6. Concluding Remarks

As we know, the behavior of Ramsey numbers for even cycles differs from that for
odd ones, even for two colors (see (1)). For three colors, Figaj and  Luczak [9] proved
that if n1 ≥ n2 ≥ n3 are even, then

R(Cn1
, Cn2

, Cn3
) = n1 +

n2 + n3

2
+ o(n1),
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as n3 → ∞. This trivially implies that

R(Pn1
, Pn2

, Pn3
) = n1 +

n2 + n3

2
+ o(n1),

in particular,
R(Pn, Pn, Pn) = 2n + o(n),

where Pn is a path on n vertices.

Slightly later, independently, Gyárfás, Ruszinkó, G. Sárközy, and Szemerédi [13]
proved the same result for the diagonal case (i.e. when n1 = n2 = n3) and, moreover,
for n large, they obtained the exact result for paths of the same length:

R(Pn, Pn, Pn) =

{
2n − 2, n is even,
2n − 1, n is odd.

Recently, Benevides and Skokan [2] proved that R(Cn, Cn, Cn) = 2n for all even,
sufficiently large values of n.

We also remark that the conjecture of Bondy and Erdős extends to arbitrary
number of colors:

R(Cn, . . . , Cn
︸ ︷︷ ︸

k

) =

{
2k−1(n − 1) + 1, n is odd,
(k+1)n

2
+ O(1), n is even,

and it is still open for k > 3.
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[12] Z. Füredi and M. Simonovits, Triple systems not containing a Fano configuration,

Combin. Probab. Comput. 14 (2005), no. 4, 467–484.
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