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On the structure of self-complementary graphs
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Abstract: A self-complementary graph is a graph isomorphic to its complement.
An isomorphism between G and its complement, viewed as a permutation of V (G),
is then called an antimorphism. A skew partition of G is a partition of V (G) into
4 sets A,B,C,D such that there is no edge between A,B and every possible edge
between C,D. A symmetric partition of G is a partition of V (G) into 4 sets
A,B,C,D such that there is no edge between A,D, no edge between B,C, every
possible edge between A,B and every possible edge between C,D.

We give a new proof of a theorem of Gibbs saying that every self-

complementary graph on 4k vertices has k disjoint paths on 4 vertices as induced

subgraph. This new proof gives more structural information than the original one.

We conjecture that every self-complementary graph on 4k vertices either has an

induced cycle on 5 vertices, or a skew partition, or a symmetric partition. The new

proof of Gibb’s theorem yields a proof of the conjecture for the self-complementary

graphs that have an antimorphism that is the product of a two circular permuta-

tions, one of them of length 4.

1 Introduction

In this paper graphs are simple, non-oriented, with no loop and finite. Several
definitions that can be found in most handbooks (for instance [10] for graphs
and [14] for algorithms) will not be given. We also refer the reader to a very
complete survey on self-complementary graphs due to Farrugia [12].

If G is a graph, we denote the complement of G by G. A graph is said to
be self-complementary if G is isomorphic to its complement G. We will often
write “sc-graph” for “self-complementary graph”. It is very easy to construct
a lot of examples of sc-graphs: take any graph G, and consider 2 copies of
G say G1, G2, and 2 copies of G say G3, G4. Then join every vertex of G1 to
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every vertex of G3, every vertex of G3 to every vertex of G4 and every vertex
of G4 to every vertex of G2. The graph obtained is self-complementary, and
we call it the graph obtained from G by the P4-construction.

G G G G

Figure 1: The P4-construction applied to G

An important problem in algorithmic graph theory is the isomorphism

problem, known to be difficult and unsettled: is there a polynomial time al-
gorithm that decides whether two graphs are isomorphic ? If there is one,
then we can easily decide in polynomial time if a graph is self-complementary,
by just running the algorithm on G,G. Colbourn et al. [6] studied the con-
verse and proved that the recognition of sc-graphs is isomorphism-complete.
That is: if there exists a polynomial time algorithm that decides if a graph
is self-complementary, then there exists a polynomial time algorithm for the
isomorphism problem. The result of Colbourn et al. is not so surprising
because of the P4-construction described above. Consider two graphs G,H .
Consider G1, G2, two copies of G and H1, H2 two copies of H. Construct
(like in the P4-construction) a new graph J : join every vertex of G1 to every
vertex of H1, every vertex of H1 to every vertex of H2, and every vertex of
H2 to every vertex of G2. To decide if J is self-complementary, the obvious
way is to decide if G,H are isomorphic. The result of Colbourn et al. says
that there is no better way in general. So, it is to be feared that despite (or
because of) formal equivalence, a study of the properties of sc-graphs will
not help in solving the isomorphism problem.

However, the structure of sc-graphs is worth investigating for its own in-
terest and because particular sc-graphs have sometime interesting properties,
as being smallest counter-examples to several conjectures1. It could also help
for a general construction for every sc-graph, or at least for some substantial
subclasses. Note that the P4-construction is not a good candidate: in a graph
on at least 8 vertices obtained by the P4-construction, every vertex has de-
gree at least 2, and on figure 3 page 14, there is an sc-graph with a vertex of
degree one. Moreover, recognition algorithms for special classes of sc-graphs
can be drasticaly easier than the isomorphism problem for the same class.
For instance, it is easy to see that the only triangle-free sc-graphs are the
isolated vertex, P4 and C5, because by the Ramsey’s famous Theorem, every

1C5 is the smallest non-perfect graph see [17], L(K3,3 \ e) is the smallest perfect graph
with no even pair and no even pair in its complement, see [11]. There are other examples.
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graph on at least 6 vertices has a triangle or the complement of a triangle.
Thus, recognizing triangle-free sc-graphs is trivial in constant time while the
isomorphism problem for triangle-free graphs is difficult. It might be possi-
ble to recognize special non-trivial classes of sc-graphs in polynomial time.
After reading this paper, the reader will maybe want to look for a general
construction for C5-free sc-graphs, and why not for a recognition algorithm
(he or she must be warned that most of the work is still to be done. . . ).

In this paper, we aim at structural properties of sc-graphs, saying some-
thing like: every sc-graph either contains some prescribed induced subgraph
or can be partitioned into sets of vertices with some prescribed adjacencies.
There are really few such results. In his master’s thesis that surveys more
than 400 papers on sc-graphs, Farrugia [12] mentions only one theorem due
to Gibbs:

Theorem 1.1 (Gibbs, [15]) An sc-graph on 4k vertices contains k disjoint

induced P4’s.

As pointed out by Farrugia, the theorem above has two major defaults
in view of algorithmic applications. First, the problem of deciding whether
the vertices of a graph can be partitioned into sets of 4 vertices, each of
them inducing a P4, is NP-complete (proved by Kirkpatrick and Hell, [16]).
Secondly, even if the partition into P4’s of an sc-graph is obtained by any
unexcepected mean, it will be of no use for recursion, since removing blindly
one or some of the P4’s may yield a graph that is no more self-complementary
and that will have in general no forseeable properties.

We will investigate structural properties of sc-graphs that fix the first
default: the structures that we will find (or conjecture) in sc-graphs will be
detectable in polynomial time. Unfortunately, our results (and conjectures)
will still have the second default: we will be able to break several sc-graphs
into pieces with special adjacency properties, but without garanteeing any
hereditary properties on these pieces.

We will first give a new proof of the theorem of Gibbs, that yields a
slightly different result and gives more structural information (Section 2).
This will allow us to prove a special case of a conjecture: every sc-graph on
4k vertices either contains a C5 as an induced subgraph or can be broken in
4 pieces with special adjacencies properties (Section 3). Page 14, we show a
picture of all the sc-graphs on 8 vertices.
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P4 C5 The bull

Figure 2: The 3 sc-graphs on 4 or 5 vertices

2 A new proof of Gibb’s theorem

If G is a graph, we denote by V (G) the vertex set of G, by E(G) the edge
set of G. If A ⊂ V (G), we denote by G[A] the subgraph of G induced by A.
If v is a vertex of G, we denote by N(v) the set of the neighbours of v . We
denote by N(v) the set of the non-neighbours of v. Note that v ∈ N(v). If
uv ∈ E(G), we say that u sees v, and if uv /∈ E(G), we say that u misses v.

By the definition, a graph G is self-complementary if and only if there
exists a bijection τ from V (G) to V (G) such that for every pair {a, b} of
distinct vertices we have: {a, b} ∈ E(G) ⇔ {τ(a), τ(b)} /∈ E(G). Such a
function τ is called an antimorphism of G.

Sachs [19] and Ringel [18] proved that any antimorphism is a product of
circular permutations whose lengths are all multiples of 4, except possibly
for one of length 1. Note that this implies a well known fact: the number of
vertices of an sc-graph is equal to 0 or 1 modulo 4. Gibbs [15] also proved
the following:

Theorem 2.1 (Gibbs [15]) If G is an sc-graph, then there exists an an-

timorphism τ of G such that every circular permutation of τ has length a

power of 2.

It is convenient to denote by (a1a2 . . . ak) the circular permutation of
{a1a2 . . . ak} that maps ai to ai+1, where the addition of the subscripts is
taken modulo k. When a circular permutation has length 4k, we often denote
it by (a1b1c1d1a2b2c2d2 . . . akbkckdk). Implicitly, the subscripts are then taken
modulo k (for instance ak+3 = a3, d0 = dk, . . . ).

We recall here a lemma used by Gibbs to prove Theorem 1.1. We give
his proof with our notation.

Lemma 2.2 (Gibbs [15]) Let k ≥ 1 be an integer and let G be an sc-graph

with an antimorphism τ = (a1b1c1d1a2b2c2d2 . . . akbkckdk)(. . . ) · · · (. . . ).
Then either:
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• There exists i ∈ N such that {a1, b1, ai, bi} induces a P4 for which

(a1b1aibi) is an antimorphism.

• There exists i ∈ N such that {a1, b1, ci, di} induces a P4 for which

(a1b1cidi) is an antimorphism.

proof — Let us suppose without loss of generality that a1 misses b1 (if not,
we may replay the same proof in G). Applying τ−1, we know that a1 sees dk.
So there exists a smallest integer i > 1 such that: a1 sees bi or a1 sees di.

If a1 sees bi then, i ≥ 2. Applying τ 4(i−1) to a1 and b1, we know that ai
misses bi. By the definition of i, we know that a1 misses di−1. Thus, applying
τ , b1 sees ai. If a1 sees ai, then, applying τ , b1 misses bi and {a1, b1, ai, bi}
induces P4 for which (a1b1aibi) is an antimorphism. In the same way, if a1
misses ai, then b1 sees bi and we reach the same conclusion.

If a1 misses bi, then by the definition of i, a1 sees di. Applying τ 4(i−1)+2 to
a1 and b1, we know that ci misses di. Applying τ to a1 and bi, we know that
b1 sees ci. If a1 sees ci, applying τ , b1 misses di and {a1, b1, ci, di} induces a
P4 for which (a1b1cidi) is an antimorphism. By the same way, if a1 misses ci
then b1 sees di and we reach the same conclusion. ✷

We propose a new lemma of the same flavour that gives more structural
information on sc-graphs. To state it, we need a definition. A symmetric

partition in a graph G is a partition (A,B,C,D) of V (G) such that each of
A,B,C,D is non-empty, there are no edges between A,D, no edges between
B,C, every possible edges between A,B, and every possible edges between
C,D.

Lemma 2.3 Let k ≥ 1 be an integer and G be an sc-graph with an antimor-

phism τ = (a1b1c1d1a2b2c2d2 . . . akbkckdk)(. . . ) · · · (. . . ).
Put A = {a1, . . . , ak}, B = {b1, . . . , bk}, C = {c1, . . . , ck}, D = {d1, . . . , dk}.
Then either:

• There exists i, j ∈ N such that {a1, bi, a1+j, bi+j} induces a P4 for which

(a1bia1+jbi+j) is an antimorphism.

• (A,B,C,D) is a symmetric partition of G[A ∪ B ∪ C ∪D].

• (B,C,D,A) is a symmetric partition of G[A ∪ B ∪ C ∪D].

proof — If every vertex in A sees every vertex in B, then applying τ three
times, we see that (A,B,C,D) is a symmetric partition of G[A∪B ∪C ∪D].
Similarly, if every vertex in A misses every vertex in B then (B,C,D,A)
is a symmetric partition of G[A ∪ B ∪ C ∪ D]. Thus, we may assume that
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some vertex ah in A has neighbours and non-neighbours in B, and applying
τ 4(h−1), we see that a1 has neighbours and non-neighbours in B.

Suppose first that a1 has at least as many neighbours than non-neiboughs
in B, more precisely: |N(a1) ∩ B| ≥ |N(a1) ∩ B|. Let i be such that a1bi /∈
E(G). There exists j 6≡ 0 (mod k) such that a1bi−j ∈ E and a1bi+j ∈ E, for
otherwise |N(a1) ∩ B| > k/2 ≥ |N(a1) ∩ B| , a contradiction. Note that we
may have bi−j = bi+j if i− j ≡ i+ j (mod k)

We already know a1bi /∈ E. Applying τ 4j to a1bi we know a1+jbi+j /∈ E.
We already know a1bi−j /∈ E. Applying τ 4j to a1bi−j we know a1+jbi ∈ E.
If a1 sees a1+j then applying τ 1+4(i−1), bi misses bi+j and {a1, bi, a1+j , bi+j}
induces a P4 for which (a1bia1+jbi+j) is an antimorphism. If a1 misses a1+j

then applying τ 1+4(i−1), bi sees bi+j and we reach the same conclusion.
We are left with the case where |N(a1) ∩ B| ≤ |N(a1) ∩ B|. But then,

the proof is similar up to a complementation of G. ✷

Note that if (A,B,C,D) is a symmetric partition then for any i, j, l ∈ N,
the set {ai, bi+j, cl, dl+j} induces a P4. Because by the definition of symmetric
partitions, we have aibi ∈ E, bici /∈ E, cidi ∈ E, diai /∈ E, and applying τ ,
exactely one of aici, bidi is an edge. If (B,C,D,A) is a symmetric partition
we reach the same conclusion. This remark allows us to follow the lines
of Gibbs, and to prove again his theorem (Theorem 1.1) using Lemma 2.3
instead of Lemma 2.2. Let us do it for the sake of completeness.

Consider an sc-graph on 4k vertices and an antimorphism τ . By theo-
rem 2.1 we may assume that every cycle of τ has length a power of 2. Let us
consider a circular permutation (a1b1c1d1a2b2c2d2 . . . akbkckdk) of τ . Put A =
{a1, . . . ak}, B = {b1, b2, . . . , bk}, C = {c1, c2, . . . , ck}, D = {d1, d2, . . . , dk}.
We claim that we may partition A ∪ B ∪ C ∪ D in sets of 4 vertices all of
them inducing a P4, thus proving the theorem.

We have τ = (a1b1c1d1a2b2c2d2 . . . akbkckdk)(. . . ) · · · (. . . ). Apply
Lemma 2.3. If one of (A,B,C,D), (B,C,D,A) is a symmetric partition,
then for every i ∈ N, {ai, bi, ci, di} induces a P4 and we may easily partition
A ∪ B ∪ C ∪ D into sets of 4 vertices all of them inducing a P4. So we are
left with the case where there exists i such that {a1, bi, a1+j , bi+j} induces a
P4 for which (a1bia1+jbi+j) is an antimorphism. Let us put k = 2α, α ≥ 1.
Note that for any l, {al, bl+i, al+j, bl+i+j} induces a P4 (apply τ 4(l−1)) that we
denote by P l.

We claim that we can choose l1, l2, . . . , lk/2 such that (P l1, P l2, . . . , P lk/2)
partitions A ∪ B. For that purpose it suffices to prove that for any integer
j 6≡ 0 (mod 2α), Z2α can be partitioned into pairs of the form {l, l + j}.
For α = 1 this can be done, so let us prove it by induction. If j is even,
then let us partition by the induction hypothesis Z2α−1 into pairs of the form
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{l, l + j/2}: Z2α−1 = ∪i{li, li + j/2}. Then we have Z2α = ∪i[{2li, 2li + j} ∪
{2li+1, 2li+1+j}], so we manage to partition Z2α as desired. If j is odd, then
starting from 1 and adding j successively, we build a Hamiltonian cycle going
through every element of its vertex set Z2α . Take then every second edge of
this Hamiltonian cycle: here are the pairs that partition Z2α as desired. So
A∪B may be partitioned into P4’s. Applying τ 2, we see that C ∪D can also
be partitioned into P4’s, hence A ∪B ∪ C ∪D can be partitioned into P4’s.

3 A theorem and a conjecture

A skew partition in a graph G is a partition (A,B,C,D) of V (G) such that
each of A,B,C,D is non-empty, there are no edges between A,B and every
possible edges between C,D. We are now able to prove the following:

Theorem 3.1 Let G be an sc-graph with an antimorphism τ that is the

product of two circular permutations, one of them of length 4. Then either:

• G contains a C5 as an induced subgraph;

• G contains a skew partition;

• G contains a symmetric partition.

proof — Let us call a, b, c, d the four vertices of a cycle of τ . If the other
cycle has length 1, then G is the C5 or the bull which has a skew partition
(see figure 2). So we may assume τ = (abcd)(a1b1c1d1a2b2c2d2 . . . akbkckdk)
with k ≥ 1. Put A = {a1, . . . , ak}, B = {b1, . . . , bk}, C = {c1, . . . , ck},
D = {d1, . . . , dk}. Let us suppose up to a circular permutation of a, b, c, d
that the three edges of G[a, b, c, d] are ab, ac and cd. Note that if a sees
a1, then a sees every vertex in A (apply τ 4i, i ∈ N). By the same way, if
v is in {a, b, c, d} and if H is one of A,B,C,D, then either v sees every
vertex in H , or v misses every vertex in H . For every v ∈ {a, b, c, d}, put
Nv = N(v) ∩ (A ∪ B ∪ C ∪ D). We deal now with the 24 = 16 following
cases, according to Na. Note that once Na is known, Nb, Nc and Nd are
also known, by applying τ three times. For some of the 16 cases, we apply
Lemma 2.3 to the cycle (a1b1c1d1a2b2c2d2 . . . akbkckdk) of τ . Then, up to a
circular permutation of A,B,C,D, we may suppose that either (A,B,C,D)
is a symmetric partition of G[A ∪ B ∪ C ∪ D], or there exist i, j ∈ N such
that {a1, bi, a1+j, bi+j} induces a P4 with a1a1+j as central edge.

7



1. Na = A ∪ B.

Then Nb = A∪D, Nc = C∪D and Nd = B∪C. If {a1, bi, a1+j, bi+j} in-
duces a P4 with a1a1+j as central edge, then {b, a1, bi, a1+j , bi+j} induces
a C5. Else, (A,B,C,D) is a symmetric partition of G[A∪B ∪C ∪D].
We see that (A∪{a}, B∪{b}, C∪{c}, D∪{d}) is a symmetric partition
of G.

2. Na = C ∪D.

Then Nb = B∪C, Nc = A∪B and Nd = A∪D. If {a1, bi, a1+j , bi+j} in-
duces a P4 with a1a1+j as central edge, then {b, a1, bi, a1+j , bi+j} induces
a C5. Else, (A,B,C,D) is a symmetric partition of G[A∪B ∪C ∪D].
We see that (A∪{c}, B∪{d}, C∪{a}, D∪{b}) is a symmetric partition
of G.

3. Na = A ∪ C.

Then Nb = Nc = Nd = A ∪ C. Thus ({b, d}, B ∪D, {a, c}, A ∪ C) is a
skew partition.

4. Na = B ∪D.

Then Nb = Nc = Nd = B ∪D. Thus ({a, c}, A ∪ C, {b, d}, B ∪D) is a
skew partition.

5. Na = A ∪D.

Then Nb = C∪D, Nc = B∪C and Nd = A∪B. If {a1, bi, a1+j , bi+j} in-
duces a P4 with a1a1+j as central edge, then {c, a1, bi, a1+j , bi+j} induces
a C5. Else, (A,B,C,D) is a symmetric partition of G[A∪B ∪C ∪D].
We see that (A∪{c}, B∪{d}, C∪{a}, D∪{b}) is a symmetric partition
of G.

6. Na = B ∪ C.

Then Nb = A∪B, Nc = A∪D and Nd = C∪D. If {a1, bi, a1+j, bi+j} in-
duces a P4 with a1a1+j as central edge, then {a, a1, bi, a1+j , bi+j} induces
a C5. Else, (A,B,C,D) is a symmetric partition of G[A∪B ∪C ∪D].
We see that (A∪{a}, B∪{b}, C∪{c}, D∪{d}) is a symmetric partition
of G.

7. Na = ∅.

Then a1 sees b, misses c and sees d. Thus, {a1, a, b, c, d} induces C5.

8. Na = A ∪ B ∪ C ∪ D. Then Nc = Na = A ∪ B ∪ C ∪ D. Thus
({b}, {d}, {a, c}, A∪ B ∪ C ∪D) is a skew partition.
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9. Na = A.

Then Nb = A∪C ∪D, Nc = C and Nd = A∪B ∪C. Thus ({a, c}, B ∪
D, {b, d}, A ∪ C) is a skew partition.

10. Na = B ∪ C ∪D.

Then Nb = B, Nc = A ∪ B ∪ D and Nd = D. Thus ({b, d}, A ∪
C, {a, c}, B ∪D) is a skew partition.

11. Na = B.

Then Nb = A∪B ∪D, Nc = D and Nd = B ∪C ∪D. Thus ({a, c}, A∪
C, {b, d}, B ∪D) is a skew partition.

12. Na = A ∪ C ∪D.

Then Nb = C, Nc = A ∪ B ∪ C and Nd = A. Thus ({b, d}, B ∪
D, {a, c}, A ∪ C) is a skew partition.

13. Na = C.

Then Nb = A∪B ∪C, Nc = A and Nd = A∪C ∪D. Thus ({a, c}, B ∪
D, {b, d}, A ∪ C) is a skew partition.

14. Na = A ∪ B ∪D.

Then Nb = D, Nc = B ∪ C ∪ D and Nd = B. Thus ({b, d}, A ∪
C, {a, c}, B ∪D) is a skew partition.

15. Na = D.

Then Nb = B ∪C ∪D, Nc = B and Nd = A∪B ∪D. Thus ({a, c}, A∪
C, {b, d}, B ∪D) is a skew partition.

16. Na = A ∪ B ∪ C.

Then Nb = A, Nc = A ∪ C ∪ D and Nd = C. Thus ({b, d}, B ∪
D, {a, c}, A ∪ C) is a skew partition.

✷

Note that as pointed out by Farrugia, a generalisation of Case 8 of
the proof was implicitly known by Akiyama and Harary [1]. They proved
that if an sc-graph G has at least an end-vertex, then G has exactly
two end-vertices b, d and exactly two cut vertices a, c. They proved that
({b}, {d}, {a, c}, V (G) \ {a, b, c, d}) is then a skew partition of G.

Let us now discuss the motivivation and possible extensions of Theo-
rem 3.1. Skew partitions were introduced by Chvátal for the study of perfect
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graphs [5], and play an important role in the proof of Strong Perfect Graph
Conjecture by Chudnovsky, Robertson Seymour and Thomas [4]. Symmet-
ric partitions may be seen as a very particular case of the 2-join defined by
Cunningham and Cornuéjols, once again for the study of perfect graphs [7].
A 2-join in G is a partition (X1, X2) of V (G) so that there exist disjoint
non-empty Ai, Bi ⊂ Xi, (i = 1, 2) satisfaying:

1. every vertex of A1 is adjacent to every vertex of A2 and every vertex
of B1 is adjacent to every vertex of B2;

2. there are no other edges between X1 and X2;

3. for i = 1, 2, every component of G[Xi] meets both Ai and Bi;

4. for i = 1, 2, if |Ai| = |Bi| = 1, and if Xi induces a path of G joining
the vertex of Ai and the vertex of Bi, then it has length at least 3.

The conditions 3, 4 are called the technical requirements. They are im-
portant for algorithms, and for applications to perfect graphs. If a graph G
has a 2-join with the above notation, then (A1, A2, B1, B2) is a symmetric
partition of G[A1 ∪ A2 ∪ B1 ∪ B2]. In other words, if we forget the tech-
nical requirements, symmetric partitions may be seen as 2-joins such that
Xi \ (Ai ∪ Bi) = ∅, i = 1, 2.

A lot of work has been done recently on finding algorithms that decide if
the vertices of a graph can be partitioned into several subsets with various re-
strictions on the adjacencies [2, 8, 13]). Symmetric partitions are detectable
in linear time (see problem (31) in [8]). Skew partitions seem more difficult,
but Figueiredo, Klein, Kohayakawa and Reed gave a polynomial time algo-
rithm that decides whether a graph has or not a skew partition [9]. Note
that detecting a C5 in a graph can be done easily in O(n5). Thus, each of
the outcome of Theorem 3.1 are testable in polynomial time. We conjecture
that Theorem 3.1 holds for every sc-graph on 4k vertices:

Conjecture 3.2 Let G be an sc-graph on 4k vertices. Then either:

• G contains a C5 as an induced subgraph;

• G contains a skew partition;

• G contains a symmetric partition.
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This conjecture is motivated by several considerations. First, we are able
to prove it in a quite general special case: Theorem 3.1. The proof shows
how forbiding C5’s can help for finding symmetric or skew partitions. Also,
skew partitions and symmetric partitions arise naturally in P4-constructions
of sc-graphs and in circular permutations of an antimorphism. Suppose
(a1b1c1d1 . . . akbkckdk) is such a permutation with our usual notation. If every
vertex in A sees every vertex in B, then (A,B,C,D) is a symmetric parti-
tion of G[A ∪ B ∪ C ∪D]. If every vertex in A sees every vertex in C, then
(B,D,C,A) is a skew partition of G[A ∪ B ∪ C ∪D].

Secondly, the conjecture has an analogy with the theorem of Chudnovsky,
Robertson, Seymour and Thomas for decomposing Berge Graphs. A hole in
a graph is an induced cycle of length at least 4. A graph is Berge if in
both G,G, there is no hole of odd length. The decomposition theorem for
Berge graphs is the following. Note that this theorem has been proved in
two steps: first Chudnovsky, Robertson, Seymour and Thomas [4] proved a
slightly weaker result, and then Chudnovsky [3] alone proved the form that
we give:

Theorem 3.3 (Chudnovsky et al.[3, 4]) Let G be a Berge graph. Then

either :

• One of G,G is bipartite.

• One of G,G is the line-graph of a bipartite graph.

• One of G,G has a 2-join.

• G has a skew partition.

It would be nice to have a stronger theorem in the particular case of Berge
sc-graphs. Conjecture 3.2 could be a candidate.
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Figure 3: The 10 sc-graphs on 8 vertices
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