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Identification Entropy

R. Ahlswede

Abstract. Shannon (1948) has shown that a source (U , P, U) with out-
put U satisfying Prob (U = u) = Pu, can be encoded in a prefix code
C = {cu : u ∈ U} ⊂ {0, 1}∗ such that for the entropy

H(P ) =
∑

u∈U
−pu log pu ≤

∑
pu||cu|| ≤ H(P ) + 1,

where ||cu|| is the length of cu.
We use a prefix code C for another purpose, namely noiseless identi-

fication, that is every user who wants to know whether a u (u ∈ U) of
his interest is the actual source output or not can consider the RV C
with C = cu = (cu1 , . . . , cu||cu||) and check whether C = (C1, C2, . . . )
coincides with cu in the first, second etc. letter and stop when the first
different letter occurs or when C = cu. Let LC(P, u) be the expected
number of checkings, if code C is used.

Our discovery is an identification entropy, namely the function

HI(P ) = 2

(
1 −

∑

u∈U
P 2

u

)
.

We prove that LC(P, P ) =
∑

u∈U
Pu LC(P, u) ≥ HI(P ) and thus also

that
L(P ) = min

C
max
u∈U

LC(P, u) ≥ HI(P )

and related upper bounds, which demonstrate the operational signifi-
cance of identification entropy in noiseless source coding similar as Shan-
non entropy does in noiseless data compression.

Also other averages such as L̄C(P ) = 1
|U|

∑
u∈U

LC(P, u) are discussed in

particular for Huffman codes where classically equivalent Huffman codes
may now be different.

We also show that prefix codes, where the codewords correspond to
the leaves in a regular binary tree, are universally good for this average.

1 Introduction

Shannon’s Channel Coding Theorem for Transmission [1] is paralleled by a
Channel Coding Theorem for Identification [3]. In [4] we introduced noiseless
source coding for identification and suggested the study of several performance
measures.
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Interesting observations were made already for uniform sources PN =(
1
N , . . . , 1

N

)
, for which the worst case expected number of checkings L(PN) is

approximately 2. Actually in [5] it is shown that lim
N→∞

L(PN ) = 2.

Recall that in channel coding going from transmission to identification leads
from an exponentially growing number of manageable messages to double ex-
ponentially many. Now in source coding roughly speaking the range of average
code lengths for data compression is the interval [0,∞) and it is [0, 2) for an
average expected length of optimal identification procedures. Note that no ran-
domization has to be used here.

A discovery of the present paper is an identification entropy, namely the
functional

HI(P ) = 2

(
1 −

N∑

u=1

P 2
u

)
(1.1)

for the source (U , P ), where U = {1, 2, . . . , N} and P = (P1, . . . , PN ) is a prob-
ability distribution.

Its operational significance in identification source coding is similar to that
of classical entropy H(P ) in noiseless coding of data: it serves as a good lower
bound.

Beyond being continuous in P it has three basic properties.

I. Concavity
For p = (p1, . . . , pN ), q = (q1, . . . , qN ) and 0 ≤ α ≤ 1

HI(αp + (1 − α)q) ≥ αHI(p) + (1 − α)HI(q).

This is equivalent with

N∑

i=1

(αpi+(1−α)qi)2 =
N∑

i=1

α2p2
i +(1−α)2q2

i +
∑

i�=j

α(1−α)piqj ≤
N∑

i=1

αp2
i +(1−α)q2

i

or with

α(1 − α)
N∑

i=1

p2
i + q2

i ≥ α(1 − α)
∑

i�=j

piqj ,

which holds, because
N∑

i=1

(pi − qi)2 ≥ 0.

II. Symmetry
For a permutation Π : {1, 2, . . . , N} → {1, 2, . . . , N} and ΠP = (P1Π , . . . , PNΠ)

HI(P ) = HI(ΠP ).

III. Grouping identity
For a partition (U1,U2) of U = {1, 2, . . . , N}, Qi =

∑
u∈Ui

Pu and P
(i)
u = Pu

Qi
for

u ∈ Ui(i = 1, 2)

HI(P ) = Q2
1HI(P (1)) + Q2

2HI(P (2)) + HI(Q), where Q = (Q1, Q2).
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Indeed,

Q2
12

⎛

⎝1 −
∑

j∈U1

P 2
j

Q2
1

⎞

⎠ + Q2
22

⎛

⎝1 −
∑

j∈U2

P 2
j

Q2
2

⎞

⎠ + 2(1 − Q2
1 − Q2

2)

= 2Q2
1 − 2

∑

j∈U1

P 2
j + 2Q2

2 − 2
∑

j∈U2

P 2
j + 2 − 2Q2

1 − 2Q2
2

= 2

⎛

⎝1 −
N∑

j=1

P 2
j

⎞

⎠ .

Obviously, 0 ≤ HI(P ) with equality exactly if Pi = 1 for some i and by concavity
HI(P ) ≤ 2

(
1 − 1

N

)
with equality for the uniform distribution.

Remark. Another important property of HI(P ) is Schur concavity.

2 Noiseless Identification for Sources and Basic Concept
of Performance

For the source (U , P ) let C = {c1, . . . , cN} be a binary prefix code (PC) with
||cu|| as length of cu. Introduce the RV U with Prob(U = u) = Pu for u ∈ U
and the RV C with C = cu = (cu1, cu2, . . . , cu||cu||) if U = u. We use the PC
for noiseless identification, that is a user interested in u wants to know whether
the source output equals u, that is, whether C equals cu or not. He iteratively
checks whether C = (C1, C2, . . . ) coincides with cu in the first, second etc. letter
and stops when the first different letter occurs or when C = cu. What is the
expected number LC(P, u) of checkings?

Related quantities are

LC(P ) = max
1≤u≤N

LC(P, u), (2.1)

that is, the expected number of checkings for a person in the worst case, if code
C is used,

L(P ) = min
C

LC(P ), (2.2)

the expected number of checkings in the worst case for a best code, and finally, if
users are chosen by a RV V independent of U and defined by Prob(V = v) = Qv

for v ∈ V = U , (see [5], Section 5) we consider

LC(P, Q) =
∑

v∈U
QvLC(P, v) (2.3)

the average number of expected checkings, if code C is used, and also

L(P, Q) = min
C

LC(P, Q) (2.4)

the average number of expected checkings for a best code.
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A natural special case is the mean number of expected checkings

L̄C(P ) =
N∑

u=1

1
N

LC(P, u), (2.5)

which equals LC(P, Q) for Q =
(

1
N , . . . , 1

N

)
, and

L̄(P ) = min
C

L̄C(P ). (2.6)

Another special case of some “intuitive appeal” is the case Q = P . Here we write

L(P, P ) = min
C

LC(P, P ). (2.7)

It is known that Huffman codes minimize the expected code length for PC.
This is not the case for L(P ) and the other quantities in identification (see Ex-

ample 3 below). It was noticed already in [4], [5] that a construction of code trees
balancing probabilities like in the Shannon-Fano code is often better. In fact
Theorem 3 of [5] establishes that L(P ) < 3 for every P = (P1, . . . , PN )!

Still it is also interesting to see how well Huffman codes do with respect to
identification, because of their classical optimality property. This can be put into
the following

Problem: Determine the region of simultaneously achievable pairs (LC(P ),
∑
u

Pu

||cu||) for (classical) transmission and identification coding, where the C’s are PC.
In particular, what are extremal pairs? We begin here with first observations.

3 Examples for Huffman Codes

We start with the uniform distribution

PN = (P1, . . . , PN ) =
(

1
N

, . . . ,
1
N

)
, 2n ≤ N < 2n+1.

Then 2n+1 − N codewords have the length n and the other 2N − 2n+1 code-
words have the length n + 1 in any Huffman code. We call the N − 2n nodes of
length n of the code tree, which are extended up to the length n + 1 extended
nodes.

All Huffman codes for this uniform distribution differ only by the positions of
the N − 2n extended nodes in the set of 2n nodes of length n.

The average codeword length (for data compression) does not depend on the
choice of the extended nodes.

However, the choice influences the performance criteria for identi-
fication!

Clearly there are
(

2n

N−2n

)
Huffman codes for our source.
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Example 1. N = 9, U = {1, 2, . . . , 9}, P1 = · · · = P9 = 1
9 .

1
9 c9

1
9 c8

1
9 c1

1
9 c2

1
9 c3

1
9 c4

1
9 c5

1
9 c6

1
9 c7

2
9

2
9

2
9

2
9

3
9

4
9

5
9

1

Here LC(P ) ≈ 2.111, LC(P, P ) ≈ 1.815 because

LC(P ) = LC(c8) =
4
9
· 1 +

2
9
· 2 +

1
9
· 3 +

2
9
· 4 = 2

1
9

LC(c9) = LC(c8), LC(c7) = 1
8
9
, LC(c5) = LC(c6) = 1

7
9
,

LC(c1) = LC(c2) = LC(c3) = LC(c4) = 1
6
9

and therefore

LC(P, P ) =
1
9

[
1
6
9
· 4 + 1

7
9
· 2 + 1

8
9
· 1 + 2

1
9
· 2

]
= 1

22
27

= L̄C ,

because P is uniform and the
(

23

9−23

)
= 8 Huffman codes are equivalent for

identification.

Remark. Notice that Shannon’s data compression gives

H(P ) + 1 = log 9 + 1 >
9∑

u=1
Pu||cu|| = 1

93 · 7 + 1
94 · 2 = 3 2

9 ≥ H(P ) = log 9.

Example 2. N = 10. There are
(

23

10−23

)
= 28 Huffman codes.

The 4 worst Huffman codes are maximally unbalanced.
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1
10 c̃1

10
1
10

1
10

1
10

1
10

1
10

1
10

1
10

1
10

2
10

2
10

2
10

2
10

2
10

4
10

4
10

6
10

1

Here LC(P ) = 2.2 and LC(P, P ) = 1.880, because

LC(P ) = 1 + 0.6 + 0.4 + 0.2 = 2.2

LC(P, P ) =
1
10

[1.6 · 4 + 1.8 · 2 + 2.2 · 4] = 1.880.

One of the 16 best Huffman codes

1
10 c̃1

10
1
10

1
10

2
10

1
10

1
10

1
10

1
10

1
10

1
10

2
10

3
10

2
10

2
10

3
10

5
10

5
10

1
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Here LC(P ) = 2.0 and LC(P, P ) = 1.840 because

LC(P ) = LC(c̃) = 1 + 0.5 + 0.3 + 0.2 = 2.000

LC(P, P ) =
1
5
(1.7 · 2 + 1.8 · 1 + 2.0 · 2) = 1.840

Table 1. The best identification performances of Huffman codes for the uniform
distribution

N 8 9 10 11 12 13 14 15
LC(P ) 1.750 2.111 2.000 2.000 1.917 2.000 1.929 1.933

LC(P, P ) 1.750 1.815 1.840 1.860 1.861 1.876 1.878 1.880

Actually lim
N→∞

LC(PN ) = 2, but bad values occur for N = 2k + 1 like N = 9

(see [5]).
One should prove that a best Huffman code for identification for the uniform

distribution is best for the worst case and also for the mean.
However, for non-uniform sources generally Huffman codes are not best.

Example 3. Let N = 4, P (1) = 0.49, P (2) = 0.25, P (3) = 0.25, P (4) = 0.01.
Then for the Huffman code ||c1|| = 1, ||c2|| = 2, ||c3|| = ||c4|| = 3 and thus
LC(P ) = 1+0.51+0.26 = 1.77, LC(P, P ) = 0.49·1+0.25·1.51+0.26·1.77 = 1.3277,
and L̄C(P ) = 1

4 (1 + 1.51 + 2 · 1.77) = 1.5125.
However, if we use C′ = {00, 10, 11, 01} for {1, . . . , 4} (4 is on the branch

together with 1), then LC′(P, u) = 1.5 for u = 1, 2, . . . , 4 and all three criteria
give the same value 1.500 better than LC(P ) = 1.77 and L̄C(P ) = 1.5125.

But notice that LC(P, P ) < LC′(P, P )!

4 An Identification Code Universally Good for All
P on U = {1, 2, . . . , N}

Theorem 1. Let P = (P1, . . . , PN ) and let k = min{� : 2� ≥ N}, then the
regular binary tree of depth k defines a PC {c1, . . . , c2k}, where the codewords
correspond to the leaves. To this code Ck corresponds the subcode CN = {ci : ci ∈
Ck, 1 ≤ i ≤ N} with

2
(

1 − 1
N

)
≤ 2

(
1 − 1

2k

)
≤ L̄CN (P ) ≤ 2

(
2 − 1

N

)
(4.1)

and equality holds for N = 2k on the left sides.

Proof. By definition,

L̄CN (P ) =
1
N

N∑

u=1

LCN (P, u) (4.2)
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and abbreviating LCN (P, u) as L(u) for u = 1, . . . , N and setting L(u) = 0 for
u = N + 1, . . . , 2k we calculate with Pu � 0 for u = N + 1, . . . , 2k

2k∑

u=1

L(u) =
[
(P1 + · · · + P2k)2k

]

+
[
(P1 + · · · + P2k−1)2k−1 + (P2k−1+1 + · · · + P2k)2k−1

]

+
[
(P1 + · · · + P2k−2)2k−2 + (P2k−2+1 + · · · + P2k−1)2k−2

+ (P2k−1+1 + · · · + P2k−1+2k−2)2k−2

+ (P2k−1+2k−2+1 + · · · + P2k)2k−2
]

+ . . .

·
·
·
+

[
(P1 + P2)2 + (P3 + P4)2 + · · · + (P2k−1 + P2k)2

]

=2k + 2k−1 + · · · + 2 = 2(2k − 1)

and therefore
2k∑

u=1

1
2k

L(u) = 2
(

1 − 1
2k

)
. (4.3)

Now

2
(

1 − 1
N

)
≤ 2

(
1 − 1

2k

)
=

2k∑

u=1

1
2k

L(u) ≤
N∑

u=1

1
N

L(u) =

2k

N

2k∑

u=1

1
2k

L(u) =
2k

N
2
(

1 − 1
2k

)
≤ 2

(
2 − 1

N

)
,

which gives the result by (4.2). Notice that for N = 2k, a power of 2, by (4.3)

L̄CN (P ) = 2
(

1 − 1
N

)
. (4.4)

Remark. The upper bound in (4.1) is rough and can be improved significantly.

5 Identification Entropy HI(P ) and Its Role as Lower
Bound

Recall from the Introduction that

HI(P ) = 2

(
1 −

N∑

u=1

P 2
u

)
for P = (P1 . . . PN ). (5.1)

We begin with a small source
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Example 4. Let N = 3. W.l.o.g. an optimal code C has the structure

P3P2

P1 P2 + P3

Claim.

L̄C(P ) =
3∑

u=1

1
3
LC(P, u) ≥ 2

(
1 −

3∑

u=1

P 2
u

)
= HI(P ).

Proof. Set L(u) = LC(P, u).
3∑

u=1
L(u) = 3(P1 + P2 + P3) + 2(P2 + P3).

This is smallest, if P1 ≥ P2 ≥ P3 and thus L(1) ≤ L(2) = L(3). Therefore
3∑

u=1
PuL(u) ≤ 1

3

3∑
u=1

L(u). Clearly L(1) = 1, L(2) = L(3) = 1 + P2 + P3 and

3∑
u=1

PuL(u) = P1 + P2 + P3 + (P2 + P3)2.

This does not change if P2 +P3 is constant. So we can assume P = P2 = P3 and
1 − 2P = P1 and obtain

3∑

u=1

PuL(u) = 1 + 4P 2.

On the other hand

2

(
1 −

3∑

u=1

P 2
u

)
≤ 2

(
1 − P 2

1 − 2
(

P2 + P3

2

)2
)

, (5.2)

because P 2
2 + P 2

3 ≥ (P2+P3)2

2 .
Therefore it suffices to show that

1 + 4P 2 ≥ 2
(
1 − (1 − 2P )2 − 2P 2

)

= 2(4P − 4P 2 − 2P 2)

= 2(4P − 6P 2) = 8P − 12P 2.

Or that 1 + 16P 2 − 8P = (1 − 4P )2 ≥ 0.
We are now prepared for the first main result for L(P, P ).
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Central in our derivations are proofs by induction based on decomposition
formulas for trees.

Starting from the root a binary tree T goes via 0 to the subtree T0 and via 1
to the subtree T1 with sets of leaves U0 and U1, respectively. A code C for (U , P )
can be viewed as a tree T , where Ui corresponds to the set of codewords Ci,
U0 ∪ U1 = U .

The leaves are labelled so that U0 = {1, 2, . . . , N0} and U1 = {N0+1, . . . , N0+
N1}, N0 + N1 = N . Using probabilities

Qi =
∑

u∈Ui

Pu, i = 0, 1

we can give the decomposition in

Lemma 1. For a code C for (U , PN )

LC((P1, . . . , PN ), (P1, . . . , PN ))

= 1 + LC0

((
P1

Q0
, . . . ,

PN0

Q0

)
,

(
P1

Q0
, . . . ,

PN0

Q0

))
Q2

0

+ LC1

((
PN0+1

Q1
, . . . ,

PN0+N1

Q1

)
,

(
PN0+1

Q1
, . . . ,

PN0+N1

Q1

))
Q2

1.

This readily yields

Theorem 2. For every source (U , PN )

3 > L(PN) ≥ L(PN , PN ) ≥ HI(PN ).

Proof. The bound 3 > L(PN ) restates Theorem 3 of [5]. For N = 2 and any C
LC(P 2, P 2) ≥ P1 + P2 = 1, but

HI(P 2) = 2(1 − P 2
1 − (1 − P1)2) = 2(2P1 − 2P 2

1 ) = 4P1(1 − P1) ≤ 1. (5.3)

This is the induction beginning.
For the induction step use for any code C the decomposition formula in Lemma

1 and of course the desired inequality for N0 and N1 as induction hypothesis.

LC((P1, . . . , PN ), (P1, . . . , PN ))

≥ 1 + 2

(
1 −

∑

u∈U0

(
Pu

Q0

)2
)

Q2
0 + 2

(
1 −

∑

u∈U1

(
Pu

Q1

)2
)

Q2
1

≥ HI(Q) + Q2
0HI(P (0)) + Q2

1HI(P (1)) = HI(PN ),

where Q = (Q0, Q1), 1 ≥ H(Q), P (i) =
(

Pu

Qi

)

u∈Ui

, and the grouping iden-

tity is used for the equality. This holds for every C and therefore also for
min
C

LC(PN ). �
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6 On Properties of L̄(P N)

Clearly for PN =
(

1
N , . . . , 1

N

)
L̄(PN ) = L(PN , PN) and Theorem 2 gives

therefore also the lower bound

L̄(PN ) ≥ HI(PN ) = 2
(

1 − 1
N

)
, (6.1)

which holds by Theorem 1 only for the Huffman code, but then for all distribu-
tions.

We shall see later in Example 6 that HI(PN ) is not a lower bound for general
distributions PN ! Here we mean non-pathological cases, that is, not those where
the inequality fails because L̄(P ) (and also L(P, P )) is not continuous in P , but
HI(P ) is, like in the following case.

Example 5. Let N = 2k + 1, P (1) = 1 − ε, P (u) = ε
2k for u 	= 1, P (ε) =(

1 − ε, ε
2k , . . . , ε

2k

)
, then

L̄(P (ε)) = 1 + ε2
(

1 − 1
2k

)
(6.2)

and lim
ε→0

L̄(P (ε))=1 whereas lim
ε→0

HI(P (ε))=lim
ε→0

(
2
(
1−(1−ε)2−

(
ε
2k

)2 2k
))

= 0.

However, such a discontinuity occurs also in noiseless coding by
Shannon.

The same discontinuity occurs for L(P (ε), P (ε)).
Furthermore, for N = 2 P (ε) = (1 − ε, ε), L̄(P (ε)) = 1 L(P (ε), P (ε)) = 1

and HI(P (ε)) = 2(1 − ε2 − (1 − ε)2) = 0 for ε = 0.
However, max

ε
HI(P (ε)) = max

ε
2(−2ε2 + 2ε) = 1 (for ε = 1

2 ). Does this have
any significance?

There is a second decomposition formula, which gives useful lower bounds on
L̄C(PN ) for codes C with corresponding subcodes C0, C1 with uniform
distributions.

Lemma 2. For a code C for (U , PN ) and corresponding tree T let

TT (PN ) =
∑

u∈U
L(u).

Then (in analogous notation)

TT (PN ) = N0 + N1 + TT0(P
(0))Q0 + TT1(P

(1))Q1.

However, identification entropy is not a lower bound for L̄(PN ). We strive now
for the worst deviation by using Lemma 2 and by starting with C, whose parts
C0, C1 satisfy the entropy inequality.
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Then inductively

TT (PN ) ≥ N+2

(
1 −

∑

u∈U0

(
Pu

Q0

)2
)

N0Q0+2

(
1 −

∑

u∈U1

(
Pu

Q1

)2
)

N1Q1 (6.3)

and
TT (PN )

N
≥ 1 +

1∑

i=0

2

(
1 −

∑

u∈Ui

(
Pu

Qi

)2
)

NiQi

N
� A, say.

We want to show that for

2

(
1 −

∑

u∈U
P 2

u

)
� B, say,

A − B ≥ 0. (6.4)

We write

A − B =

[
−1 + 2

1∑

i=0

NiQi

N

]
+ 2

[
∑

u∈U
P 2

u −
1∑

i=0

∑

u∈Ui

(
Pu

Qi

)2
NiQi

N

]

= C + D, say. (6.5)

C and D are functions of PN and the partition (U0,U1), which determine the
Qi’s and Ni’s. The minimum of this function can be analysed without reference
to codes. Therefore we write here the partitions as (U1,U2), C = C(PN ,U1,U2)
and D = D(PN ,U1,U2). We want to show that

min
P N ,(U1,U2)

C(PN ,U1,U2) + D(PN ,U1,U2) ≥ 0. (6.6)

A first idea
Recall that the proof of (5.3) used

2Q2
0 + 2Q2

1 − 1 ≥ 0. (6.7)

Now if Qi = Ni

N (i = 0, 1), then by (6.7)

A − B =

[
−1 + 2

1∑

i=0

N2
i

N2

]
+ 2

[
∑

u∈U
P 2

u −
∑

u∈U
P 2

u

]
≥ 0.

A goal could be now to achieve Qi ∼ Ni

N by rearrangement not increasing A−B,
because in case of equality Qi = Ni

N that does it.
This leads to a nice problem of balancing a partition (U1,U2) of U . More

precisely for PN = (P1, . . . , PN )
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ε(PN ) = min
φ �=U1⊂U

∣∣∣∣∣
∑

u∈U1

Pu − |U1|
N

∣∣∣∣∣ .

Then clearly for an optimal U1

Q1 =
|U1|
N

± ε(PN) and Q2 =
N − |U1|

N
∓ ε(PN ).

Furthermore, one comes to a question of some independent interest. What is

max
P N

ε(PN ) = max
P N

min
φ �=U1⊂U

∣∣∣∣∣
∑

u∈U1

Pu − |U1|
N

∣∣∣∣∣?

One can also go from sets U1 to distributions R on U and get, perhaps, a
smoother problem in the spirit of game theory.

However, we follow another approach here.

A rearrangement
We have seen that for Qi = Ni

N D = 0 and C ≥ 0 by (6.7). Also, there is “air”
up to 1 in C, if Ni

N is away from 1
2 . Actually, we have

C = −
(

N1

N
+

N2

N

)2

+ 2
(

N1

N

)2

+ 2
(

N2

N

)2

=
(

N1

N
− N2

N

)2

. (6.8)

Now if we choose for N = 2m even N1 = N2 = m, then the air is out here,
C = 0, but it should enter the second term D in (6.5).

Let us check this case first. Label the probabilities P1 ≥ P2 ≥ · · · ≥ PN and
define U1 =

{
1, 2, . . . , N

2

}
, U2 =

{
N
2 + 1, . . . , N

}
. Thus obviously

Q1 =
∑

u∈U1

Pu ≥ Q2 =
∑

u∈U2

Pu

and

D = 2

(
∑

u∈U
P 2

u −
2∑

i=1

1
2Qi

∑

u∈Ui

P 2
u

)
.

Write Q = Q1, 1 − Q = Q2. We have to show

∑

u∈U1

P 2
u

(
1 − 1

(2Q)2

)
≥

∑

u∈U2

P 2
u

(
1

(2Q2)2
− 1

)
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or ∑

u∈U1

P 2
u

(2Q)2 − 1
(2Q)2

≥
∑

u∈U2

P 2
u

(
1 − (2(1 − Q))2

(2(1 − Q))2

)
. (6.9)

At first we decrease the left hand side by replacing P1, . . . , PN
2

all by 2Q
N . This

works because
∑

P 2
i is Schur-concave and P1 ≥ · · · ≥ PN

2
, 2Q

N =
2(P1+···+P N

2
)

N ≥
PN

2 +1, because 2Q
N ≥ PN

2
≥ PN

2 +1. Thus it suffices to show that

N

2

(
2Q

N

)2 (2Q)2 − 1
(2Q)2

≥
∑

u∈U2

P 2
u

1 − (2(1 − Q))2

(2(1 − Q))2
(6.10)

or that
1

2N
≥

∑

u∈U2

P 2
u

1 − (2(1 − Q))2

(2(1 − Q))2((2Q)2 − 1)
. (6.11)

Secondly we increase now the right hand side by replacing PN
2 +1, . . . , PN all by

their maximal possible values
(

2Q
N , 2Q

N , . . . , 2Q
N , q

)
= (q1, q2, . . . , qt, qt+1), where

qi = 2Q
N for i = 1, . . . , t, qt+1 = q and t · 2Q

N + q = 1−Q, t =
⌊

(1−Q)N
2Q

⌋
, q < 2Q

N .
Thus it suffices to show that

1
2N

≥
(⌊

(1 − Q)N
2Q

⌋
·
(

2Q

N

)2

+ q2

)
1 − (2(1 − Q))2

(2(1 − Q))2((2Q)2 − 1)
. (6.12)

Now we inspect the easier case q = 0. Thus we have N = 2m and equal proba-
bilities Pi = 1

m+t for i = 1, . . . , m + t = m, say for which (6.12) goes wrong! We
arrived at a very simple counterexample.

Example 6. In fact, simply for PN
M =

(
1
M , . . . , 1

M , 0, 0, 0
)

lim
N→∞

L̄(PN
M ) = 0,

whereas

HI(PN
M ) = 2

(
1 − 1

M

)
for N ≥ M.

Notice that here
sup
N,M

|L̄(PN
M ) − HI(PN

M )| = 2. (6.13)

This leads to the

Problem 1. Is sup
P

|L̄(P ) − HI(P )| = 2? which is solved in the next section.

7 Upper Bounds on L̄(P N)

We know from Theorem 1 that

L̄(P 2k

) ≤ 2
(

1 − 1
2k

)
(7.1)
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and come to the

Problem 2. Is L̄(PN ) ≤ 2
(
1 − 1

2k

)
for N ≤ 2k?

This is the case, if the answer to the next question is positive.

Problem 3. Is L̄
((

1
N , . . . , 1

N

))
monotone increasing in N?

In case the inequality in Problem 2 does not hold then it should with a very
small deviation. Presently we have the following result, which together with
(6.13) settles Problem 1.

Theorem 3. For PN = (P1, . . . , PN )

L̄(PN ) ≤ 2
(

1 − 1
N2

)
.

Proof. (The induction beginning L̄(P 2) = 1 ≤ 2
(
1 − 1

4

)
holds.) Define now

U1 =
{
1, 2, . . . ,

⌊
N
2

⌋}
, U2 =

{⌊
N
2

⌋
+ 1, . . . , N

}
and Q1, Q2 as before. Again by

the decomposition formula of Lemma 2 and induction hypothesis

T (PN) ≤ N + 2

(
1 − 1

⌊
N
2

⌋2

)
Q1

⌊
N

2

⌋
+ 2

(
1 − 1

⌈
N
2

⌉2

)
Q2 ·

⌈
N

2

⌉

and

L̄(PN ) =
1
N

T (PN ) ≤ 1 +
2
⌊

N
2

⌋
Q1 + 2

⌈
N
2

⌉
Q2

N
− 2⌊

N
2

⌋ · Q1

N
− 2Q2⌈

N
2

⌉
N

(7.2)

Case N even: L̄(PN ) ≤ 1 + Q1 + Q2 −
(

4
N2 Q1 + 4

N2 Q2

)
= 2 − 4

N2 =
2
(
1 − 2

N2

)
≤ 2

(
1 − 1

N2

)

Case N odd: L̄(PN ) ≤ 1 + N−1
N Q1 + N+1

N Q2 − 4
(

Q1
(N−1)N + Q2

(N+1)N

)
≤

1 + 1 + Q2−Q1
N − 4

(N+1)N

Choosing the
⌈

N
2

⌉
smallest probabilities in U2 (after proper labelling) we get

for N ≥ 3

L̄(PN ) ≤ 1+1+
1

N · N − 4
(N + 1)N

= 2+
1 − 3N

(N + 1)N2
≤ 2− 2

N2
= 2

(
1 − 1

N2

)
,

because 1 − 3N ≤ −2N − 2 for N ≥ 3.

8 The Skeleton

Assume that all individual probabilities are powers of 1
2

Pu =
1

2�u
, u ∈ U . (8.1)

Define then k = k(PN ) = max
u∈U

�u.
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Since
∑

u∈U

1
2�u

= 1 by Kraft’s theorem there is a PC with codeword lengths

||cu|| = �u. (8.2)

Notice that we can put the probability 1
2k at all leaves in the binary regular

tree and that therefore

L(u) =
1
2
· 1 +

1
4
· 2 +

1
23

3 + · · · + 1
2t

t + · · · + 2
2�u

. (8.3)

For the calculation we use

Lemma 3. Consider the polynomials G(x) =
r∑

t=1
t · xt + rxr and f(x) =

r∑
t=1

xt,

then

G(x) = x f ′(x) + r xr =
(r + 1)xr+1(x − 1) − xr+2 + x

(x − 1)2
+ r xr.

Proof. Using the summation formula for a geometric series

f(x) =
xr+1 − 1

x − 1
− 1

f ′(x) =
r∑

t=1

t xt−1 =
(r + 1)xr(x − 1) − xr+1 + 1

(x − 1)2
.

This gives the formula for G.
Therefore for x = 1

2

G

(
1
2

)
= −(r + 1)

(
1
2

)r

−
(

1
2

)r

+ 2 + r

(
1
2

)r

= − 1
2r−1

+ 2

and since L(u) = G
(

1
2

)
for r = �u

L(u) = 2
(

1 − 1
2�u

)
= 2

(
1 − 1

2log 1
Pu

)

= 2(1 − Pu). (8.4)

Therefore
L(PN , PN) ≤

∑

u

Pu(2(1 − Pu)) = HI(PN ) (8.5)

and by Theorem 2
L(PN , PN ) = HI(PN ). (8.6)
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Theorem 4. 1 For PN = (2−�1 , . . . , 2−�N ) with 2-powers as probabilities

L(PN , PN ) = HI(PN ).

This result shows that identification entropy is a right measure for identifi-
cation source coding. For Shannon’s data compression we get for this source∑
u

pu||cu|| =
∑
u

pu�u = −
∑
u

pu log pu = H(PN ), again an identity.

For general sources the minimal average length deviates there from H(PN),
but by not more than 1.

Presently we also have to accept some deviation from the identity.
We give now a first (crude) approximation. Let

2k−1 < N ≤ 2k (8.7)

and assume that the probabilities are sums of powers of 1
2 with exponents not

exceeding k

Pu =
α(u)∑

j=1

1
2�uj

, �u1 ≤ �u2 ≤ · · · ≤ �uα(u) ≤ k. (8.8)

We now use the idea of splitting object u into objects u1, . . . , uα(u). (8.9)
Since ∑

u,j

1
2�uj

= 1 (8.10)

again we have a PC with codewords cuj (u ∈ U , j = 1, . . . , α(u)) and a regular
tree of depth k with probabilities 1

2k on all leaves.
Person u can find out whether u occurred, he can do this (and more) by

finding out whether u1 occurred, then whether u2 occurred, etc. until uα(u).
Here

L(us) = 2
(

1 − 1
2�us

)
(8.11)

and

∑

u,s

L(us)Pus = 2

(
1 −

∑

u,s

1
2�us

· 1
2�us

)
= 2

⎛

⎝1 −
∑

u

⎛

⎝
α(u)∑

s=1

P 2
us

⎞

⎠

⎞

⎠ . (8.12)

On the other hand, being interested only in the original objects this is to be

compared with HI(PN ) = 2

(
1 −

∑
u

(∑
s

Pus

)2
)

, which is smaller.

1 In a forthcoming paper “An interpretation of identification entropy” the author and
Ning Cai show that LC(P, Q)2 ≤ LC(P, P )LC(Q,Q) and that for a block code C
min

P on U
LC(P, P ) = LC(R, R), where R is the uniform distribution on U ! Therefore

L̄C(P ) ≤ LC(P, P ) for a block code C.
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However, we get
(
∑

s

Pus

)2

=
∑

s

P 2
us +

∑

s�=s′
PusPus′ ≤ 2

∑

s

P 2
us

and therefore

Theorem 5

L(PN , PN) ≤ 2

⎛

⎝1 −
∑

u

⎛

⎝
α(u)∑

s=1

P 2
us

⎞

⎠

⎞

⎠ ≤ 2

(
1 − 1

2

∑

u

P 2
u

)
. (8.13)

For Pu = 1
N (u ∈ U) this gives the upper bound 2

(
1 − 1

2N

)
, which is better

than the bound in Theorem 3 for uniform distributions.
Finally we derive

Corollary
L(PN , PN) ≤ HI(PN ) + max

1≤u≤N
Pu.

It shows the lower bound of L(Pn, PN ) by HI(PN ) and this upper bound are
close.

Indeed, we can write the upper bound

2

(
1 − 1

2

N∑

u=1

P 2
u

)
as HI(PN ) +

N∑

u=1

P 2
u

and for P = max1≤u≤N Pu, let the positive integer t be such that 1−tp = p′ < p.

Then by Schur concavity of
N∑

u=1
P 2

u we get
N∑

u=1
P 2

u ≤ t · p2 + p′2, which does not

exceed p(tp + p′) = p.

Remark. In its form the bound is tight, because for P 2 = (p, 1 − p)

L(P 2, P 2) = 1 and lim
p→1

HI(P 2) + p = 1.

Remark. Concerning L̄(PN ) (see footnote) for N = 2 the bound 2
(
1 − 1

4

)
= 3

2

is better than HI(P 2)+max
u

Pu for P 2 =
(

2
3 , 1

3

)
, where we get 2(2p1−2p2

1)+p1 =

p1(5 − 4p1) = 2
3

(
5 − 8

3

)
= 14

9 > 3
2 .

9 Directions for Research

A. Study

L(P, R) for P1 ≥ P2 ≥ · · · ≥ PN and R1 ≥ R1 ≥ · · · ≥ RN .

B. Our results can be extended to q-ary alphabets, for which then identification
entropy has the form



Identification Entropy 613

HI,q(P ) = q
q−1

(
1 −

∑N
i=1 P 2

i

)
.2

C. So far we have considered prefix-free codes. One also can study
a. fix-free codes
b. uniquely decipherable codes

D. Instead of the number of checkings one can consider other cost measures
like the αth power of the number of checkings and look for corresponding
entropy measures.

E. The analysis on universal coding can be refined.
F. In [5] first steps were taken towards source coding for K-identification. This

should be continued with a reflection on entropy and also towards GTIT.
G. Grand ideas: Other data structures

a. Identification source coding with parallelism: there are N identical
code-trees, each person uses his own, but informs others

b. Identification source coding with simultaneity: m(m = 1, 2, . . . , N) per-
sons use simultaneously the same tree.

H. It was shown in [5] that L(PN) ≤ 3 for all PN . Therefore there is a universal
constant A = sup

P N

L(PN). It should be estimated!

I. We know that for λ ∈ (0, 1) there is a subset U of cardinality exp{f(λ)H(P )}
with probability at least λ for f(λ) = (1 − λ)−1 and lim

λ→0
f(λ) = 1.

Is there such a result for HI(P )?
It is very remarkable that in our world of source coding the classical range
of entropy [0,∞) is replaced by [0, 2) – singular, dual, plural – there is some
appeal to this range.
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