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1 Extended Abstract

We consider the problem of scheduling n jobs with given processing times pj

on m identical parallel machines in order to minimize the makespan. This
problem is denoted by P | |Cmax and is known to be strongly NP-hard. Since
the problem is trivial for m = 1, feasible solutions can be given by assignments
of jobs to machines.

The workload Li of a machine i for a given assignment is defined as the
sum of processing times of the jobs assigned to machine i. The objective of
P ||Cmax is to minimize the vector of the workloads in the L∞-norm, i.e. find an
assignment of jobs to machines such that the maximal workload is minimized.

To receive approximative solutions, one may use the following priority
based method. We start with an empty schedule and iteratively put a non-
scheduled job with longest processing time of all remaining jobs onto the ma-
chine with currently minimal workload. This method we call LPT -algorithm
and due to Graham [4] it yields a schedule no worse than

CLPT
max

C∗
max

≤ 4

3
− 1

3m
,

where CLPT
max and C∗

max denote the makespan received by the LPT -algorithm
resp. the optimal makespan. This performance guarantee is proven to be
tight.

Another way to receive approximative solutions is inspired by the idea of
local search. One starts with an arbitrary assignment of jobs to machines
and tries to move a job from its designated machine to another one. This
move is applied if either the makespan is decreased or the number of critical
machines is reduced, i.e. the number of machines attaining the makespan. The
process is iteratively repeated until no such job can be found. The assignment
obtained at the end of this iterative improvement procedure we call a move-
optimal assignment. Due to Finn and Horowitz [3] we receive for move-optimal
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assignments a performance guarantee of
Cmove

max

C∗
max

≤ 2 − 2

m + 1
,

where Cmove
max denotes the makespan of a move-optimal assignment. Moreover,

this bound is tight.

The idea of local search and iterative improvement is often successful in
delivering solutions of good quality for hard problems. Local search is roughly
described by a neighborhood given for any solution and a method for advanc-
ing to an improving solution of the neighborhood. To obtain move-optimal
assignments, one may define the neighborhood of a given assignment to con-
sist of all assignments that differ in the designated machine of at most one
job. The neighborhood is of size n(m − 1) and hence, an improving neighbor
(if it exists) can be found in polynomial time.

Considerably amount of work has been carried out to give different neigh-
borhoods and performance guarantees for the considered problem and similar
ones. Regarding the problem of minimizing the makespan see Vredeveld [6]
and Schuurman and Vredeveld [5] for an overview. If the objective is to
minimize total weighted completion time, Brueggemann et al. [2] give a per-
formance guarantee of 3

2
− 1

2m
for move-optimal schedules. Over the last years,

very large-scale neighborhoods came into the picture. These very large-scale
neighborhoods mostly contain an up to exponential number of solutions but
allow a polynomial exploration. A survey about very large-scale neighborhood
techniques is given by Ahuja et al. [1].

We introduce a very large-scale neighborhood of exponential size (in the
number of machines) that is based on a matching in a complete graph. The
idea is to partition the jobs assigned to the same machine into two sets. This
partitioning is done for every machine with some chosen rule to receive 2m
parts. A new assignment is received by putting to every machine the jobs
of exactly two parts. The neighborhood Nsplit consists of all possible rear-
rangements of the parts to the machines. The best assignment of Nsplit can
be calculated in time O(m log m) by determining the perfect matching having
minimum maximal edge weight in an improvement graph, where the vertices
correspond to parts and the weights on the edges correspond to the sum of
the processing times of the jobs belonging to the parts. Hence, the problem
of determining the best neighbor is similar to solving a bottleneck assignment
problem, which can be done by ordering the cost-matrix of the assignment
problem, so that it fulfills the bottleneck Monge property.

A locally optimal solution of the neighborhood Nsplit is an assignment for
which it is not possible to obtain a better solution by rearranging the parts.
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Such an assignment we call split-optimal (and can be received by an iterative
improvement process). For split-optimal assignments we prove the following:

Theorem 1.1 Assume that for every machine a partition into two disjoint
sets is received in the way that the two sets are itself move-optimal. If Csplit

max

denotes the makespan of a split-optimal solution, then

Csplit
max

C∗
max

≤ 2m

m + 1
= 2 − 2

m + 1
,

where C∗
max denotes the optimal makespan. Moreover, this bound is tight.

¿From the previous theorem we can conclude that split-optimal schedules
have the same worst-case performance guarantee as move-optimal schedules.
But, the worst-case examples have a different structure. In a second step, we
try to combine these two neighborhoods and receive the following theorem.

Theorem 1.2 Assume that for every machine a partition into two disjoint
sets is received in the way that the two sets are itself move-optimal. If Cs+m

max

denotes the makespan of a schedule that is move-optimal and split-optimal,
then

Cs+m
max

C∗
max

≤ 2m + 2

m + 3
= 2 − 4

m + 3
,

where C∗
max denotes the optimal makespan. Moreover, this bound is tight for

m = 2 and any odd m.

The performance guarantee for schedules that are both, split-optimal and
move-optimal, is slightly better than for move-optimal or split-optimal sched-
ules alone. But the asymptotic behavior of the guarantees are still the same,
i.e. for m → ∞ we have a tight guarantee of 2 for any local optimal solution
of any neighborhood considered so far.

In a last step, we modify the move-neighborhood. A given schedule is called
lexicographic-move-optimal if no move of a single job leads to a schedule where
the ordered vector of machine loads is lexicographically smaller than that of
the considered schedule. A lexicographic-move-optimal schedule has the same
worst-case performance guarantee as move-optimal schedules, but if such a
schedule is also split-optimal, we can prove the following guarantee.

Theorem 1.3 Assume that for every machine a partition into two disjoint
sets is received by using the LPT-algorithm. If Cs+m

max denotes the makespan of
a schedule that is lexicographic-move-optimal and split-optimal, then

Cs+lm
max

C∗
max

≤ 3

2
,
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where C∗
max denotes the optimal makespan. Moreover, worst-case instances

exist that have a ratio of:

Cs+lm
max

C∗
max

=
3

2
− 1

2m − 2
.

Therefore, by combining the neighborhoods in a clever way, we can improve
the performance guarantee a lot and get near the guarantee for the LPT-
algorithm, which is 4/3 for m → ∞.
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