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25, 1000 Ljubljana, Slovenia, e-mail gasper.fijavz@fri.uni-lj.si
c Department of Mathematics, University of West Bohemia, and Institute for

Theoretical Computer Science (ITI), Charles University, P.O. Box 314, 306 14
Pilsen, Czech Republic, e-mail {kaisert,rkuzel,ryjacek}@kma.zcu.cz,

vranaxxpetr@quick.cz

Abstract

We show that the conjectures by Matthews and Sumner (every 4-connected claw-free
graph is hamiltonian), by Thomassen (every 4-connected line graph is hamiltonian)
and by Fleischner (every cyclically 4-edge-connected cubic graph has either a 3-edge-
coloring or a dominating cycle), which are known to be equivalent, are equivalent
with the statement that every snark (i.e. a cyclically 4-edge-connected cubic graph
of girth at least five that is not 3-edge-colorable) has a dominating cycle.

We use a refinement of the contractibility technique which was introduced by
Ryjáček and Schelp in 2003 as a common generalization and strengthening of the
reduction techniques by Catlin and Veldman and of the closure concept introduced
by Ryjáček in 1997.
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1 Introduction

In this paper we consider finite undirected graphs. All graphs we consider are
loopless, however we allow the graphs to have multiple edges. We follow the
most common graph-theoretic terminology and notation and for concepts and
notation not defined here we refer the reader to [2]. If F , G are graphs then
G− F denotes the graph G− V (F ) and by an a, b-path we mean a path with
end vertices a, b. A graph G is claw-free if G does not contain an induced
subgraph isomorphic to the claw K1,3.

In 1984, Matthews and Sumner [9] posed the following conjecture.

Conjecture 1.1 [9] Every 4-connected claw-free graph is hamiltonian.

Since every line graph is claw-free (see [1]), the following conjecture by
Thomassen is a special case of Conjecture 1.1.

Conjecture 1.2 [13] Every 4-connected line graph is hamiltonian.

A closed trail T in a graph G is said to be dominating, if every edge of G
has at least one vertex on T , i.e., the graph G−T is edgeless (a closed trail is
defined as usual, except that we allow a single vertex to be such a trail). The
following result by Harary and Nash-Williams [6] shows the relation between
the existence of a dominating closed trail (abbreviated DCT) in a graph and
hamiltonicity of its line graph.

Theorem 1.3 [6] Let G be a graph with at least three edges. Then L(G) is
hamiltonian if and only if G contains a DCT.

Let k be an integer and let G be a graph with |E(G)| > k. The graph G is
said to be essentially k-edge-connected if G contains no edge cut R such that
|R| < k and at least two components of G − R are nontrivial (i.e. containing
at least one edge). If G contains no edge cut R such that |R| < k and at
least two components of G − R contain a cycle, G is said to be cyclically
k-edge-connected.

It is well-known that G is essentially k-edge-connected if and only if its
line graph L(G) is k-connected. Thus, the following statement is an equivalent
formulation of Conjecture 1.2.

Conjecture 1.4 Every essentially 4-edge-connected graph contains a DCT.
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Specifically, if G is cubic (i.e. regular of degree 3), then a DCT becomes a
dominating cycle (abbreviated DC). It is easy to observe that every essentially
4-edge-connected cubic graph must be triangle-free, with a single exception
of the graph K4. To avoid this exceptional case, we will always consider only
essentially 4-edge-connected cubic graphs on at least 5 vertices.

Since a cubic graph is essentially 4-edge-connected if and only if it is cycli-
cally 4-edge-connected (see [5], Corollary 1), the following statement, known
as the Dominating Cycle Conjecture, is a special case of Conjecture 1.4.

Conjecture 1.5 Every cyclically 4-edge-connected cubic graph has a DC.

Restricting to cyclically 4-edge-connected cubic graphs that are not 3-edge-
colorable, we obtain the following conjecture posed by Fleischner [4].

Conjecture 1.6 [4] Every cyclically 4-edge-connected cubic graph that is not
3-edge-colorable has a DC.

In [11], a closure technique was used to prove that Conjectures 1.1 and 1.2
are equivalent. Fleischner and Jackson [5] showed that Conjectures 1.2, 1.4
and 1.5 are equivalent. Finally, Kochol [7] established the equivalence of these
conjectures with Conjecture 1.6. Thus, we have the following result.

Theorem 1.7 [5], [7], [11] Conjectures 1.1, 1.2, 1.4, 1.5 and 1.6 are equiv-
alent.

Note that recently Kužel and Xiong [8] showed the equivalence of these con-
jectures with the statement that every 4-connected line graph is hamiltonian-
connected.

2 Main result

A cyclically 4-edge-connected cubic graph G of girth g(G) ≥ 5 that is not
3-edge-colorable is called a snark. Snarks have turned out to be an important
class of graphs for example in the context of nowhere zero flows. For more
information about snarks see the paper [10]. Restricting our considerations to
snarks, we obtain the following special case of Conjecture 1.6.

Conjecture 2.1 Every snark has a DC.

The following theorem, which is the main result of this paper, shows that
Conjecture 2.1 is equivalent with the previous ones.
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Theorem 2.2 Conjecture 2.1 is equivalent with Conjectures 1.1, 1.2, 1.4, 1.5
and 1.6.

As already noted, every cyclically 4-edge-connected cubic graph other than
K4 must be triangle-free. Thus, the difference between Conjectures E and F
consists in restricting to graphs which do not contain a 4-cycle. For the proof
of the equivalence of these conjectures we first develop a refinement of the
technique of contractible subgraphs that was developed in [12] as a common
generalization of the closure concept [11] and Catlin’s collapsibility technique
[3], and then a technique that allows to handle the (non)existence of a DC
while replacing a subgraph of a graph by another one.
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