

Available online at www.sciencedirect.com

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 28 (2007) 55-59

www.elsevier.com/locate/endm

Contractible Subgraphs, Thomassen's Conjecture and the Dominating Cycle Conjecture for Snarks

Hajo Broersma^a, Gašper Fijavž^b Tomáš Kaiser^{c,1} Roman Kužel^{c,1} Zdeněk Ryjáček^{c,1} Petr Vrána^c

^a Department of Computer Science, University of Durham, Science Laboratories, South Road, Durham, DH1 3LE England, e-mail hajo.broersma@durham.ac.uk

^b Faculty of Computer and Information Science, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia, e-mail gasper.fijavz@fri.uni-lj.si

^c Department of Mathematics, University of West Bohemia, and Institute for Theoretical Computer Science (ITI), Charles University, P.O. Box 314, 306 14 Pilsen, Czech Republic, e-mail {kaisert,rkuzel,ryjacek}@kma.zcu.cz, vranaxxpetr@quick.cz

Abstract

We show that the conjectures by Matthews and Sumner (every 4-connected claw-free graph is hamiltonian), by Thomassen (every 4-connected line graph is hamiltonian) and by Fleischner (every cyclically 4-edge-connected cubic graph has either a 3-edge-coloring or a dominating cycle), which are known to be equivalent, are equivalent with the statement that every snark (i.e. a cyclically 4-edge-connected cubic graph of girth at least five that is not 3-edge-colorable) has a dominating cycle.

We use a refinement of the contractibility technique which was introduced by Ryjáček and Schelp in 2003 as a common generalization and strengthening of the reduction techniques by Catlin and Veldman and of the closure concept introduced by Ryjáček in 1997.

 $Keywords: \$ dominating cycle, contractible graph, cubic graph, snark, line graph, hamiltonian graph

 $^{1571\}text{-}0653/\$$ – see front matter 0 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.endm.2007.01.009

1 Introduction

In this paper we consider finite undirected graphs. All graphs we consider are loopless, however we allow the graphs to have multiple edges. We follow the most common graph-theoretic terminology and notation and for concepts and notation not defined here we refer the reader to [2]. If F, G are graphs then G - F denotes the graph G - V(F) and by an a, b-path we mean a path with end vertices a, b. A graph G is *claw-free* if G does not contain an induced subgraph isomorphic to the claw $K_{1,3}$.

In 1984, Matthews and Sumner [9] posed the following conjecture.

Conjecture 1.1 [9] Every 4-connected claw-free graph is hamiltonian.

Since every line graph is claw-free (see [1]), the following conjecture by Thomassen is a special case of Conjecture 1.1.

Conjecture 1.2 [13] Every 4-connected line graph is hamiltonian.

A closed trail T in a graph G is said to be *dominating*, if every edge of G has at least one vertex on T, i.e., the graph G - T is edgeless (a closed trail is defined as usual, except that we allow a single vertex to be such a trail). The following result by Harary and Nash-Williams [6] shows the relation between the existence of a dominating closed trail (abbreviated DCT) in a graph and hamiltonicity of its line graph.

Theorem 1.3 [6] Let G be a graph with at least three edges. Then L(G) is hamiltonian if and only if G contains a DCT.

Let k be an integer and let G be a graph with |E(G)| > k. The graph G is said to be essentially k-edge-connected if G contains no edge cut R such that |R| < k and at least two components of G - R are nontrivial (i.e. containing at least one edge). If G contains no edge cut R such that |R| < k and at least two components of G - R contain a cycle, G is said to be cyclically k-edge-connected.

It is well-known that G is essentially k-edge-connected if and only if its line graph L(G) is k-connected. Thus, the following statement is an equivalent formulation of Conjecture 1.2.

Conjecture 1.4 Every essentially 4-edge-connected graph contains a DCT.

 $^{^1\,}$ Research supported by grants No. 1M0545 and MSM 4977751301 of the Czech Ministry of Education

Specifically, if G is *cubic* (i.e. regular of degree 3), then a DCT becomes a dominating cycle (abbreviated DC). It is easy to observe that every essentially 4-edge-connected cubic graph must be triangle-free, with a single exception of the graph K_4 . To avoid this exceptional case, we will always consider only essentially 4-edge-connected cubic graphs on at least 5 vertices.

Since a cubic graph is essentially 4-edge-connected if and only if it is cyclically 4-edge-connected (see [5], Corollary 1), the following statement, known as the Dominating Cycle Conjecture, is a special case of Conjecture 1.4.

Conjecture 1.5 Every cyclically 4-edge-connected cubic graph has a DC.

Restricting to cyclically 4-edge-connected cubic graphs that are not 3-edgecolorable, we obtain the following conjecture posed by Fleischner [4].

Conjecture 1.6 [4] Every cyclically 4-edge-connected cubic graph that is not 3-edge-colorable has a DC.

In [11], a closure technique was used to prove that Conjectures 1.1 and 1.2 are equivalent. Fleischner and Jackson [5] showed that Conjectures 1.2, 1.4 and 1.5 are equivalent. Finally, Kochol [7] established the equivalence of these conjectures with Conjecture 1.6. Thus, we have the following result.

Theorem 1.7 [5], [7], [11] Conjectures 1.1, 1.2, 1.4, 1.5 and 1.6 are equivalent.

Note that recently Kužel and Xiong [8] showed the equivalence of these conjectures with the statement that every 4-connected line graph is hamiltonianconnected.

2 Main result

A cyclically 4-edge-connected cubic graph G of girth $g(G) \ge 5$ that is not 3-edge-colorable is called a *snark*. Snarks have turned out to be an important class of graphs for example in the context of nowhere zero flows. For more information about snarks see the paper [10]. Restricting our considerations to snarks, we obtain the following special case of Conjecture 1.6.

Conjecture 2.1 Every snark has a DC.

The following theorem, which is the main result of this paper, shows that Conjecture 2.1 is equivalent with the previous ones.

Theorem 2.2 Conjecture 2.1 is equivalent with Conjectures 1.1, 1.2, 1.4, 1.5 and 1.6.

As already noted, every cyclically 4-edge-connected cubic graph other than K_4 must be triangle-free. Thus, the difference between Conjectures E and F consists in restricting to graphs which do not contain a 4-cycle. For the proof of the equivalence of these conjectures we first develop a refinement of the technique of contractible subgraphs that was developed in [12] as a common generalization of the closure concept [11] and Catlin's collapsibility technique [3], and then a technique that allows to handle the (non)existence of a DC while replacing a subgraph of a graph by another one.

References

- L.W. Beineke: Characterizations of derived graphs. J. Combin. Theory Ser. B 9(1970) 129-135
- [2] J.A. Bondy; U.S.R. Murty: Graph theory with applications. Macmillan, London and Elsevier, New York, 1976.
- [3] P.A. Catlin: A reduction technique to find spanning eulerian subgraphs. J. Graph Theory 12 (1988), 29-44.
- [4] H. Fleischner: Cycle decompositions, 2-coverings, removable cycles and the fourcolor disease. In "Progress in Graph Theory" (J.A. Bondy and U.S.R. Murty, Eds.), 233-246, Academic Press, New York, 1984.
- [5] H. Fleischner; B. Jackson: A note concerning some conjectures on cyclically 4edge-connected 3-regular graphs. In "Graph Theory in Memory of G.A. Dirac" (L.D. Andersen, I.T. Jakobsen, C. Thomassen, B. Toft, and P.D. Vestergaard, Eds.), Annals of Discrete Math., Vol. 41, 171-177, North-Holland, Amsterdam, 1989.
- [6] F. Harary; C. St.J.A. Nash-Williams: On eulerian and hamiltonian graphs and line graphs. Canad. Math. Bull. 8 (1965), 701-709.
- [7] M. Kochol: Equivalence of Fleischner's and Thomassen's conjectures. J. Combin. Theory, Ser. B 78 (2000), 277-279.
- [8] R. Kužel; L. Xiong: Every 4-connected line graph is hamiltonian if and only if it is hamiltonian-connected. Preprint 2003.
- [9] M.M. Matthews; D.P. Sumner: Hamiltonian results in $K_{1,3}$ -free graphs. J. Graph Theory 8(1984), 139-146.

- [10] R. Nedela, M. Škoviera: Decompositions and reductions of snarks. J. Graph Theory 22(1996), 253-279.
- [11] Z. Ryjáček: On a closure concept in claw-free graphs. J. Combin. Theory Ser. B 70(1997), 217-224.
- [12] Z. Ryjáček; R.H. Schelp: Contractibility techniques as a closure concept. J. Graph Theory 43(2003), 37-48.
- [13] C. Thomassen: Reflections on graph theory. J. Graph Theory 10(1986), 309-324.