Constrained Ramsey Numbers

Po-Shen Loh * Benny Sudakov ${ }^{\dagger}$

Abstract

For two graphs S and T, the constrained Ramsey number $f(S, T)$ is the minimum n such that every edge coloring of the complete graph on n vertices (with any number of colors) has a monochromatic subgraph isomorphic to S or a rainbow subgraph isomorphic to T. Here, a subgraph is said to be rainbow if all of its edges have different colors. It is an immediate consequence of the Erdős-Rado Canonical Ramsey Theorem that $f(S, T)$ exists if and only if S is a star or T is acyclic. Much work has been done to determine the rate of growth of $f(S, T)$ for various types of parameters. When S and T are both trees having s and t edges respectively, Jamison, Jiang, and Ling showed that $f(S, T) \leq O\left(s t^{2}\right)$ and conjectured that it is always at most $O(s t)$. They also mentioned that one of the most interesting open special cases is when T is a path. In this paper, we study this case and show that $f\left(S, P_{t}\right)=O(s t \log t)$, which differs only by a logarithmic factor from the conjecture. This substantially improves the previous bounds for most values of s and t.

1 Introduction

The Erdős-Rado Canonical Ramsey Theorem [6] guarantees that for any m, there is some n such that any edge coloring of the complete graph on the vertex set $\{1, \ldots, n\}$, with arbitrarily many colors, has a complete subgraph of size m whose coloring is one of the following three types: monochromatic, rainbow, or lexical. Here, a subgraph is rainbow if all edges receive distinct colors, and it is lexical when there is a total order of its vertices such that two edges have the same color if and only if they share the same larger endpoint.

Since the the first two types of colorings are somewhat more natural, it is interesting to study the cases when we can guarantee the existence of either monochromatic or rainbow subgraphs. This motivates the notion of constrained Ramsey number $f(S, T)$, which is defined to be the minimum n such that every edge coloring of the complete graph on n vertices (with any number of colors)

[^0]has a monochromatic subgraph isomorphic to S or a rainbow subgraph isomorphic to T. It is an immediate consequence of the Canonical Ramsey Theorem that this number exists if and only if S is a star or T is acyclic, because stars are the only graphs that admit a simultaneously lexical and monochromatic coloring, and forests are the only graphs that admit a simultaneously lexical and rainbow coloring.

The constrained Ramsey number has been studied by many researchers [1, 3, 4, 7, 8, 10, 13, 14, 18], and the bipartite case in [2]. In the special case when $H=K_{1, k+1}$ is a star with $k+1$ edges, colorings with no rainbow H have the property that every vertex is incident to edges of at most k different colors, and such colorings are called k-local. Hence $f\left(S, K_{1, k+1}\right)$ corresponds precisely to the local k-Ramsey numbers, $r_{\text {loc }}^{k}(S)$, which were introduced and studied by Gyárfás, Lehel, Schelp, and Tuza in [11. These numbers were shown to be within a constant factor (depending only on k) of the classical k-colored Ramsey numbers $r(S ; k)$, by Truszczyński and Tuza [16].

When S and T are both trees having s and t edges respectively, Jamison, Jiang, and Ling [13] conjectured that $f(S, T)=O(s t)$, and provided a construction which showed that the conjecture, if true, is best possible up to a multiplicative constant. Here is a variant of such construction, which we present for the sake of completeness, which shows that in general the upper bound on $f(S, T)$ cannot be brought below $(1+o(1)) s t$. For a prime power t let \mathbb{F}_{t} be the finite field with t elements. Consider the complete graph with vertex set equal to the affine plane $\mathbb{F}_{t} \times \mathbb{F}_{t}$, and color each edge based on the slope of the line between the corresponding vertices in the affine plane. The number of different slopes (hence colors) is $t+1$, so there is no rainbow graph with $t+2$ edges. Also, monochromatic connected components are cliques of order t, corresponding to affine lines. Therefore if $\Omega(\log t)<s<t$, we can take a random subset of the construction (taking each vertex independently with probability $s / t)$ to obtain a coloring of the complete graph of order $(1+o(1)) s t$ with $t+1$ colors in which all monochromatic connected components have size at most $(1+o(1)) s$.

Although Jamison, Jiang, and Ling were unable to prove their conjecture, they showed that $f(S, T)=O\left(s t \cdot d_{T}\right) \leq O\left(s t^{2}\right)$, where d_{T} is the diameter of T. Since this bound clearly gets weaker as the diameter of T grows, they asked whether a pair of paths maximizes $f(S, T)$, over all trees with s and t edges, respectively. This generated much interest in the special case when T is a path P_{t}. In [18], Wagner proved that $f\left(S, P_{t}\right) \leq O\left(s^{2} t\right)$. This bound grows linearly in t when s is fixed but still has order of magnitude t^{3} for trees of similar size. Although Gyárfás, Lehel, and Schelp [10] recently showed that for small t (less than 6), paths are not the extremal example, they remain one of the most interesting cases of the constrained Ramsey problem.

In this paper we prove the following theorem which agrees with the conjecture, up to a logarithmic factor and the fact that T is a path. It significantly improves the previous bounds for most values of s and t, and in particular gives the first sub-cubic bound for the case when the monochromatic tree and rainbow path are of comparable size.

Theorem 1.1. Let S be any tree with s edges, and let t be a positive integer. Then, for any $n \geq 3600$ st $\log _{2} t$, every coloring of the edges of the complete graph K_{n} (with any number of colors)
contains a monochromatic copy of S or a rainbow t-edge path.
This supports the conjectured upper bound of $O(s t)$ for the constrained Ramsey number of a pair of trees. With Oleg Pikhurko, the second author obtained another result which provides further evidence for the conjecture. This result studies a natural relaxation of the above problem, in which one wants to find either a monochromatic copy of a tree S or a properly colored copy of a tree T. It appears that in this case the logarithmic factor can be removed, giving an $O(s t)$ upper bound. We view this result as complementary to our main theorem, and therefore have included its short proof in the appendix to our paper.

We close this section by comparing our approach to Wagner's, as the two proofs share some similarities. This will also lead us to introduce one of the the main tools that we will use later. Both proofs find a structured subgraph $G^{\prime} \subset G$ in which one may direct some edges in such a way that directed paths correspond to rainbow paths. Wagner's approach imposes more structure on G^{\prime}, which simplifies the task of finding directed paths, but this comes at the cost of substantially reducing $\left|G^{\prime}\right|$. In particular, his $\left|G^{\prime}\right|$ is s times smaller than $|G|$, which contributes a factor of s to his ultimate bound $O\left(s^{2} t\right)$. We instead construct a subgraph with weaker properties, but of order which is a constant fraction of $|G|$ (hence saving a factor of s in the bound). This complicates the problem of finding the appropriate directed paths, which we overcome by using the following notion of median order:

Definition. Let G be a graph, some of whose edges are directed. Given a linear ordering $\sigma=$ $\left(v_{1}, \ldots, v_{n}\right)$ of the vertex set, a directed edge $\overrightarrow{v_{i} v_{j}}$ is said to be forward if $i<j$, and backward if $i>j$. If σ maximizes the number of forward edges, it is called a median order.

Median orders were originally studied for their own sake; for example, finding a median order for a general digraph is known to be NP-hard. More recently, Havet and Thomassé [12] discovered that they are a powerful tool for inductively building directed paths in tournaments (complete graphs with all edges directed). Their paper used this method to produce a short proof of Dean's conjecture (see [5) that every tournament has a vertex whose second neighborhood is at least as large as the first. Havet and Thomassé also used a median order to attack Sumner's conjecture (see [19]) that every tournament of order $2 n-2$ contains every oriented tree of order n. They succeeded in proving this conjecture precisely for arborescences (oriented trees where every vertex except the root has indegree one) and within a factor-2 approximation for general oriented trees.

The only property that they used is the so-called feedback property: if $\sigma=\left(v_{1}, \ldots, v_{n}\right)$ is a median order, then for any pair $i<k$, the number of forward edges $\overrightarrow{v_{i} v_{j}}$ with $i<j \leq k$ is at least the number of backward edges $\overleftarrow{v_{i} v_{j}}$ with $i<j \leq k$. This property is easily seen to be true by comparing σ to the linear order $\sigma^{\prime}=\left(v_{1}, v_{2}, \ldots, v_{i-1}, v_{i+1}, v_{i+2}, \ldots, v_{k}, v_{i}, v_{k+1}, v_{k+2}, \ldots, v_{n}\right)$, which was obtained from σ by moving v_{i} to the position between v_{k} and v_{k+1}. As an illustration of the simple power of this property, consider the following well-known result, which we will in fact use later in our proof.

Claim. Every tournament has a directed Hamiltonian path.
Proof. Let $\sigma=\left(v_{1}, \ldots, v_{n}\right)$ be a median order. For each i, the edge $v_{i} v_{i+1}$ is directed in some way because we have a tournament, and so the feedback property applied with $k=i+1$ implies that it is in fact a forward edge $\overrightarrow{v_{i} v_{i+1}}$. Therefore, $\left(v_{1}, \ldots, v_{n}\right)$ is already a directed path, so we are done.

2 Proof of Theorem 1.1

Let us assume for the sake of contradiction that $n \geq 3600 s t \log _{2} t$, but there is no monochromatic copy of S and no rainbow t-edge path. In the past papers on the constrained Ramsey numbers of trees [13, 18, and in this work, the following well-known crude lemma is the only method used to exploit the nonexistence of a monochromatic S. Its proof follows from the observation that every graph with average degree $\geq 2 s$ has an induced subgraph with minimum degree $\geq s$.

Lemma 2.1. Let S be a tree with s edges, and let $G=(V, E)$ be a simple graph, edge-colored with k colors, with no monochromatic subgraph isomorphic to S. Then $|E|<k s|V|$.

The rest of the proof of our main theorem roughly separates into two main steps. First, we find a structured subgraph $G^{\prime} \subset G$ whose order is within a constant factor of $|G|$. We aim to arrive at a contradiction by using G^{\prime} to construct a rainbow t-edge path. The structure of G^{\prime} allows us to direct many of its edges in such a way that certain directed paths are automatically rainbow. In the second step, we use the median order's feedback property to find many directed paths, which we then connect into a single long rainbow path using the structure of G^{\prime}.

2.1 Passing to a directed graph

In this section, we show how to find a nicely structured subset of our original graph, at a cost of a constant factor reduction of the size of our vertex set. We then show how the search for a rainbow path reduces to a search for a particular collection of directed paths.

Lemma 2.2. Let S be a tree with s edges and t be a positive integer. Let G be a complete graph on $n \geq 310$ st vertices whose edges are colored (in any number of colors) in such a way that G has no monochromatic copy of S and no rainbow t-edge path.

Then there exists a set R of "rogue colors", a subset $U \subset V(G)$ with a partition $U=U_{1} \cup \cdots \cup U_{r}$, an association of a distinct color $c_{i} \notin R$ to each U_{i}, and an orientation of some of the edges of the induced subgraph $G[U]$, which satisfy the following properties:
(i) $|U|>\frac{n}{10},|R|<t$, and each $\left|U_{i}\right|<2 s$.
(ii) For any edge between vertices $x \in U_{i}$ and $y \in U_{j}$ with $i \neq j$, if it is directed $\overrightarrow{x y}$, its color is c_{i}, if it is directed $\overrightarrow{y x}$, its color is c_{j}, and if it is undirected, its color is in R.
(iii) For any pair of vertices $x \in U_{i}$ and $y \in U_{j}$ (where i may equal j), there exist at least t vertices $z \notin U$ such that the color of the edge $x z$ is c_{i} and the color of $y z$ is c_{j}.

Proof. Let us say that a vertex v is t-robust if for every set F of t colors, there are at least $n / 5$ edges adjacent to v that are not in any of the colors in F. Let $V_{1} \subset V$ be the set of t-robust vertices. We will need a lower bound on $\left|V_{1}\right|$, but this is just a special case of Lemma A.2 (whose short proof appears in the appendix). Substituting the values $a=n / 5$ and $b=t$ into this lemma gives $\left|V(G) \backslash V_{1}\right| \leq 2(t s+n / 5)<4 n / 5$ and so $\left|V_{1}\right| \geq n / 5$.

Now, let P be a rainbow path of maximal length in G such that at least one of its endpoints is in V_{1}, and let R be the set of colors of the edges of $P .|R|<t$ by the assumption that G contains no rainbow t-edge path. Let B be the set of vertices that have at least $n / 15$ adjacent edges in a color in R. Then G contains at least $|B| n / 30$ edges with colors in R. On the other hand, by applying Lemma 2.1 to the subgraph of G determined by taking only the edges with colors in R, we see that the total number of edges in G with color in R is less than $|R| s n<t s n$, and so $|B|<30$ st.

Let v be an endpoint of P which is in V_{1}. Define the sets U_{i} as follows. Let $\left\{c_{1}, \ldots, c_{r}\right\}$ be the non- R colors that appear on edges adjacent to v. For each such c_{i}, let U_{i} be the set of vertices that are not in B or P, and are adjacent to v via an edge of color c_{i}. Set $U=U_{1} \cup \ldots \cup U_{r}$. We claim that these designations will satisfy the desired properties.

Consider arbitrary vertices $x \in U_{i}$ and $y \in U_{j}$, where i may equal j. Since $n \geq 30 t$, we have $\left|V_{1} \backslash P\right| \geq(2 / 15) n+t$, so $x, y \notin B$ imply that there are at least t choices for $z \in V_{1} \backslash P$ such that both of the edges $x z$ and $y z$ have colors not in R. Each such $x z$ must be in color c_{i}, or else the extension of P by the path $v x z$ would contradict maximality of P, and similarly each $y z$ must be in color c_{j}. Finally, $U \cap V_{1}=\emptyset$, because any $w \in U \cap V_{1}$ would allow us to extend P by the edge $v w$. Therefore, we have property (iii).

For property (ii), let $x \in U_{i}$ and $y \in U_{j}$, with $i \neq j$. By property (iii), there exists some vertex $z \in V_{1} \backslash P$ such that $y z$ is in color c_{j}. Then the color of the edge $x y$ must be in $\left\{c_{i}, c_{j}\right\} \cup R$, or else the extension of P by the path $v x y z$ would contradict its maximality. Therefore, we can leave it undirected if the color is in R, and direct it according to property (ii) otherwise.

It remains to show property (i). We already established that $|R|<t$ and we can obtain the first inequality from the construction of V_{1} as follows. Since $v \in V_{1}$, it is t-robust and so is adjacent to at least $n / 5$ edges in non- R colors. Therefore, using that $n \geq 310$ st we get

$$
|U| \geq n / 5-|B|-|P|>n / 5-30 s t-t \geq n / 10 .
$$

For the last part, assume for the sake of contradiction that $\left|U_{i}\right| \geq 2 s$. Arbitrarily select a subset $U_{i}^{\prime} \subset U_{i}$ of size $2 s$, and consider the subgraph G^{\prime} formed by the edges of color c_{i} among vertices in $U_{i}^{\prime} \cup V_{1}$. By the argument that showed property (iii), every edge between U_{i}^{\prime} and V_{1} has color in $R \cup\left\{c_{i}\right\}$. So, since $U_{i} \cap B=\emptyset$, every $x \in U_{i}^{\prime}$ is adjacent to at least $\left|V_{1}\right|-n / 15 \geq(2 / 3)\left|V_{1}\right|$ vertices in V_{1} via edges of color c_{i}. Therefore, using that $\left|V_{1}\right| / 3 \geq 2 s=\left|U_{i}^{\prime}\right|$, we have

$$
e\left(G^{\prime}\right) \geq\left|U_{i}^{\prime}\right| \cdot(2 / 3)\left|V_{1}\right|=(4 / 3) s\left|V_{1}\right|=s\left(\left|V_{1}\right|+(1 / 3)\left|V_{1}\right|\right) \geq s \cdot v\left(G^{\prime}\right) .
$$

Then Lemma 2.1 implies that G^{\prime} has a copy of tree S, which is monochromatic by construction of G^{\prime}. This contradiction completes the proof of the last part of property (i), and the proof of the lemma.

The partially directed subgraph of Lemma 2.2 allows us to find rainbow paths by looking for certain types of directed paths. For example, if Lemma 2.2 produces $U=U_{1} \cup \ldots \cup U_{m}$, and we have found a directed path $\overrightarrow{v_{1} \ldots v_{t}}$ with each v_{i} from a distinct U_{j}, then it must be rainbow by property (ii) of the construction of U. Unfortunately, the following simple construction of a set with no monochromatic S that satisfies the structure conditions of Lemma 2.2 shows that we cannot hope to obtain our rainbow path by searching for a single (long) directed path: re-index $\left\{U_{i}\right\}$ with ordered pairs as $\left\{U_{i j}\right\}_{i=1, j=1}^{h, t-1}$, let all $\left|U_{i j}\right|=s / 3$, for all $1 \leq i<j \leq h$ direct all edges between any $U_{i, *}$ and $U_{j, *}$ in the direction $U_{i, *} \rightarrow U_{j, *}$, and for all $1 \leq i \leq j<t$ and $1 \leq k \leq h$ color all edges between $U_{k, i}$ and $U_{k, j}$ in color r_{i}, where $R=\left\{r_{1}, \ldots, r_{t-1}\right\}$. Although it is clear that this construction has no directed paths longer than $h=O\left(\frac{|U|}{s t}\right)$, it is also clear that one could build a long rainbow path by combining undirected edges and directed paths. The following lemma makes this precise.

Lemma 2.3. Let $U=U_{1} \cup \ldots \cup U_{m}$ be a subset of $V(G)$ satisfying the structural conditions of Lemma 2.2, and let R be the associated set of rogue colors. Suppose we have a collection of $r<t$ edges $\left\{u_{i} v_{i}\right\}_{i=1}^{r}$ in $G[U]$ whose colors are distinct members of R, and a collection of directed paths $\left\{P_{i}\right\}_{i=0}^{r}$, with P_{i} starting at v_{i} for $i \geq 1$. Then, as long as all of the vertices in $\left\{u_{1}, \ldots, u_{r}\right\} \cup P_{0} \cup \ldots \cup P_{r}$ belong to distinct sets U_{j}, there exists a rainbow path in G that contains all of the paths P_{i} and all of the edges $u_{i} v_{i}$. In short, one can link all of the fragments together into a single rainbow path.

Proof. For each i, let w_{i} be the final vertex in the directed path P_{i}. For a vertex $v \in U$, let $c(v)$ denote the color associated with the set U_{i} that contains v. Since $r<t$, by property (iii) of Lemma 2.2. for each $0 \leq i<r$, there exists a distinct vertex $x_{i} \notin U$ such that the color of the edge $w_{i} x_{i}$ is $c\left(w_{i}\right)$ and the color of the edge $x_{i} u_{i+1}$ is $c\left(u_{i+1}\right)$. These vertices x_{i} together with paths P_{i} form a path P of distinct vertices, which we will now prove is rainbow.

Note that our linking process only adds edges with non-rogue colors. Since we assumed that the $u_{i} v_{i}$ have distinct colors, and the edges of the P_{i} are directed paths (hence with non-rogue colors), it is immediate that P has no duplicate rogue colors. Also note that among all directed edges in $\left\{P_{i}\right\}$, no pair of edges has initial endpoint in the same U_{j} by assumption. Therefore, they all have distinct colors by property (ii) of Lemma 2.2. Furthermore, none of these directed edges originates from any point in any U_{j} that intersects $\left\{u_{1}, \ldots, u_{r}, w_{1}, \ldots, w_{r}\right\}$, so they share no colors with $C^{\prime}=\left\{c\left(u_{1}\right), \ldots, c\left(u_{r}\right), c\left(w_{1}\right), \ldots, c\left(w_{r}\right)\right\}$; finally the colors in C^{\prime} are themselves distinct because of our assumption that all vertices in $\left\{u_{1}, \ldots, u_{r}\right\} \cup P_{0} \cup \ldots \cup P_{r}$ come from distinct U_{j}. This proves that P is a rainbow path.

2.2 Finding directed paths

Now apply Lemma 2.2, and let us focus on $U=U_{1} \cup \ldots \cup U_{m}$, which is of size at least $n / 10 \geq$ $360 s t \log _{2} t$. Let us call the edges which have colors in R "rogue edges." Note that if all edges were directed (i.e., we have a tournament), then the existence of a long directed path follows from the fact that every tournament has a Hamiltonian path. The main issue is the presence of undirected edges. We treat these by observing that each undirected edge must have one of $|R|<t$ rogue colors. Then, we use the machinery of median orders to repeatedly halve the number of rogue colors, at the expense of losing only $O(s t)$ vertices each time. This is roughly the source of the $\log _{2} t$ factor in our final bound.

Now we provide the details to make the above outline rigorous. Applying Lemma 2.1 to the subgraph consisting of all rogue edges, we see that the average rogue degree (number of adjacent rogue edges) in $G[U]$ is at most $2 s|R| \leq 2 s t$. So, we can delete all vertices in U with rogue degree at least $4 s t$ at a cost of reducing $|U|$ by at most half. Let us also delete all edges within each U_{i} for the sake of clarity of presentation. Note that the reduced U still has size at least $180 s t \log _{2} t$. Let σ be a median order for this partially directed graph induced by U. We will use the feedback property to find directed paths (and this is the only property of median orders that we will use).

We wish to apply Lemma 2.3, so let us inductively build a matching of distinct rogue colors, and accumulate a bad set that we call B and which we will maintain and update through the entire proof in this section. Let v_{1} be the first vertex according to σ, and start with $B=U_{\ell}$, where $U_{\ell} \ni v_{1}$. Proceed through the rest of the vertices in the order of σ. For the first stage, stop when we first encounter a vertex not in B that is adjacent to a rogue edge (possibly several) whose other endpoint is also not in B, and call the vertex v_{2}. Arbitrarily select one of those rogue edges adjacent to v_{2}, call it e_{2}, and call its color r_{2}. Since we deleted all edges inside U_{i}, e_{2} links two distinct U_{i} and U_{j}. Add all vertices of U_{i} and U_{j} to B. In general, if we already considered all vertices up to v_{k}, continue along the median order (starting from the vertex immediately after v_{k}) until we encounter a vertex not in B that is adjacent to an edge of a new rogue color which is not in $\left\{r_{2}, \ldots, r_{k}\right\}$, again with other endpoint also not in B. Call that vertex v_{k+1}, the edge e_{k+1}, and its color r_{k+1}. Add to B all the vertices in the two sets U_{i} which contain the endpoints of e_{k+1}. Repeat this procedure until we have gone through all of the vertices in the order. Suppose that this process produces vertices $v_{1}, v_{2}, \ldots, v_{f}$. Then, to simplify the statements of our lemmas, also let $v_{f+1}, v_{f+2}, \ldots v_{2 f}$ refer to the final vertex in the median order. Our goal will be to find directed paths from $\left\{v_{i}\right\}_{i=1}^{f}$, which via Lemma [2.3, will then extend to a rainbow path.

Note that if $|B| \geq 2 s t$, then the number of vertices in $\left\{v_{1}\right\} \cup e_{2} \cup \ldots \cup e_{f}$ is at least t by property (i). Thus, applying Lemma 2.3 with $P_{i}=\left\{v_{i}\right\}$, we can produce a rainbow path with at least t edges. Therefore, we may assume for the rest of this proof that $|B|<2 s t$. Also observe that this argument implies that $f \leq t / 2$.

The following technical lemma will help us to build the directed paths $\left\{P_{i}\right\}$.
Lemma 2.4. Let v be a vertex in U, and let B be a set of size at most 2 st. Then, among the 8 st
vertices immediately following v in the median order, there is always some $w \notin B$ such that there is a directed edge from v to w.

Proof. First, note that since we deleted all vertices with rogue degree at least $4 s t$, more than $4 s t$ of the $8 s t$ vertices immediately after v are connected to v by a directed edge. Since we have a median order, the feedback property implies that only at most half of those edges can be directed back towards v; therefore, there are more than $2 s t$ vertices there that have a directed edge from v. Since $|B|<2 s t$, at least one of these vertices will serve as our w.

Consider the vertices $v_{1}, v_{2}, v_{4}, \ldots, v_{2\left\lfloor\log _{2} 2 f\right\rfloor}$. Since we already established that $f \leq t / 2$, this is a list of at most $t+1$ vertices, the first and last of which are also the first and last vertices in the median order. Since U still has at least $180 s t \log _{2} t$ vertices, the pigeonhole principle implies that there must be some pair of vertices $\left\{v_{\ell}, v_{2 \ell}\right\}$ in that list such that the number of vertices between them in the median order is at least $180 s t-2$. Thus, the following lemma will provide the desired contradiction.

Lemma 2.5. If there is any $1 \leq \ell \leq f$ such that there are at least 176 st vertices between v_{ℓ} and $v_{2 \ell}$ in the median order, then G has a rainbow t-edge path.

Proof. Suppose we have an ℓ that satisfies the conditions of the lemma. Let S_{1} be the first $8 s t$ vertices immediately following v_{ℓ} in the median order, and let S_{2} be the next 168 st vertices in the median order.

Let us first build for every $i \leq \ell$ a directed path P_{i} from v_{i} to S_{1} by repeatedly applying Lemma 2.4. Start with each such $P_{i}=\left\{v_{i}\right\}$, and as long as one of those P_{i} does not reach S_{1}, apply the lemma to extend it forward to a new vertex w, and add the set U_{k} containing w to the set of bad vertices B. If at any stage we have $|B| \geq 2 s t$, we can immediately apply Lemma 2.3 to find a rainbow path with at least t edges, just as in the argument directly preceding the statement of Lemma 2.4, So, suppose that does not happen, and let $\left\{w_{i}\right\}_{1}^{\ell} \subset S_{1}$ be the endpoints of these paths. We will show that we can further extend these paths into S_{2} by a total amount of at least t, in such a way that we never use two vertices from the same set U_{k}. This will complete our proof because Lemma 2.3 can link them into a rainbow path with at least t edges.

Recall that all of the sets U_{i} had size at most $2 s$. Therefore, we can partition S_{2} into disjoint sets U_{j}^{\prime} with $2 s \leq\left|U_{j}^{\prime}\right| \leq 4 s$, where each U_{j}^{\prime} is obtained by taking a union of some sets $U_{i} \cap S_{2}$. We will design our path extension process such that it uses at most one vertex from each U_{j}^{\prime}, and hence it will also intersect each U_{k} at most once. We use the probabilistic method to accomplish this.

Perform the following randomized algorithm, which will build a collection of sets $\left\{T_{i}\right\}_{i=1}^{\ell}$. First, activate each U_{j}^{\prime} with probability $1 / 8$. Next, for each activated U_{j}^{\prime}, select one of its vertices uniformly at random, and assign it to one of the T_{i}, again uniformly at random. For each $i \leq \ell$, let T_{i}^{\prime} be obtained from T_{i} by deleting every vertex in B, and every vertex that is not pointed to by a directed edge from v_{i}. Finally, let $T_{i}^{\prime \prime}$ be derived from T_{i}^{\prime} by (arbitrarily) deleting one vertex from every rogue
edge with both endpoints in T_{i}^{\prime}. Observe that now each $T_{i}^{\prime \prime}$ spans a tournament, so as we saw at the end of the introduction, it contains a directed Hamiltonian path P_{i}^{\prime}. Since w_{i} has a directed edge to every vertex in $T_{i}^{\prime \prime}$, this P_{i}^{\prime} can be used to extend P_{i}. Therefore, if we can construct sets $T_{i}^{\prime \prime}$ such that $\left|T_{1}^{\prime \prime}\right|+\cdots+\left|T_{\ell}^{\prime \prime}\right| \geq t$, we will be done.

Fix an $i \leq \ell$, and let us compute $\mathbb{E}\left[\left|T_{i}^{\prime}\right|\right]$. By the feedback property of a median order, the number of (backward) directed edges from S_{2} to $\left\{w_{i}\right\}$ is at most half of the number of directed edges between w_{i} and the vertices in $S_{1} \cup S_{2}$ which follow it in the median order. Since the latter number is bounded by $\left|S_{1} \cup S_{2}\right|=176 s t$, the number of directed edges from S_{2} to w_{i} is at most $88 s t$. Also, the number of rogue edges between S_{2} and $\left\{w_{i}\right\}$ is at most $4 s t$ because by construction all rogue degrees are bounded by $4 s t$. Therefore, the number of (forward) directed edges from w_{i} to S_{2} is at least $168 s t-88 s t-4 s t=76 s t$. Since we will delete up to $2 s t$ vertices which were from B, the number of directed edges from w_{i} to vertices in $S_{2} \backslash B$ is at least $74 s t$. Suppose $\overrightarrow{w_{i}} \vec{x}$ is one of these directed edges, and suppose that $x \in U_{k}^{\prime}$. The probability that x is selected for T_{i} is precisely $\frac{1}{8 \cdot \ell \cdot l U_{k}^{\prime}} \geq \frac{1}{8 \cdot \cdot \cdot 4 s}$, and by construction of x, we know that if it is selected for T_{i}, it will also remain in T_{i}^{\prime}. Therefore, by linearity of expectation,

$$
\mathbb{E}\left[\left|T_{i}^{\prime}\right|\right] \geq 74 s t \cdot \frac{1}{8 \cdot \ell \cdot 4 s}=\frac{37}{16} \frac{t}{\ell}
$$

To bound $\mathbb{E}\left[\left|T_{i}^{\prime}\right|-\left|T_{i}^{\prime \prime}\right|\right]$, observe that the number of rogue colors in the graph spanned by $S_{2} \backslash B$ is less than 2ℓ, by construction of the sequence $\left\{v_{i}\right\}$. Therefore, Lemma 2.1 implies that there are less than $2 \ell \cdot s \cdot 168 s t$ rogue edges spanned by $S_{2} \backslash B$. Consider one of these rogue edges $x y$. If we select both of its endpoints for T_{i}, it will contribute at most 1 (possibly 0) to $\left|T_{i}^{\prime}\right|-\left|T_{i}^{\prime \prime}\right|$; otherwise it will contribute 0 . Above, we already explained that the probability that the vertex $x \in U_{j}^{\prime}$ is selected for T_{i} is precisely $\frac{1}{8 \cdot \ell \cdot\left|U_{k}^{\prime}\right|} \leq \frac{1}{8 \cdot \ell \cdot e_{s}}$. If x and y come from distinct U_{j}^{\prime}, then the probabilities that they were both selected for T_{i} are independent, and otherwise it is impossible that they both were selected. Hence

$$
\mathbb{E}\left[\left|T_{i}^{\prime}\right|-\left|T_{i}^{\prime \prime}\right|\right] \leq 2 \ell \cdot s \cdot 168 s t \cdot\left(\frac{1}{8 \cdot \ell \cdot 2 s}\right)^{2}=\frac{21}{16} \frac{t}{\ell}
$$

Therefore, by linearity of expectation, $\mathbb{E}\left[\left|T_{i}^{\prime \prime}\right|\right] \geq t / \ell$, and thus $\mathbb{E}\left[\left|T_{1}^{\prime \prime}\right|+\cdots+\left|T_{\ell}^{\prime \prime}\right|\right] \geq t$. This implies that there exists an instance of our random procedure for which $\left|T_{1}^{\prime \prime}\right|+\cdots+\left|T_{\ell}^{\prime \prime}\right| \geq t$, so we are done.

3 Concluding remarks

In our proof, we apply Lemma 2.2 to produce a structured set $U=U_{1} \cup \ldots \cup U_{m}$ of size $\Omega(s t \log t)$. The argument in Section 2.2 is quite wasteful because, in particular, Lemma 2.5 attempts to build a collection of directed paths with total length $\geq t$, but essentially using only the vertices in the median order between v_{ℓ} and $v_{2 \ell}$. This dissection of the vertex set into dyadic chunks incurs the logarithmic factor in our bound. We believe that with a better argument, one might be able to complete the proof using a structured set $U=U_{1} \cup \ldots \cup U_{m}$ of size only $\Omega(s t)$. If this were indeed possible, then

Lemma 2.2 would immediately imply that $f\left(S, P_{t}\right)=O(s t)$, because one loses only a constant factor in passing from $V(G)$ to U.

It would be very interesting to obtain a better bound on $f(S, T)$ for general trees T. Our approach, based on the median order, seems particularly promising here since it might be combined with the following result of Havet and Thomassé [12] on Sumner's conjecture: every tournament of order $4 n$ contains every directed tree of order n as a subgraph.

A Appendix (by Oleg Pikhurko and Benny Sudakov)

Consider the following variant of the constrained Ramsey number. Let $g(S, T)$ be the minimum integer n such that every coloring of the edges of the complete graph K_{n} contains either a monochromatic copy of S or a properly colored copy of T. (In contrast, recall that the definition of $f(S, T)$ requires T to be rainbow). Similarly as for constrained Ramsey numbers, it is easy to see that $g(S, T)$ exists (i.e., it is finite) if and only if S is a star or T is acyclic. Although there has been little success bounding $f(S, T)$ by $O(s t)$, it turns out that we can prove a quadratic upper bound for $g(S, T)$, which is of course no larger than $f(S, T)$.

Theorem A.1. Let S and T be two trees with s and t edges, respectively. Then $g(S, T) \leq 2 s t+t^{2}$.
The following construction shows that the upper bound is tight up to a constant factor. Let S be a path with $s+1$ edges and T be a star with $t+1$ edges. Then let V_{1}, \ldots, V_{t} be disjoint sets of size $\lfloor s / 2\rfloor$ each. Color all edges inside V_{i} and from V_{i} to V_{j} with $j>i$ by color i. This produces a graph on $t\lfloor s / 2\rfloor$ vertices with no monochromatic S and no properly colored T.

To prove Theorem A.1, we first need the following lemma.
Lemma A.2. Consider an edge coloring of the complete graph which contains no monochromatic copy of a fixed tree S with s edges. Let U be the set of vertices such that for every $u \in U$, one can delete at most a edges from the graph such that the remaining edges which connect u to the rest of the graph have at most b colors. Then $|U| \leq 2(b s+a)$.

Proof. Focus on the subgraph induced by U. Now we can delete at most a edges at every vertex so that the remaining edges at that vertex have at most b colors. Let G be the graph obtained after all of these deletions. If $m=|U|$, then the number of edges of G is at least $\binom{m}{2}-a m$. For every remaining color c, let G_{c} be the subgraph of all edges of color c. By Lemma 2.1, we have $e\left(G_{c}\right)<s \cdot v\left(G_{c}\right)$ for each c. Also, since every vertex of G is incident with edges of at most b colors, we have that $\sum_{c} v\left(G_{c}\right) \leq b m$. Combining all these inequalities we have

$$
\binom{m}{2}-a m \leq \sum_{c} e\left(G_{c}\right)<\sum_{c} s \cdot v\left(G_{c}\right) \leq s b m .
$$

This implies that $m<2(b s+a)+1$.

Proof of Theorem A.1. The proof is by induction on t. The statement is trivial for $t=1$ because any edge will give us a properly colored T. Now suppose that T is a tree with $t>1$ edges, and we have a coloring of $G=K_{2 s t+t^{2}}$ with no monochromatic copy of S. It suffices to show that we can find a properly colored copy of T. Select an edge (u, v) of T such that all neighbors of v except u are leaves v_{1}, \ldots, v_{k}. Delete v_{1}, \ldots, v_{k} from T and call the new tree T_{1}. The number of edges in T_{1} is $t_{1}=t-k$.

Let U be the set of vertices of G such that for every $u \in U$ one can delete at most t_{1} edges from G such that the edges which connect u to the rest of the graph have at most k colors. By the previous lemma $|U| \leq 2\left(k s+t_{1}\right)$, and let $W=V(G) \backslash U$. Then we have that

$$
|W|=2 s t+t^{2}-|U| \geq 2 s t_{1}+t^{2}-2 t_{1}>2 s t_{1}+t_{1}^{2} .
$$

Therefore by induction we can find a properly colored copy of the tree T_{1} inside W. Let u^{\prime}, v^{\prime} be the images in this copy of the vertices of u, v of T_{1}. By definition of W, the vertex v^{\prime} has edges of at least $k+1$ colors connecting it with vertices outside this copy of T_{1}. At least k of these colors are different from that of the edge $\left(u^{\prime}, v^{\prime}\right)$, so we can extend the tree to a properly colored copy of T.

Using a more careful analysis in the above proof, which we omit, one can slightly improve the term t^{2} in Theorem A. 1

References

[1] N. Alon, T. Jiang, Z. Miller, and D. Pritikin, Properly colored subgraphs and rainbow subgraphs in edge-colorings with local constraints, Random Structures and Algorithms 23 (2003), 409-433.
[2] P. Balister, A Gyárfás, Lehel, and Schelp, Mono-multi bipartite Ramsey numbers, designs, and matrices, Journal of Combinatorial Theory, Series A 113 (2006), 101-112.
[3] A. Bialostocki and W. Voxman, On monochromatic-rainbow generalizations of two Ramsey type theorems, Ars Combinatoria 68 (2003), 131-142.
[4] G. Chen, R. Schelp, and B. Wei, Monochromatic-rainbow Ramsey numbers, unpublished work in 14th Cumberland Conference Abstracts (2001).
[5] N. Dean and B. Latka, Squaring the tournament-an open problem, Congressus Numerantium 109 (1995), 73-80.
[6] P. Erdős and R. Rado, A combinatorial theorem, J. London Math. Soc. 25 (1950), 249-255.
[7] L. Eroh, Constrained Ramsey numbers of matchings, J. Combin. Math. Combin. Comput. 51 (2004), 175-190.
[8] L. Eroh, Rainbow Ramsey numbers of stars and matchings, Bull. Inst. Combin. Appl. 40 (2004), 91-99.
[9] A. Gyárfás, J. Lehel, J. Nešetřil, V. Rödl, R. Schelp, and Zs. Tuza, Local k-colorings of graphs and hypergraphs, Journal of Combinatorial Theory, Series B 43 (1987), 127-139.
[10] A. Gyárfás, J. Lehel, and R. Schelp, Finding a monochromatic subgraph or a rainbow path, Journal of Graph Theory 54 (2007), 1-12.
[11] A. Gyárfás, J. Lehel, R. Schelp, and Zs. Tuza, Ramsey numbers for local colorings, Graphs Combinatorics 3 (1987), 267-277.
[12] F. Havet and S. Thomassé, Median orders of tournaments: a tool for the second neighborhood problem and Sumner's conjecture, J. Graph Theory, 35 (2000), 244-256.
[13] R. Jamison, T. Jiang, and A. C. H. Ling, Constrained Ramsey numbers of graphs, Journal of Graph Theory 42 (2003), 1-16.
[14] R. Jamison and D. West, On pattern Ramsey numbers of graphs, Graphs and Combinatorics 20 (2004), 333-339.
[15] R. Schelp, Local and mean k-Ramsey numbers for complete graphs, Journal of Graph Theory 24 (1997), 201-203.
[16] M. Truszczyński and Zs. Tuza, Linear upper bounds for local Ramsey numbers, Graphs and Combinatorics 3 (1987), 67-73.
[17] A. Thomason and P. Wagner, Complete graphs with no rainbow path, Journal of Graph Theory 54 (2007), 261-266.
[18] P. Wagner, An upper bound for constrained Ramsey numbers, Combinatorics, Probability and Computing 15 (2006), 619-626.
[19] N. Wormald, Subtrees of large tournaments, in Combinatorial Mathematics X, volume 1036 of Springer Lecture Notes in Mathematics (1983), 417-419.

[^0]: * Department of Mathematics, Princeton University, Princeton, NJ 08544. E-mail: ploh@math.princeton.edu. Research supported in part by a Fannie and John Hertz Foundation Fellowship, an NSF Graduate Research Fellowship, and a Princeton Centennial Fellowship.
 ${ }^{\dagger}$ Department of Mathematics, UCLA, Los Angeles, CA 90095. Email: bsudakov@math.ucla.edu. Research supported in part by NSF CAREER award DMS-0546523, NSF grant DMS-0355497, USA-Israeli BSF grant, and by an Alfred P. Sloan fellowship.

