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Constrained Ramsey Numbers

Po-Shen Loh ∗ Benny Sudakov †

Abstract

For two graphs S and T , the constrained Ramsey number f(S, T ) is the minimum n such

that every edge coloring of the complete graph on n vertices (with any number of colors) has

a monochromatic subgraph isomorphic to S or a rainbow subgraph isomorphic to T . Here,

a subgraph is said to be rainbow if all of its edges have different colors. It is an immediate

consequence of the Erdős-Rado Canonical Ramsey Theorem that f(S, T ) exists if and only if S

is a star or T is acyclic. Much work has been done to determine the rate of growth of f(S, T )

for various types of parameters. When S and T are both trees having s and t edges respectively,

Jamison, Jiang, and Ling showed that f(S, T ) ≤ O(st2) and conjectured that it is always at most

O(st). They also mentioned that one of the most interesting open special cases is when T is a

path. In this paper, we study this case and show that f(S, Pt) = O(st log t), which differs only

by a logarithmic factor from the conjecture. This substantially improves the previous bounds for

most values of s and t.

1 Introduction

The Erdős-Rado Canonical Ramsey Theorem [6] guarantees that for any m, there is some n such that

any edge coloring of the complete graph on the vertex set {1, . . . , n}, with arbitrarily many colors,

has a complete subgraph of size m whose coloring is one of the following three types: monochromatic,

rainbow, or lexical. Here, a subgraph is rainbow if all edges receive distinct colors, and it is lexical

when there is a total order of its vertices such that two edges have the same color if and only if they

share the same larger endpoint.

Since the the first two types of colorings are somewhat more natural, it is interesting to study

the cases when we can guarantee the existence of either monochromatic or rainbow subgraphs. This

motivates the notion of constrained Ramsey number f(S, T ), which is defined to be the minimum

n such that every edge coloring of the complete graph on n vertices (with any number of colors)
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has a monochromatic subgraph isomorphic to S or a rainbow subgraph isomorphic to T . It is an

immediate consequence of the Canonical Ramsey Theorem that this number exists if and only if S

is a star or T is acyclic, because stars are the only graphs that admit a simultaneously lexical and

monochromatic coloring, and forests are the only graphs that admit a simultaneously lexical and

rainbow coloring.

The constrained Ramsey number has been studied by many researchers [1, 3, 4, 7, 8, 10, 13, 14, 18],

and the bipartite case in [2]. In the special case when H = K1,k+1 is a star with k+1 edges, colorings

with no rainbow H have the property that every vertex is incident to edges of at most k different

colors, and such colorings are called k-local. Hence f(S,K1,k+1) corresponds precisely to the local

k-Ramsey numbers, rk
loc

(S), which were introduced and studied by Gyárfás, Lehel, Schelp, and Tuza

in [11]. These numbers were shown to be within a constant factor (depending only on k) of the

classical k-colored Ramsey numbers r(S; k), by Truszczyński and Tuza [16].

When S and T are both trees having s and t edges respectively, Jamison, Jiang, and Ling [13]

conjectured that f(S, T ) = O(st), and provided a construction which showed that the conjecture, if

true, is best possible up to a multiplicative constant. Here is a variant of such construction, which we

present for the sake of completeness, which shows that in general the upper bound on f(S, T ) cannot

be brought below (1+o(1))st. For a prime power t let Ft be the finite field with t elements. Consider

the complete graph with vertex set equal to the affine plane Ft×Ft, and color each edge based on the

slope of the line between the corresponding vertices in the affine plane. The number of different slopes

(hence colors) is t+1, so there is no rainbow graph with t+2 edges. Also, monochromatic connected

components are cliques of order t, corresponding to affine lines. Therefore if Ω(log t) < s < t, we

can take a random subset of the construction (taking each vertex independently with probability

s/t) to obtain a coloring of the complete graph of order (1 + o(1))st with t + 1 colors in which all

monochromatic connected components have size at most (1 + o(1))s.

Although Jamison, Jiang, and Ling were unable to prove their conjecture, they showed that

f(S, T ) = O(st · dT ) ≤ O(st2), where dT is the diameter of T . Since this bound clearly gets weaker

as the diameter of T grows, they asked whether a pair of paths maximizes f(S, T ), over all trees

with s and t edges, respectively. This generated much interest in the special case when T is a path

Pt. In [18], Wagner proved that f(S,Pt) ≤ O(s2t). This bound grows linearly in t when s is fixed

but still has order of magnitude t3 for trees of similar size. Although Gyárfás, Lehel, and Schelp [10]

recently showed that for small t (less than 6), paths are not the extremal example, they remain one

of the most interesting cases of the constrained Ramsey problem.

In this paper we prove the following theorem which agrees with the conjecture, up to a logarithmic

factor and the fact that T is a path. It significantly improves the previous bounds for most values of

s and t, and in particular gives the first sub-cubic bound for the case when the monochromatic tree

and rainbow path are of comparable size.

Theorem 1.1. Let S be any tree with s edges, and let t be a positive integer. Then, for any

n ≥ 3600st log2 t, every coloring of the edges of the complete graph Kn (with any number of colors)

2



contains a monochromatic copy of S or a rainbow t-edge path.

This supports the conjectured upper bound of O(st) for the constrained Ramsey number of a

pair of trees. With Oleg Pikhurko, the second author obtained another result which provides further

evidence for the conjecture. This result studies a natural relaxation of the above problem, in which

one wants to find either a monochromatic copy of a tree S or a properly colored copy of a tree T . It

appears that in this case the logarithmic factor can be removed, giving an O(st) upper bound. We

view this result as complementary to our main theorem, and therefore have included its short proof

in the appendix to our paper.

We close this section by comparing our approach to Wagner’s, as the two proofs share some

similarities. This will also lead us to introduce one of the the main tools that we will use later.

Both proofs find a structured subgraph G′ ⊂ G in which one may direct some edges in such a way

that directed paths correspond to rainbow paths. Wagner’s approach imposes more structure on

G′, which simplifies the task of finding directed paths, but this comes at the cost of substantially

reducing |G′|. In particular, his |G′| is s times smaller than |G|, which contributes a factor of s to

his ultimate bound O(s2t). We instead construct a subgraph with weaker properties, but of order

which is a constant fraction of |G| (hence saving a factor of s in the bound). This complicates the

problem of finding the appropriate directed paths, which we overcome by using the following notion

of median order :

Definition. Let G be a graph, some of whose edges are directed. Given a linear ordering σ =

(v1, . . . , vn) of the vertex set, a directed edge −−→vivj is said to be forward if i < j, and backward if

i > j. If σ maximizes the number of forward edges, it is called a median order.

Median orders were originally studied for their own sake; for example, finding a median order for

a general digraph is known to be NP-hard. More recently, Havet and Thomassé [12] discovered that

they are a powerful tool for inductively building directed paths in tournaments (complete graphs

with all edges directed). Their paper used this method to produce a short proof of Dean’s conjecture

(see [5]) that every tournament has a vertex whose second neighborhood is at least as large as the

first. Havet and Thomassé also used a median order to attack Sumner’s conjecture (see [19]) that

every tournament of order 2n− 2 contains every oriented tree of order n. They succeeded in proving

this conjecture precisely for arborescences (oriented trees where every vertex except the root has

indegree one) and within a factor-2 approximation for general oriented trees.

The only property that they used is the so-called feedback property : if σ = (v1, . . . , vn) is a median

order, then for any pair i < k, the number of forward edges −−→vivj with i < j ≤ k is at least the number

of backward edges ←−−vivj with i < j ≤ k. This property is easily seen to be true by comparing σ to the

linear order σ′ = (v1, v2, . . . , vi−1, vi+1, vi+2, . . . , vk, vi, vk+1, vk+2, . . . , vn), which was obtained from

σ by moving vi to the position between vk and vk+1. As an illustration of the simple power of this

property, consider the following well-known result, which we will in fact use later in our proof.
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Claim. Every tournament has a directed Hamiltonian path.

Proof. Let σ = (v1, . . . , vn) be a median order. For each i, the edge vivi+1 is directed in some way

because we have a tournament, and so the feedback property applied with k = i+ 1 implies that it

is in fact a forward edge −−−→vivi+1. Therefore, (v1, . . . , vn) is already a directed path, so we are done. �

2 Proof of Theorem 1.1

Let us assume for the sake of contradiction that n ≥ 3600st log2 t, but there is no monochromatic

copy of S and no rainbow t-edge path. In the past papers on the constrained Ramsey numbers of

trees [13, 18], and in this work, the following well-known crude lemma is the only method used to

exploit the nonexistence of a monochromatic S. Its proof follows from the observation that every

graph with average degree ≥ 2s has an induced subgraph with minimum degree ≥ s.

Lemma 2.1. Let S be a tree with s edges, and let G = (V,E) be a simple graph, edge-colored with

k colors, with no monochromatic subgraph isomorphic to S. Then |E| < ks|V |.

The rest of the proof of our main theorem roughly separates into two main steps. First, we find

a structured subgraph G′ ⊂ G whose order is within a constant factor of |G|. We aim to arrive at

a contradiction by using G′ to construct a rainbow t-edge path. The structure of G′ allows us to

direct many of its edges in such a way that certain directed paths are automatically rainbow. In

the second step, we use the median order’s feedback property to find many directed paths, which we

then connect into a single long rainbow path using the structure of G′.

2.1 Passing to a directed graph

In this section, we show how to find a nicely structured subset of our original graph, at a cost of a

constant factor reduction of the size of our vertex set. We then show how the search for a rainbow

path reduces to a search for a particular collection of directed paths.

Lemma 2.2. Let S be a tree with s edges and t be a positive integer. Let G be a complete graph on

n ≥ 310st vertices whose edges are colored (in any number of colors) in such a way that G has no

monochromatic copy of S and no rainbow t-edge path.

Then there exists a set R of “rogue colors”, a subset U ⊂ V (G) with a partition U = U1∪· · ·∪Ur,

an association of a distinct color ci 6∈ R to each Ui, and an orientation of some of the edges of the

induced subgraph G[U ], which satisfy the following properties:

(i) |U | > n
10
, |R| < t, and each |Ui| < 2s.

(ii) For any edge between vertices x ∈ Ui and y ∈ Uj with i 6= j, if it is directed −→xy, its color is ci,

if it is directed −→yx, its color is cj , and if it is undirected, its color is in R.
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(iii) For any pair of vertices x ∈ Ui and y ∈ Uj (where i may equal j), there exist at least t vertices

z 6∈ U such that the color of the edge xz is ci and the color of yz is cj .

Proof. Let us say that a vertex v is t-robust if for every set F of t colors, there are at least n/5

edges adjacent to v that are not in any of the colors in F . Let V1 ⊂ V be the set of t-robust vertices.

We will need a lower bound on |V1|, but this is just a special case of Lemma A.2 (whose short

proof appears in the appendix). Substituting the values a = n/5 and b = t into this lemma gives

|V (G) \ V1| ≤ 2(ts + n/5) < 4n/5 and so |V1| ≥ n/5.

Now, let P be a rainbow path of maximal length in G such that at least one of its endpoints is

in V1, and let R be the set of colors of the edges of P . |R| < t by the assumption that G contains no

rainbow t-edge path. Let B be the set of vertices that have at least n/15 adjacent edges in a color

in R. Then G contains at least |B|n/30 edges with colors in R. On the other hand, by applying

Lemma 2.1 to the subgraph of G determined by taking only the edges with colors in R, we see that

the total number of edges in G with color in R is less than |R|sn < tsn, and so |B| < 30st.

Let v be an endpoint of P which is in V1. Define the sets Ui as follows. Let {c1, . . . , cr} be the

non-R colors that appear on edges adjacent to v. For each such ci, let Ui be the set of vertices that

are not in B or P , and are adjacent to v via an edge of color ci. Set U = U1 ∪ . . . ∪ Ur. We claim

that these designations will satisfy the desired properties.

Consider arbitrary vertices x ∈ Ui and y ∈ Uj , where i may equal j. Since n ≥ 30t, we have

|V1 \P | ≥ (2/15)n+ t, so x, y 6∈ B imply that there are at least t choices for z ∈ V1 \P such that both

of the edges xz and yz have colors not in R. Each such xz must be in color ci, or else the extension

of P by the path vxz would contradict maximality of P , and similarly each yz must be in color cj .

Finally, U ∩ V1 = ∅, because any w ∈ U ∩ V1 would allow us to extend P by the edge vw. Therefore,

we have property (iii).

For property (ii), let x ∈ Ui and y ∈ Uj , with i 6= j. By property (iii), there exists some vertex

z ∈ V1 \ P such that yz is in color cj . Then the color of the edge xy must be in {ci, cj} ∪R, or else

the extension of P by the path vxyz would contradict its maximality. Therefore, we can leave it

undirected if the color is in R, and direct it according to property (ii) otherwise.

It remains to show property (i). We already established that |R| < t and we can obtain the first

inequality from the construction of V1 as follows. Since v ∈ V1, it is t-robust and so is adjacent to at

least n/5 edges in non-R colors. Therefore, using that n ≥ 310st we get

|U | ≥ n/5− |B| − |P | > n/5− 30st− t ≥ n/10.

For the last part, assume for the sake of contradiction that |Ui| ≥ 2s. Arbitrarily select a subset

U ′
i ⊂ Ui of size 2s, and consider the subgraph G′ formed by the edges of color ci among vertices in

U ′
i ∪ V1. By the argument that showed property (iii), every edge between U ′

i and V1 has color in

R ∪ {ci}. So, since Ui ∩B = ∅, every x ∈ U ′
i is adjacent to at least |V1| − n/15 ≥ (2/3)|V1| vertices

in V1 via edges of color ci. Therefore, using that |V1|/3 ≥ 2s = |U ′
i |, we have

e(G′) ≥ |U ′
i | · (2/3)|V1| = (4/3)s|V1| = s(|V1|+ (1/3)|V1|) ≥ s · v(G′).
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Then Lemma 2.1 implies that G′ has a copy of tree S, which is monochromatic by construction of G′.

This contradiction completes the proof of the last part of property (i), and the proof of the lemma.

�

The partially directed subgraph of Lemma 2.2 allows us to find rainbow paths by looking for

certain types of directed paths. For example, if Lemma 2.2 produces U = U1 ∪ . . . ∪ Um, and we

have found a directed path −−−−−→v1 . . . vt with each vi from a distinct Uj, then it must be rainbow by

property (ii) of the construction of U . Unfortunately, the following simple construction of a set with

no monochromatic S that satisfies the structure conditions of Lemma 2.2 shows that we cannot hope

to obtain our rainbow path by searching for a single (long) directed path: re-index {Ui} with ordered

pairs as {Uij}
h,t−1

i=1,j=1
, let all |Uij | = s/3, for all 1 ≤ i < j ≤ h direct all edges between any Ui,∗ and

Uj,∗ in the direction Ui,∗ → Uj,∗, and for all 1 ≤ i ≤ j < t and 1 ≤ k ≤ h color all edges between

Uk,i and Uk,j in color ri, where R = {r1, . . . , rt−1}. Although it is clear that this construction has no

directed paths longer than h = O
( |U |

st

)

, it is also clear that one could build a long rainbow path by

combining undirected edges and directed paths. The following lemma makes this precise.

Lemma 2.3. Let U = U1∪. . .∪Um be a subset of V (G) satisfying the structural conditions of Lemma

2.2, and let R be the associated set of rogue colors. Suppose we have a collection of r < t edges

{uivi}
r
i=1 in G[U ] whose colors are distinct members of R, and a collection of directed paths {Pi}

r
i=0,

with Pi starting at vi for i ≥ 1. Then, as long as all of the vertices in {u1, . . . , ur} ∪ P0 ∪ . . . ∪ Pr

belong to distinct sets Uj , there exists a rainbow path in G that contains all of the paths Pi and all

of the edges uivi. In short, one can link all of the fragments together into a single rainbow path.

Proof. For each i, let wi be the final vertex in the directed path Pi. For a vertex v ∈ U , let c(v)

denote the color associated with the set Ui that contains v. Since r < t, by property (iii) of Lemma

2.2, for each 0 ≤ i < r, there exists a distinct vertex xi 6∈ U such that the color of the edge wixi is

c(wi) and the color of the edge xiui+1 is c(ui+1). These vertices xi together with paths Pi form a

path P of distinct vertices, which we will now prove is rainbow.

Note that our linking process only adds edges with non-rogue colors. Since we assumed that

the uivi have distinct colors, and the edges of the Pi are directed paths (hence with non-rogue

colors), it is immediate that P has no duplicate rogue colors. Also note that among all directed

edges in {Pi}, no pair of edges has initial endpoint in the same Uj by assumption. Therefore, they

all have distinct colors by property (ii) of Lemma 2.2. Furthermore, none of these directed edges

originates from any point in any Uj that intersects {u1, . . . , ur, w1, . . . , wr}, so they share no colors

with C ′ = {c(u1), . . . , c(ur), c(w1), . . . , c(wr)}; finally the colors in C ′ are themselves distinct because

of our assumption that all vertices in {u1, . . . , ur}∪P0 ∪ . . .∪Pr come from distinct Uj . This proves

that P is a rainbow path. �
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2.2 Finding directed paths

Now apply Lemma 2.2, and let us focus on U = U1 ∪ . . . ∪ Um, which is of size at least n/10 ≥

360st log2 t. Let us call the edges which have colors in R “rogue edges.” Note that if all edges were

directed (i.e., we have a tournament), then the existence of a long directed path follows from the

fact that every tournament has a Hamiltonian path. The main issue is the presence of undirected

edges. We treat these by observing that each undirected edge must have one of |R| < t rogue colors.

Then, we use the machinery of median orders to repeatedly halve the number of rogue colors, at the

expense of losing only O(st) vertices each time. This is roughly the source of the log2 t factor in our

final bound.

Now we provide the details to make the above outline rigorous. Applying Lemma 2.1 to the

subgraph consisting of all rogue edges, we see that the average rogue degree (number of adjacent

rogue edges) in G[U ] is at most 2s|R| ≤ 2st. So, we can delete all vertices in U with rogue degree at

least 4st at a cost of reducing |U | by at most half. Let us also delete all edges within each Ui for the

sake of clarity of presentation. Note that the reduced U still has size at least 180st log2 t. Let σ be

a median order for this partially directed graph induced by U . We will use the feedback property to

find directed paths (and this is the only property of median orders that we will use).

We wish to apply Lemma 2.3, so let us inductively build a matching of distinct rogue colors, and

accumulate a bad set that we call B and which we will maintain and update through the entire proof

in this section. Let v1 be the first vertex according to σ, and start with B = Uℓ, where Uℓ ∋ v1.

Proceed through the rest of the vertices in the order of σ. For the first stage, stop when we first

encounter a vertex not in B that is adjacent to a rogue edge (possibly several) whose other endpoint

is also not in B, and call the vertex v2. Arbitrarily select one of those rogue edges adjacent to v2,

call it e2, and call its color r2. Since we deleted all edges inside Ui, e2 links two distinct Ui and Uj .

Add all vertices of Ui and Uj to B. In general, if we already considered all vertices up to vk, continue

along the median order (starting from the vertex immediately after vk) until we encounter a vertex

not in B that is adjacent to an edge of a new rogue color which is not in {r2, . . . , rk}, again with

other endpoint also not in B. Call that vertex vk+1, the edge ek+1, and its color rk+1. Add to B

all the vertices in the two sets Ui which contain the endpoints of ek+1. Repeat this procedure until

we have gone through all of the vertices in the order. Suppose that this process produces vertices

v1, v2, . . . , vf . Then, to simplify the statements of our lemmas, also let vf+1, vf+2, . . . v2f refer to

the final vertex in the median order. Our goal will be to find directed paths from {vi}
f
i=1

, which via

Lemma 2.3, will then extend to a rainbow path.

Note that if |B| ≥ 2st, then the number of vertices in {v1}∪ e2 ∪ . . .∪ ef is at least t by property

(i). Thus, applying Lemma 2.3 with Pi = {vi}, we can produce a rainbow path with at least t edges.

Therefore, we may assume for the rest of this proof that |B| < 2st. Also observe that this argument

implies that f ≤ t/2.

The following technical lemma will help us to build the directed paths {Pi}.

Lemma 2.4. Let v be a vertex in U , and let B be a set of size at most 2st. Then, among the 8st
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vertices immediately following v in the median order, there is always some w 6∈ B such that there is

a directed edge from v to w.

Proof. First, note that since we deleted all vertices with rogue degree at least 4st, more than 4st of

the 8st vertices immediately after v are connected to v by a directed edge. Since we have a median

order, the feedback property implies that only at most half of those edges can be directed back

towards v; therefore, there are more than 2st vertices there that have a directed edge from v. Since

|B| < 2st, at least one of these vertices will serve as our w. �

Consider the vertices v1, v2, v4, . . . , v2⌊log2 2f⌋ . Since we already established that f ≤ t/2, this is

a list of at most t + 1 vertices, the first and last of which are also the first and last vertices in the

median order. Since U still has at least 180st log2 t vertices, the pigeonhole principle implies that

there must be some pair of vertices {vℓ, v2ℓ} in that list such that the number of vertices between

them in the median order is at least 180st − 2. Thus, the following lemma will provide the desired

contradiction.

Lemma 2.5. If there is any 1 ≤ ℓ ≤ f such that there are at least 176st vertices between vℓ and v2ℓ

in the median order, then G has a rainbow t-edge path.

Proof. Suppose we have an ℓ that satisfies the conditions of the lemma. Let S1 be the first 8st

vertices immediately following vℓ in the median order, and let S2 be the next 168st vertices in the

median order.

Let us first build for every i ≤ ℓ a directed path Pi from vi to S1 by repeatedly applying Lemma

2.4. Start with each such Pi = {vi}, and as long as one of those Pi does not reach S1, apply the

lemma to extend it forward to a new vertex w, and add the set Uk containing w to the set of bad

vertices B. If at any stage we have |B| ≥ 2st, we can immediately apply Lemma 2.3 to find a rainbow

path with at least t edges, just as in the argument directly preceding the statement of Lemma 2.4.

So, suppose that does not happen, and let {wi}
ℓ
1 ⊂ S1 be the endpoints of these paths. We will show

that we can further extend these paths into S2 by a total amount of at least t, in such a way that

we never use two vertices from the same set Uk. This will complete our proof because Lemma 2.3

can link them into a rainbow path with at least t edges.

Recall that all of the sets Ui had size at most 2s. Therefore, we can partition S2 into disjoint

sets U ′
j with 2s ≤ |U ′

j | ≤ 4s, where each U ′
j is obtained by taking a union of some sets Ui ∩ S2. We

will design our path extension process such that it uses at most one vertex from each U ′
j, and hence

it will also intersect each Uk at most once. We use the probabilistic method to accomplish this.

Perform the following randomized algorithm, which will build a collection of sets {Ti}
ℓ
i=1. First,

activate each U ′
j with probability 1/8. Next, for each activated U ′

j , select one of its vertices uniformly

at random, and assign it to one of the Ti, again uniformly at random. For each i ≤ ℓ, let T ′
i be

obtained from Ti by deleting every vertex in B, and every vertex that is not pointed to by a directed

edge from vi. Finally, let T
′′
i be derived from T ′

i by (arbitrarily) deleting one vertex from every rogue
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edge with both endpoints in T ′
i . Observe that now each T ′′

i spans a tournament, so as we saw at the

end of the introduction, it contains a directed Hamiltonian path P ′
i . Since wi has a directed edge to

every vertex in T ′′
i , this P ′

i can be used to extend Pi. Therefore, if we can construct sets T ′′
i such

that |T ′′
1 |+ · · ·+ |T

′′
ℓ | ≥ t, we will be done.

Fix an i ≤ ℓ, and let us compute E [|T ′
i |]. By the feedback property of a median order, the

number of (backward) directed edges from S2 to {wi} is at most half of the number of directed edges

between wi and the vertices in S1∪S2 which follow it in the median order. Since the latter number is

bounded by |S1 ∪S2| = 176st, the number of directed edges from S2 to wi is at most 88st. Also, the

number of rogue edges between S2 and {wi} is at most 4st because by construction all rogue degrees

are bounded by 4st. Therefore, the number of (forward) directed edges from wi to S2 is at least

168st − 88st − 4st = 76st. Since we will delete up to 2st vertices which were from B, the number

of directed edges from wi to vertices in S2 \B is at least 74st. Suppose −−→wix is one of these directed

edges, and suppose that x ∈ U ′
k. The probability that x is selected for Ti is precisely

1

8·ℓ·|U ′
k
| ≥

1

8·ℓ·4s ,

and by construction of x, we know that if it is selected for Ti, it will also remain in T ′
i . Therefore,

by linearity of expectation,

E
[

|T ′
i |
]

≥ 74st ·
1

8 · ℓ · 4s
=

37

16

t

ℓ

To bound E [|T ′
i | − |T

′′
i |], observe that the number of rogue colors in the graph spanned by S2 \B is

less than 2ℓ, by construction of the sequence {vi}. Therefore, Lemma 2.1 implies that there are less

than 2ℓ · s · 168st rogue edges spanned by S2 \B. Consider one of these rogue edges xy. If we select

both of its endpoints for Ti, it will contribute at most 1 (possibly 0) to |T ′
i | − |T

′′
i |; otherwise it will

contribute 0. Above, we already explained that the probability that the vertex x ∈ U ′
j is selected for

Ti is precisely
1

8·ℓ·|U ′
k
| ≤

1

8·ℓ·2s . If x and y come from distinct U ′
j, then the probabilities that they were

both selected for Ti are independent, and otherwise it is impossible that they both were selected.

Hence

E
[

|T ′
i | − |T

′′
i |
]

≤ 2ℓ · s · 168st ·

(

1

8 · ℓ · 2s

)2

=
21

16

t

ℓ

Therefore, by linearity of expectation, E [|T ′′
i |] ≥ t/ℓ, and thus E [|T ′′

1 |+ · · · + |T
′′
ℓ |] ≥ t. This implies

that there exists an instance of our random procedure for which |T ′′
1 |+ · · ·+ |T

′′
ℓ | ≥ t, so we are done.

�

3 Concluding remarks

In our proof, we apply Lemma 2.2 to produce a structured set U = U1 ∪ . . . ∪ Um of size Ω(st log t).

The argument in Section 2.2 is quite wasteful because, in particular, Lemma 2.5 attempts to build a

collection of directed paths with total length ≥ t, but essentially using only the vertices in the median

order between vℓ and v2ℓ. This dissection of the vertex set into dyadic chunks incurs the logarithmic

factor in our bound. We believe that with a better argument, one might be able to complete the

proof using a structured set U = U1 ∪ . . . ∪ Um of size only Ω(st). If this were indeed possible, then
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Lemma 2.2 would immediately imply that f(S,Pt) = O(st), because one loses only a constant factor

in passing from V (G) to U .

It would be very interesting to obtain a better bound on f(S, T ) for general trees T . Our approach,

based on the median order, seems particularly promising here since it might be combined with the

following result of Havet and Thomassé [12] on Sumner’s conjecture: every tournament of order 4n

contains every directed tree of order n as a subgraph.

A Appendix (by Oleg Pikhurko and Benny Sudakov)

Consider the following variant of the constrained Ramsey number. Let g(S, T ) be the minimum

integer n such that every coloring of the edges of the complete graph Kn contains either a monochro-

matic copy of S or a properly colored copy of T . (In contrast, recall that the definition of f(S, T )

requires T to be rainbow). Similarly as for constrained Ramsey numbers, it is easy to see that g(S, T )

exists (i.e., it is finite) if and only if S is a star or T is acyclic. Although there has been little success

bounding f(S, T ) by O(st), it turns out that we can prove a quadratic upper bound for g(S, T ),

which is of course no larger than f(S, T ).

Theorem A.1. Let S and T be two trees with s and t edges, respectively. Then g(S, T ) ≤ 2st+ t2.

The following construction shows that the upper bound is tight up to a constant factor. Let S

be a path with s + 1 edges and T be a star with t+ 1 edges. Then let V1, . . . , Vt be disjoint sets of

size ⌊s/2⌋ each. Color all edges inside Vi and from Vi to Vj with j > i by color i. This produces a

graph on t⌊s/2⌋ vertices with no monochromatic S and no properly colored T .

To prove Theorem A.1, we first need the following lemma.

Lemma A.2. Consider an edge coloring of the complete graph which contains no monochromatic

copy of a fixed tree S with s edges. Let U be the set of vertices such that for every u ∈ U , one can

delete at most a edges from the graph such that the remaining edges which connect u to the rest of

the graph have at most b colors. Then |U | ≤ 2(bs + a).

Proof. Focus on the subgraph induced by U . Now we can delete at most a edges at every vertex

so that the remaining edges at that vertex have at most b colors. Let G be the graph obtained

after all of these deletions. If m = |U |, then the number of edges of G is at least
(

m
2

)

− am. For

every remaining color c, let Gc be the subgraph of all edges of color c. By Lemma 2.1, we have

e(Gc) < s · v(Gc) for each c. Also, since every vertex of G is incident with edges of at most b colors,

we have that
∑

c v(Gc) ≤ bm. Combining all these inequalities we have

(

m

2

)

− am ≤
∑

c

e(Gc) <
∑

c

s · v(Gc) ≤ sbm.

This implies that m < 2(bs + a) + 1. �
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Proof of Theorem A.1. The proof is by induction on t. The statement is trivial for t = 1 because

any edge will give us a properly colored T . Now suppose that T is a tree with t > 1 edges, and we

have a coloring of G = K2st+t2 with no monochromatic copy of S. It suffices to show that we can

find a properly colored copy of T . Select an edge (u, v) of T such that all neighbors of v except u

are leaves v1, . . . , vk. Delete v1, . . . , vk from T and call the new tree T1. The number of edges in T1

is t1 = t− k.

Let U be the set of vertices of G such that for every u ∈ U one can delete at most t1 edges from G

such that the edges which connect u to the rest of the graph have at most k colors. By the previous

lemma |U | ≤ 2(ks+ t1), and let W = V (G) \ U . Then we have that

|W | = 2st+ t2 − |U | ≥ 2st1 + t2 − 2t1 > 2st1 + t21.

Therefore by induction we can find a properly colored copy of the tree T1 inside W . Let u′, v′ be the

images in this copy of the vertices of u, v of T1. By definition of W , the vertex v′ has edges of at

least k + 1 colors connecting it with vertices outside this copy of T1. At least k of these colors are

different from that of the edge (u′, v′), so we can extend the tree to a properly colored copy of T . �

Using a more careful analysis in the above proof, which we omit, one can slightly improve the

term t2 in Theorem A.1.
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[10] A. Gyárfás, J. Lehel, and R. Schelp, Finding a monochromatic subgraph or a rainbow path,

Journal of Graph Theory 54 (2007), 1–12.
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