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Abstract

We show that for every n there are two simple curves on the torus intersecting at
least n times without the two curves folding or spiralling with respect to each other.
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1 Introduction

Maybe you have found yourself aimlessly doodling away on a piece of paper,
producing psychedelic drawings like
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As you are squeezing one more bend of the curve into the picture you might
have wondered whether the doodle has any inherent structure. The picture
above, for example, contains a fair amount of spiralling and folding. If your
curves intersect often, do they have to spiral or fold?

We need to make our notions of folding and spiralling precise. We are
interested in the behavior of two simple curves, that is, curves without self-
intersections. Typically, one of the curves is drawn as a straight line; it might
be part of a triangulation of the surface we are working on. The second curve
intersects the first curve a large number of times. We assume that the two
curves do not form a lens, that is, a disc shaped area with two boundary
components, one belonging to the first curve, the second to the other curve
and not containing any other part of the curve in its interior. We can always
eliminate a lens by punching a hole into the surface (the picture above contains
four lenses which could be removed by adding two holes to the surface).

We say that two curves α and β fold if there is a disk D so that α coincides
with the boundary ∂D of the disk in two segments which have the same
orientation (as we travel along α), and β intersects ∂D only in those two
segments ∂D ∩α and it does intersect both of those segments. The width of a
fold is the number of intersections of β with one of the two segments making
up ∂D ∩ α (both numbers have to be identical).

Two curves α and β spiral if there is an annulus A so that both curves
have exactly one endpoint in common with each boundary component of A;
moreover, we require that the spiral has depth at least one, where the depth

of the spiral is the number of intersections of α and β within A minus 2.

Our opening example contained a fold of width three and a spiral of depth
one. (The disk D and the annulus A are crosshatched in the picture). The
following example shows that in spite of an arbitrarily large number of inter-
sections of α and β there need not be any spiralling and only very shallow
folding in the drawing:



However, for this to be possible, there need to be a large number of bound-
ary components. So let us assume that the surface is fixed, including the num-
ber of boundary components. Does a large number of intersections between α

and β on that surface force either a deep spiral or a wide fold?

This is not an entirely idle question inspired by research on the string graph
problem. It is easy to show, adapting a construction due to Kratochv́ıl and
Matoušek [3] for string graphs, that in the presence of n boundary components
two curves can be forced to intersect on the order of Ω(2n) times in the plane
without there being any spiralling. This example does, however, contain a
fold of width Ω(2n). In the companion paper to this paper we show that even
for a fixed number of boundary components, we can construct curves α and β

in the plane with no spiralling and an arbitrarily large number of intersections
between α and β [8]. The two curves do form a wide fold, however.

In the present paper we show how to construct curves α and β on the
torus that contain no spiral and no fold. This closes a promising approach to
the string graph problem on surfaces of higher genus. A string graph is the
intersection graph of curves in the plane (or another surface). Recognizing
whether a graph is a string graph is an old question [1,2] that was settled
recently by proving an exponential upper bound on the number of intersections
needed in a realization of a string graph in the plane [4,9].

There are three known approaches to proving the decidability of string
graphs in the plane: the topological proof by Pach and Tóth [4], our more
combinatorial proof from [9] and an algebraic proof using trace monoids [6].
The last proof is the only one that currently works for arbitrary surfaces.
Unfortunately, it only gives a double-exponential upper bound on the number
of intersections in an optimal realization of a string graph on a surface. The
proof from [9] makes essential use of properties of the plane, and does not seem
to lift easily to other surfaces. This leaves the proof of Pach and Tóth which
proceeds by finding, under certain conditions, a deep spiral in the realization
of a string graph which then allows the simplification of the realization. Our
main result of this paper implies that this approach cannot be lifted in a
straightforward manner even to the torus, since there are systems of two curves
that do not contain any spiralling whatsoever.



2 The Torus Case

Let fn be the Fibonacci numbers, with f0 = 0 and f1 = 1. Figure 1 is a train
track describing a system of curves on the torus.
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Fig. 1. Intersection of α with a system of curves containing no spirals.

A line of weight w in the diagram represents w parallel curves. For example,
on the left side of Figure 1 we see five groups of parallel curves merge: the
first group, labeled X0, consists of fn − 1 parallel curves. We connect the
groups that have the same label directly with each other, so, for example, the
fn − 1 curves on the top left of the track connect to the occurrence of X0 at
the bottom right of the track. The connections can be realized simultaneously
on a torus, so the whole system of curves can be embedded on the torus.
Question marks represent unlabeled endpoints of curves.

It is not a priori clear that the train track describes a system of four curves
labeled a, b, a and b, and, indeed, it might not, depending on the value of n.
However, we can prove that as long as n ≡ 1 mod 3, the train track represents
a system of exactly four curves with endpoints and the system of curves does
not contain any closed curve components.

We prove this result by viewing Figure 1 as a word equation which gives
us the following system:

X = X0aX1bX2cX3aX4bX5 = X5?X1?X3?X2?X4?X0(1)

with given lengths |X0| = |X3| = Fn − 1, |X1| = |X4| = Fn+1 − 1, |X2| =
|X5| = Fn+3 − 1 (the question marks are unit-length variables).

We can show that for n ≡ 1 mod 3, Equation (1) has a unique solution.



This solution translates into a system of four curves, a, b, a and b. The fact
that the solution is unique means that the system of curves does not contain
any closed components.

A spiral in the train track forces a square in X, that is, a word of the form
ww with w ∈ Σ∗. By a rather intricate proof we can show that the unique
solution X to Equation (1) is square-free. Moreover, since a fold requires
intersections with α in both directions (which does not occur in our system),
we have established the following result.

Theorem 2.1 For any n there are two simple curves α and β on the torus

which intersect more than n times without forming either folding or spiralling.
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